JPH09113592A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH09113592A
JPH09113592A JP29330895A JP29330895A JPH09113592A JP H09113592 A JPH09113592 A JP H09113592A JP 29330895 A JP29330895 A JP 29330895A JP 29330895 A JP29330895 A JP 29330895A JP H09113592 A JPH09113592 A JP H09113592A
Authority
JP
Japan
Prior art keywords
magnetic
coil
core
exciting
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29330895A
Other languages
Japanese (ja)
Other versions
JP3618425B2 (en
Inventor
Ichiro Mizukami
一郎 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Original Assignee
Iwatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd filed Critical Iwatsu Electric Co Ltd
Priority to JP29330895A priority Critical patent/JP3618425B2/en
Publication of JPH09113592A publication Critical patent/JPH09113592A/en
Application granted granted Critical
Publication of JP3618425B2 publication Critical patent/JP3618425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an improved magnetic sensor having a structure capable of eliminating the disadvantage of a magnetic sensor with a compensation coil easily affected by a magnetic body and a metallic body located in the vicinity and more surely detecting the magnetic property of a magnetic body formed in a thin and long tug shape which is moved in a longitudinal direction. SOLUTION: This sensor is constructed in such a manner that an exciting coil 5 is arranged on the U-shaped magnetic core of a strong magnetic material such as ferrite or soft iron and a compensation coil 3 and a detecting coil 2 are attached to the inside of the gap 7 of the magnetic core 4. The compensation coil 3 and the detecting coil 2 are formed on an air-core bobbin 3a made of a non-magnetic material and attached in the vicinity of upper and lower sides or left and right sides. The outside of the gap 7 in which the detecting coil 2 and the compensation coil 3 are arranged is covered by a ceramic or hard resin cover.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁性体の磁気特性
を測定するための磁気センサに関するものである。
TECHNICAL FIELD The present invention relates to a magnetic sensor for measuring magnetic characteristics of a magnetic material.

【0002】[0002]

【従来の技術】従来、磁性体の磁気特性(主にB−H特
性)を測定する方式として静磁場方式と交流磁場方式が
ある。静磁場方式は、図7(a)に示すように、直流電
源22から励磁コイル21に直流を流すことにより得ら
れる強力な一対の磁石21aを近接させ、空隙21bに
生じる磁界中に被測定磁性体24を置き、この磁性体2
4を振動させることによって生じる磁束変化を検知コイ
ル23と増幅器25とで検知増幅し、検出信号をとり出
すものである(VSM方式)。この方式の欠点は装置が
大がかりになるため、簡単に交流磁気特性が得られない
ことである。次に、交流磁場方式は、図7(b)に示す
ように、励磁コイル21に交流電源26から交流電流を
流し、それによって生ずる磁界中に被測定磁性体24を
置き、励磁電流の変化によって生ずる磁界強度変化に対
応した磁束密度を検知コイル23と増幅器25とで検知
増幅し、検出信号をとり出すものであり、前方式に比べ
装置が比較的簡単であるが薄膜のように磁化の強さが小
さなものを測定するには特殊な検知コイルを必要として
いる。
2. Description of the Related Art Conventionally, there are a static magnetic field method and an alternating magnetic field method as methods for measuring the magnetic characteristics (mainly BH characteristics) of magnetic materials. In the static magnetic field method, as shown in FIG. 7A, a pair of strong magnets 21a obtained by passing a direct current from a direct current power source 22 to an exciting coil 21 are brought close to each other, and a magnetic field to be measured is generated in a magnetic field generated in a gap 21b. Place the body 24,
A magnetic flux change caused by vibrating 4 is detected and amplified by the detection coil 23 and the amplifier 25, and a detection signal is taken out (VSM system). The drawback of this method is that the apparatus is large-scaled, and therefore AC magnetic characteristics cannot be easily obtained. Next, in the AC magnetic field method, as shown in FIG. 7B, an AC current is passed from the AC power supply 26 to the exciting coil 21, the magnetic material 24 to be measured is placed in the magnetic field generated by the exciting current, and the exciting current changes. The magnetic flux density corresponding to the change in the generated magnetic field is detected and amplified by the detection coil 23 and the amplifier 25 to extract the detection signal. The device is relatively simple as compared with the previous method, but the magnetization is strong like a thin film. A special detection coil is required to measure small objects.

【0003】この交流磁場方式には補償コイル無し方式
と有り方式がある。補償コイル無し方式では図7(b)
に示すコアのような比較的大きな磁性体を測定するため
に用いられ、励磁コイル21を被測定磁性体24に巻き
付けるかまたは検知コイル23も同様に被測定磁性体2
4に巻き付けて磁性材の磁気特性を測定している。この
方式では比較的簡単に磁気特性が測定できるが、一方コ
イルを巻く手間と、被測定磁性体24にある程度大きな
質量を必要とする欠点がある。
This AC magnetic field system includes a system without a compensation coil and a system with a compensation coil. Figure 7 (b) for the method without compensation coil
It is used to measure a relatively large magnetic material such as the core shown in FIG. 1, and the exciting coil 21 is wound around the magnetic material 24 to be measured, or the detection coil 23 is similarly measured.
The magnetic properties of the magnetic material are measured by wrapping it around No. 4. With this method, the magnetic characteristics can be measured relatively easily, but on the other hand, there is a drawback in that it takes time to wind the coil and the measured magnetic body 24 needs a large amount of mass.

【0004】この欠点を解消するために、本願発明者
は、先に特願平7−169334号「磁気センサ」を提
案した。この先願発明では交流磁場方法による補償コイ
ル付き磁気センサの有効性が示されている。これに述べ
られた補償コイル付き磁気センサは円筒形の励磁コイル
の両端面に補償コイル,検知コイルが位置している。図
8は、先願で提案した磁気センサである。
In order to solve this drawback, the inventor of the present application has previously proposed Japanese Patent Application No. 7-169334 "magnetic sensor". This prior invention shows the effectiveness of the magnetic sensor with a compensation coil by the AC magnetic field method. In the magnetic sensor with a compensation coil described above, a compensation coil and a detection coil are located on both end faces of a cylindrical excitation coil. FIG. 8 shows the magnetic sensor proposed in the prior application.

【0005】[0005]

【発明が解決しようとする課題】本発明は、図8に示す
先願発明の改良に関するものであり、この先願方式では
磁化の小さな磁性体の磁気特性を簡単に測定することは
できるが、励磁コイル21によって作られる磁力線が励
磁コイル21の内側から外側に向かって発生する。この
ため二つの問題が生じる。その一つは、磁気センサ近傍
に磁性体あるいは金属体が存在すると磁力線の片寄りが
生じ、検知コイル23と補償コイル27との発生電圧バ
ランスを崩すことになる。バランスの崩れはそのまま励
磁電源の電圧成分が被測定磁性体による励磁電圧成分よ
り大きくなり、磁気特性測定のS/N比を劣化させる原
因となる。このため、先願の磁気センサを金属部分の多
い搬送系を持つ機器などに組み込んで使用する場合は取
付け位置などの制限があり、非常に使いずらいという問
題点があることが判った。磁気センサ近傍に金属体があ
った場合には空間上の磁界は金属が強磁性体ならば分極
作用により、また、強磁性体以外では磁束変化にともな
う渦電流により磁束密度が変化する。そのため、周辺金
属体により補償コイルと検知コイルの励磁磁界に対する
起電力のバランスがくずれる。他の問題は、励磁コイル
21の周辺部を取り囲むように金属導体が存在するとき
で、励磁コイル21の磁力線は電磁気理論で示されるよ
うに閉じており、磁力線を横切る金属体が存在する場
合、その金属体内部に渦電流を生じ、励磁磁界のエネル
ギが熱あるいは反磁界となって励磁磁界を弱める。その
ため、被測定磁性体24を十分励磁出来なくなるため被
測定磁性体24に充分な磁界を与えることができないた
め良好な磁気特性が得られなくなる。センサ周辺に金属
体を用いるこのような使用方法は一般的であり、金属体
でこの磁気センサを使用出来ないとなると、使用上の制
限として使いずらいものとなるという問題点があること
が判った。
The present invention relates to an improvement of the invention of the prior application shown in FIG. 8. In this method of the prior application, the magnetic characteristics of a magnetic material having a small magnetization can be easily measured, but the excitation Magnetic lines of force generated by the coil 21 are generated from the inside of the exciting coil 21 toward the outside. This causes two problems. One of them is that if a magnetic body or a metal body is present near the magnetic sensor, the lines of magnetic force are deviated, and the generated voltage balance between the detection coil 23 and the compensation coil 27 is lost. The unbalanced state causes the voltage component of the excitation power source to become larger than the excitation voltage component of the magnetic material to be measured, which causes deterioration of the S / N ratio of the magnetic characteristic measurement. For this reason, when the magnetic sensor of the prior application is used by incorporating it into a device having a transportation system with many metal parts, it is found that there is a problem in that it is extremely difficult to use because of limitations on the mounting position and the like. When there is a metal body in the vicinity of the magnetic sensor, the magnetic field in space changes its magnetic flux density due to the polarization effect if the metal is a ferromagnetic body, and due to the eddy current accompanying a change in magnetic flux other than the ferromagnetic body. Therefore, the balance of the electromotive force with respect to the exciting magnetic fields of the compensation coil and the detection coil is disturbed by the peripheral metal body. Another problem is that when the metal conductor is present so as to surround the peripheral portion of the exciting coil 21, the magnetic field lines of the exciting coil 21 are closed as shown in the electromagnetic theory, and when a metal body crossing the magnetic field lines exists, Eddy current is generated inside the metal body, and the energy of the exciting magnetic field becomes heat or a demagnetizing field to weaken the exciting magnetic field. As a result, the magnetic substance to be measured 24 cannot be excited sufficiently, and a sufficient magnetic field cannot be applied to the magnetic substance to be measured 24, so that good magnetic characteristics cannot be obtained. Such a method of using a metal body around the sensor is common, and it has been found that there is a problem that if the magnetic sensor cannot be used with a metal body, it will be difficult to use as a limitation in use. It was

【0006】長手方向に移動している細長いタグ状の磁
性体24の磁気特性を検知しようとする場合、タグの磁
化容易軸が短手方向にあると検出が極めて困難であっ
た。その理由は短手方向の磁性体の作る磁気モーメント
は小さいため検知信号は微弱であるため、磁化容易軸に
対し励磁磁界は平行になるようにせざるを得ない。ま
た、長手方向に移動しているため磁気センサとタグの搬
送系とのわずかな短手方向へのずれがギャップの狭い通
常の磁気ヘッドを用いたセンサでは検出を困難にしてい
る。
When the magnetic characteristics of the elongated tag-shaped magnetic body 24 moving in the longitudinal direction are to be detected, it is extremely difficult to detect if the easy magnetization axis of the tag is in the lateral direction. The reason is that the magnetic moment generated by the magnetic substance in the lateral direction is small and the detection signal is weak. Therefore, the exciting magnetic field must be parallel to the easy axis of magnetization. Further, since the magnetic sensor and the tag are moved in the longitudinal direction, a slight deviation in the lateral direction between the magnetic sensor and the tag conveyance system makes detection difficult with a sensor using an ordinary magnetic head with a narrow gap.

【0007】本発明は、このような補償コイル付き磁気
センサが近傍にある磁性体,金属体の影響を受け易い欠
点を少なくし、長手方向に移動している細長いタグ状の
磁性体の磁気特性をより確実に検知することができる構
造を有する改良された磁気センサを提供するものであ
る。
The present invention reduces the drawbacks that such a magnetic sensor with a compensation coil is easily affected by a magnetic body or a metal body in the vicinity, and the magnetic characteristics of an elongated tag-shaped magnetic body moving in the longitudinal direction. It is an object of the present invention to provide an improved magnetic sensor having a structure capable of more surely detecting

【0008】[0008]

【課題を解決するための手段】本発明の磁気センサは、
ギャップを有するU字型軟鉄材磁心と、該U字型軟鉄材
磁心の該軟鉄材上に捲回された励磁コイルと、前記U字
型軟鉄材磁心と、前記U字型軟鉄材磁心の前記ギャップ
内に前記励磁コイルに流れる励磁電流による励磁磁界の
磁束の方向に各巻軸が沿うように並んで配置された検知
コイルと補償コイルとを備えたことを特徴とする。
The magnetic sensor of the present invention comprises:
A U-shaped soft iron material magnetic core having a gap, an excitation coil wound on the soft iron material of the U-shaped soft iron material magnetic core, the U-shaped soft iron material magnetic core, and the U-shaped soft iron material magnetic core In the gap, there are provided a detecting coil and a compensating coil, which are arranged side by side so that the winding axes are along the direction of the magnetic flux of the exciting magnetic field generated by the exciting current flowing through the exciting coil.

【0009】[0009]

【発明の実施の形態】本発明による磁気センサは、フェ
ライトあるいは軟鉄のごとき強磁性材のU字型磁心上に
励磁コイルが配置され、その磁心のギャップ内に補償コ
イルと検知コイルが取り付けられた構造になっている。
補償コイルと検知コイルは非磁性体でできた空心ボビン
上に形成されており、また上下あるいは左右に近接して
取り付けられた構造となっている。検知コイルと補償コ
イルを配置したギャップの外側はセラミックあるいは硬
質樹脂のカバーで覆われた構造を持っている。
BEST MODE FOR CARRYING OUT THE INVENTION In a magnetic sensor according to the present invention, an exciting coil is arranged on a U-shaped magnetic core made of a ferromagnetic material such as ferrite or soft iron, and a compensation coil and a detecting coil are mounted in a gap of the magnetic core. It is structured.
The compensating coil and the detecting coil are formed on an air-core bobbin made of a non-magnetic material, and are vertically and horizontally mounted close to each other. The outside of the gap where the detection coil and the compensation coil are arranged is covered with a cover made of ceramic or hard resin.

【0010】図1は励磁コイルモデルを示し、図2はそ
の磁界強度図を示す。4は磁心で、図1に示すように正
面からみてU字状に形成されている。5は励磁コイル、
7はギャップである。このモデルの磁束磁界強度を求め
てみると、磁気抵抗Rmは、
FIG. 1 shows an exciting coil model, and FIG. 2 shows its magnetic field strength diagram. Reference numeral 4 denotes a magnetic core, which is formed in a U shape when viewed from the front as shown in FIG. 5 is an exciting coil,
7 is a gap. When the magnetic flux magnetic field strength of this model is calculated, the magnetic resistance Rm is

【数1】 Rm=11/μ0 ・μ1 ・s+10/μ0 ・s ………(1) ここで、11:磁心通過距離、10:ギャップ距離、
s:磁心断面積、μ0 :真空透磁率、μ1 :磁心比透磁
率である。ただし、ギャップ間での磁束のひろがりはあ
まりないとする。また、磁束φと磁界強度Hは、次のよ
うに表すことができる。
[Formula 1] Rm = 11 / μ 0 · μ 1 · s + 10 / μ 0 · s (1) where, 11: magnetic core passage distance, 10: gap distance,
s: cross-sectional area of magnetic core, μ 0 : vacuum magnetic permeability, μ 1 : magnetic core relative magnetic permeability. However, it is assumed that there is not much spread of magnetic flux between the gaps. Further, the magnetic flux φ and the magnetic field strength H can be expressed as follows.

【数2】 φ=NI/Rm …………(2) N:励磁コイル5の巻き数 I:励磁電流[Equation 2] φ = NI / Rm (2) N: Number of turns of the exciting coil 5 I: Exciting current

【数3】 H=φ/μ0 ・s …………(3) 式(2),式(3)から式(1)を変形して[Equation 3] H = φ / μ 0 · s (3) By transforming Equation (2) and Equation (3) into Equation (1),

【数4】 H=NI・μ1 /(11+μ0 ・10) …………(4) となる。例えば、ギャップ距離10mm、U字型磁心の平
均磁束通過距離90mm、磁心の比透磁率1000とし、
N=300,I=0.3とした場合、式(4)に代入す
ると、H=9000アンペアターン/mとなり、広いギ
ャップでも充分な励磁磁界を得ることができる。
[Equation 4] H = NI · μ 1 / (11 + μ 0 · 10) ………… (4) For example, the gap distance is 10 mm, the average magnetic flux passage distance of the U-shaped magnetic core is 90 mm, and the relative magnetic permeability of the magnetic core is 1000,
When N = 300 and I = 0.3, substituting into equation (4) gives H = 9000 ampere-turns / m, and a sufficient exciting magnetic field can be obtained even with a wide gap.

【0011】[0011]

【実施例】図3に本発明による磁気センサの実施例を示
す。1は保護用の表面カバーであり、耐磨耗性のある非
磁性材が用いられる。例えばアルミニウムなどのセラミ
ック材、FRP(繊維強化プラスチック)やPOM(ポ
リアセテート)などの硬質プラスチック材である。2,
3は検知コイルと補償コイルであり空心ボビン2a,3
aに導線が巻かれた構造、すなわち空心検知コイルと空
心補償コイルの構成となっている。それぞれのコイルは
同形状と同巻数となっており各端子を逆極性で接続して
出力電圧が相殺されるようになっている。図3の実施例
では各コイルは上下に位置しているが、図4で示される
例のような左右に並列にならべてもよい。4はギャップ
7を有するU字形磁心であり、フェライトや軟鉄を材料
としている。5は磁心4上に捲回された励磁コイルであ
る。6は外部カバーであり非磁性材であればアルミニウ
ム,黄銅のような金属であってもよい。検知コイル2と
補償コイル3とは、実際はギャップ7内に配置される
が、各部構造を明示するために、図3では検知コイル2
と補償コイル3とはギャップ7の外側に図示してある。
EXAMPLE FIG. 3 shows an example of a magnetic sensor according to the present invention. Reference numeral 1 is a surface cover for protection, and a non-magnetic material having abrasion resistance is used. For example, it is a ceramic material such as aluminum, or a hard plastic material such as FRP (fiber reinforced plastic) or POM (polyacetate). 2,
3 is a detection coil and a compensation coil, which are air-core bobbins 2a, 3
It has a structure in which a conductive wire is wound around a, that is, an air-core detection coil and an air-core compensation coil. Each coil has the same shape and the same number of turns, and the terminals are connected in opposite polarities to cancel the output voltage. In the embodiment shown in FIG. 3, the coils are located above and below, but they may be arranged side by side in parallel as in the example shown in FIG. Reference numeral 4 denotes a U-shaped magnetic core having a gap 7, which is made of ferrite or soft iron. An exciting coil 5 is wound around the magnetic core 4. An outer cover 6 may be a metal such as aluminum or brass as long as it is a non-magnetic material. The detection coil 2 and the compensation coil 3 are actually arranged in the gap 7, but in order to clearly show the structure of each part, in FIG.
And the compensation coil 3 are shown outside the gap 7.

【0012】この磁気センサでは、補償コイル3と検知
コイル2を同じ巻数でかつ巻方向が逆で相加されて出力
電圧v0 を得るように接続されており、U字型磁心4の
上端のギャップ7内に配置されている。励磁コイル5か
らの励磁磁界が同じ強度で二つのコイル2,3を横切る
と各コイル2,3によって励磁された起電力は相等し
く、出力v0 側で殆ど相殺することができる。また、同
一平面状あるいは上下近接しているため極対称に位置さ
れた従来形よりも近傍の金属体による磁界の変化による
バランスのくずれが少ない。励磁コイル5を捲回してい
る磁心4を図示の如くU字型にすると、磁力線はU字型
磁心4のギャップ7を主に通り、近傍には空心型より磁
束の広がりが少なく、水平方向の磁界強度は磁心端面で
は変化があるもののほぼ一定に保たれる。
In this magnetic sensor, the compensation coil 3 and the detection coil 2 are connected so as to obtain the output voltage v 0 by adding the same number of turns and opposite winding directions, and the upper end of the U-shaped magnetic core 4 is connected. It is arranged in the gap 7. When the exciting magnetic field from the exciting coil 5 crosses the two coils 2 and 3 with the same strength, the electromotive forces excited by the coils 2 and 3 are equal and can be almost canceled on the output v 0 side. In addition, since they are in the same plane or close to each other in the vertical direction, the loss of balance due to the change of the magnetic field due to the metal body in the vicinity is smaller than that in the conventional type positioned in polar symmetry. When the magnetic core 4 around which the exciting coil 5 is wound is formed into a U shape as shown in the drawing, the lines of magnetic force mainly pass through the gap 7 of the U-shaped magnetic core 4, and the magnetic flux spreads in the vicinity in the horizontal direction in a smaller direction than the air core type. The magnetic field strength is kept almost constant although there is a change at the magnetic core end face.

【0013】この状態で、表面カバー1の外側(図3で
は上部)にタグの如き被測定磁性体24が存在すれば、
検知コイル2と補償コイル3に対する励磁磁界による起
電力のバランスがくずれて、検出電圧v0 が得られるこ
とになる。
In this state, if the magnetic material to be measured 24 such as a tag is present outside the front surface cover 1 (upper part in FIG. 3),
The balance of the electromotive force due to the exciting magnetic field with respect to the detection coil 2 and the compensation coil 3 is lost, and the detection voltage v 0 is obtained.

【0014】この磁気センサでは、磁力線は空間にあま
り広がらないため磁気センサ近傍にある磁性体,金属体
の影響を受けにくい。短手方向に磁化容易軸aを有し長
手方向に移動する磁気タグ24の磁気特性を検知する場
合にも本方式の磁気センサはギャップ7間の平行磁界が
広くかつ一様にとれるため、ギャップ7に平行に移動す
る図5のときにも、また、ギャップに直角に移動する図
6の場合にも、搬送上の位置変化に対して有利である。
従来型の磁気ヘッドでの空隙は通常狭いので短手方向に
磁化容易軸aを有する磁気タグ24の磁気特性を効率よ
く検知するには、長手方向に移動する磁気タグ24を検
出するには狭いギャップを高精度で通過させる必要があ
り極めて困難であったこと、およびギャップに対し幅の
広い直角方向に磁気タグ24を移動させた場合には磁化
容易軸aに対し励磁磁界は直角となるので磁気特性をと
ることが困難であった問題点を、効果的に解消してい
る。本発明では、検知コイル2,補償コイル3は上下あ
るいは同一平面上にあり、被測定磁性体24をその表面
を極めて近接して移動させることができる。そのためこ
の表面は接触等による耐久性を増すためにセラミック、
あるいは硬質樹脂の表面カバー1で覆ってある。
In this magnetic sensor, the lines of magnetic force do not spread so much in the space that it is unlikely to be affected by the magnetic or metallic body in the vicinity of the magnetic sensor. Even when detecting the magnetic characteristics of the magnetic tag 24 having the easy axis a in the short-side direction and moving in the long-side direction, the magnetic sensor of this method can generate a wide and uniform parallel magnetic field between the gaps 7. In the case of FIG. 5 which moves parallel to 7 and also in the case of FIG. 6 which moves perpendicular to the gap, it is advantageous for the positional change on the conveyance.
Since the gap in the conventional magnetic head is usually narrow, it is narrow to detect the magnetic tag 24 moving in the longitudinal direction in order to efficiently detect the magnetic characteristics of the magnetic tag 24 having the easy axis a in the lateral direction. It was extremely difficult to pass through the gap with high accuracy, and when the magnetic tag 24 was moved in a direction perpendicular to the gap with a wide width, the exciting magnetic field was perpendicular to the easy axis a. It effectively eliminates the problem that it was difficult to obtain magnetic characteristics. In the present invention, the detecting coil 2 and the compensating coil 3 are vertically or on the same plane, and the magnetic material 24 to be measured can be moved extremely close to the surface thereof. For this reason, this surface is made of ceramic,
Alternatively, it is covered with a hard resin surface cover 1.

【0015】[0015]

【発明の効果】以上詳細に説明したように、本発明によ
れば、近傍に磁性体を含む金属体が存在しても、殆ど影
響を受けることなしに、確実に被検知磁性体の磁気特性
を検知することができ、特に、細長いタグ状の磁性体に
適用して有効である。
As described in detail above, according to the present invention, even if there is a metal body containing a magnetic substance in the vicinity, the magnetic characteristics of the magnetic substance to be detected can be reliably obtained with almost no influence. Can be detected, and is particularly effective when applied to an elongated tag-shaped magnetic body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる励磁コイルのモデルを示す斜視
図である。
FIG. 1 is a perspective view showing a model of an exciting coil used in the present invention.

【図2】本発明に用いる励磁コイルのギャップ距離と磁
界強度の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the gap distance and the magnetic field strength of the exciting coil used in the present invention.

【図3】本発明の実施例の構造を示す斜視図である。FIG. 3 is a perspective view showing the structure of the embodiment of the present invention.

【図4】本発明の他の実施例を説明するための斜視図で
ある。
FIG. 4 is a perspective view for explaining another embodiment of the present invention.

【図5】本発明による磁気センサの動作を説明するため
の斜視図である。
FIG. 5 is a perspective view for explaining the operation of the magnetic sensor according to the present invention.

【図6】本発明による磁気センサの動作を説明するため
の斜視図である。
FIG. 6 is a perspective view for explaining the operation of the magnetic sensor according to the present invention.

【図7】従来の磁気センサを説明するための接続図であ
る。
FIG. 7 is a connection diagram for explaining a conventional magnetic sensor.

【図8】本願発明者が先に提案した磁気センサを説明す
るための斜視図である。
FIG. 8 is a perspective view for explaining a magnetic sensor previously proposed by the inventor of the present application.

【符号の説明】[Explanation of symbols]

1 表面カバー 2 検知コイル 2a 空心コイル 3 補償コイル 3a 空心コイル 4 磁心 5 励磁コイル 6 外部カバー 7 ギャップ 21 励磁コイル 21a 磁石 21b ギャップ 22 直流電源 23 検知コイル 24 被測定磁性体(被検出タグ) 25 増幅器 26 交流電源 27 補償コイル 28 信号処理回路 1 surface cover 2 detection coil 2a air-core coil 3 compensation coil 3a air-core coil 4 magnetic core 5 excitation coil 6 outer cover 7 gap 21 excitation coil 21a magnet 21b gap 22 DC power supply 23 detection coil 24 magnetic substance to be measured (tag to be detected) 25 amplifier 26 AC power supply 27 Compensation coil 28 Signal processing circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ギャップを有するU字型軟鉄材磁心と、 該U字型軟鉄材磁心の該軟鉄材上に捲回された励磁コイ
ルと、 前記U字型軟鉄材磁心の前記ギャップ内に前記励磁コイ
ルに流れる励磁電流による励磁磁界の磁束の方向に各巻
軸が沿うように並んで配置された検知コイルと補償コイ
ルとを備えた磁気センサ。
1. A U-shaped soft iron material magnetic core having a gap, an exciting coil wound on the soft iron material of the U-shaped soft iron material magnetic core, and the U-shaped soft iron material magnetic core in the gap. A magnetic sensor comprising a detection coil and a compensation coil, which are arranged side by side so that the respective winding axes are aligned in the direction of the magnetic flux of the exciting magnetic field generated by the exciting current flowing through the exciting coil.
【請求項2】 前記検出コイルと前記補償コイルとは空
心ボビンに捲回された空心検知コイルと空心補償コイル
の構造を有し、それぞれの各巻軸が平行になるように並
んで配置されていることを特徴とする請求項1に記載の
磁気センサ。
2. The detection coil and the compensation coil have a structure of an air-core detection coil and an air-core compensation coil wound on an air-core bobbin, and are arranged side by side so that respective winding axes are parallel to each other. The magnetic sensor according to claim 1, wherein:
JP29330895A 1995-10-17 1995-10-17 Magnetic sensor Expired - Lifetime JP3618425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29330895A JP3618425B2 (en) 1995-10-17 1995-10-17 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29330895A JP3618425B2 (en) 1995-10-17 1995-10-17 Magnetic sensor

Publications (2)

Publication Number Publication Date
JPH09113592A true JPH09113592A (en) 1997-05-02
JP3618425B2 JP3618425B2 (en) 2005-02-09

Family

ID=17793160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29330895A Expired - Lifetime JP3618425B2 (en) 1995-10-17 1995-10-17 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP3618425B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100709A1 (en) * 2016-12-01 2018-06-07 東京製綱株式会社 Damage evaluation method and damage evaluation device for magnetic linear object
WO2021100252A1 (en) * 2019-11-22 2021-05-27 Tdk株式会社 Magnetic sensor
WO2023145063A1 (en) * 2022-01-31 2023-08-03 Tdk株式会社 Magnetic sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100709A1 (en) * 2016-12-01 2018-06-07 東京製綱株式会社 Damage evaluation method and damage evaluation device for magnetic linear object
CN110023747A (en) * 2016-12-01 2019-07-16 东京制纲株式会社 The damage evaluation method and Damage Evaluation device of magnetic threadlike body
KR20190089027A (en) * 2016-12-01 2019-07-29 도쿄 세이꼬 가부시키가이샤 Damage evaluation method and damage evaluation device of magnetic cord
JPWO2018100709A1 (en) * 2016-12-01 2019-10-17 東京製綱株式会社 Damage evaluation method and damage evaluation apparatus for magnetic linear body
US11016060B2 (en) 2016-12-01 2021-05-25 Tokyo Rope Manufacturing Co., Ltd. Method and apparatus for evaluating damage to magnetic linear body
CN110023747B (en) * 2016-12-01 2023-01-13 东京制纲株式会社 Method and apparatus for evaluating damage to magnetic linear body
WO2021100252A1 (en) * 2019-11-22 2021-05-27 Tdk株式会社 Magnetic sensor
WO2023145063A1 (en) * 2022-01-31 2023-08-03 Tdk株式会社 Magnetic sensor

Also Published As

Publication number Publication date
JP3618425B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP3457102B2 (en) Magnetic position sensor
US5642041A (en) Alternating current sensor employing parallel plates and having high dynamic range and accuracy
JPH0769130B2 (en) Magnetic displacement sensor
US4891992A (en) Torque detecting apparatus
JP3580905B2 (en) Magnetic sensor
KR100267207B1 (en) Crt magnetic compensating circuit with parallel amorphous wires in the sensor
US4331919A (en) Apparatus for magnetic testing ferromagnetic sheet or strip material using rectangular coils
GB2031155A (en) Isotropic magnetising system
JP3618425B2 (en) Magnetic sensor
US4963818A (en) Current sensor having an element made of amorphous magnetic metal
JP2001116773A (en) Current sensor and current detector
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JP4336724B2 (en) Metal detector
JP2006184201A (en) Sensor and line sensor for detecting magnetic substance
JP3786790B2 (en) Method and apparatus for detecting magnetic powder
JPS62276454A (en) Method for detecting foreign matter in ferromagnetic body
JP3626341B2 (en) Magnetic metal sensor and magnetic metal detection system
JP2514338B2 (en) Current detector
JP3166986B2 (en) Current sensor
JP2547247B2 (en) Metal distance measuring sensor
EP0595915B1 (en) Method and device for measuring the distance between two mutually opposing surfaces by means of the reluctance method
JPH022544B2 (en)
JPH11304893A (en) Magnetism sensor
EP0565177B1 (en) Device for determining the orientation of a vehicle
JPH11208320A (en) Tension measuring device for trolley wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term