JP2995849B2 - Magnetic shield measurement method - Google Patents

Magnetic shield measurement method

Info

Publication number
JP2995849B2
JP2995849B2 JP2288576A JP28857690A JP2995849B2 JP 2995849 B2 JP2995849 B2 JP 2995849B2 JP 2288576 A JP2288576 A JP 2288576A JP 28857690 A JP28857690 A JP 28857690A JP 2995849 B2 JP2995849 B2 JP 2995849B2
Authority
JP
Japan
Prior art keywords
magnetic field
ring conductor
voltage signal
signal amplifier
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2288576A
Other languages
Japanese (ja)
Other versions
JPH04164270A (en
Inventor
高明 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2288576A priority Critical patent/JP2995849B2/en
Publication of JPH04164270A publication Critical patent/JPH04164270A/en
Application granted granted Critical
Publication of JP2995849B2 publication Critical patent/JP2995849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超電導体を含む磁気シールド体を使用し
た磁気シールド測定方法に関する。
The present invention relates to a magnetic shield measuring method using a magnetic shield including a superconductor.

[従来の技術] 数ステラ以上の強磁場の下で、電圧信号の増幅を行う
デバイスを使用する場合、デバイスのノイズ対策の一環
として、導電率の大きい金属で遮蔽しているものが多
い。
[Related Art] When a device that amplifies a voltage signal under a strong magnetic field of several stellas or more is used, in many cases, the device is shielded with a metal having high conductivity as a measure against noise of the device.

[発明が解決しようとする課題] 前述した導電率の大きい金属は、導電率が有限である
ため、完全に磁場を遮蔽することが不可能となる欠点が
あった。
[Problems to be Solved by the Invention] The above-described metal having a high conductivity has a finite conductivity, and thus has a drawback that it is impossible to completely shield a magnetic field.

この発明は、このような点に鑑みてなされたもので、
極低温下の強磁場および変動磁場中にて使用する電圧信
号増幅器に対して、磁場がもたらす機能低下の影響を防
止することができる新規な超電導磁気シールド体を使用
した磁気シールド測定方法を提供することを目的とす
る。
The present invention has been made in view of such a point,
Provided is a magnetic shield measuring method using a novel superconducting magnetic shield that can prevent the effect of a magnetic field from deteriorating the function of a voltage signal amplifier used in a strong magnetic field and a fluctuating magnetic field at cryogenic temperatures. The purpose is to:

[課題を解決するための手段] この発明の磁気シールド測定方法は、極低温媒体下
で、且つ、円筒状コイルの磁場中で、微小電圧測定の対
象となる試料および、最外層が銀安定化材、中央が酸化
物超電導体および最内層が銀安定化材の同軸3層から構
成された円筒状のリング導体を設け、このリング導体の
中に電圧信号増幅器を挿入し、この電圧信号増幅器を試
料と接続し、且つ、外部の電気系測定システムに接続し
て電圧を測定することを特徴とする。
[Means for Solving the Problems] The magnetic shield measurement method according to the present invention provides a method for measuring a minute voltage under a cryogenic medium and in a magnetic field of a cylindrical coil, and a method for stabilizing the outermost layer with silver. A cylindrical ring conductor composed of a material, an oxide superconductor in the center and three coaxial layers of a silver stabilizing material in the innermost layer is provided, and a voltage signal amplifier is inserted into the ring conductor. It is characterized by being connected to a sample and being connected to an external electric system measurement system to measure a voltage.

[作用] 極低温下で使用する電圧信号増幅器に超電導体を含む
円筒状のリングを用いて電磁遮蔽を付加したことによ
り、外部磁界に対する電圧信号増幅器の機能低下を防止
させることが可能となる。
[Operation] By adding an electromagnetic shield using a cylindrical ring including a superconductor to a voltage signal amplifier used at a cryogenic temperature, it is possible to prevent the function of the voltage signal amplifier from deteriorating due to an external magnetic field.

[実施例] 以下、図面に基づいてこの発明の実施例を説明する。
第1図(A),(B)は、超電導体を含む円筒状リング
導体の横断面図および側断面図である。超電導体を含む
円筒状リング導体4は、同軸3層から構成され、最外層
は銀安定化材1、中央は酸化物超電導体2および最内層
の銀安定化材3から構成される。そして、最内層3の内
側の円筒空間に機能素子が挿入される。上記円筒状リン
グ導体4の内径と長さは、磁気シールドされる機能素子
がリングの内側に収まるための大きさが必要となる。そ
して、酸化物超電導体2は永久電流モードの電流が流れ
る構成となる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1A and 1B are a cross-sectional view and a side cross-sectional view of a cylindrical ring conductor including a superconductor. The cylindrical ring conductor 4 including a superconductor is composed of three coaxial layers, the outermost layer is composed of a silver stabilizer 1, and the center is composed of an oxide superconductor 2 and the innermost silver stabilizer 3. Then, the functional element is inserted into the cylindrical space inside the innermost layer 3. The inner diameter and length of the cylindrical ring conductor 4 need to be large enough for the functional element to be magnetically shielded to fit inside the ring. The oxide superconductor 2 has a configuration in which a current in the permanent current mode flows.

この円筒状リング導体4には、リング内の変動磁界を
打ち消す方向に誘導電流が流れる。従って、打ち消す必
要のある磁場方向と円筒状リング導体4の長さ方向が互
いに垂直であってはならない。
An induced current flows through the cylindrical ring conductor 4 in a direction to cancel the fluctuating magnetic field in the ring. Therefore, the direction of the magnetic field that needs to be canceled and the length direction of the cylindrical ring conductor 4 must not be perpendicular to each other.

次に、この超電導体を含む円筒状リング導体4を用い
た磁気シールド測定方法を説明する。第2図は円筒状リ
ング導体4を用いて安定性のよい電圧信号増幅器を作成
した例である。この例は、極低温媒体11下における電圧
信号増幅器5を用いた試料6に生じる微小電圧測定シス
テムである。デュワー12内には円筒状のコイル7が挿入
され、コイル励磁電源8に接続して試料6に磁界を印加
する。一方、このコイル内には、試料ホルダー10に取付
けた試料6および超電導磁気シールドを行う円筒状リン
グ導体4が固定され、この円筒状リング導体4ないには
電圧信号増幅器5が挿入され、上記試料6と接続し、電
圧信号増幅器5は外部の電気系測定システム9に接続し
て電圧を測定するように構成される。
Next, a magnetic shield measuring method using the cylindrical ring conductor 4 including the superconductor will be described. FIG. 2 shows an example in which a voltage signal amplifier having good stability is formed using the cylindrical ring conductor 4. This example is a minute voltage measurement system generated in a sample 6 using a voltage signal amplifier 5 under a cryogenic medium 11. A cylindrical coil 7 is inserted into the dewar 12, and connected to a coil excitation power supply 8 to apply a magnetic field to the sample 6. On the other hand, a sample 6 attached to a sample holder 10 and a cylindrical ring conductor 4 for performing superconducting magnetic shielding are fixed in the coil, and a voltage signal amplifier 5 is inserted without the cylindrical ring conductor 4. 6, the voltage signal amplifier 5 is configured to connect to an external electrical system measurement system 9 to measure the voltage.

従って、電源8によりコイル7によって励磁した磁場
中に試料6が挿入され、試料ホルダー10にリード線13に
よって接続した電源14から電力負荷を試料6に印加し、
この時、試料6に取付けられた電極に生じる微小な電圧
を評価することができる。電圧信号増幅器5は、電磁シ
ールドを目的とする円筒状リング導体4で磁気的に遮蔽
されている。通常、電圧信号増幅器5の低電圧特性は、
電磁波、外部磁界、雰囲気中の温度変化によって安定性
が悪くなり、性能が低下する。このシステムにおいて
は、円筒状リング導体4の内側はコイル7の発生する電
磁波または磁界の影響を受けることがないので、電圧信
号増幅器5を安定に動作させること可能となる。このシ
ステムでは、円筒状リング導体4および電圧信号増幅器
5は、極低温下にあることが条件となる。
Therefore, the sample 6 is inserted into the magnetic field excited by the coil 7 by the power source 8, and a power load is applied to the sample 6 from the power source 14 connected to the sample holder 10 by the lead wire 13,
At this time, a minute voltage generated at the electrode attached to the sample 6 can be evaluated. The voltage signal amplifier 5 is magnetically shielded by the cylindrical ring conductor 4 for the purpose of electromagnetic shielding. Usually, the low voltage characteristics of the voltage signal amplifier 5 are as follows:
Electromagnetic waves, external magnetic fields, and temperature changes in the atmosphere degrade stability and performance. In this system, the inside of the cylindrical ring conductor 4 is not affected by an electromagnetic wave or a magnetic field generated by the coil 7, so that the voltage signal amplifier 5 can be operated stably. In this system, the condition is that the cylindrical ring conductor 4 and the voltage signal amplifier 5 are at a very low temperature.

また、このシステムにおいては、試料6の電位が大き
くなる場合の問題点は、静電ノイズである。これについ
ては、銅またはアルミシールド導体の有する性能以上の
電磁遮蔽効果が円筒状リング導体4により得られること
になる。
Further, in this system, a problem when the potential of the sample 6 becomes large is electrostatic noise. In this regard, the cylindrical ring conductor 4 can provide an electromagnetic shielding effect higher than the performance of the copper or aluminum shield conductor.

[発明の効果] 以上説明したとおり、この発明の磁気シールド測定方
法によれば、微小電圧信号の増幅器を円筒状リング導体
に挿入して測定する場合、磁場が非常に大きい場合や磁
場の時間変化が大きい場合の磁場中の試料の微小電圧を
超電導磁気シールド体によって電圧信号増幅器の安定性
および再現性が向上したものとなる。また、極低温下で
実験を行う場合には、補正、校正等を目的に零磁場空間
を必要とする場合がある。この発明による円筒状リング
導体は、簡単に製作することができ、この中に機能素子
を挿入して超電導磁気シールドを容易に施して測定する
ことが可能となる。
[Effects of the Invention] As described above, according to the magnetic shield measuring method of the present invention, when a small voltage signal amplifier is inserted into a cylindrical ring conductor for measurement, the magnetic field is extremely large or the magnetic field changes with time. The stability and reproducibility of the voltage signal amplifier can be improved by the superconducting magnetic shield to reduce the minute voltage of the sample in the magnetic field when is large. Further, when an experiment is performed at an extremely low temperature, a zero magnetic field space may be required for correction, calibration, and the like. The cylindrical ring conductor according to the present invention can be easily manufactured, and a superconducting magnetic shield can be easily provided with a functional element inserted thereinto for measurement.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A),(B)は、この発明の実施例の超電導を
含む円筒状リング導体の横断面図および側断面図、第2
図は、円筒状リング導体を使用して磁場中の試料の微小
電圧を測定する実施例の構成図である。 1,3……銀安定化材、2……酸化物超電導体、4……円
筒状リング導体、5……電圧信号増幅器、6……試料、
7……コイル、8……キイル励磁電源、9……電気系測
定システム、10……試料ホルダー、11……極低温媒体、
12……デュワー、13……リード線、14……電源。
1A and 1B are a cross-sectional view and a side cross-sectional view of a cylindrical ring conductor including superconductivity according to an embodiment of the present invention.
The figure is a configuration diagram of an embodiment for measuring a minute voltage of a sample in a magnetic field using a cylindrical ring conductor. 1,3: silver stabilizer, 2: oxide superconductor, 4: cylindrical ring conductor, 5: voltage signal amplifier, 6: sample,
7 ... coil, 8 ... key excitation power supply, 9 ... electric measurement system, 10 ... sample holder, 11 ... cryogenic medium,
12 ... dewar, 13 ... lead wire, 14 ... power supply.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】極低温媒体下で、且つ、円筒状コイルの磁
場中で、微小電圧測定の対象となる試料および、最外層
が銀安定化材、中央が酸化物超電導体および最内層が銀
安定化材の同軸3層から構成された円筒状のリング導体
を設け、このリング導体の中に電圧信号増幅器を挿入
し、この電圧信号増幅器を試料と接続し、且つ、外部の
電気系測定システムに接続して電圧を測定することを特
徴とする磁気シールド測定方法。
1. A sample to be subjected to a minute voltage measurement in a cryogenic medium and in a magnetic field of a cylindrical coil, an outermost layer is a silver stabilizing material, a center is an oxide superconductor, and an innermost layer is silver. A cylindrical ring conductor composed of three layers of coaxial stabilizers is provided, a voltage signal amplifier is inserted into the ring conductor, the voltage signal amplifier is connected to a sample, and an external electrical system measurement system is provided. A magnetic shield measuring method, characterized in that the voltage is measured by connecting to a magnetic field.
JP2288576A 1990-10-29 1990-10-29 Magnetic shield measurement method Expired - Fee Related JP2995849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288576A JP2995849B2 (en) 1990-10-29 1990-10-29 Magnetic shield measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288576A JP2995849B2 (en) 1990-10-29 1990-10-29 Magnetic shield measurement method

Publications (2)

Publication Number Publication Date
JPH04164270A JPH04164270A (en) 1992-06-09
JP2995849B2 true JP2995849B2 (en) 1999-12-27

Family

ID=17732054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288576A Expired - Fee Related JP2995849B2 (en) 1990-10-29 1990-10-29 Magnetic shield measurement method

Country Status (1)

Country Link
JP (1) JP2995849B2 (en)

Also Published As

Publication number Publication date
JPH04164270A (en) 1992-06-09

Similar Documents

Publication Publication Date Title
US5684401A (en) Apparatus and method for compensation of magnetic susceptibility variation in NMR microspectroscopy detection microcoils
US6768306B2 (en) Probe for NMR apparatus using magnesium diboride
JP5254223B2 (en) A system for measuring magnetic resonance signals based on a superconducting magnetoresistive hybrid sensor
JPH01206268A (en) Current detector
JPS6073473A (en) Device for geometrically compensating perturbation of magnetic susceptibility in rf spectrometer
US3320559A (en) Electrical chopper utilizing a shielded reed switch
US4963827A (en) Intermittently activated magnetic shield arrangement for reducing noise and offsets in solid state magnetic field sensors
US3621382A (en) Anistropic thin ferromagnetic film magnetometer
JPH06196761A (en) Superconductive quantum interference device magnetometer
JP2995849B2 (en) Magnetic shield measurement method
US5701073A (en) Direct current measuring apparatus and method employing flux diversion
JP2019211422A (en) Magnetic field detection coil and EMI antenna
US3490034A (en) Magnetometer utilizing the delaying effect of a magnetic transmission line
JP2651003B2 (en) Eddy current displacement sensor
Kawai et al. Improvement of performance of SQUID magnetometer system for highly sensitive geomagnetic field measurements
JPS6344710A (en) Quenching detection device for superconductive coil
JPH01282482A (en) Method and apparatus for measuring magnetical critical current of superconductor, and method and apparatus for measuring transition temperature
Carver A Corbino disk apparatus to measure Hall mobilities in amorphous semiconductors
US3262026A (en) Superconductive solenoids having a field probe mounted therein
JPH08160082A (en) Method and device for detecting insulation deterioration
US4626791A (en) Microwave detector
Wybourne et al. Frequency‐crossing phonon spectrometer techniques
RU2778980C1 (en) Spintronic terahertz oscillation detector
JP3043773B2 (en) Superconducting magnetic antenna
EP4333079A1 (en) Magnetic sensor and method for detecting magnetism

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees