JP2651003B2 - Eddy current displacement sensor - Google Patents

Eddy current displacement sensor

Info

Publication number
JP2651003B2
JP2651003B2 JP3907989A JP3907989A JP2651003B2 JP 2651003 B2 JP2651003 B2 JP 2651003B2 JP 3907989 A JP3907989 A JP 3907989A JP 3907989 A JP3907989 A JP 3907989A JP 2651003 B2 JP2651003 B2 JP 2651003B2
Authority
JP
Japan
Prior art keywords
head
active
coil
eddy current
shielding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3907989A
Other languages
Japanese (ja)
Other versions
JPH02218902A (en
Inventor
東治 金
文彦 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3907989A priority Critical patent/JP2651003B2/en
Publication of JPH02218902A publication Critical patent/JPH02218902A/en
Application granted granted Critical
Publication of JP2651003B2 publication Critical patent/JP2651003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属導体の変位を測定する渦電流式変位セン
サに関するものである。
Description: TECHNICAL FIELD The present invention relates to an eddy current displacement sensor for measuring displacement of a metal conductor.

[従来の技術] 金属導体の変位を測定する装置としては第8図示のよ
うな渦電流式変位センサが知られてれいるが、これは金
属導体の変位を検出するアクティブコイルAと温度補償
のためのダミイコイルBにより並列共振ブリッジ回路を
構成し、コイルに近接した導体Cが変位すると導体表面
に流れる渦電流が変化して励磁コイルのインピーダンス
が変るので、これを測定し対数増幅器で変位と出力の関
係を直線化し導体変位検出の出力信号を得ていた。
2. Description of the Related Art An eddy current displacement sensor as shown in FIG. 8 is known as a device for measuring the displacement of a metal conductor. A parallel resonance bridge circuit is formed by the dummy coil B, and when the conductor C close to the coil is displaced, the eddy current flowing on the conductor surface changes and the impedance of the exciting coil changes, and this is measured. Was linearized to obtain an output signal of conductor displacement detection.

[発明が解決しようとする課題] 前記のような従来の渦電流式変位センサは、アクティ
ブコイルAの交流磁界が広範囲に分散しているために導
体ターゲットをコイル外径よりも大きくしなければなら
ず、導体ターゲットの大きさに制限があり通常は5mm×5
mm×t1mmよりも大きくしなければならないという問題点
があった。
[Problem to be Solved by the Invention] In the conventional eddy current type displacement sensor as described above, since the alternating magnetic field of the active coil A is widely dispersed, the conductor target must be larger than the outer diameter of the coil. 5mm × 5
There was a problem that it had to be larger than mm × t1mm.

そこで本発明は、細小な金属導体であってもその変位
を正確に測定することができるようにした渦電流式変位
センサを提供することを目的とするものである。
Accordingly, an object of the present invention is to provide an eddy current displacement sensor capable of accurately measuring the displacement of a small metal conductor.

[課題を解決するための手段] 前記の目的を達成するために、本発明の渦電流式変位
センサは、アクティブ受信コイル12とアクティブ高周波
励磁コイル13と絶縁スリット15により分割絶縁された外
側遮蔽板14とを有するアクティブヘッド1、およびこれ
と同一構成の、ダミィ受信コイル22、ダミィ高周波励磁
コイル23、外側遮蔽板14を有するダミィヘッド2を設
け、このアクティブヘッド1とダミィヘッド2を同一軸
線上に結合し、前記アクティブヘッド1の外側遮蔽板の
絶縁スリット15において磁束が集中して金属導体の変位
を検出する不均一高周波磁界が形成されるようにしたセ
ンサヘッド10を構成し、前記受信コイルに差動増幅回路
を有する信号処理回路を接続しその出力信号により金属
導体の変位を測定するようにしたものである。
[Means for Solving the Problems] In order to achieve the above object, an eddy current displacement sensor of the present invention comprises an outer shield plate divided and insulated by an active receiving coil 12, an active high-frequency exciting coil 13, and an insulating slit 15. And an active head 1 having a dummy receiving coil 22, a dummy high-frequency exciting coil 23, and an outer shielding plate 14 having the same configuration as the active head 1. The active head 1 and the dummy head 2 are connected on the same axis. The sensor head 10 is configured such that the magnetic flux concentrates on the insulating slit 15 of the outer shielding plate of the active head 1 to form a non-uniform high-frequency magnetic field for detecting the displacement of the metal conductor. A signal processing circuit having a dynamic amplifying circuit is connected, and the displacement of a metal conductor is measured based on an output signal from the signal processing circuit.

[作用] 前記の励磁コイルに高周波励磁電流を流すと、その高
周波磁界により絶縁スリットで分割絶縁された遮蔽板底
板部に渦電流が誘導され、これにより絶縁スリットにお
いて磁束が集中する不均一な高周波磁界が形成される。
[Function] When a high-frequency exciting current is applied to the exciting coil, an eddy current is induced in the shielding plate bottom plate portion divided and insulated by the insulating slit due to the high-frequency magnetic field. A magnetic field is formed.

受信コイルには絶縁スリットの直下の集中磁束内にお
ける金属導線の有無、導線位置の変化に応じて変化する
誘起信号出力が生ずる。
In the receiving coil, an induced signal output is generated which changes according to the presence or absence of a metal conductor in the concentrated magnetic flux immediately below the insulating slit and a change in the position of the conductor.

この受信コイルの出力を信号処理回路で増幅し、サン
プルホールド、直線化をして金属導線の変位に対応する
信号を出力させ、この出力信号により金属導体の変位を
測定する。
The output of the receiving coil is amplified by a signal processing circuit, sampled and held, linearized to output a signal corresponding to the displacement of the metal conductor, and the displacement of the metal conductor is measured based on the output signal.

アクティブヘッドとダミィヘッドは、これに接続され
た差動増幅回路により、周囲温度の影響および励磁電流
の変動による測定誤差が小さくなり測定値が高精度にな
る。
The active head and the dummy head are connected to the differential amplifier circuit, so that the measurement error due to the influence of the ambient temperature and the fluctuation of the exciting current is reduced, and the measurement value becomes higher.

[実施例] 以下本発明の実施例を図面により説明する。第4図は
本発明の渦電流式変位センサに用いるセンサヘッドの構
造を説明する図であり、フェライトコア1の周りに受信
コイル2を巻き、その周りに高周波励磁コイル3を巻
き、その外周と底面を囲むように銅製の外側遮蔽板4を
設ける。
Examples Examples of the present invention will be described below with reference to the drawings. FIG. 4 is a view for explaining the structure of a sensor head used for the eddy current type displacement sensor of the present invention. A receiving coil 2 is wound around a ferrite core 1, a high frequency exciting coil 3 is wound around the receiving coil 2, and An outer shielding plate 4 made of copper is provided so as to surround the bottom surface.

この外側遮蔽板4は左右の各半円筒部4a、4bにより構
成し、この各半円筒部はその左側の半円筒部4aを示した
第5図示のように底板半部4cを有する。この左右の両半
円筒部4a、4bを微小細隙をおいて対向させて第6図示の
ように左右の各底板半部4c、4dの間に直径線方向に絶縁
スリット5を形成し、この絶縁スリット5により左右に
分割され相互に絶縁された各半部よりなる外側遮蔽板を
構成する。
The outer shielding plate 4 is constituted by left and right semi-cylindrical portions 4a and 4b, and each of the semi-cylindrical portions has a bottom plate half 4c as shown in a fifth drawing showing the left semi-cylindrical portion 4a. The left and right semi-cylindrical portions 4a and 4b are opposed to each other with a small gap therebetween to form an insulating slit 5 in the diameter direction between the left and right bottom plate halves 4c and 4d as shown in FIG. An outer shielding plate composed of the respective halves divided into right and left by the insulating slit 5 and insulated from each other is formed.

前記の励磁コイル3に高周波励磁電流を流すと高周波
磁界を生じて外側遮蔽板4の左右の各底板半部4c、4dに
第6図の点線図示のように渦電流が誘導されるが、この
渦電流は磁束変化を妨げる方向に生ずるので、励磁コイ
ル3による磁界と各底板半部4c、4dの渦電流による磁界
との合成磁束は、各底板半部4c、4dにおいては磁束密度
が小さく、絶縁スリット5においては大きくなり、この
センサヘッドには第7図示のように絶縁スリット部SOに
おいて最大磁束密度Bmaxになる不均一な高周波磁界が形
成される。
When a high-frequency exciting current is applied to the exciting coil 3, a high-frequency magnetic field is generated, and an eddy current is induced in each of the left and right bottom plate halves 4c and 4d of the outer shielding plate 4 as shown by a dotted line in FIG. Since the eddy current is generated in a direction that hinders the change of the magnetic flux, the composite magnetic flux of the magnetic field generated by the exciting coil 3 and the magnetic field generated by the eddy current of each bottom plate half 4c, 4d has a small magnetic flux density in each bottom plate half 4c, 4d. In the sensor slit, a non-uniform high-frequency magnetic field having a maximum magnetic flux density Bmax is formed at the insulating slit portion SO as shown in FIG.

前記センサヘッドを第4図示のように銅線等の金属導
線Cの上方に置くと、外側遮蔽板4の絶縁スリット5の
直下に導線Cがあるときには、導線Cが占める空間の磁
束密度が最も大きく、また導線Cの渦電流に誘起された
交流磁界に対して外側遮蔽板4の遮蔽効果が最も弱くな
る。このため導線Cが絶縁スリット5の直下に位置する
ときはセンサヘッドの受信コイル2のインピーダンスに
対する導線Cの影響が最も大きくなる。
When the sensor head is placed above a metal wire C such as a copper wire as shown in FIG. 4, when the wire C is located immediately below the insulating slit 5 of the outer shielding plate 4, the magnetic flux density in the space occupied by the wire C is the highest. The shield effect of the outer shield plate 4 is weakest against an AC magnetic field induced by an eddy current of the conductor C. For this reason, when the conductor C is located immediately below the insulating slit 5, the influence of the conductor C on the impedance of the receiving coil 2 of the sensor head is greatest.

前記のような外側遮蔽板4を有するセンサヘッドを2
つ用いその1つはアクティブヘッドとし他はダミィヘッ
ドとして第1図示のセンサヘッド10を構成する。同図に
おいて1はアクティブヘッド、2はダミィヘッド、3は
この両ヘッド1、2を同一軸線上に結合するヘッド治具
3であり、アクティブヘッド1は、フェライトコア11の
周りにアクティブ受信コイル12を巻きその周りにアクテ
ィブ励磁コイル13を巻きその外周と底面を銅製の外側遮
蔽板14で囲む。この外側遮蔽板14は、前記した第4図〜
第6図の外側遮蔽板と同様に、絶縁スリット15により左
右の半円筒部14a、14bに分割絶縁された構成にする。ま
たダミィヘッド2も、前記アクティブヘッド1と同様
に、フェライトコア21の周りにダミィ受信コイル22、そ
の外周のダミィ励磁コイル23、外側遮蔽板24、この外側
遮蔽板24の絶縁スリット25を設けた構成にする。
The sensor head having the outer shielding plate 4 is
One of them is an active head and the other is a dummy head to constitute the sensor head 10 shown in FIG. In the figure, 1 is an active head, 2 is a dummy head, 3 is a head jig 3 for coupling the two heads 1 and 2 on the same axis, and the active head 1 has an active receiving coil 12 around a ferrite core 11. The active excitation coil 13 is wound around the winding, and the outer periphery and the bottom surface are surrounded by an outer shielding plate 14 made of copper. The outer shielding plate 14 is provided with the above-described FIGS.
Similar to the outer shielding plate shown in FIG. 6, the left and right semi-cylindrical portions 14a and 14b are divided and insulated by the insulating slit 15. Similarly to the active head 1, the dummy head 2 has a configuration in which a dummy coil 21 around the ferrite core 21, a dummy excitation coil 23 on the outer periphery thereof, an outer shielding plate 24, and an insulating slit 25 of the outer shielding plate 24 are provided. To

なお、前記の外側遮蔽板の各半部の表面は必要に応じ
て絶縁被覆を設け、絶縁スリットは前記したように直線
状に形成するかわりに+字形に形成してもよく、またフ
ェライトコアのかわりに絶縁材質のボビンを用いてもよ
い。
The surface of each half of the outer shielding plate may be provided with an insulating coating as necessary, and the insulating slit may be formed in a + -shape instead of being formed linearly as described above. Instead, a bobbin made of an insulating material may be used.

前記のアクティブヘッド1とダミィヘッド2を用いて
並列共振ブリッジ回路を構成し、このブリッジ回路の出
力信号は信号処理回路によって増幅し(約60dB)、金属
導線Cの変位を測定する。
A parallel resonance bridge circuit is formed by using the active head 1 and the dummy head 2, and an output signal of the bridge circuit is amplified (about 60 dB) by a signal processing circuit, and the displacement of the metal conductor C is measured.

第2図はこの信号処理回路の1例を示したもので、ア
クティブ励磁コイル13とダミィ励磁コイル23、およびア
クティブ受信コイル12とダミィ受信コイル22をそれぞれ
直列に接続し、第1図示のようにアクティブヘッド1を
金属導線Cの上方に置いて、励磁コイルに高周波励磁電
流を流すと、受信コイルに誘導される起電力信号が差動
増幅回路で増幅され、励磁電流と同一周波数でサンプル
ホールドされLOGアンプで直線化されて出力し、アクテ
ィブヘッド1の絶縁スリット5の直下に位置する金属導
線Cの変位に対応する出力信号が得られるようにし、こ
れを測定して金属導線の変位を測定するようにしたもの
である。
FIG. 2 shows an example of this signal processing circuit. The active excitation coil 13 and the dummy excitation coil 23 and the active reception coil 12 and the dummy reception coil 22 are connected in series, respectively, as shown in FIG. When the active head 1 is placed above the metal conducting wire C and a high-frequency exciting current flows through the exciting coil, the electromotive force signal induced in the receiving coil is amplified by the differential amplifier circuit and sampled and held at the same frequency as the exciting current. The output is linearized by the LOG amplifier, and an output signal corresponding to the displacement of the metal conductor C located immediately below the insulating slit 5 of the active head 1 is obtained. This is measured to measure the displacement of the metal conductor. It is like that.

前記のアクティブヘッド1とダミィヘッド2は、その
アクティブ受信コイル12とダミィ受信コイル22、および
アクティブ励磁コイル13とダミィ励磁コイル23とを直列
にして差動コイルを構成するとともに信号処理回路の差
動増幅回路によって周囲温度の影響および励磁電流の変
動による測定誤差が大巾に小さくなる。
The active head 1 and the dummy head 2 form a differential coil by connecting the active receiving coil 12 and the dummy receiving coil 22 and the active exciting coil 13 and the dummy exciting coil 23 in series, and perform differential amplification of a signal processing circuit. The circuit significantly reduces measurement errors due to ambient temperature effects and fluctuations in the excitation current.

前記の出力信号は、第1図におけるアクティブヘッド
1の外側遮蔽板の底板部4c、4dと金属導線Cとの間の距
離lが小さいほど大きく、その変化率も処理lが小さい
ほど大きい。第3図はこの距離lと出力信号Vとの関係
を径が0.4mmの金属導線Cの場合について実測した結果
を示したものであるが、出力信号Vの変化率は距離lに
対し指数関係になり、このように出力信号Vを測定する
ことにより金属導線Cの変位を正確に測定できるのであ
り、たとえばツインリード線のアラインメントの測定等
に利用することができる。なお前記のようなセンサヘッ
ドは近接センサとしても利用可能である。
The output signal increases as the distance l between the bottom plates 4c and 4d of the outer shielding plate of the active head 1 in FIG. 1 and the metal conductor C decreases, and the rate of change increases as the processing l decreases. FIG. 3 shows the relationship between the distance l and the output signal V when the metal conductor C having a diameter of 0.4 mm is actually measured. The rate of change of the output signal V has an exponential relationship with the distance l. By measuring the output signal V in this way, the displacement of the metal conductor C can be accurately measured, and can be used, for example, for measuring the alignment of twin lead wires. The above-described sensor head can also be used as a proximity sensor.

[発明の効果] 前述のように本発明の渦電流式変位センサは、コイル
の外側遮蔽板の絶縁スリットにおいて磁束が集中する不
均一高周波磁界を形成したセンサヘッドを用いるので、
微細な金属導体であってもその変位を正確に測定するこ
とができる。またセンサヘッドをアクティブヘッドとダ
ミィヘッドで構成するとともに差動増幅回路を設けたの
で、周囲温度の影響や励磁電流の変動による測定誤差が
大巾に小さくなり高精度な測定値を得ることができるも
のである。
[Effects of the Invention] As described above, the eddy current displacement sensor of the present invention uses a sensor head that forms a non-uniform high-frequency magnetic field in which magnetic flux is concentrated at the insulating slit of the outer shielding plate of the coil.
Even for a fine metal conductor, its displacement can be accurately measured. In addition, the sensor head consists of an active head and a dummy head, and a differential amplifier circuit is provided, so that measurement errors due to the influence of ambient temperature and fluctuations in the excitation current are greatly reduced, and highly accurate measurement values can be obtained. It is.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例のセンサヘッドの断面図、第
2図はその信号処理回路図、第3図は出力信号特性を示
す図、第4図はセンサヘッドの構造の説明図、第5図は
遮蔽板の構造の説明図、第6図は遮蔽板の誘導渦電流の
説明図、第7図は磁束分布状態の説明図、第8図は従来
例を示す図である。 1:アクティブヘッド 12:アクティブ受信コイル 13:アクティブ励磁コイル 2:ダミィヘッド 22:ダミィ受信コイル 23:ダミィ励磁コイル 4、14、24:外側遮蔽板 5、15、25:絶縁スリット C:金属導線
FIG. 1 is a cross-sectional view of a sensor head according to one embodiment of the present invention, FIG. 2 is a signal processing circuit diagram thereof, FIG. 3 is a diagram showing output signal characteristics, FIG. 5 is an explanatory view of the structure of the shielding plate, FIG. 6 is an explanatory view of an induced eddy current of the shielding plate, FIG. 7 is an explanatory view of a state of magnetic flux distribution, and FIG. 8 is a view showing a conventional example. 1: Active head 12: Active receiving coil 13: Active exciting coil 2: Dammy head 22: Dammy receiving coil 23: Dammy exciting coil 4, 14, 24: Outer shielding plate 5, 15, 25: Insulating slit C: Metal conducting wire

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】同一軸線に結合したアクティブヘッドおよ
びダミィヘッドにそれぞれ受信コイルと高周波励磁コイ
ルと絶縁スリットにより分割絶縁された外側遮蔽板を設
けて前記アクティブヘッドの絶縁スリット部に磁束が集
中する不均一高周波磁界を形成したセンサヘッドと、差
動増幅回路を有する信号処理回路とを備え、前記不均一
高周波磁界において金属導体の変位を測定することを特
徴とする渦電流式変位センサ。
An active head and a dummy head coupled to the same axis are provided with a receiving coil, a high-frequency excitation coil, and an outer shielding plate which is divided and insulated by an insulating slit, respectively, so that magnetic flux is concentrated on an insulating slit portion of the active head. An eddy current displacement sensor, comprising: a sensor head having a high-frequency magnetic field formed therein; and a signal processing circuit having a differential amplifier circuit, wherein the displacement of the metal conductor is measured in the non-uniform high-frequency magnetic field.
JP3907989A 1989-02-18 1989-02-18 Eddy current displacement sensor Expired - Lifetime JP2651003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3907989A JP2651003B2 (en) 1989-02-18 1989-02-18 Eddy current displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3907989A JP2651003B2 (en) 1989-02-18 1989-02-18 Eddy current displacement sensor

Publications (2)

Publication Number Publication Date
JPH02218902A JPH02218902A (en) 1990-08-31
JP2651003B2 true JP2651003B2 (en) 1997-09-10

Family

ID=12543096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3907989A Expired - Lifetime JP2651003B2 (en) 1989-02-18 1989-02-18 Eddy current displacement sensor

Country Status (1)

Country Link
JP (1) JP2651003B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874465B2 (en) 2000-03-28 2012-02-15 株式会社東芝 Eddy current loss measurement sensor
JP5065614B2 (en) * 2006-04-14 2012-11-07 株式会社アルバック Eddy current film thickness meter
RU2487314C1 (en) * 2011-12-23 2013-07-10 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Vortex-current displacement transducer
JP6719906B2 (en) * 2016-01-08 2020-07-08 株式会社東京精密 Eddy current sensor and tool holder mounting state detection device including the same
JP6520837B2 (en) * 2016-06-17 2019-05-29 住友金属鉱山株式会社 Apparatus and method for measuring the condition of reinforcing bars embedded in a concrete panel

Also Published As

Publication number Publication date
JPH02218902A (en) 1990-08-31

Similar Documents

Publication Publication Date Title
EP1595158B1 (en) Magnetic field sensor and electrical current sensor therewith
US4920806A (en) Strain gage
JP2829521B2 (en) Current detector
US5642041A (en) Alternating current sensor employing parallel plates and having high dynamic range and accuracy
US4430615A (en) Reflection type probes for eddy current testing instruments
US5420504A (en) Noninductive shunt current sensor based on concentric-pipe geometry
JP2651003B2 (en) Eddy current displacement sensor
US5446372A (en) Noninductive shunt current sensor with self-power capability
JPH1194508A (en) Linear displacement measuring device
US4963818A (en) Current sensor having an element made of amorphous magnetic metal
JPS60501434A (en) active current transformer
JP3052049B2 (en) Electromagnetic ultrasonic transducer for deflection shear wave
JP2547247B2 (en) Metal distance measuring sensor
JPH0645844Y2 (en) Eddy current film thickness sensor
JP2567919B2 (en) Flat cable dimension measurement method
JPH022544B2 (en)
JPH0355905Y2 (en)
JP2532123B2 (en) Metal distance measurement method
JPS604084Y2 (en) displacement transducer
JPS604082Y2 (en) displacement transducer
JPH01176905A (en) Method for measuring insulating metal wire group interval
JP2995849B2 (en) Magnetic shield measurement method
SU1166941A1 (en) Electromagnetic differential sensor of weld position
JP2002257865A (en) Current sensor
JPH09113592A (en) Magnetic sensor