JP5157323B2 - Method and apparatus for measuring position of current-carrying part - Google Patents
Method and apparatus for measuring position of current-carrying part Download PDFInfo
- Publication number
- JP5157323B2 JP5157323B2 JP2007225010A JP2007225010A JP5157323B2 JP 5157323 B2 JP5157323 B2 JP 5157323B2 JP 2007225010 A JP2007225010 A JP 2007225010A JP 2007225010 A JP2007225010 A JP 2007225010A JP 5157323 B2 JP5157323 B2 JP 5157323B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- frequency
- carrying part
- mes
- metal plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
本発明は、OA・電機製品などの内部に組み込まれた電子回路からの電磁波漏洩の評価に関し、特に電磁波漏洩の評価にあたって通電部の位置を正確に測定する通電部の位置測定方法および装置に関するものである。 The present invention relates to evaluation of electromagnetic wave leakage from an electronic circuit incorporated in an OA / electrical product and the like, and more particularly to a position measuring method and apparatus for a current-carrying part that accurately measures the position of the current-carrying part when evaluating electromagnetic wave leakage. It is.
OA・電機製品には、製品内部に組み込まれた電子回路からの漏洩電磁波をシールドすることが求められている。これは、漏洩電磁波が他のOA・電機商品を誤作動させる可能性があるだけでなく、心臓ペースメーカなどの電子機器を誤作動させて、使用している人へ影響を及ぼす可能性があるためである。 OA / electrical products are required to shield leakage electromagnetic waves from electronic circuits incorporated in the product. This is because leaked electromagnetic waves may not only cause other OA / electrical products to malfunction, but may also cause electronic devices such as cardiac pacemakers to malfunction and affect people who use them. It is.
OA・電機製品の筐体は、鋼板やアルミ板等の金属で作製されている場合が多い。そして、金属製の筐体内部に電磁波の発信源がある場合に、金属板が重なった部分を溶接など連続的な接合を施さない限り、隙間ができてしまい、ここから電磁波が漏洩することが問題となる。そのため、筐体外部へ電磁波が漏洩する機構に基いて、その漏洩電磁波の強度を評価する手法は、電磁波漏洩を制御する上で重要な技術である。 The casing of OA / electrical products is often made of a metal such as a steel plate or an aluminum plate. If there is an electromagnetic wave source inside the metal housing, a gap will be created unless the metal plate overlaps the welded part, and electromagnetic waves may leak from here. It becomes a problem. Therefore, a technique for evaluating the strength of the leaked electromagnetic wave based on a mechanism for leaking the electromagnetic wave to the outside of the housing is an important technique for controlling the electromagnetic wave leakage.
このような漏洩電磁波の強度を評価する技術として、特許文献1に開示された技術がある。この技術は、通電部の位置と形状を測定し、通電部の間隔および長さを求めて電磁波の強度を評価するようにしたものであり、簡便かつ高精度に漏洩電磁波の強度を評価することができるという特徴がある。
特許文献1に開示された技術では、電磁波減衰の評価を以下のように行っている。すなわち、図8に示すように金属板と金属板を重ねたときの通電部の間隔をd1、d2(d1>d2)とする。このときの通電部の最大距離(dmax)は、d1となり、金属板と金属板の隙間を電磁波が透過する場合、電磁波の減衰量はこのdmaxで決まる。そこで、金属板を重ねた部分に生じる通電部の位置を測定してdmaxを求め、dmaxから隙間を透過する電磁波の減衰を推定するものである。
In the technique disclosed in
2枚の金属板が重ねられている場合、通電部の位置測定にあたっては、図9に示すように一方の板の表面に導線を接続し、この2枚の板に直流電流を印加して、そのときの板表面の電位分布を板表面に接続された導線によって測定する。測定された電位分布より、電位が極小(あるいは極大)となっている部分を通電部と判断でき、より正確に通電部を以下の方法で求めている。 When two metal plates are stacked, in measuring the position of the current-carrying part, as shown in FIG. 9, a conductive wire is connected to the surface of one plate, a direct current is applied to the two plates, The potential distribution on the plate surface at that time is measured by a conductive wire connected to the plate surface. From the measured potential distribution, the portion where the potential is minimum (or maximum) can be determined as the energized portion, and the energized portion is obtained more accurately by the following method.
板表面で測定された2次元(x,y)の電位分布をV(x,y)とする。板の導電率をσとすると電流密度の分布(i(x,y))は、(1)式で与えられる。 Let V (x, y) be a two-dimensional (x, y) potential distribution measured on the plate surface. If the conductivity of the plate is σ, the current density distribution (i (x, y)) is given by equation (1).
さらに、上述の電流密度の分布から以下の(2)式のように発散(divergence)を求める。 Further, the divergence is obtained from the above-described current density distribution as shown in the following equation (2).
求めた発散の値が、負である部分では電流の吸い込みが、正である部分では電流の湧き出しが生じている部分である。このように、電位分布から電流密度の分布を求め、その発散が負(あるいは正)である部分は通電部とみなせる。こうして得られた通電部の位置から通電部の間隔を測定し、最も大きなものをdmaxとしている。 In the portion where the obtained divergence value is negative, the current is absorbed, and in the portion where the divergence is positive, the current is generated. In this way, the current density distribution is obtained from the potential distribution, and the portion where the divergence is negative (or positive) can be regarded as the energization portion. The distance between the energized portions is measured from the position of the energized portion thus obtained, and the largest value is defined as dmax .
しかし、金属板と金属板を重ねた隙間を電磁波が透過するとき、金属板の表面にはその電磁波と同じ周波数の高周波電流が流れる。したがって、金属板間の隙間を電磁波が透過するとき、直流に対して通電部とならない部分でも、透過する電磁波の周波数より低い周波数の高周波に対してインピーダンスが低くなる部分では、通電部となってしまう。このように、直流電流によって通電部の位置を測定する特許文献1に開示された技術では、通電部の位置を正確に測定できなくなることがあり、しいては高精度に漏洩電磁波の強度を評価できなくなるという問題がある。
However, when electromagnetic waves pass through the gap between the metal plates, a high-frequency current having the same frequency as the electromagnetic waves flows on the surface of the metal plates. Therefore, when electromagnetic waves are transmitted through the gaps between the metal plates, even in a portion that does not become a current-carrying part with respect to direct current, in a part where the impedance is low with respect to a high frequency that is lower than the frequency of the transmitted electromagnetic wave, it becomes a current-carrying part. End up. As described above, in the technique disclosed in
本発明は上記事情に鑑みてなされたもので、電磁波漏洩の評価にあたって通電部の位置を正確に測定する通電部の位置測定方法および装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a position measuring method and apparatus for a current-carrying part that accurately measures the position of the current-carrying part in evaluating electromagnetic wave leakage.
本発明の請求項1に係る発明は、金属板間の隙間を漏洩する電磁波の評価にあたって、直流に対して通電部とならない部分でも、高周波に対して通電部となる場合における通電部の位置と形状を測定する通電部の位置測定方法であって、
前記金属板間の隙間を透過する電磁波の周波数より低い周波数(f mes )の高周波電流を前記金属板間に流し、
前記金属板表面に複数の導線を接続して、その導線間の電位差を測定して増幅し、増幅した電位差を、周波数f high (f high =1.2×f mes )以下の高周波を透過するLow Passフィルターと周波数f low (f low =0.8×f mes )以上の周波数の高周波を透過するHigh Passフィルターに直列に通して、前記金属板表面に生ずる電位分布を測定し電流密度の分布を求め、求めた電流密度分布の発散の値が負または正となっている部分を通電部と判断して電磁波漏洩を評価することを特徴とする通電部の位置測定方法である。
The invention according to
Flowing a high frequency current of the metal plate between the lower than the frequency of electromagnetic waves transmitted through the gap frequency (f mes) to the metal plates,
A plurality of conductive wires are connected to the surface of the metal plate, the potential difference between the conductive wires is measured and amplified, and the amplified potential difference is transmitted through a high frequency of a frequency f high (f high = 1.2 × f mes ) or less. Distribution of current density by measuring the potential distribution generated on the surface of the metal plate through a Low Pass filter and a High Pass filter that transmits a high frequency of frequency f low (f low = 0.8 × f mes ) or higher. And determining a portion where the divergence value of the obtained current density distribution is negative or positive as an energized portion and evaluating electromagnetic wave leakage.
また本発明の請求項2に係る発明は、請求項1に記載の通電部の位置測定方法において、前記金属板は、鋼板であることを特徴とする通電部の位置測定方法である。
The invention according to claim 2 of the present invention is the position measuring method of the energizing part according to
さらに本発明の請求項3に係る発明は、金属板間の隙間を漏洩する電磁波の評価にあたって、直流に対して通電部とならない部分でも、高周波に対して通電部となる場合における通電部の位置と形状を測定する通電部の位置測定装置であって、
前記金属板間の隙間を透過する電磁波の周波数より低い周波数(f mes )の高周波電流を前記金属板間に流す高周波電源と、
前記金属板の表面に接続した導線と、
該導線間の電位差信号を増幅するアンプと、
周波数f high (f high =1.2×f mes )以下の高周波を透過するLow Passフィルターと周波数f low (f low =0.8×f mes )以上の周波数の高周波を透過するHigh Passフィルターに直列に通して、増幅された信号のノイズをカットするフィルターと、
ノイズカットされた信号の波形を測定するオシロスコープとを備えることを特徴とする通電部の位置測定装置である。
Furthermore, in the invention according to claim 3 of the present invention, in the evaluation of the electromagnetic wave leaking through the gap between the metal plates, the position of the energization part when it becomes the energization part for the high frequency even in the part that does not become the energization part for the direct current. And a position measuring device for the current-carrying part for measuring the shape,
A high frequency power source supplying a high frequency current of the metal plate between the lower than the frequency of electromagnetic waves transmitted through the gap frequency (f mes) to the metal plates,
A conducting wire connected to the surface of the metal plate;
An amplifier for amplifying a potential difference signal between the conductors;
A Low Pass filter that transmits high frequencies below the frequency f high (f high = 1.2 × f mes ) and a High Pass filter that transmits high frequencies above the frequency f low (f low = 0.8 × f mes ) A filter that passes in series and cuts the noise of the amplified signal;
An oscilloscope for measuring the waveform of a noise-cut signal is provided.
本発明では、金属板間に高周波電流を流し、金属板表面に生ずる電位分布を測定するようにしたので、通電部の位置を正確に測定できるようになった。またこれにより、高精度に漏洩電磁波の強度を評価することができるようになった。 In the present invention, since a high-frequency current is passed between the metal plates and the potential distribution generated on the surface of the metal plate is measured, the position of the energization part can be accurately measured. As a result, the intensity of the leaked electromagnetic wave can be evaluated with high accuracy.
図2は、金属板と金属板を重ねた部分の断面を模式的に示す図である。図2の板表面と板表面が完全に接触している部分(A)は、直流電流、および高周波電流に対しても通電部となる。特許文献1のように直流で通電部の位置を測定した場合、通電部としてA部が測定され、dmaxはd0となる。
FIG. 2 is a diagram schematically showing a cross section of a portion where the metal plate and the metal plate are overlapped. The portion (A) in which the plate surface and the plate surface are completely in contact with each other in FIG. When the position of the energization part is measured by direct current as in
しかし、図2の板表面と板表面が接触していない部分(A部以外の部分)では、直流電流に対しては抵抗が高く通電部とはならない。一般に、金属板と金属板の間に隙間がある部分をコンデンサーとみなした場合、この部分に印加される高周波に対する抵抗(インピーダンス:Z)は、次式で与えられる。 However, in the portion where the plate surface and the plate surface in FIG. 2 are not in contact with each other (portion other than the portion A), the resistance to the direct current is high and it does not become a conducting portion. In general, when a portion having a gap between a metal plate and a metal plate is regarded as a capacitor, a resistance (impedance: Z) to a high frequency applied to this portion is given by the following equation.
従って、金属板と金属板の間に隙間がある場合、隙間が狭い程、また隙間の誘電率が高い程、この部分のインピーダンスは低くなる。また、印加される高周波の周波数が高いほどインピーダンスは低くなる。 Therefore, when there is a gap between the metal plates, the impedance of this portion becomes lower as the gap is narrower and the dielectric constant of the gap is higher. Further, the higher the frequency of the applied high frequency, the lower the impedance.
このため、図2のB部のように板-板間の隙間が小さい部分、あるいはC部のように隙間の誘電率が高い部分は、直流に対しては通電部とはならないが、周波数を高くした場合、高周波に対してはインピーダンスが低くなり通電部となる(後述する図7を参照)。 For this reason, a portion where the gap between the plates is small, such as part B of FIG. 2, or a part where the dielectric constant of the gap is high, such as part C, is not a current-carrying part for direct current, but the frequency is When it is increased, the impedance becomes lower with respect to the high frequency and becomes a current-carrying portion (see FIG. 7 described later).
金属板と金属板を重ねた隙間を電磁波が透過するとき、金属板の表面にはその電磁波と同じ周波数の高周波電流が流れる。したがって、金属板間の隙間を電磁波が透過するとき、直流に対して通電部とならない部分でも、透過する電磁波の周波数(fin)より低い周波数の高周波に対してインピーダンスが低くなる部分は、その電磁波が透過する場合に通電部となる。 When electromagnetic waves are transmitted through the gap between the metal plates, a high-frequency current having the same frequency as the electromagnetic waves flows on the surface of the metal plates. Therefore, when the electromagnetic wave passes through the gap between the metal plates, even the part that does not become a current-carrying part for direct current, the part where the impedance becomes low for the high frequency of the frequency lower than the frequency (f in ) of the transmitted electromagnetic wave, When the electromagnetic wave is transmitted, it becomes an energizing part.
図2に示すように(紙面に垂直に)電磁波(周波数fin)が、金属板間の隙間を透過するとき、B部およびC部がfinより低い周波数でインピーダンスが低くなれば、B部およびC部は周波数finの高周波に対して通電部となる。このとき、d1>d2>d3であればdmaxはd1となり、透過する電磁波の減衰量は、直流電流によって測定されたd0ではなくd1で決まることとなる。 As shown in FIG. 2 (perpendicular to the paper surface) waves (frequency f in) is, when transmitted through the gaps between the metal plates, if B unit and C unit is low impedance at frequencies below f in, Part B and C portion is the conductive portion with respect to the high frequency of the frequency f in. At this time, if d 1 > d 2 > d 3 , d max is d 1 , and the attenuation of the transmitted electromagnetic wave is determined by d 1 instead of d 0 measured by the direct current.
すなわち、特許文献1に開示された技術では、直流電流によって通電部の位置を測定しdmaxを求めるため、正確に電磁波の減衰量が評価できない可能性がある。本発明は、金属板と金属板を重ねた状態で、金属板間に生ずる通電部の位置を、金属板間に高周波電流を印加して、そのときの板表面の電位分布から求めるものである。
That is, in the technique disclosed in
図1は、本発明に係る通電部の位置測定装置の構成例を示す図である。図中、1は金属板A、2は金属板B、3は導線、4は高周波電源、5はアンプ、6はLow Passフィルター、7はHigh Passフィルター、および8はオシロスコープをそれぞれ表す。 FIG. 1 is a diagram illustrating a configuration example of a position measuring device for a current-carrying unit according to the present invention. In the figure, 1 is a metal plate A, 2 is a metal plate B, 3 is a conducting wire, 4 is a high frequency power source, 5 is an amplifier, 6 is a Low Pass filter, 7 is a High Pass filter, and 8 is an oscilloscope.
金属板A1の表面に複数の導線3を接続し、この金属板A1に金属板B2を重ねて板間に高周波電源4からの高周波電流を印加する。板表面の電位分布は任意の導線を基準(Ground)として、それに対する電位差を測定する。図1に示すように、Groundに接地した導線と他の導線との間の電位差を測定する場合、2本の導線から測定される信号をアンプ5で増幅する。
A plurality of conducting wires 3 are connected to the surface of the metal plate A1, a metal plate B2 is overlapped on the metal plate A1, and a high frequency current from the high
増幅された信号を、fhigh以下の高周波を透過するLow Passフィルター6とflow以上の周波数の高周波を透過するHigh Passフィルター7に直列に通して、オシロスコープ8に入力し測定される波形の振幅の値を電位差とする。この電位差を板表面全体で測定して電位分布を求める。金属板に印加する高周波の周波数をfmesとすると、flow=0.8×fmes、fhigh=1.2×fmes程度とするとノイズが少なく安定に測定ができる。ここでは、Low Passフィルター6とHigh Passフィルター7の個別のフィルターを用いたが、上下限を一つのフィルターで設定できるBand Passフィルターを用いてもかまわない。
The amplified signal is passed in series through a
金属板に印加する高周波の周波数fmesは、板の隙間を透過する電磁波の周波数(fin)と同じにすべきであるが、周波数が高くなるとノイズが著しく大きくなり、S/Nが悪くなり正確な板表面の電位分布の測定が困難となる。この場合には、fmesはfinより低くせざるをえない(fmes<fin)が、前述のようにインピーダンスは周波数が高くなる程低くなるので、直流で通電部と測定されず周波数fmesの高周波で通電部と測定された部分は、finの高周波に対しても通電部となる。このため、少なくとも直流で通電部の位置を測定した場合よりも、透過する電磁波の周波数より低くても、高周波で通電部の位置を測定した方が、より正確に電磁波の減衰を推定できる可能性がある。 High frequency of f mes to be applied to the metal plate, but should be the same as the electromagnetic wave of a frequency which passes the gap of the plate (f in), noise increases significantly as the frequency increases, S / N is deteriorated It is difficult to accurately measure the potential distribution on the plate surface. In this case, f mes no choice but to lower than f in (f mes <f in ) is, the impedance is low enough that frequency increases as described above, the frequency is not determined to be conducting portion in DC the measured portion and the conductive portion in a high frequency of f mes also becomes conducting portion with respect to high frequency f in. For this reason, there is a possibility that the attenuation of electromagnetic waves can be estimated more accurately by measuring the position of the current-carrying part at a high frequency even if it is lower than the frequency of the transmitted electromagnetic wave, rather than at least when the position of the current-carrying part is measured by direct current. There is.
本発明に係る実施例について以下説明を行う。図3は、本発明に係る実施例を説明する図である。幅100mm長さ30mmの鋼板(板(下))の上に、鋼板(板(上)、幅長さとも板(下)よりサイズが大きい)を載せて、上下の板を高周波電源に接続し、高周波電流を印加する。そして、上の板には幅110mmの範囲に5mm間隔で導線を取り付け、この導線によって板表面の電位分布を測定した。 Embodiments according to the present invention will be described below. FIG. 3 is a diagram for explaining an embodiment according to the present invention. Place a steel plate (plate (top), both width and length larger than the plate (bottom)) on a steel plate (plate (bottom)) with a width of 100 mm and a length of 30 mm, and connect the upper and lower plates to a high-frequency power source. Apply high frequency current. Then, conducting wires were attached to the upper plate at intervals of 5 mm within a width of 110 mm, and the potential distribution on the plate surface was measured using the conducting wires.
板(下)と板(上)の間に誘電体を挟み、誘電体を挟んだ部分が高周波に対して通電部となるようにし、誘電体を挟む位置を2通り(条件−1および2)変化させて、板表面の電位分布を測定したものである。
A dielectric is sandwiched between the plate (lower) and the plate (upper) so that the portion sandwiched between the dielectrics becomes a current-carrying portion for high frequency, and there are two positions for sandwiching the dielectric (
条件−1の場合、図4に示すように原点からの距離が15〜35mmおよび75〜95mmの範囲に誘電体を挟み、条件−2の場合、図5に示すように原点からの距離が5〜25mmおよび85〜105mmの範囲に誘電体を挟み、高周波に対して通電部となるようにした。 In the case of condition-1, as shown in FIG. 4, the dielectric is sandwiched in the range of 15 to 35 mm and 75 to 95 mm from the origin, and in the case of condition-2, the distance from the origin is 5 as shown in FIG. A dielectric was sandwiched between -25 mm and 85-105 mm so as to be a current-carrying part for high frequencies.
図6は、高周波電流による電位分布測定の結果の一例を示す図である。10kHzの高周波を印加した場合の電位分布を示しており、図中の点線および実線で示す間隔で、条件−1および2それぞれでの通電部の位置を表している。条件−1、2いずれの場合でも、通電部の位置でGroundに対する電位が極小値となっていることが分かる。 FIG. 6 is a diagram illustrating an example of a result of potential distribution measurement using a high-frequency current. The potential distribution when a high frequency of 10 kHz is applied is shown, and the position of the energization part in each of the conditions -1 and 2 is represented by the intervals indicated by the dotted line and the solid line in the figure. It can be seen that in both cases of Conditions-1 and 2, the potential with respect to Ground has a minimum value at the position of the energization portion.
さらに、図7は、印加する高周波の周波数を変化させた場合の板/板間のインピーダンスの変化を示す図である。板(下)と板(上)間に印加した高周波の周波数が高くなるほどインピーダンスは低くなり、通電部を測定した高周波の周波数10kHzの場合インピーダンスは10Ω程度まで低くなった。これに対して直流電流に対する抵抗は500KΩ〜1000kΩ程度であり、直流に対しては通電部がない状態、つまり絶縁状態とみなしてよいことを確認した。 Further, FIG. 7 is a diagram showing a change in impedance between the plates when the frequency of the applied high frequency is changed. The higher the frequency of the high frequency applied between the plate (lower) and the plate (upper), the lower the impedance. In the case of a high frequency of 10 kHz when the current-carrying part was measured, the impedance was reduced to about 10Ω. On the other hand, the resistance to direct current is about 500 KΩ to 1000 kΩ, and it was confirmed that the direct current can be regarded as having no current-carrying portion, that is, an insulating state.
これらの結果より、直流に対しては通電部とはならない部分が、高周波に対しては通電部となり、その位置は高周波を印加した場合の板表面の電位分布から求められることが分かる。 From these results, it can be seen that the portion that does not become a current-carrying portion for direct current becomes a current-carrying portion for high frequency, and the position is obtained from the potential distribution on the plate surface when a high frequency is applied.
1 金属板A
2 金属板B
3 導線
4 高周波電源
5 アンプ
6 Low Passフィルター
7 High Passフィルター
8 オシロスコープ
1 Metal plate A
2 Metal plate B
3
Claims (3)
前記金属板間の隙間を透過する電磁波の周波数より低い周波数(f mes )の高周波電流を前記金属板間に流し、
前記金属板表面に複数の導線を接続して、その導線間の電位差を測定して増幅し、増幅した電位差を、周波数f high (f high =1.2×f mes )以下の高周波を透過するLow Passフィルターと周波数f low (f low =0.8×f mes )以上の周波数の高周波を透過するHigh Passフィルターに直列に通して、前記金属板表面に生ずる電位分布を測定し電流密度の分布を求め、求めた電流密度分布の発散の値が負または正となっている部分を通電部と判断して電磁波漏洩を評価することを特徴とする通電部の位置測定方法。 In the evaluation of electromagnetic waves leaking through the gaps between metal plates, the position measurement method of the current-carrying part measures the position and shape of the current-carrying part when it becomes a current-carrying part for high frequencies even in a part that is not a current-carrying part for direct current. There,
Flowing a high frequency current of the metal plate between the lower than the frequency of electromagnetic waves transmitted through the gap frequency (f mes) to the metal plates,
A plurality of conductive wires are connected to the surface of the metal plate, the potential difference between the conductive wires is measured and amplified, and the amplified potential difference is transmitted through a high frequency of a frequency f high (f high = 1.2 × f mes ) or less. Distribution of current density by measuring the potential distribution generated on the surface of the metal plate through a Low Pass filter and a High Pass filter that transmits a high frequency of frequency f low (f low = 0.8 × f mes ) or higher. And determining a portion where the divergence value of the obtained current density distribution is negative or positive as an energized portion and evaluating electromagnetic wave leakage.
前記金属板は、鋼板であることを特徴とする通電部の位置測定方法。 In the method for measuring the position of the energization unit according to claim 1 ,
The metal plate is a steel plate.
前記金属板間の隙間を透過する電磁波の周波数より低い周波数(f mes )の高周波電流を前記金属板間に流す高周波電源と、
前記金属板の表面に接続した導線と、
該導線間の電位差信号を増幅するアンプと、
周波数f high (f high =1.2×f mes )以下の高周波を透過するLow Passフィルターと周波数f low (f low =0.8×f mes )以上の周波数の高周波を透過するHigh Passフィルターに直列に通して、増幅された信号のノイズをカットするフィルターと、
ノイズカットされた信号の波形を測定するオシロスコープとを備えることを特徴とする通電部の位置測定装置。 In the evaluation of electromagnetic waves leaking through the gaps between the metal plates, the position measurement device for the current-carrying part that measures the position and shape of the current-carrying part when it becomes a current-carrying part for high frequencies, even if it is not a current-carrying part for direct current There,
A high frequency power source supplying a high frequency current of the metal plate between the lower than the frequency of electromagnetic waves transmitted through the gap frequency (f mes) to the metal plates,
A conducting wire connected to the surface of the metal plate;
An amplifier for amplifying a potential difference signal between the conductors;
A Low Pass filter that transmits high frequencies below the frequency f high (f high = 1.2 × f mes ) and a High Pass filter that transmits high frequencies above the frequency f low (f low = 0.8 × f mes ) A filter that passes in series and cuts the noise of the amplified signal;
An oscilloscope for measuring a waveform of a noise-cut signal, and a position measuring device for a current-carrying unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007225010A JP5157323B2 (en) | 2007-08-31 | 2007-08-31 | Method and apparatus for measuring position of current-carrying part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007225010A JP5157323B2 (en) | 2007-08-31 | 2007-08-31 | Method and apparatus for measuring position of current-carrying part |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009058324A JP2009058324A (en) | 2009-03-19 |
JP5157323B2 true JP5157323B2 (en) | 2013-03-06 |
Family
ID=40554198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007225010A Expired - Fee Related JP5157323B2 (en) | 2007-08-31 | 2007-08-31 | Method and apparatus for measuring position of current-carrying part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5157323B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011232063A (en) * | 2010-04-26 | 2011-11-17 | Jfe Steel Corp | Method and device for measuring potential distribution of metal plate |
JP5456591B2 (en) * | 2010-06-10 | 2014-04-02 | Jfeスチール株式会社 | Method and apparatus for measuring position of energization unit |
JP5741228B2 (en) * | 2011-06-07 | 2015-07-01 | Jfeスチール株式会社 | Current point evaluation device for metal plate surface |
JP6142865B2 (en) * | 2014-01-10 | 2017-06-07 | Jfeスチール株式会社 | Method and apparatus for measuring position of energization unit |
JP6332162B2 (en) * | 2015-06-22 | 2018-05-30 | Jfeスチール株式会社 | Current measuring method and apparatus |
CN107643440B (en) * | 2017-11-08 | 2024-01-09 | 湖南省湘电试验研究院有限公司 | Detection device for human body power frequency induced current and application method thereof |
CN108459209A (en) * | 2018-02-08 | 2018-08-28 | 中国科学院信息工程研究所 | A kind of computer video electromagnetic leakage synchronization parameter extracting method and device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04178571A (en) * | 1990-11-14 | 1992-06-25 | Hitachi Ltd | Inspecting method for printed board |
JPH05302946A (en) * | 1992-04-15 | 1993-11-16 | Nec Corp | Evaluation method of electromagnetic shielding effect |
JP2003294706A (en) * | 2002-03-28 | 2003-10-15 | Mitsubishi Electric Corp | Device for estimating electromagnetic wave shielding performance |
JP4998682B2 (en) * | 2005-10-18 | 2012-08-15 | Jfeスチール株式会社 | Electromagnetic leakage evaluation method and apparatus |
-
2007
- 2007-08-31 JP JP2007225010A patent/JP5157323B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009058324A (en) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5157323B2 (en) | Method and apparatus for measuring position of current-carrying part | |
EP2975417B1 (en) | Measurement device and mounting unit | |
RU2019121920A (en) | METHOD FOR MEASURING ELECTRICAL CABLE IMPEDANCE, CONNECTOR LAYOUT AND THEIR APPLICATION | |
CN101398369A (en) | Device and method for monitoring surface corrosion | |
US20150189427A1 (en) | Device and method for generating driving signal of loudspeaker | |
Kil et al. | Measurements and analysis of the acoustic signals produced by partial discharges in insulation oil | |
CA2558042A1 (en) | Electrode configuration for limca | |
Fujii et al. | Highly sensitive partial discharge detection by TEV method under severe noise conditions | |
KR20100036567A (en) | Apparatus for detecting partial discharging signal and method for driving the same | |
JP4998682B2 (en) | Electromagnetic leakage evaluation method and apparatus | |
JP2014066589A (en) | Current detection device | |
JPH02290532A (en) | Instrument for detecting and measuring particle in liquid metal | |
KR100919785B1 (en) | Detecting device a partial dischargein in oil filled transformer using ae sensor and method for detecting a partial dischargein | |
JP6142865B2 (en) | Method and apparatus for measuring position of energization unit | |
JP2006078390A (en) | Measuring apparatus for characteristics of ultrasonic motor | |
JP5456591B2 (en) | Method and apparatus for measuring position of energization unit | |
EP4134689A1 (en) | Electromagnetic field sensor | |
JP2000235006A (en) | Method and device for measuring water content | |
JP2011232063A (en) | Method and device for measuring potential distribution of metal plate | |
KR100508711B1 (en) | Partial discharge localization system for in power cables | |
JP2015059838A (en) | Wiring current detection structure | |
JP4631832B2 (en) | Magnetic field generator and permeability measuring apparatus using the same | |
CN1108512C (en) | Underwater displacement measuring method and equipment | |
JP2020012796A (en) | Determination device, method for determination, and computer program | |
JP4775302B2 (en) | Semiconductor evaluation equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100422 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120904 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5157323 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151221 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |