JP4631832B2 - Magnetic field generator and permeability measuring apparatus using the same - Google Patents

Magnetic field generator and permeability measuring apparatus using the same Download PDF

Info

Publication number
JP4631832B2
JP4631832B2 JP2006238076A JP2006238076A JP4631832B2 JP 4631832 B2 JP4631832 B2 JP 4631832B2 JP 2006238076 A JP2006238076 A JP 2006238076A JP 2006238076 A JP2006238076 A JP 2006238076A JP 4631832 B2 JP4631832 B2 JP 4631832B2
Authority
JP
Japan
Prior art keywords
metal film
magnetic field
insulating substrate
measured
field generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006238076A
Other languages
Japanese (ja)
Other versions
JP2008058243A (en
Inventor
英治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006238076A priority Critical patent/JP4631832B2/en
Publication of JP2008058243A publication Critical patent/JP2008058243A/en
Application granted granted Critical
Publication of JP4631832B2 publication Critical patent/JP4631832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

本発明は、磁界発生装置及びそれを用いた透磁率測定装置に関するものである。   The present invention relates to a magnetic field generator and a magnetic permeability measuring device using the same.

従来から、磁性体等の試料の透磁率等の磁気的特性を測定する装置が種々知られている。このような装置においては、試料に対して磁界を印加するための手段が必要である。下記特許文献1には、断面矩形状の帯状コイルからなる磁界発生用コイルを有し、測定試料を測定用コイルと共に磁界発生用コイルの内側に配置可能な装置が開示されている。この装置では、磁界発生用コイルによる測定用試料への磁界の印加に応じて生じる測定用コイルの誘起電圧を検出することによって、試料の透磁率が演算される。   Conventionally, various apparatuses for measuring magnetic properties such as magnetic permeability of a sample such as a magnetic material are known. Such an apparatus requires means for applying a magnetic field to the sample. Patent Document 1 below discloses a device having a magnetic field generating coil composed of a strip coil having a rectangular cross section, and capable of arranging a measurement sample together with the measuring coil inside the magnetic field generating coil. In this apparatus, the magnetic permeability of the sample is calculated by detecting the induced voltage of the measuring coil generated in response to the application of the magnetic field to the measuring sample by the magnetic field generating coil.

また、下記特許文献2には、3枚の金属板により構成されるセル状の磁界発生源の内部に測定用コイルが固定された装置が記載されている。一方、下記非特許文献1には、測定用コイルを必要としない測定装置として、3本の導体部を表面に有する平面状導波路を利用した装置が開示されている。
特開平7−104044号公報 特開2004−69337号公報 Y. Ding, et al., ”A coplanar waveguide permeameter for studyinghigh-frequency properties of soft magnetic materials”, Journal of AppliedPhysics, vol.96 No.5, 1 September 2004, pp.2969
Patent Document 2 below describes an apparatus in which a measuring coil is fixed inside a cellular magnetic field generating source constituted by three metal plates. On the other hand, Non-Patent Document 1 below discloses an apparatus using a planar waveguide having three conductor portions on the surface as a measuring apparatus that does not require a measuring coil.
Japanese Patent Laid-Open No. 7-104044 JP 2004-69337 A Y. Ding, et al., “A coplanar waveguide permeameter for studying high-frequency properties of soft magnetic materials”, Journal of AppliedPhysics, vol.96 No.5, 1 September 2004, pp.2969

しかしながら、上述したような測定用コイルを利用した従来の透磁率測定装置では、磁界発生源の内側に測定用コイルと試料とを挿入するため、磁界発生源によって発生する電界の影響が無視できない。そのため、測定される試料の磁気的特性の精度が低下する傾向にあった。   However, in the conventional magnetic permeability measuring apparatus using the measurement coil as described above, the measurement coil and the sample are inserted inside the magnetic field generation source, so the influence of the electric field generated by the magnetic field generation source cannot be ignored. For this reason, the accuracy of the magnetic characteristics of the sample to be measured tends to decrease.

一方、平面状導波路を使用した装置の場合は、試料の近傍に生じる電界は比較的小さくなるが、平面導波路上に印加される磁界が導体部の幅方向において不均一になる傾向にある。その結果、測定対象の試料の大きさによっては、試料の特性の正確な測定が困難になる場合があった。   On the other hand, in the case of an apparatus using a planar waveguide, the electric field generated in the vicinity of the sample is relatively small, but the magnetic field applied to the planar waveguide tends to be non-uniform in the width direction of the conductor portion. . As a result, depending on the size of the sample to be measured, it may be difficult to accurately measure the characteristics of the sample.

そこで、本発明は、かかる課題に鑑みて為されたものであり、被測定物に対して均一に磁界を印加し、かつ、被測定物に対する電界の影響を低減することが可能な磁界発生装置及び透磁率測定装置を提供することを目的とする。   Accordingly, the present invention has been made in view of such problems, and a magnetic field generator capable of uniformly applying a magnetic field to the object to be measured and reducing the influence of the electric field on the object to be measured. And it aims at providing a magnetic permeability measuring device.

上記課題を解決するため、本発明の磁界発生装置は、所定の導体に電流が供給されることによって磁界を発生させる磁界発生装置であって、絶縁性基板と、絶縁性基板の一方の主面上に線状に延在して形成された第1の金属膜と、絶縁性基板の他方の主面上に形成された第2の金属膜とを備え、第1の金属膜と第2の金属膜とは、絶縁性基板の端部において電気的に接続されていることを特徴としている。   In order to solve the above problems, a magnetic field generator of the present invention is a magnetic field generator that generates a magnetic field by supplying a current to a predetermined conductor, and includes an insulating substrate and one main surface of the insulating substrate. A first metal film formed extending linearly on the second metal film and a second metal film formed on the other main surface of the insulating substrate, the first metal film and the second metal film The metal film is characterized in that it is electrically connected at the end of the insulating substrate.

このような磁界発生装置においては、第1の金属膜の上記他方の端部に電圧信号を印加し、第2の金属膜をグランドに接続した場合に、第1の金属膜の延在方向に電流が生成される結果、その金属膜の前面近傍に延在方向に垂直な方向の磁界が印加される。その際、絶縁性基板を挟んで電圧が印加されることで第1の金属膜上の絶縁性基板と反対側の電場が弱くされ、第1の金属膜の前面近傍に配置される被測定物における電場の影響を軽減できる。また、絶縁性基板の上記一方の主面上及び上記他方の主面上のそれぞれに第1の金属膜及び第2の金属膜が形成されているので、第1の金属膜の前面近傍における磁界がその幅方向において均一化され、被測定物に対して均一に磁界を印加することができる。   In such a magnetic field generator, when a voltage signal is applied to the other end of the first metal film and the second metal film is connected to the ground, the first metal film extends in the extending direction. As a result of the current generation, a magnetic field in a direction perpendicular to the extending direction is applied near the front surface of the metal film. At that time, by applying a voltage across the insulating substrate, the electric field on the side opposite to the insulating substrate on the first metal film is weakened, and the object to be measured is disposed near the front surface of the first metal film. Can reduce the effect of electric field. In addition, since the first metal film and the second metal film are formed on the one main surface and the other main surface of the insulating substrate, the magnetic field in the vicinity of the front surface of the first metal film is formed. Is made uniform in the width direction, and a magnetic field can be uniformly applied to the object to be measured.

上記第1の金属膜は、絶縁性基板上の一方の端部から他方の端部にわたって形成されていることが好ましい。こうすれば、絶縁性基板の全長に亘ってより均一な磁界を発生させることができる。   The first metal film is preferably formed from one end to the other end on the insulating substrate. In this way, a more uniform magnetic field can be generated over the entire length of the insulating substrate.

また、絶縁性基板上の一方の主面上には、第1の金属膜のみが形成されていることも好ましい。この場合、絶縁性基板の一方の主面上に発生する磁界がより一層均一化される。   It is also preferable that only the first metal film is formed on one main surface on the insulating substrate. In this case, the magnetic field generated on one main surface of the insulating substrate is made more uniform.

上記第2の金属膜は、第1の金属膜の延在方向に対して垂直な方向の幅が第1の金属膜より大きくなるように形成され、上記第1の金属膜は、絶縁性基板の一方の端部において、第2の金属膜と接続されていることが好ましい。   The second metal film is formed so that a width in a direction perpendicular to the extending direction of the first metal film is larger than that of the first metal film, and the first metal film is an insulating substrate. It is preferable to be connected to the second metal film at one end portion.

こうすれば、第1の金属膜を流れる電流がその幅方向にわたってより均一化されるので、第1の金属膜の内側領域上にある被測定物の大きさに拘わらず、被測定物に一様な磁場を印加することができる。   In this way, the current flowing through the first metal film is made more uniform in the width direction, so that the current to be measured is equal to the object to be measured regardless of the size of the object to be measured on the inner region of the first metal film. Various magnetic fields can be applied.

或いは、本発明の透磁率測定装置は、所定の導体に電流が供給されることによって被測定物に磁界を印加して被測定物の透磁率を測定するための透磁率測定装置であって、絶縁性基板と、絶縁性基板の一方の主面上に線状に延在して形成された第1の金属膜と、絶縁性基板の他方の主面上に形成された第2の金属膜とを備え、第1の金属膜と第2の金属膜とは、絶縁性基板の一方の端部において電気的に接続されていることを特徴としている。   Alternatively, the magnetic permeability measuring device of the present invention is a magnetic permeability measuring device for measuring the magnetic permeability of a measured object by applying a magnetic field to the measured object by supplying a current to a predetermined conductor, Insulating substrate, first metal film formed linearly on one main surface of insulating substrate, and second metal film formed on the other main surface of insulating substrate The first metal film and the second metal film are electrically connected at one end of the insulating substrate.

このような透磁率測定装置によれば、第1の金属膜の上記他方の端部に電圧信号を印加し、第2の金属膜をグランドに接続した場合に、第1の金属膜の延在方向に電流が生成される結果、その金属膜の前面近傍に配置される被測定物に対して、延在方向に垂直な方向の磁界が印加される。その際、絶縁性基板を挟んで電圧が印加されることで第1の金属膜上の絶縁性基板と反対側の電場が弱くされ、第1の金属膜の前面近傍に配置される被測定物における電場の影響を軽減できる。また、絶縁性基板の上記一方の主面上及び上記他方の主面上のそれぞれに第1の金属膜及び第2の金属膜が形成されているので、第1の金属膜の前面近傍における磁界がその幅方向において均一化され、被測定物に対して均一に磁界を印加することができる。従って、被測定物の透磁率を精度よく測定することができる。   According to such a magnetic permeability measuring device, when a voltage signal is applied to the other end of the first metal film and the second metal film is connected to the ground, the extension of the first metal film As a result of the generation of current in the direction, a magnetic field in a direction perpendicular to the extending direction is applied to the object to be measured disposed near the front surface of the metal film. At that time, by applying a voltage across the insulating substrate, the electric field on the side opposite to the insulating substrate on the first metal film is weakened, and the object to be measured is disposed near the front surface of the first metal film. Can reduce the effect of electric field. In addition, since the first metal film and the second metal film are formed on the one main surface and the other main surface of the insulating substrate, the magnetic field in the vicinity of the front surface of the first metal film is formed. Is made uniform in the width direction, and a magnetic field can be uniformly applied to the object to be measured. Therefore, the magnetic permeability of the object to be measured can be accurately measured.

上記第1の金属膜は、絶縁性基板上の一方の端部から他方の端部にわたって形成されていることが好ましい。こうすれば、絶縁性基板の全長に亘ってより均一な磁界を発生させることができる。   The first metal film is preferably formed from one end to the other end on the insulating substrate. In this way, a more uniform magnetic field can be generated over the entire length of the insulating substrate.

また、絶縁性基板上の一方の主面上には、第1の金属膜のみが形成されていることも好ましい。この場合、絶縁性基板の一方の主面上に発生する磁界がより一層均一化される。   It is also preferable that only the first metal film is formed on one main surface on the insulating substrate. In this case, the magnetic field generated on one main surface of the insulating substrate is made more uniform.

上記第2の金属膜は、第1の金属膜の延在方向に対して垂直な方向の幅が第1の金属膜より大きくなるように形成され、上記第1の金属膜は、絶縁性基板の一方の端部において第2の金属膜と接続されていることが好ましい。   The second metal film is formed so that a width in a direction perpendicular to the extending direction of the first metal film is larger than that of the first metal film, and the first metal film is an insulating substrate. It is preferable to be connected to the second metal film at one end portion.

この場合、第1の金属膜を流れる電流がその幅方向にわたってより均一化されるので、被測定物の大きさに拘わらず、第1の金属膜の内側領域上にある被測定物に一様な磁場を印加することができ、被測定物の透磁率のより正確な測定が可能になる。   In this case, since the current flowing through the first metal film is made more uniform in the width direction, it is uniform in the object to be measured on the inner region of the first metal film regardless of the size of the object to be measured. A magnetic field can be applied, and the magnetic permeability of the object to be measured can be measured more accurately.

本発明の磁界発生装置及び透磁率測定装置によれば、被測定物に対して均一に磁界を印加し、かつ、被測定物に対する電界の影響を低減することができる。   According to the magnetic field generator and the magnetic permeability measuring device of the present invention, it is possible to apply a magnetic field uniformly to the object to be measured and reduce the influence of the electric field on the object to be measured.

以下、図面を参照しつつ本発明に係る磁界発生装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a magnetic field generator according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の好適な一実施形態に係る磁界発生装置1の斜視図であり、図2は、図1の磁界発生装置1のII−II線に沿った断面図、図3は、図1の磁界発生装置1のIII−III線に沿った断面図である。これらの図に示すように、磁界発生装置1は、平板状の絶縁性基板2と、その絶縁性基板2の面上に形成された磁界発生用金属膜3及びグランド用金属膜4と、コネクタ6とを備えている。この磁界発生装置1は、磁界発生用金属膜3に電流が供給されることにより磁界発生用金属膜3に対向して配置される被測定物に磁界を印加するための装置であり、特に、被測定物の透磁率等の磁気的特性を測定する際に用いられる。   FIG. 1 is a perspective view of a magnetic field generator 1 according to a preferred embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line II-II of the magnetic field generator 1 of FIG. It is sectional drawing along the III-III line of the magnetic field generator 1 of FIG. As shown in these drawings, the magnetic field generator 1 includes a flat insulating substrate 2, a magnetic field generating metal film 3 and a ground metal film 4 formed on the surface of the insulating substrate 2, and a connector. 6 is provided. This magnetic field generating device 1 is a device for applying a magnetic field to an object to be measured that is disposed opposite to the magnetic field generating metal film 3 by supplying a current to the magnetic field generating metal film 3, This is used when measuring magnetic properties such as magnetic permeability of the object to be measured.

絶縁性基板2は、絶縁性材料からなる平板状部材である。この絶縁性材料としては、電界の生じる方向をより基板内部に閉じこめることができ、基板2の外側に配置される被測定物への電界の影響を少なくすることができるという点で、高誘電性材料がより好適に用いられる。   The insulating substrate 2 is a flat plate member made of an insulating material. As this insulating material, the direction in which the electric field is generated can be further confined inside the substrate, and the influence of the electric field on the object to be measured placed outside the substrate 2 can be reduced. The material is more preferably used.

磁界発生用金属膜3は、絶縁性基板2の一方の主面2a上の一端から他端にかけて、主面2aの縁部に平行な方向に直線的に延在して形成されているCu金属膜である。詳細には、この磁界発生用金属膜3は、被測定物の幅よりも大きい幅を有するように帯状をなし、主面2aの一端側においては、主面2aの端部に向けて直線的に狭くなるようなテーパ部5がさらに形成されている。磁界発生用金属膜3は、このテーパ部5の先端部において、絶縁性基板2の端面に取り付けられたにコネクタ6に電気的に接続されている。このコネクタ6は、ネットワークアナライザ等の外部装置(図示せず)を磁界発生用金属膜3及び後述するグランド用金属膜4に接続するためのものであり、例えば、これらの2つの導体をそれぞれ信号線とグランドとして電気的に接続可能な同軸コネクタ等が用いられる。   The magnetic field generating metal film 3 is a Cu metal formed so as to extend linearly in a direction parallel to the edge of the main surface 2a from one end on the other main surface 2a of the insulating substrate 2 to the other end. It is a membrane. Specifically, the magnetic field generating metal film 3 has a strip shape so as to have a width larger than the width of the object to be measured, and is linear toward the end of the main surface 2a on one end side of the main surface 2a. The taper portion 5 is further formed so as to be narrower. The magnetic field generating metal film 3 is electrically connected to the connector 6 attached to the end face of the insulating substrate 2 at the tip of the tapered portion 5. The connector 6 is for connecting an external device (not shown) such as a network analyzer to the magnetic field generating metal film 3 and a ground metal film 4 described later. For example, these two conductors are connected to the signal. A coaxial connector or the like that can be electrically connected as a wire and a ground is used.

グランド用金属膜4は、絶縁性基板2の他方の主面2b上の全面に形成された金属膜である。従って、グランド用金属膜4の磁界発生用金属膜3の延在方向に対して垂直な方向の幅は、磁界発生用金属膜3よりも大きくなっている。このグランド用金属膜4は、絶縁性基板2のコネクタ6と反対側の端面において磁界発生用金属膜3と一体的に形成されることにより(図3参照)、磁界発生用金属膜3とその全幅にわたって電気的に接続されている。一方、グランド用金属膜4は、絶縁性基板2のコネクタ6側の端部においては、磁界発生用金属膜3と分離して形成されている。そして、グランド用金属膜4は、コネクタ6側の端部において、磁界発生用金属膜3と独立にコネクタ6に接続されている。   The ground metal film 4 is a metal film formed on the entire surface of the other main surface 2 b of the insulating substrate 2. Therefore, the width of the ground metal film 4 in the direction perpendicular to the extending direction of the magnetic field generating metal film 3 is larger than that of the magnetic field generating metal film 3. The ground metal film 4 is formed integrally with the magnetic field generating metal film 3 on the end surface of the insulating substrate 2 opposite to the connector 6 (see FIG. 3), whereby the magnetic field generating metal film 3 and the metal film 3 It is electrically connected across the entire width. On the other hand, the ground metal film 4 is formed separately from the magnetic field generating metal film 3 at the end of the insulating substrate 2 on the connector 6 side. The ground metal film 4 is connected to the connector 6 independently of the magnetic field generating metal film 3 at the end on the connector 6 side.

上記の構成により、外部装置から磁界発生用金属膜3に対する電圧信号の入力に応じて、磁界発生用金属膜3においてその形成方向(図1のX軸方向)に沿った電流が生成される。このような電流の発生により、磁界発生用金属膜3の表面近傍においてその形成方向に対して垂直な方向(図1のY軸方向)に沿った磁界が印加される。   With the above configuration, in accordance with the input of a voltage signal from the external device to the magnetic field generating metal film 3, a current along the formation direction (X-axis direction in FIG. 1) is generated in the magnetic field generating metal film 3. Due to the generation of such current, a magnetic field is applied in the vicinity of the surface of the magnetic field generating metal film 3 along the direction perpendicular to the formation direction (Y-axis direction in FIG. 1).

以上のような構成の磁界発生装置1は、磁界発生用金属膜3に対向して測定用ループコイル及び被測定物が配置されることで、透磁率測定装置として用いることができる。図4は、図1の磁界発生装置1の磁界発生用金属膜3の前面に被測定物Aが配置されて構成される透磁率測定装置10の斜視図である。ここで用いられる被測定物Aとしては、例えば、矩形状の磁性薄膜が挙げられる。   The magnetic field generator 1 having the above-described configuration can be used as a magnetic permeability measuring device by disposing a measurement loop coil and an object to be measured so as to face the magnetic field generating metal film 3. FIG. 4 is a perspective view of a magnetic permeability measuring apparatus 10 configured by arranging an object A to be measured on the front surface of the magnetic field generating metal film 3 of the magnetic field generating apparatus 1 of FIG. Examples of the measurement object A used here include a rectangular magnetic thin film.

同図に示すように、磁界発生用金属膜3の前面には、Y軸、つまり、磁界発生装置1による磁界の印加方向に対してループ面が垂直になるように測定用ループコイル7が配置される。被測定物Aは、その測定用ループコイル7のループ内に挿入された状態で、磁界発生用金属膜3の表面に平行になり、かつ、磁界発生用金属膜3の表面に接触しないように配置される。この状態で、磁界発生装置1を用いてY軸方向の交流磁界を印加すれば、被測定物Aにはその表面に沿って交流磁界が印加される。この場合、ループコイル7の両端にネットワークアナライザ等の測定器を接続してその両端間に生じる出力電圧を測定し、さらに被測定物Aを配置しない状態でのループコイル7の出力電圧を測定する。その結果、被測定物AのY軸方向に沿った磁化の大きさが検出され、所定の演算により被測定物Aの透磁率を得ることができる。   As shown in the figure, a measurement loop coil 7 is arranged on the front surface of the magnetic field generating metal film 3 so that the loop surface is perpendicular to the Y-axis, that is, the magnetic field application direction by the magnetic field generator 1. Is done. The object A to be measured is inserted in the loop of the measurement loop coil 7 so as to be parallel to the surface of the magnetic field generating metal film 3 and not to contact the surface of the magnetic field generating metal film 3. Be placed. If an AC magnetic field in the Y-axis direction is applied using the magnetic field generator 1 in this state, an AC magnetic field is applied to the object A to be measured along the surface thereof. In this case, a measuring instrument such as a network analyzer is connected to both ends of the loop coil 7 to measure the output voltage generated between the two ends, and further the output voltage of the loop coil 7 without the object A to be measured is measured. . As a result, the magnitude of magnetization along the Y-axis direction of the device under test A is detected, and the magnetic permeability of the device under test A can be obtained by a predetermined calculation.

或いは、磁界発生装置1は、測定用ループコイル7を必要としない透磁率測定装置として単独で用いることもできる。すなわち、被測定物Aを磁界発生用金属膜3の表面に平行になるように配置して、コネクタ6に交流電圧を印加すれば、被測定物Aの表面に沿って交流磁界が印加される。このとき、コネクタ6にネットワークアナライザを接続して、被測定物Aを設置したときと設置しないときとにおける磁界発生装置1における反射係数を検出すれば、これらの係数から被測定物Aの透磁率を演算することができる。   Alternatively, the magnetic field generator 1 can be used alone as a magnetic permeability measuring device that does not require the measurement loop coil 7. That is, if the device under test A is arranged parallel to the surface of the magnetic field generating metal film 3 and an AC voltage is applied to the connector 6, an AC magnetic field is applied along the surface of the device under test A. . At this time, if the network analyzer is connected to the connector 6 and the reflection coefficient in the magnetic field generator 1 is detected when the measured object A is installed and not installed, the permeability of the measured object A is determined from these coefficients. Can be calculated.

以上説明した磁界発生装置1及び透磁率測定装置10によれば、磁界発生用金属膜3のテーパ部5の先端部に電圧信号を印加し、グランド用金属膜4をグランドに接続した場合に、磁界発生用金属膜3の延在方向に電流が生成される結果、その金属膜の前面近傍に延在方向に垂直な方向の磁界が印加される。その際、絶縁性基板2を挟んで電圧が印加されることで磁界発生用金属膜3の前面近傍の電場が弱くされ、磁界発生用金属膜3の前面近傍に配置される被測定物Aにおける電場の影響を軽減できる。また、絶縁性基板2の主面上2aには磁界発生用金属膜3のみが形成されているので、磁界発生用金属膜3の前面近傍における磁界がその幅方向において均一化され、被測定物Aに対して均一に磁界を印加することができる。その結果、測定される被測定物Aの透磁率の精度が向上する。   According to the magnetic field generator 1 and the magnetic permeability measuring device 10 described above, when a voltage signal is applied to the tip of the taper portion 5 of the magnetic field generating metal film 3 and the ground metal film 4 is connected to the ground, As a result of generating a current in the extending direction of the magnetic field generating metal film 3, a magnetic field in a direction perpendicular to the extending direction is applied in the vicinity of the front surface of the metal film. At that time, by applying a voltage across the insulating substrate 2, the electric field in the vicinity of the front surface of the magnetic field generating metal film 3 is weakened, and in the object A to be measured disposed near the front surface of the magnetic field generating metal film 3. The influence of the electric field can be reduced. Further, since only the magnetic field generating metal film 3 is formed on the main surface 2a of the insulating substrate 2, the magnetic field in the vicinity of the front surface of the magnetic field generating metal film 3 is made uniform in the width direction, and the object to be measured A magnetic field can be uniformly applied to A. As a result, the accuracy of the magnetic permeability of the object A to be measured is improved.

特に、磁界発生用金属膜3のテーパ部5の先端部が形成され、そのテーパ部から拡がるように形成された導体部に向けて電流が供給されるので、磁界発生用金属膜3の幅方向において電流が効果的に均一化され、被測定物Aに印加される磁界もより一層均一化される。   In particular, the tip end portion of the taper portion 5 of the magnetic field generating metal film 3 is formed, and the current is supplied toward the conductor portion formed so as to expand from the taper portion. The current is effectively made uniform in FIG. 2, and the magnetic field applied to the object A to be measured is made more uniform.

また、グランド用金属膜4は、磁界発生用金属膜3の延在方向に対して垂直な方向の幅が磁界発生用金属膜3より大きくなるように形成され、磁界発生用金属膜3は、絶縁性基板2の端面において、全幅にわたってグランド用金属膜4と接続されているので、磁界発生用金属膜3を流れる電流がその幅方向に沿ってさらに均一化され、被測定物Aの大きさに拘わらず、被測定物Aに一様な磁場を印加することができる。さらに、この場合は、被測定物Aに対する電界の影響を一層低減することができる。   The ground metal film 4 is formed so that the width in the direction perpendicular to the extending direction of the magnetic field generating metal film 3 is larger than that of the magnetic field generating metal film 3. Since the end face of the insulating substrate 2 is connected to the ground metal film 4 over the entire width, the current flowing through the magnetic field generating metal film 3 is further uniformized along the width direction, and the size of the object A to be measured Regardless of this, a uniform magnetic field can be applied to the object A to be measured. Furthermore, in this case, the influence of the electric field on the DUT A can be further reduced.

ここで、図5には、磁界発生装置1により印加される磁界の磁界発生用金属膜3の幅方向における強度分布、図6には、磁界発生装置1により印加される磁界の磁界発生用金属膜3の長手方向における強度分布を示す。なお、これらの測定結果は、磁界発生用金属膜3を幅20mm、長さ80mm(このうちテーパ部の長さ30mm)で形成し、周波数10MHz、入力10dBmの交流電圧を印加した場合の磁界発生用金属膜3の表面からの高さが4mmの位置における磁界強度を示している。また、図5の横軸は、磁界発生用金属膜3の中心を基準にした位置、図6の横軸は、磁界発生用金属膜3の縁部を基準にした位置である。このように、磁界発生装置1により印加される磁界は、磁界発生用金属膜3の幅方向において、ほぼ磁界発生用金属膜3の全体にわたって均一に形成されている。また、磁界発生用金属膜3の長手方向においては、縁部からの位置が20〜40mmにおいて均一な磁場が形成されている。従って、このような範囲に被測定物Aを配置すれば、被測定物Aの大きさによらずに被測定物Aの全体に均一な磁界を印加することが可能になる。   Here, FIG. 5 shows the intensity distribution in the width direction of the magnetic field generating metal film 3 of the magnetic field applied by the magnetic field generating device 1, and FIG. 6 shows the magnetic field generating metal of the magnetic field applied by the magnetic field generating device 1. The intensity distribution in the longitudinal direction of the film 3 is shown. These measurement results show that the magnetic field generating metal film 3 is formed with a width of 20 mm and a length of 80 mm (of which the length of the tapered portion is 30 mm), and an AC voltage with a frequency of 10 MHz and an input of 10 dBm is applied. The magnetic field intensity at a position where the height from the surface of the metal film 3 is 4 mm is shown. Further, the horizontal axis in FIG. 5 is a position based on the center of the magnetic field generating metal film 3, and the horizontal axis in FIG. 6 is a position based on the edge of the magnetic field generating metal film 3. Thus, the magnetic field applied by the magnetic field generating device 1 is formed substantially uniformly over the entire magnetic field generating metal film 3 in the width direction of the magnetic field generating metal film 3. In the longitudinal direction of the magnetic field generating metal film 3, a uniform magnetic field is formed when the position from the edge is 20 to 40 mm. Therefore, if the device under test A is arranged in such a range, a uniform magnetic field can be applied to the entire device under test A regardless of the size of the device under test A.

なお、本発明は、前述した実施形態に限定されるものではない。例えば、被測定物Aの大きさが小さいため磁界発生用金属膜3の幅を比較的小さくしても被測定物A全体に対して磁界が印加できる場合には、磁界発生用金属膜3を、テーパ部を形成しないで絶縁性基板2の主面2a上に帯状に形成してもよい。   In addition, this invention is not limited to embodiment mentioned above. For example, if the magnetic field generating metal film 3 can be applied to the entire measured object A even if the width of the magnetic field generating metal film 3 is relatively small because the size of the measured object A is small, the magnetic field generating metal film 3 is used. Alternatively, the taper portion may be formed on the main surface 2a of the insulating substrate 2 without forming a taper portion.

また、グランド用金属膜4としては、磁界発生用金属膜3の幅より広い金属膜であることが好ましいが、磁界発生用金属膜3の幅より狭い金属膜でもよい。また、グランド用金属膜4は、絶縁性基板2の主面2b上に全体的では無く部分的に形成してもよい。例えば、磁界発生用金属膜3の長手方向に沿って帯状に形成することが考えられる。   The ground metal film 4 is preferably a metal film wider than the magnetic field generating metal film 3, but may be a metal film narrower than the magnetic field generating metal film 3. The ground metal film 4 may be formed on the main surface 2b of the insulating substrate 2 partially rather than entirely. For example, it can be considered that the magnetic field generating metal film 3 is formed in a strip shape along the longitudinal direction.

本発明の好適な一実施形態に係る磁界発生装置1の斜視図である。1 is a perspective view of a magnetic field generator 1 according to a preferred embodiment of the present invention. 図1の磁界発生装置のII−II線に沿った断面図である。It is sectional drawing along the II-II line of the magnetic field generator of FIG. 図1の磁界発生装置のIII−III線に沿った断面図である。It is sectional drawing along the III-III line of the magnetic field generator of FIG. 図1の磁界発生装置を含んで構成される透磁率測定装置の斜視図である。It is a perspective view of the magnetic permeability measuring apparatus comprised including the magnetic field generator of FIG. 図1の磁界発生装置により印加される磁界の磁界発生用金属膜の幅方向における強度分布を示すグラフである。It is a graph which shows the intensity distribution in the width direction of the metal film for magnetic field generation of the magnetic field applied by the magnetic field generator of FIG. 図1の磁界発生装置により印加される磁界の磁界発生用金属膜の長手方向における強度分布を示すグラフである。It is a graph which shows the intensity distribution in the longitudinal direction of the metal film for magnetic field generation of the magnetic field applied by the magnetic field generator of FIG.

符号の説明Explanation of symbols

1…磁界発生装置、2…絶縁性基板、2a,2b…主面、3…磁界発生用金属膜、4…グランド用金属膜、10…透磁率測定装置、A…被測定物。
DESCRIPTION OF SYMBOLS 1 ... Magnetic field generator, 2 ... Insulating substrate, 2a, 2b ... Main surface, 3 ... Metal film for magnetic field generation, 4 ... Metal film for ground, 10 ... Permeability measuring apparatus, A ... Measured object.

Claims (8)

所定の導体に電流が供給されることによって磁界を発生させる磁界発生装置であって、
絶縁性基板と、
前記絶縁性基板の一方の主面上に線状に延在して形成された第1の金属膜と、
前記絶縁性基板の他方の主面上に形成された第2の金属膜とを備え
前記第1の金属膜と前記第2の金属膜とは、前記絶縁性基板の端部において電気的に接続されている、
ことを特徴とする透磁率測定用の磁界発生装置。
A magnetic field generator for generating a magnetic field by supplying a current to a predetermined conductor,
An insulating substrate;
A first metal film formed linearly on one main surface of the insulating substrate;
A second metal film formed on the other main surface of the insulating substrate, wherein the first metal film and the second metal film are electrically connected at an end of the insulating substrate. Being
A magnetic field generator for measuring magnetic permeability.
前記第1の金属膜は、前記絶縁性基板上の一方の端部から他方の端部にわたって形成されている
ことを特徴とする請求項1記載の磁界発生装置。
The magnetic field generator according to claim 1, wherein the first metal film is formed from one end to the other end on the insulating substrate.
前記絶縁性基板上の前記一方の主面上には、前記第1の金属膜のみが形成されている
ことを特徴とする請求項1又は2記載の磁界発生装置。
3. The magnetic field generator according to claim 1, wherein only the first metal film is formed on the one main surface of the insulating substrate.
前記第2の金属膜は、前記第1の金属膜の延在方向に対して垂直な方向の幅が前記第1の金属膜より大きくなるように形成され、
前記第1の金属膜は、前記絶縁性基板の前記一方の端部において前記第2の金属膜と接続されている、
ことを特徴とする請求項1〜3のいずれか一項に記載の磁界発生装置。
The second metal film is formed such that a width in a direction perpendicular to an extending direction of the first metal film is larger than that of the first metal film,
The first metal film is connected to the second metal film at the one end of the insulating substrate.
The magnetic field generator according to claim 1, wherein the magnetic field generator is a magnetic field generator.
所定の導体に電流が供給されることによって被測定物に磁界を印加して前記被測定物の透磁率を測定するための透磁率測定装置であって、
絶縁性基板と、
前記絶縁性基板の一方の主面上に線状に延在して形成された第1の金属膜と、
前記絶縁性基板の他方の主面上に形成された第2の金属膜とを備え
前記第1の金属膜と前記第2の金属膜とは、前記絶縁性基板の一方の端部において電気的に接続されている、
ことを特徴とする透磁率測定装置。
A magnetic permeability measuring apparatus for measuring the magnetic permeability of the object to be measured by applying a magnetic field to the object to be measured by supplying a current to a predetermined conductor,
An insulating substrate;
A first metal film formed linearly on one main surface of the insulating substrate;
A second metal film formed on the other main surface of the insulating substrate, wherein the first metal film and the second metal film are electrically connected at one end of the insulating substrate. It is connected to the,
A magnetic permeability measuring device.
前記第1の金属膜は、前記絶縁性基板上の一方の端部から他方の端部にわたって形成されている
ことを特徴とする請求項5記載の透磁率測定装置。
6. The magnetic permeability measuring apparatus according to claim 5, wherein the first metal film is formed from one end to the other end on the insulating substrate.
前記絶縁性基板上の前記一方の主面上には、前記第1の金属膜のみが形成されている
ことを特徴とする請求項5又は6記載の透磁率測定装置。
7. The magnetic permeability measuring apparatus according to claim 5, wherein only the first metal film is formed on the one main surface of the insulating substrate.
前記第2の金属膜は、前記第1の金属膜の延在方向に対して垂直な方向の幅が前記第1の金属膜より大きくなるように形成され、
前記第1の金属膜は、前記絶縁性基板の前記一方の端部において前記第2の金属膜と接続されている、
ことを特徴とする請求項5〜7のいずれか一項に記載の透磁率測定装置。
The second metal film is formed such that a width in a direction perpendicular to an extending direction of the first metal film is larger than that of the first metal film,
The first metal film is connected to the second metal film at the one end of the insulating substrate.
The magnetic permeability measuring device according to any one of claims 5 to 7, wherein
JP2006238076A 2006-09-01 2006-09-01 Magnetic field generator and permeability measuring apparatus using the same Expired - Fee Related JP4631832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238076A JP4631832B2 (en) 2006-09-01 2006-09-01 Magnetic field generator and permeability measuring apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238076A JP4631832B2 (en) 2006-09-01 2006-09-01 Magnetic field generator and permeability measuring apparatus using the same

Publications (2)

Publication Number Publication Date
JP2008058243A JP2008058243A (en) 2008-03-13
JP4631832B2 true JP4631832B2 (en) 2011-02-16

Family

ID=39241134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238076A Expired - Fee Related JP4631832B2 (en) 2006-09-01 2006-09-01 Magnetic field generator and permeability measuring apparatus using the same

Country Status (1)

Country Link
JP (1) JP4631832B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7162344B2 (en) * 2019-03-27 2022-10-28 国立研究開発法人産業技術総合研究所 Magnetic permeability measuring jig, magnetic permeability measuring device and magnetic permeability measuring method
JP7258349B2 (en) * 2019-09-09 2023-04-17 国立研究開発法人産業技術総合研究所 Magnetic permeability measuring jig, magnetic permeability measuring device and magnetic permeability measuring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772083A (en) * 1980-10-24 1982-05-06 Hitachi Ltd Magnetism measuring device
JPH10313203A (en) * 1997-05-12 1998-11-24 Kyocera Corp High frequency transmission line
JP2003109819A (en) * 2001-09-28 2003-04-11 Toshiba Corp Semiconductor device with inductor
WO2005096007A1 (en) * 2004-03-31 2005-10-13 Nec Corporation Magnetic field sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772083A (en) * 1980-10-24 1982-05-06 Hitachi Ltd Magnetism measuring device
JPH10313203A (en) * 1997-05-12 1998-11-24 Kyocera Corp High frequency transmission line
JP2003109819A (en) * 2001-09-28 2003-04-11 Toshiba Corp Semiconductor device with inductor
WO2005096007A1 (en) * 2004-03-31 2005-10-13 Nec Corporation Magnetic field sensor

Also Published As

Publication number Publication date
JP2008058243A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JPS6122289Y2 (en)
JP2829521B2 (en) Current detector
US20160041209A1 (en) Sensor element with temperature compensating function, and magnetic sensor and electric power measuring device which use same
JP2015137892A (en) Current detection structure
JP2013124989A (en) Simple vector magnetic characteristic measuring instrument
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JP4631832B2 (en) Magnetic field generator and permeability measuring apparatus using the same
JP5885646B2 (en) Single plate magnetic property measuring method and measuring apparatus
JP4448732B2 (en) Circuit board inspection equipment
JP7162344B2 (en) Magnetic permeability measuring jig, magnetic permeability measuring device and magnetic permeability measuring method
WO2022085441A1 (en) Measurement device and measurement method for measuring magnetic permeability and dielectric constant
JPS6166104A (en) Method for measuring thickness of thin metal film
JP7448898B2 (en) Magnetic permeability measurement probe and magnetic permeability measurement device using the same
JP4980383B2 (en) Ion generator inspection jig
JP2715876B2 (en) Loop probe calibration method and calibration jig
JP4631831B2 (en) Permeability measuring device and permeability measuring method using the same
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
JP2008249619A (en) Permeability measurement probe and permeability measuring apparatus using the same
JP7258349B2 (en) Magnetic permeability measuring jig, magnetic permeability measuring device and magnetic permeability measuring method
EP4130773A1 (en) Permeability measuring probe and permeability measuring device
JP2008249620A (en) Sample holder for measuring permeability and permeability measuring apparatus including the same
JPS6228674A (en) Method and instrument for noncontact measurement of conductivity of semiconductor wafer
JP2011053160A (en) Magnetic detection sensor
JPH04216401A (en) Method and device for balancing displacement transducer measuring sequence through eddy current measuring method
JP2000097975A (en) High-frequency current detecting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees