JPS6166104A - Method for measuring thickness of thin metal film - Google Patents

Method for measuring thickness of thin metal film

Info

Publication number
JPS6166104A
JPS6166104A JP18775084A JP18775084A JPS6166104A JP S6166104 A JPS6166104 A JP S6166104A JP 18775084 A JP18775084 A JP 18775084A JP 18775084 A JP18775084 A JP 18775084A JP S6166104 A JPS6166104 A JP S6166104A
Authority
JP
Japan
Prior art keywords
measured
coil
thin film
measurement
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18775084A
Other languages
Japanese (ja)
Other versions
JPH056641B2 (en
Inventor
Shiro Fukushima
福島 志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP18775084A priority Critical patent/JPS6166104A/en
Publication of JPS6166104A publication Critical patent/JPS6166104A/en
Publication of JPH056641B2 publication Critical patent/JPH056641B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To measure the thickness of very thin films highly accurately, by providing two current coils inducing eddy currents so as to face the upper and lower surfaces of the thin metal films. CONSTITUTION:The oscillating coil of a Copitts-type oscillator is divided into two parts L1 and L2, which are both eddy-current inducing coils. Thin films to be measured are provided between the coil L1 and the coil L2, and the measurement is carried out. Namely, three thin films to be measured 31, whose thicknesses t=t1, t2 and t3 are accurately measured, are prepared. A distance lbetween the two coils L1 and L2 is fixed at a constant value. The thin film 31 and an insulating substrate 30 are held between the measuring coils. A distance (d) between the coil L1 and the surface of the thin films 31 are variously changed, and the oscillating amplitude of the oscillator is measured. The value of (d) is made to be the value in the vicinity of l/2. Thus the measurement with few errors can be carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体デバイス、プリント配線板等の製造工程
その他で利用される金属薄膜の膜厚を測定する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the thickness of a metal thin film used in the manufacturing process of semiconductor devices, printed wiring boards, etc.

(従来技術とその問題点) 金属薄膜の膜厚を測定する方法の一つとして、隔周波金
印加したコイルを当該被測定薄膜に近接させて薄膜中に
渦電流を発生させ、この薄膜に生ずる渦電流損が当該薄
膜の膜厚に比例しかつこれが前記コイルのQを低下させ
ることを利用してその膜厚を測定する方法がある。
(Prior art and its problems) One method of measuring the thickness of a metal thin film is to bring a coil to which diagonal gold is applied close to the thin film to be measured to generate eddy currents in the thin film. There is a method of measuring the film thickness by utilizing the fact that eddy current loss is proportional to the film thickness of the thin film and this reduces the Q of the coil.

この方法を利用する従来の測定法は、次のようなものと
なっている。
Conventional measurement methods using this method are as follows.

例えば第4図に示すような、コイルL、コンデンサC,
、C,、増幅器Tで構成される発振器O8CのコイルL
e、第5図のLのように小型に巻回して、これを絶縁基
板30上の被測定金属薄膜31に近接させ、その距離d
 ’i dlに固定して、発振器O8Cの発振振幅(出
力)Aボルトを測定し、この値Aから第6図の[発振々
幅対膜厚曲線JDtを利用して、薄膜の膜厚tを知るも
のである。ただしこの第6図の「発振々幅対膜厚曲線」
D□は、被測定薄膜と同一の材質、膜構造をもつ様々の
薄膜の膜厚を、別途精密な測定方法を使って正確に測定
しておき、これらについて距離d:=d、の状態で慎重
に発振振幅の測定を行なうことによって、事前に描かれ
用意してあったものである。
For example, as shown in Fig. 4, a coil L, a capacitor C,
, C, , the coil L of the oscillator O8C consisting of the amplifier T
e. Wrap it in a small size as indicated by L in FIG.
'i dl, measure the oscillation amplitude (output) A volt of the oscillator O8C, and from this value A, calculate the film thickness t of the thin film using the oscillation width vs. film thickness curve JDt in Figure 6. It is something to know. However, the "oscillation width vs. film thickness curve" in Figure 6
For D□, the film thicknesses of various thin films having the same material and film structure as the thin film to be measured are accurately measured using a separate precise measurement method, and the thicknesses of these films are measured at a distance d: = d. It had been drawn and prepared in advance by carefully measuring the oscillation amplitude.

この従来の測定法には次の欠点がある。即ち、コイルL
から被測定膜31の表面までの距離d力ζdlからd2
.d3に変るときは「発振振幅対膜厚の曲線」が第6図
のように、曲線DI(d=dl)からD2 (d=dz
 ) 、 D3 (d=d、)の如く変化するので、測
定に当っては距離dを正確にd、に合致させなければ測
定誤差が大きくなるということである。
This conventional measurement method has the following drawbacks. That is, coil L
Distance d from force ζdl to the surface of the film to be measured 31 d2
.. When changing to d3, the "oscillation amplitude vs. film thickness curve" changes from curve DI (d=dl) to D2 (d=dz
), D3 (d=d,), therefore, during measurement, the measurement error will increase unless the distance d is exactly matched to d.

例えば、この従来の測定法を採用する市販の測定装置で
は、1μm程度の膜厚を±0.01μmの誤差で測定す
るためには、距離dをdl±5μmの範囲内に納める必
要がある。これは多くの場合測定不能を意味する。何故
なら±5μmは、すでに基板3゜のコイルL部分におけ
る反シ(湾曲)または凹凸の範囲の値を超えている、と
いう場合が多いからである。即ち、一定の膜厚以下の極
めて薄い膜を測定せんとするときは、第4,5図の従来
の測定法は使用に耐えないということになる。
For example, in a commercially available measuring device that employs this conventional measuring method, in order to measure a film thickness of approximately 1 μm with an error of ±0.01 μm, the distance d must be within the range of dl ±5 μm. This often means that it cannot be measured. This is because in many cases, ±5 μm already exceeds the range of curves or irregularities in the L portion of the coil at 3° of the substrate. That is, when attempting to measure an extremely thin film having a thickness below a certain level, the conventional measuring method shown in FIGS. 4 and 5 cannot be used.

(発明の目的) 本発明は従来法のこの欠点を克服し、従来法でを目的と
する。
OBJECTS OF THE INVENTION The present invention aims to overcome this drawback of the prior art methods.

(発明の構成) 本発明は、被測定金属薄膜を挾んでその表裏に、この薄
膜に渦電流を誘導するコイル2個を対向設置し、この渦
電流によって生ずるエネルギー損失の址を用いて前記薄
膜の膜厚を測定することで、前記目的を達成したもので
ある。
(Structure of the Invention) The present invention sandwiches a metal thin film to be measured and installs two coils facing each other on the front and back sides of the thin film to induce an eddy current in the thin film, and uses the energy loss caused by the eddy current to The above objective was achieved by measuring the film thickness of the film.

(実施例) 第1図は本発明の実施例の発振器であって、第4図のコ
ルピッツ型発振器発振コイルLを2分割してTJIとL
2にし、 これらをともに渦電流誘導コイルトシ、コイ
ルL1とコイルL2の間に被測定薄膜を置いて測定を行
なうものである。
(Embodiment) FIG. 1 shows an oscillator according to an embodiment of the present invention, in which the Colpitts-type oscillator oscillation coil L shown in FIG. 4 is divided into two, TJI and L.
2, these are both eddy current induction coils, and a thin film to be measured is placed between the coil L1 and the coil L2, and the measurement is performed.

第2図にその測定状況を示す。Figure 2 shows the measurement situation.

この第1,2図で、膜厚””tl + ’2 g ’3
を正確に測定された3個の被測定薄膜31を用意し、二
ツ(7) :’ イ/’ Ll 、 L2間の距離eを
一定に固定した測定コイルの間に、第2図のように薄膜
31.絶縁基板30を挾み、コイルL!と薄膜31の表
面の間の距離dを様々に変更して第1図の発振器の発振
々暢を実測して、「発振々幅対距離dの曲線」をtをパ
ラメータとして描いたのが、第3図のT+(t=tt)
 、 T2 (t=t2) 、Ta(t=ts)曲線で
ある。
In these figures 1 and 2, the film thickness ""tl + '2 g '3
Prepare three thin films 31 to be measured that have been accurately measured, and place them between the measuring coils with the distance e between two (7): 'I/' Ll and L2 fixed at a constant value, as shown in Figure 2. Thin film 31. Sandwiching the insulating substrate 30, the coil L! The oscillation width of the oscillator shown in FIG. 1 was actually measured by varying the distance d between the oscillator and the surface of the thin film 31, and a "curve of oscillation width versus distance d" was drawn using t as a parameter. T+ (t=tt) in Figure 3
, T2 (t=t2) and Ta (t=ts) curves.

第3図には、前記した第4,5図の従来の測定法で、同
じ試料を測定して得た曲線T1°(t=b)。
FIG. 3 shows a curve T1° (t=b) obtained by measuring the same sample using the conventional measurement method shown in FIGS. 4 and 5.

T2“(t=12) 、 Tso(t=ts)も点線で
併記しである。
T2'' (t=12) and Tso (t=ts) are also shown with dotted lines.

曲線T+ 、 T2 、 Taはそれぞれdoキe/に
て極小値を示し、はソ二次曲線で湾曲する。従って、距
離dを%附近にとることで、誤差の少い測定が可能であ
る。
The curves T+, T2, and Ta each show a minimum value at dokey e/, and are curved as quadratic curves. Therefore, by setting the distance d close to %, measurement with less error is possible.

1例をあげると、絶縁皮膜銅線を直径2龍のコアに65
タ一ン巻いて80μHのコイルにしたもの2個をLl、
L2として使用し、200 KHzの周波数を使って、
1μmの薄膜の膜厚を0,01μmの誤差で測定せんと
する場合、距離dに許される誤差は±5QIMnであっ
た。
To give one example, insulating coated copper wire is attached to a core with a diameter of 65 mm.
Two 80μH coils are wrapped around each other, Ll,
used as L2 and using a frequency of 200 KHz,
When trying to measure the thickness of a 1 μm thin film with an error of 0.01 μm, the error allowed for the distance d was ±5QIMn.

前記した従来の測定法を用いる160μHのコイルで、
dの許容誤差が±5μmであったのと較べると格段の向
上と言うことができる。
With a 160 μH coil using the conventional measurement method described above,
This can be said to be a significant improvement compared to the tolerance error of d which was ±5 μm.

なお、実験によれば、LlとL2はその結線を逆向きに
しても、はソ同様の好成績で膜厚測定を行なうことか可
能であった。
According to experiments, it was possible to measure the film thickness with the same good results as L1 and L2 even if the wires were connected in opposite directions.

また、この測定装置を用いるような被測定膜31の表面
の凹凸、絶縁基板30の湾曲等はコイルの大きさの範囲
内では、一般に、はソ10/jT1以下であシ、上記の
測定法は充分な実用性をもつことがわかった。
In addition, when using this measuring device, the unevenness of the surface of the film to be measured 31, the curvature of the insulating substrate 30, etc. is generally less than 10/jT1 within the range of the coil size. was found to have sufficient practicality.

第7図に別の実施例の測定結果を示す。FIG. 7 shows the measurement results of another example.

シリコン単結晶基板厚さ500μmの上に蒸着されたア
ルミニウム薄膜〜2μmを被測定物とし、68μHのコ
イル2個をLl、 L2としてこれらを距離6 = 3
.5 m11で対向固定し、その中央に被測定基板の挿
入場所を固設して繰返し測定を行い、[発振器出力対膜
厚曲線」Bを得た。測定を繰返しても、その結果は常に
曲線Bの太さの範囲内にあった。
The object to be measured is an aluminum thin film of ~2 μm deposited on a silicon single crystal substrate with a thickness of 500 μm, and two 68 μH coils are set as Ll and L2, and the distance between them is 6 = 3.
.. 5 m11 were fixed facing each other, and the insertion place of the substrate to be measured was fixed in the center thereof, and repeated measurements were performed to obtain [oscillator output vs. film thickness curve] B. Even when the measurements were repeated, the results were always within the range of the thickness of curve B.

同様の測定を、従来の方法でL=150μHのコイルを
用いるとき、曲線帯B°がえられた。測定を繰返すとき
、測定結果はこの曲線帯B°の中を浮動し、誤差の大き
いことがわかる。
When similar measurements were made in the conventional manner using a coil with L=150 μH, a curved band B° was obtained. When the measurement is repeated, the measurement result floats within this curve band B°, indicating a large error.

本発明の方法は金属薄膜に生ずる渦電流のエネルギー損
失を測定するのであるから、測定は発振器によらずとも
、第8図のように共振回路を使っても可能である。
Since the method of the present invention measures the energy loss of eddy currents generated in a metal thin film, the measurement can be performed using a resonant circuit as shown in FIG. 8 without using an oscillator.

第8図では、水晶発振器X08Cの出力が増幅器AM 
P+を経て一定値となり、コイルLI+L2とコンデン
サCの共振回路に印加され、共振回路の端子電圧が、バ
ッファAMP2を経て計器Mで読まれるようになってい
る。被測定基板30.薄膜31は前記同様に、図のよう
に、コイルL、とL2の間に挿入測定される。
In Figure 8, the output of crystal oscillator X08C is output to amplifier AM.
It becomes a constant value through P+ and is applied to the resonant circuit of the coil LI+L2 and the capacitor C, and the terminal voltage of the resonant circuit is read by the meter M through the buffer AMP2. Board to be measured 30. Similarly to the above, the thin film 31 is inserted between the coils L and L2 and measured as shown in the figure.

また、これまでは電圧の変化を利用して渦電流のエネル
ギー損失を測定するものを示したが、位相の変化を利用
しても測定は可能であり、このほかlども本発明の方法
は、多くの実施態様をもつ。
In addition, although we have shown methods for measuring eddy current energy loss using changes in voltage, measurements can also be made using changes in phase. It has many implementations.

なお、被測定金属薄膜31の置かれる基板30の材質は
必ずしも絶縁体であることを要しない。
Note that the material of the substrate 30 on which the thin metal film 31 to be measured is placed does not necessarily have to be an insulator.

薄膜31と基板30の電気伝導度に差異があυさえすれ
ば、原理上、薄膜の膜厚測定は本発明の方法で可能であ
る。もっとも、電気伝導度に大差のあるときほど、測定
の精度は高いものとなって有利である。
As long as there is a difference in electrical conductivity between the thin film 31 and the substrate 30, it is possible in principle to measure the thickness of the thin film using the method of the present invention. However, the greater the difference in electrical conductivity, the higher the accuracy of measurement, which is advantageous.

(発明の効果) 本発明は上記の通りであって、極めて薄い金属膜の膜厚
を高い精度で測定することが可能であり、装置は安価に
構成できる。
(Effects of the Invention) The present invention is as described above, and the thickness of an extremely thin metal film can be measured with high accuracy, and the apparatus can be constructed at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の測定用発振器の回路図。 第2図は、その測定状況を示す図。 第3図は、その測定結果のグラフ。 第4図は、従来の測定用発振器の回路図。 第5図は、その測定状況を示す図。 第6図は、その測定結果のグラフ。 縞7図は、本発明の別の実施例の測定結果を、従来の方
法の測定結果と比較するグラフ。 第8図は、本発明の別の実施例の測定用回路図。
FIG. 1 is a circuit diagram of a measurement oscillator according to an embodiment of the present invention. FIG. 2 is a diagram showing the measurement situation. Figure 3 is a graph of the measurement results. FIG. 4 is a circuit diagram of a conventional measurement oscillator. FIG. 5 is a diagram showing the measurement situation. Figure 6 is a graph of the measurement results. FIG. 7 is a graph comparing the measurement results of another embodiment of the present invention with the measurement results of the conventional method. FIG. 8 is a measurement circuit diagram of another embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 被測定金属薄膜に渦電流を流し、該渦電流によって生ず
るエネルギー損失の大小を該金属薄膜の厚みに換算する
金属薄膜膜厚の測定方法において、該渦電流を誘導する
二個の電流コイルを、該金属薄膜の表、裏に、対向設置
したことを特徴とする金属薄膜膜厚測定方法。
In a metal thin film thickness measurement method in which an eddy current is passed through a metal thin film to be measured and the magnitude of energy loss caused by the eddy current is converted into the thickness of the metal thin film, two current coils that induce the eddy current are A method for measuring the thickness of a metal thin film, characterized in that the metal thin film is placed facing each other on the front and back sides thereof.
JP18775084A 1984-09-07 1984-09-07 Method for measuring thickness of thin metal film Granted JPS6166104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18775084A JPS6166104A (en) 1984-09-07 1984-09-07 Method for measuring thickness of thin metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18775084A JPS6166104A (en) 1984-09-07 1984-09-07 Method for measuring thickness of thin metal film

Publications (2)

Publication Number Publication Date
JPS6166104A true JPS6166104A (en) 1986-04-04
JPH056641B2 JPH056641B2 (en) 1993-01-27

Family

ID=16211542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18775084A Granted JPS6166104A (en) 1984-09-07 1984-09-07 Method for measuring thickness of thin metal film

Country Status (1)

Country Link
JP (1) JPS6166104A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152302A (en) * 1994-11-29 1996-06-11 Ono Sokki Co Ltd Thickness discriminator
JP2001274126A (en) * 2000-01-17 2001-10-05 Ebara Corp Polishing apparatus
JP2002174502A (en) * 2000-12-07 2002-06-21 Ulvac Japan Ltd Axial aligner, film thickness measuring apparatus, film forming apparatus, method and apparatus for measuring film thickness
JP2003503683A (en) * 1999-06-30 2003-01-28 エービービー エービー Target guidance measurement method
JP2006510024A (en) * 2002-12-13 2006-03-23 アプライド マテリアルズ インコーポレイテッド Method and apparatus for measuring the thickness of a test object between two eddy current sensor heads
JP2006511805A (en) * 2002-12-23 2006-04-06 ラム リサーチ コーポレーション System, method and apparatus for thin film substrate signal separation using eddy currents
JP2007517218A (en) * 2003-12-30 2007-06-28 ラム リサーチ コーポレーション Method and apparatus for measuring film thickness with a coupled eddy current sensor
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium
JP2020016636A (en) * 2017-12-21 2020-01-30 国立虎尾科技大学 Non-contact type upper/lower layer copper thickness survey method applied to pcb multilayer plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425755A (en) * 1977-07-27 1979-02-26 Measurex Corp Thickness meter for measuring sheettlike body
JPS5753604A (en) * 1980-09-18 1982-03-30 Yokogawa Hokushin Electric Corp Thickness gauge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425755A (en) * 1977-07-27 1979-02-26 Measurex Corp Thickness meter for measuring sheettlike body
JPS5753604A (en) * 1980-09-18 1982-03-30 Yokogawa Hokushin Electric Corp Thickness gauge

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152302A (en) * 1994-11-29 1996-06-11 Ono Sokki Co Ltd Thickness discriminator
JP2003503683A (en) * 1999-06-30 2003-01-28 エービービー エービー Target guidance measurement method
JP2001274126A (en) * 2000-01-17 2001-10-05 Ebara Corp Polishing apparatus
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium
JP2002174502A (en) * 2000-12-07 2002-06-21 Ulvac Japan Ltd Axial aligner, film thickness measuring apparatus, film forming apparatus, method and apparatus for measuring film thickness
JP2006510024A (en) * 2002-12-13 2006-03-23 アプライド マテリアルズ インコーポレイテッド Method and apparatus for measuring the thickness of a test object between two eddy current sensor heads
JP2006511805A (en) * 2002-12-23 2006-04-06 ラム リサーチ コーポレーション System, method and apparatus for thin film substrate signal separation using eddy currents
JP2007517218A (en) * 2003-12-30 2007-06-28 ラム リサーチ コーポレーション Method and apparatus for measuring film thickness with a coupled eddy current sensor
JP2020016636A (en) * 2017-12-21 2020-01-30 国立虎尾科技大学 Non-contact type upper/lower layer copper thickness survey method applied to pcb multilayer plate

Also Published As

Publication number Publication date
JPH056641B2 (en) 1993-01-27

Similar Documents

Publication Publication Date Title
US6028427A (en) Magnetism sensor using a magnetism detecting device of a magnetic impedance effect type and control apparatus using the same
US5049809A (en) Sensing device utilizing magneto electric transducers
US5414400A (en) Rogowski coil
JPS5845168B2 (en) instrument transformer
US20010030537A1 (en) Magnetic field detection device
US2933677A (en) Probe for a thickness testing gage
JPH10267965A (en) Current sensor
GB2064140A (en) Measuring transducers for measuring magnetic fields
US5717326A (en) Flat current sensor
JPS59168383A (en) Small-sized magnetic field sensing device
JPS6166104A (en) Method for measuring thickness of thin metal film
US3621382A (en) Anistropic thin ferromagnetic film magnetometer
JP2002221538A (en) Current sensor and current measuring circuit
US4963818A (en) Current sensor having an element made of amorphous magnetic metal
WO2006059497A1 (en) Method and device for measuring critical current density of superconductor
US4072896A (en) Apparatus for measuring the electron escape potential of metal surfaces
JPH08278358A (en) Method and device for measuring magnetic property
JP2000356505A (en) Strain detecting element
Gledhill et al. A new method for measurement of the high field conductance of electrolytes (The Wien effect)
JP2651003B2 (en) Eddy current displacement sensor
JP3298338B2 (en) Inductance measuring device and probe device for measuring the same
JPH04216401A (en) Method and device for balancing displacement transducer measuring sequence through eddy current measuring method
JPS63128255A (en) Excitation type thin film pickup coil
JPS604084Y2 (en) displacement transducer
SU1383195A1 (en) Method of measuring layer thickness of multilayer articles

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term