JP4644357B2 - Magnetic detection antenna - Google Patents

Magnetic detection antenna Download PDF

Info

Publication number
JP4644357B2
JP4644357B2 JP2000349393A JP2000349393A JP4644357B2 JP 4644357 B2 JP4644357 B2 JP 4644357B2 JP 2000349393 A JP2000349393 A JP 2000349393A JP 2000349393 A JP2000349393 A JP 2000349393A JP 4644357 B2 JP4644357 B2 JP 4644357B2
Authority
JP
Japan
Prior art keywords
detection
coil
magnetic
core
core member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000349393A
Other languages
Japanese (ja)
Other versions
JP2002156431A (en
Inventor
伸治 福井
孝 直井
克己 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2000349393A priority Critical patent/JP4644357B2/en
Publication of JP2002156431A publication Critical patent/JP2002156431A/en
Application granted granted Critical
Publication of JP4644357B2 publication Critical patent/JP4644357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は微小磁界を検出する磁気検出アンテナに関する。
【0002】
【従来の技術】
従来、電子基板に形成された線路パターンに流れる電流の解析等に、前記電流により発生する磁界を検出する方法があり、この方法には、磁界に応じた検出信号を出力する磁気検出アンテナが用いられる。磁気検出アンテナには、図8に示すように空芯のボビン900にコイル901を巻装したものや、さらにボビン900内に透磁性材料のコアを挿入して高感度化を図ったものがある。
【0003】
【発明が解決しようとする課題】
しかしながら、比較的、周波数の低い、例えば中波(MF)帯域(300kHz〜3MHz)では、検出感度が不足し、コイル径を大きくして、ある程度の磁束を確保せざるを得ない。この結果、微小領域での磁界の検出が困難で、磁界の分布を高い分解能で測定することができない。
【0004】
本発明は前記実情に鑑みなされたもので、高精度に磁界を検出することのできる磁気検出アンテナを提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1記載の発明では、透磁性材料を略リング状に成形してなり、内部に閉磁路を形成するコア部材と、
該コア部材の一部に導線を巻回してなり、閉回路を形成する検出用のコイルと、
前記コア部材の他の一部に導線を巻回してなる出力用のコイルとを有し、
前記コア部材を細長の略リング形状とし、その長手方向の半部を、対向する略直線状の2側面が近接し、これら略直線状部をつなぐコ字状の一端部を有する細長形状として、該一端部に前記検出用のコイルを設けるとともに、前記コア部材の長手方向の他の半部を、緩やかな弧を描いて拡がる形状として、該弧状部の一部に前記出力用のコイルを設け、
前記検出用のコイルをコア部材との間に隙間があく大きさに形成し、
該隙間を、外部磁界を受ける検出領域として該検出領域を外部磁界が貫通すると前記出力用のコイルの線端から外部磁界の検出信号が出力される構成とする。
【0006】
検出用のコイルと出力用のコイルとがコア部材により磁気的に結合しているので、検出領域を外部磁界が貫通して検出用コイルに誘導起電力が発生すると、検出出力を出力用のコイルから取り出すことができる。ここで、検出感度は検出用のコイルと出力用のコイルの巻き数比で規定される。したがって、電子基板等の被検出部位に近づける検出用のコイルの径の大径化による感度の確保という方法をとる必要がなく、検出領域を小さくすることで、高い分解能を得ることができる。
電子部品が密集する狭隘な場所でも磁気検出アンテナの前記一端部側をさしいれることで、容易に磁界の検出が可能である。
【0007】
請求項2記載の発明では、請求項1の発明の構成において、前記検出領域には、透磁性材料のコア片を設ける。
【0008】
検出領域の透磁率を高めることで、検出用のコイルの誘導起電力に寄与する磁束が大きくなり、検出感度が向上する。
【0009】
請求項3記載の発明では、請求項1または2の発明の構成において、前記検出用のコイルと直列に抵抗器を接続する。
【0010】
抵抗器の抵抗値の選択で、出力用のコイルの検出出力を受ける装置とのインピーダンスの整合を容易にとることができる。
【0011】
請求項4記載の発明では、請求項1ないし3の発明の構成において、前記コア部材の長手方向の他の半部は、前記半部の略直線状の2側面に続く対向側面が緩やかに拡がって、前記弧状部を形成する
【0013】
請求項5記載の発明では、請求項1ないし4の発明の構成において、前記検出用のコイルおよび前記出力用のコイルが巻装された前記コア部材を、導電性材料または透磁性材料により構成されたシールド部材により覆い、
かつ、該シールド部材を、前記検出用のコイルのうち前記検出領域を囲む部分がシールド部材の外部に突出する構成とする。
【0014】
シールド部材によりその内側が電磁的にシールドされるので、誤検出およびノイズを低減することができる。
【0015】
【発明の実施の形態】
(第1実施形態)
図1(A)、図1(B)に本発明の第1実施形態になる磁気検出アンテナを示す。磁気検出アンテナは、2種類のコア1,2と、2種類のコイル3,4からなる。
【0016】
コア部材である第1の種類のコア1は、透磁性材料を細長の略リング状に成形したもので、内部に閉磁路が形成される。コア1の形状は各部の曲率に不連続部がないように構成され、漏れ磁束を抑制している。また、コア1の長手方向の半分強の部分は対向側面が近接する略直線状となっており、この略直線状部が集合するコア1の長手方向の一端部11はコ字状に屈曲している。屈曲部にはRが施されている。コアの長手方向の残りの半分弱の部分は対向側面が拡がって緩やかに弧を描いている(以下、このコアをメインコアという)。メインコア1用の透磁性材料には高透磁率で周波数損失の少ないものが望ましく、フェライトや鉄等が用いられる。また成形性の点からはアモルファス系の磁性材料がよい。また、構造は、透磁性材料を前記形状を有するシート状に成形して複数のシートが積層する構造とすることで、渦電流損を小さくするのもよい。
【0017】
コア片である第2の種類のコア2は、透磁性材料をメインコア1と略同程度の太さの円柱状に成形したもので、その長さは対向側面が近接するメインコア1の一端部11における対向側面の間隔程度としてある(以下、このコアをセンスコアという)。センスコア2用の透磁性材料にもフェライト等の高透磁率で高周波損失の少ないものが望ましい。センスコア2は、メインコア1の前記コ字状一端部11に沿ってメインコア1の外側側面に接着剤等により取り付けられる。
【0018】
検出用のコイルである第1の種類のコイル3は、メインコア1のコ字状一端部11およびセンスコア2をひとまとめにして導線が巻き回してなり、メインコア1とは鎖交している(以下、このコイルをセンスコイルという)。センスコイル3はその図示しない線端がハンダ付け等で互いに接続され、閉回路となっている。
【0019】
出力用のコイルである第2の種類のコイル4は、メインコア1の長手方向の他端部12に導線が巻き回してなり、その線端401,402から検出信号Vo が取り出されるようになっている(以下、このコイルを出力コイルという)。
【0020】
本磁気検出アンテナはセンスコア2およびセンスコイル3が設けられた側を測定対象の電子基板に近づけて用いる。電子基板に形成された線路パターンを流れる電流により振動する磁界が生じている状態で、円柱状のセンスコア2をその軸方向に貫通する磁界があると、センスコア2内部の磁束の大きさに応じてセンスコイル3に誘導起電力が発生して誘導電流が流れる。この誘導電流によりセンスコイル3で画成された内側の領域を誘導磁界が貫通するから、センスコイル3と鎖交するメインコア1内部の閉じた磁路に磁束が現れる。
【0021】
そして、この磁束により出力コイル4に誘導起電力が発生し、これより電子基板等の表面近傍で発生する磁界が検出できる。
【0022】
磁気検出アンテナの出力信号はセンスコイル3とは別体の出力コイル4の線端41から取り出す構成となっており、また、センスコイル3と出力コイル4の巻き数比を変えることで磁界の検出感度を選択できるので、被検出磁界が貫通するコイルの大径化による高感度化を採用することなく、良好な感度が得られる。したがって、被検出磁界が貫通するセンスコア2の断面積を小さくすることで、分解能が向上する。
【0023】
また、メインコア1を細長形状とし、特にセンスコア2およびセンスコイル3を設けた一端部11側を細身としているので、センスコア2およびセンスコイル3を狭隘な場所にさしいれることができ、電子部品の実装密度が高くなっている近年の電子基板に対応した磁界検出用のすぐれたプローブとなる。
【0024】
図2は本磁気検出アンテナにより単線の近傍磁界を測定した結果で、単線に300kHz程度の信号を流した状態で、単線から高さ1mmの位置で単線と直交する方向に磁気検出アンテナを動かし、この移動方向の近傍磁界成分の検出結果を示している。単線周りの磁界は大きさが単線との距離に反比例し、単線との対向方向に直交するから、前記移動方向近傍磁界成分はアンテナから離れると低下する。本磁気検出アンテナによれば、磁気検出アンテナの位置が2mm程度違うと10dB以上も変化しており、分解能がきわめて高いものとなっている。これは、センスコイル3の検出領域の大きさすなわちセンスコア2の断面の大きさを十分に小さくし得ることによる効果と認められる。
【0025】
また、出力コイル4は平衡/不平衡の変換を実現するバランの機能を果たし、図3のように、出力コイル4の線端401,402に同軸線5を接続して、出力コイル4からの平衡出力を不平衡線路で受けた時に、出力コイル4に同相で流れるコモンモード電流Iを打ち消すことができる。
【0026】
(第2実施形態)
図4(A)、図4(B)に本発明の第2の実施形態になる磁気検出アンテナを示す。図中、第1実施形態と実質的に同じ作動をする部分については同じ番号を付し、第1実施形態との相違点を中心に説明する。センスコイル3の両線端301,302を抵抗器6により接続してあり、センスコイル3と抵抗器6が閉回路を形成している。
【0027】
かかる抵抗器6を設けることで、本磁気検出アンテナの出力信号を受ける装置とのインピーダンスの整合をとりやすくすることができる。なお、センスコイル3と出力コイル4の巻き数比の調整で、さらにインピーダンスの整合は良好なものにすることができる。
【0028】
(第3実施形態)
図5、図6に本発明の第3の実施形態になる磁気検出アンテナを示す。図中、第1実施形態と実質的に同じ作動をする部分については同じ番号を付し、第1実施形態との相違点を中心に説明する。
【0029】
メインコア1はその略全体を覆うシールド部材である扁平なスポイト状のシールドケース7に格納されている。シールドケース7は、これを半割りした実質的に同じ形状のケース部材7a,7bで構成されており、それぞれ、メインコア1の一端部11に取り付けられたセンスコア2が露出する切り欠き701a,701b、および出力コイル4の線端を引き出すための切り欠き702a,702bが形成されている。ケース部材7a,7bは高透磁率の材料の層71と導電性材料の層72との積層構造となっており、シールドケース7内が磁気的および電気的にシールドされている。高透磁率の材料として例えばフェライト等が、導電性材料としては銅等が用いられ得る。
【0030】
シールドケース7のシールド効果で耐ノイズのよい磁気検出アンテナとすることができる。
【0031】
なお、シールドケース7は必ずしも2層構造である必要はなく、高透磁性と導電性の両方を備えた鉄(ケイ素鋼板)等で構成してもよい。
【0032】
(第4実施形態)
図7に本発明の第4の実施形態になる磁気検出アンテナを示す。図中、第1〜第3実施形態と実質的に同じ作動をする部分については同じ番号を付し、第1〜第3実施形態との相違点を中心に説明する。
【0033】
本磁気検出アンテナは、第3実施形態の構成において、出力コイル4の出力を受ける同軸線5Aが、前記シールドケース7と同様の二重シールド構造を備えたものである。同軸線5Aは、中心側より内部導体51、絶縁体52、外部導体53、磁気シールド体54が同軸に形成されており、内部導体51および外部導体53は出力コイル4の線端401,402と1対1に対応して導通している。外部導体53はまた、シールドケース7の導電性材料の層72と導通せしめてある。
【0034】
これにより、さらに耐ノイズのよい磁気検出アンテナとすることができる。
【0035】
なお、同軸線5Aは必ずしも外部導体53および磁気シールド体54が別体である必要はなく、高透磁性と導電性の両方を備えた鉄(ケイ素鋼板)等で構成してもよい。
【0036】
なお、前記各実施形態は、センスコア2を設けて磁束密度を高めているが、要求される検出性能によっては、これを省略してセンスコイル3とメインコア1の間の隙間を空芯の検出領域とすることもできる。
【0037】
また、センスコア2は円柱状ではなく、直方形状、湾曲形状等であってもかまわない。
【0038】
また、平面視の前記各図例では、検出可能な磁界の方向であるセンスコア2の軸方向が紙面に対して水平で横方向となるように構成されているが、メインコア1の長手方向の途中にひねり部や屈曲部を設けることで、検出可能な磁界の方向を使い勝手のよい方向に向けることができる。
【0039】
また、メインコア1とセンスコア2とは接しているが、ケース部材7a,7bの切り欠き701a,701b側を伸ばしてメインコア1の一端部11が切り欠き701a,701bに達しない長さとし、メインコア1とケース7の外側に位置するセンスコア2間を離してもよい。
【0040】
また、メインコアの形状は図例のスポイト状のものに限られず、緩やかな湾曲形状部を設けずに、単純な、全体的に細長の形状とすることもできる。また、逆に狭隘な場所にさしいれる必要がなければ、全体に丸みを帯びた形状でもよい。
【図面の簡単な説明】
【図1】(A)は本発明の第1実施形態になる磁気検出アンテナの平面図であり、(B)は前記磁気検出アンテナの先端部の拡大斜視図である。
【図2】前記磁気検出アンテナの作動を説明するグラフである。
【図3】前記磁気検出アンテナの変形例の平面図である。
【図4】(A)は本発明の第2実施形態になる磁気検出アンテナの平面図であり、(B)は前記磁気検出アンテナの先端部の拡大斜視図である。
【図5】本発明の第3実施形態になる磁気検出アンテナの平面図である。
【図6】前記磁気検出アンテナの分解斜視図である。
【図7】本発明の第4実施形態になる磁気検出アンテナの平面図である。
【図8】従来の磁気検出アンテナの代表例の正面図である。
【符号の説明】
1 メインコア(コア部材)
2 センスコア(コア片)
3 センスコイル(検出用のコイル)
301,302 線端
4 出力コイル(出力用のコイル)
401,402 線端
5,5A 同軸線
6 抵抗器
7 シールドケース(シールド部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic detection antenna that detects a minute magnetic field.
[0002]
[Prior art]
Conventionally, there is a method for detecting a magnetic field generated by the current in analysis of a current flowing in a line pattern formed on an electronic substrate, and this method uses a magnetic detection antenna that outputs a detection signal corresponding to the magnetic field. It is done. As shown in FIG. 8, there are magnetic detection antennas in which an air core bobbin 900 is wound with a coil 901, and a magnetically permeable material core is inserted into the bobbin 900 to increase sensitivity. .
[0003]
[Problems to be solved by the invention]
However, in a relatively low frequency, for example, in the medium wave (MF) band (300 kHz to 3 MHz), the detection sensitivity is insufficient, and the coil diameter must be increased to ensure a certain amount of magnetic flux. As a result, it is difficult to detect the magnetic field in the minute region, and the magnetic field distribution cannot be measured with high resolution.
[0004]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic detection antenna capable of detecting a magnetic field with high accuracy.
[0005]
[Means for Solving the Problems]
In the invention according to claim 1, a core member formed of a magnetically permeable material in a substantially ring shape and forming a closed magnetic path therein,
A coil for detection formed by winding a conducting wire around a part of the core member to form a closed circuit;
An output coil formed by winding a conductive wire around the other part of the core member;
The core member is formed into an elongated substantially ring shape, and the half of the longitudinal direction thereof is formed into an elongated shape having two substantially straight side surfaces facing each other and having a U-shaped one end portion connecting these substantially linear portions, The detection coil is provided at the one end, and the other half of the longitudinal direction of the core member is shaped so as to spread in a gentle arc, and the output coil is provided in a part of the arc. ,
Forming the detection coil in a size with a gap between the core member,
The gap is used as a detection region that receives an external magnetic field, and when the external magnetic field penetrates the detection region, a detection signal of the external magnetic field is output from the line end of the output coil.
[0006]
Since the detection coil and the output coil are magnetically coupled by the core member, when an external magnetic field penetrates the detection region and an induced electromotive force is generated in the detection coil, the detection output is output to the output coil. Can be taken out from. Here, the detection sensitivity is defined by the turn ratio between the detection coil and the output coil. Therefore, it is not necessary to take a method of ensuring sensitivity by increasing the diameter of the detection coil close to the detection site such as an electronic substrate, and high resolution can be obtained by reducing the detection area.
The magnetic field can be easily detected by touching the one end side of the magnetic detection antenna even in a narrow place where electronic parts are densely packed.
[0007]
According to a second aspect of the present invention, in the configuration of the first aspect of the present invention, a core piece of a magnetically permeable material is provided in the detection region.
[0008]
By increasing the magnetic permeability of the detection region, the magnetic flux contributing to the induced electromotive force of the detection coil is increased, and the detection sensitivity is improved.
[0009]
According to a third aspect of the present invention, in the configuration of the first or second aspect of the present invention, a resistor is connected in series with the detection coil.
[0010]
By selecting the resistance value of the resistor, impedance matching with the device that receives the detection output of the output coil can be easily achieved.
[0011]
According to a fourth aspect of the present invention, in the configuration of the first to third aspects of the invention, in the other half of the core member in the longitudinal direction, the opposing side surfaces following the two substantially linear side surfaces of the half portion are gently expanded. Thus, the arc-shaped portion is formed .
[0013]
According to a fifth aspect of the present invention, in the configuration of the first to fourth aspects of the invention, the core member around which the detection coil and the output coil are wound is made of a conductive material or a magnetically permeable material. Covered with a shield member,
The shield member has a configuration in which a portion of the detection coil surrounding the detection region protrudes outside the shield member.
[0014]
Since the inside is electromagnetically shielded by the shield member, erroneous detection and noise can be reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
1A and 1B show a magnetic detection antenna according to a first embodiment of the present invention. The magnetic detection antenna includes two types of cores 1 and 2 and two types of coils 3 and 4.
[0016]
The first type of core 1 that is a core member is formed by forming a magnetically permeable material into an elongated substantially ring shape, and has a closed magnetic path formed therein. The shape of the core 1 is configured so that there is no discontinuity in the curvature of each part, and the leakage magnetic flux is suppressed. Further, the slightly half portion in the longitudinal direction of the core 1 has a substantially straight shape in which the opposite side surfaces are close to each other, and one end portion 11 in the longitudinal direction of the core 1 where the substantially straight portions gather is bent in a U-shape. ing. R is given to the bent part. The remaining half of the length of the core is slightly arcuate with the opposite side surfaces expanding (hereinafter this core is referred to as the main core). As the magnetic permeable material for the main core 1, a material having high magnetic permeability and low frequency loss is desirable, and ferrite, iron, or the like is used. From the viewpoint of formability, an amorphous magnetic material is preferable. The structure may be a structure in which a magnetically permeable material is formed into a sheet shape having the above-described shape and a plurality of sheets are laminated to reduce eddy current loss.
[0017]
The second type of core 2 that is a core piece is formed by forming a magnetically permeable material into a cylindrical shape having a thickness substantially the same as that of the main core 1, and its length is one end of the main core 1 that is close to the opposite side surface. The interval between the opposing side surfaces of the portion 11 is about the same (hereinafter, this core is called a sense core). The magnetically permeable material for the sense core 2 is preferably a material having high magnetic permeability and low high-frequency loss, such as ferrite. The sense core 2 is attached to the outer side surface of the main core 1 with an adhesive or the like along the U-shaped one end portion 11 of the main core 1.
[0018]
The first type coil 3 that is a detection coil is formed by winding a conductive wire together with the U-shaped one end portion 11 of the main core 1 and the sense core 2 and is linked to the main core 1 ( Hereinafter, this coil is referred to as a sense coil). The sense coil 3 has a closed circuit in which wire ends (not shown) are connected to each other by soldering or the like.
[0019]
In the second type coil 4 that is an output coil, a conducting wire is wound around the other end portion 12 in the longitudinal direction of the main core 1, and a detection signal Vo is extracted from the line ends 401 and 402. (Hereinafter, this coil is referred to as an output coil).
[0020]
This magnetic detection antenna is used with the side on which the sense core 2 and the sense coil 3 are provided close to the electronic substrate to be measured. If there is a magnetic field penetrating the cylindrical sense core 2 in the axial direction in a state where a magnetic field oscillating due to a current flowing through a line pattern formed on the electronic substrate is generated, the magnetic field in the sense core 2 depends on the magnitude of magnetic flux. An induced electromotive force is generated in the sense coil 3 and an induced current flows. Since the induced magnetic field penetrates the inner region defined by the sense coil 3 by this induced current, a magnetic flux appears in a closed magnetic path inside the main core 1 that is linked to the sense coil 3.
[0021]
Then, an induced electromotive force is generated in the output coil 4 by this magnetic flux, and a magnetic field generated near the surface of the electronic substrate or the like can be detected from this.
[0022]
The output signal of the magnetic detection antenna is extracted from the line end 41 of the output coil 4 that is separate from the sense coil 3, and the magnetic field is detected by changing the turns ratio of the sense coil 3 and the output coil 4. Since the sensitivity can be selected, a good sensitivity can be obtained without adopting a high sensitivity by increasing the diameter of the coil through which the magnetic field to be detected penetrates. Therefore, the resolution is improved by reducing the cross-sectional area of the sense core 2 through which the detected magnetic field passes.
[0023]
Further, since the main core 1 has an elongated shape, and particularly the one end 11 side where the sense core 2 and the sense coil 3 are provided, the sense core 2 and the sense coil 3 can be handled in a narrow space, and the electronic component It becomes an excellent probe for detecting a magnetic field corresponding to a recent electronic substrate having a high mounting density.
[0024]
FIG. 2 shows the result of measuring the magnetic field in the vicinity of a single wire with this magnetic detection antenna. With a signal of about 300 kHz flowing through the single wire, the magnetic detection antenna is moved in a direction perpendicular to the single wire at a position 1 mm from the single wire, The detection result of the near magnetic field component in this moving direction is shown. Since the magnetic field around the single line is inversely proportional to the distance from the single line and is orthogonal to the direction facing the single line, the magnetic field component in the direction of movement decreases as the distance from the antenna increases. According to the present magnetic detection antenna, if the position of the magnetic detection antenna is different by about 2 mm, it changes by 10 dB or more, and the resolution is extremely high. This is recognized as an effect of being able to sufficiently reduce the size of the detection region of the sense coil 3, that is, the size of the cross section of the sense core 2.
[0025]
Further, the output coil 4 functions as a balun that realizes balanced / unbalanced conversion, and the coaxial wire 5 is connected to the line ends 401 and 402 of the output coil 4 as shown in FIG. When the balanced output is received by the unbalanced line, the common mode current I flowing in the output coil 4 in the same phase can be canceled out.
[0026]
(Second Embodiment)
4A and 4B show a magnetic detection antenna according to a second embodiment of the present invention. In the figure, the same number is attached | subjected about the part which carries out substantially the same operation | movement as 1st Embodiment, and it demonstrates centering around difference with 1st Embodiment. Both line ends 301 and 302 of the sense coil 3 are connected by a resistor 6, and the sense coil 3 and the resistor 6 form a closed circuit.
[0027]
By providing the resistor 6, it is possible to easily match the impedance with the device that receives the output signal of the magnetic detection antenna. The impedance matching can be further improved by adjusting the turns ratio of the sense coil 3 and the output coil 4.
[0028]
(Third embodiment)
5 and 6 show a magnetic detection antenna according to a third embodiment of the present invention. In the figure, the same number is attached | subjected about the part which carries out substantially the same operation | movement as 1st Embodiment, and it demonstrates centering around difference with 1st Embodiment.
[0029]
The main core 1 is housed in a flat dropper-shaped shield case 7 that is a shield member that covers substantially the whole. The shield case 7 is composed of case members 7a and 7b having substantially the same shape, which are divided in half. The notches 701a and 701b in which the sense core 2 attached to the one end 11 of the main core 1 is exposed. And notches 702a and 702b for drawing out the wire ends of the output coil 4. The case members 7a and 7b have a laminated structure of a high magnetic permeability material layer 71 and a conductive material layer 72, and the shield case 7 is shielded magnetically and electrically. For example, ferrite or the like can be used as the high magnetic permeability material, and copper or the like can be used as the conductive material.
[0030]
Due to the shielding effect of the shield case 7, a magnetic detection antenna with good noise resistance can be obtained.
[0031]
The shield case 7 does not necessarily have a two-layer structure, and may be made of iron (silicon steel plate) having both high magnetic permeability and conductivity.
[0032]
(Fourth embodiment)
FIG. 7 shows a magnetic detection antenna according to a fourth embodiment of the present invention. In the figure, the same number is attached | subjected about the part which carries out substantially the same operation | movement as 1st-3rd embodiment, and it demonstrates centering around difference with 1st-3rd embodiment.
[0033]
In this magnetic detection antenna, in the configuration of the third embodiment, the coaxial line 5 </ b> A that receives the output of the output coil 4 has the same double shield structure as the shield case 7. In the coaxial line 5A, an inner conductor 51, an insulator 52, an outer conductor 53, and a magnetic shield body 54 are formed coaxially from the center side, and the inner conductor 51 and the outer conductor 53 are connected to the line ends 401 and 402 of the output coil 4. Conduction is conducted in a one-to-one correspondence. The outer conductor 53 is also in electrical communication with the conductive material layer 72 of the shield case 7.
[0034]
Thereby, it can be set as a magnetic detection antenna with better noise resistance.
[0035]
The coaxial line 5A does not necessarily need to have the outer conductor 53 and the magnetic shield 54 separated, and may be made of iron (silicon steel plate) having both high magnetic permeability and conductivity.
[0036]
In each of the above embodiments, the sense core 2 is provided to increase the magnetic flux density, but depending on the required detection performance, this may be omitted and the gap between the sense coil 3 and the main core 1 will be detected as an air core. It can also be an area.
[0037]
Further, the sense core 2 may be a rectangular shape, a curved shape or the like instead of a cylindrical shape.
[0038]
Further, in each of the above examples in plan view, the axial direction of the sense core 2 that is the direction of the detectable magnetic field is configured to be horizontal and transverse to the paper surface, but in the longitudinal direction of the main core 1. By providing a twisted portion or a bent portion in the middle, the direction of the detectable magnetic field can be directed in a convenient direction.
[0039]
In addition, the main core 1 and the sense core 2 are in contact with each other, but the lengths of the end portions 11 of the main core 1 do not reach the notches 701a and 701b by extending the notches 701a and 701b of the case members 7a and 7b. The sense core 2 located outside the core 1 and the case 7 may be separated.
[0040]
Further, the shape of the main core is not limited to the dropper shape shown in the figure, and a simple, generally elongated shape can be used without providing a gently curved portion. On the contrary, if it is not necessary to touch a narrow place, the shape may be rounded as a whole.
[Brief description of the drawings]
FIG. 1A is a plan view of a magnetic detection antenna according to a first embodiment of the present invention, and FIG. 1B is an enlarged perspective view of a tip portion of the magnetic detection antenna.
FIG. 2 is a graph illustrating the operation of the magnetic detection antenna.
FIG. 3 is a plan view of a modified example of the magnetic detection antenna.
4A is a plan view of a magnetic detection antenna according to a second embodiment of the present invention, and FIG. 4B is an enlarged perspective view of a tip portion of the magnetic detection antenna.
FIG. 5 is a plan view of a magnetic detection antenna according to a third embodiment of the present invention.
FIG. 6 is an exploded perspective view of the magnetic detection antenna.
FIG. 7 is a plan view of a magnetic detection antenna according to a fourth embodiment of the present invention.
FIG. 8 is a front view of a typical example of a conventional magnetic detection antenna.
[Explanation of symbols]
1 Main core (core member)
2 Sense core (core piece)
3 Sense coil (coil for detection)
301, 302 Line end 4 Output coil (coil for output)
401, 402 Line end 5, 5A Coaxial line 6 Resistor 7 Shield case (shield member)

Claims (5)

透磁性材料を略リング状に成形してなり、内部に閉磁路を形成するコア部材と、
該コア部材の一部に導線を巻回してなり、閉回路を形成する検出用のコイルと、
前記コア部材の他の一部に導線を巻回してなる出力用のコイルとを有し、
前記コア部材を細長の略リング形状とし、その長手方向の半部を、対向する略直線状の2側面が近接し、これら略直線状部をつなぐコ字状の一端部を有する細長形状として、該一端部に前記検出用のコイルを設けるとともに、前記コア部材の長手方向の他の半部を緩やかな弧を描いて拡がる形状として、該弧状部の一部に前記出力用のコイルを設け、
前記検出用のコイルをコア部材との間に隙間があく大きさに形成し、
該隙間を、外部磁界を受ける検出領域として該検出領域を外部磁界が貫通すると前記出力用のコイルの線端から外部磁界の検出信号が出力されることを特徴とする磁気検出アンテナ。
A core member formed of a magnetically permeable material in a substantially ring shape and forming a closed magnetic path therein;
A coil for detection formed by winding a conducting wire around a part of the core member to form a closed circuit;
An output coil formed by winding a conductive wire around the other part of the core member;
The core member is formed into an elongated substantially ring shape, and the half of the longitudinal direction thereof is formed into an elongated shape having two substantially straight side surfaces facing each other and having a U-shaped one end portion connecting these substantially linear portions, The one end portion is provided with the detection coil, and the other half of the core member in the longitudinal direction is expanded in a gentle arc, and the output coil is provided in a part of the arc-shaped portion,
Forming the detection coil in a size with a gap between the core member,
The magnetic detection antenna according to claim 1, wherein a detection signal of an external magnetic field is output from a line end of the output coil when the external magnetic field penetrates the detection region with the gap as a detection region for receiving an external magnetic field.
請求項1記載の磁気検出アンテナにおいて、前記検出領域には、透磁性材料のコア片を設けた磁気検出アンテナ。  The magnetic detection antenna according to claim 1, wherein a core piece made of a magnetically permeable material is provided in the detection region. 請求項1または2いずれか記載の磁気検出アンテナにおいて、前記検出用のコイルと直列に抵抗器を接続した磁気検出アンテナ。  3. The magnetic detection antenna according to claim 1, wherein a resistor is connected in series with the detection coil. 請求項1ないし3いずれか記載の磁気検出アンテナにおいて、前記コア部材の長手方向の他の半部は、前記半部の略直線状の2側面に続く対向側面が緩やかに拡がって、前記弧状部を形成する磁気検出アンテナ。 4. The magnetic detection antenna according to claim 1, wherein the other half portion of the core member in the longitudinal direction has an opposite side surface that extends gradually from two substantially straight side surfaces of the half portion, and the arc-shaped portion. Forming a magnetic detection antenna. 請求項1ないし4いずれか記載の磁気検出アンテナにおいて、前記検出用のコイルおよび前記出力用のコイルが巻装された前記コア部材を、導電性材料または透磁性材料により構成されたシールド部材により覆い、
かつ、該シールド部材を、前記検出用のコイルのうち前記検出領域を囲む部分がシールド部材の外部に突出する構成とした磁気検出アンテナ。
5. The magnetic detection antenna according to claim 1, wherein the core member around which the detection coil and the output coil are wound is covered with a shield member made of a conductive material or a magnetically permeable material. ,
And the magnetic detection antenna which made this shield member the structure where the part surrounding the said detection area | region among the said coils for a detection protrudes outside the shield member.
JP2000349393A 2000-11-16 2000-11-16 Magnetic detection antenna Expired - Fee Related JP4644357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000349393A JP4644357B2 (en) 2000-11-16 2000-11-16 Magnetic detection antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000349393A JP4644357B2 (en) 2000-11-16 2000-11-16 Magnetic detection antenna

Publications (2)

Publication Number Publication Date
JP2002156431A JP2002156431A (en) 2002-05-31
JP4644357B2 true JP4644357B2 (en) 2011-03-02

Family

ID=18822813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000349393A Expired - Fee Related JP4644357B2 (en) 2000-11-16 2000-11-16 Magnetic detection antenna

Country Status (1)

Country Link
JP (1) JP4644357B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261979A (en) * 1986-05-09 1987-11-14 Mitsubishi Electric Corp High frequency magnetic field detector
JPH01109498A (en) * 1987-10-22 1989-04-26 Mitsubishi Electric Corp Superconducting signal line
JPH08334541A (en) * 1995-06-05 1996-12-17 Mitsubishi Electric Corp Current detector and method for detecting contact part at printed-wiring board utilizing it
JP2000258468A (en) * 1999-03-05 2000-09-22 Sony Corp High frequency current detecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261979A (en) * 1986-05-09 1987-11-14 Mitsubishi Electric Corp High frequency magnetic field detector
JPH01109498A (en) * 1987-10-22 1989-04-26 Mitsubishi Electric Corp Superconducting signal line
JPH08334541A (en) * 1995-06-05 1996-12-17 Mitsubishi Electric Corp Current detector and method for detecting contact part at printed-wiring board utilizing it
JP2000258468A (en) * 1999-03-05 2000-09-22 Sony Corp High frequency current detecting device

Also Published As

Publication number Publication date
JP2002156431A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US6715198B2 (en) Method of manufacturing a magnetic sensor
US9291649B2 (en) On the enhancements of planar based RF sensor technology
KR970000027B1 (en) Dynamic value sensor
US6983661B2 (en) Electromagnetic flow sensor
KR20230027087A (en) RF voltage and current (V-I) sensors and measurement methods
KR20230027016A (en) RF voltage and current (V-I) sensors and measurement methods
US11955271B2 (en) Radio frequency weak magnetic field detection sensor and method of manufacturing the same
JP4644357B2 (en) Magnetic detection antenna
JP7111347B2 (en) Magnetic field detection coil and EMI antenna
JP2000258461A (en) High frequency current detecting device
EP2396628B1 (en) Magnetostrictive position transducer with a plurality of flat coils
JPH0426530B2 (en)
JP2010266233A (en) Device for detection of magnetic field
US20050083040A1 (en) Probe
WO2014005431A1 (en) Chip-type magnetic sensor
CN213069016U (en) Annular coil structure for magnetic core parameter measurement
JP2001336906A (en) Electromagnetic induction type displacement detecting device
JP2651003B2 (en) Eddy current displacement sensor
CN111458571A (en) Toroidal coil for magnetic core parameter measurement
CN219225054U (en) Magnetic field probe assembly
JPH11331099A (en) Reception method and device in communication system using magnetic vector potential
WO2010029804A1 (en) Nmr probe
JP2000258468A (en) High frequency current detecting device
JPH0318451B2 (en)
CN116294976A (en) Enhanced exciting coil and inductive angle sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees