JP2514338B2 - Current detector - Google Patents

Current detector

Info

Publication number
JP2514338B2
JP2514338B2 JP61265579A JP26557986A JP2514338B2 JP 2514338 B2 JP2514338 B2 JP 2514338B2 JP 61265579 A JP61265579 A JP 61265579A JP 26557986 A JP26557986 A JP 26557986A JP 2514338 B2 JP2514338 B2 JP 2514338B2
Authority
JP
Japan
Prior art keywords
magnetic
current
magnetic field
current detector
magnetic gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61265579A
Other languages
Japanese (ja)
Other versions
JPS63120259A (en
Inventor
実 野田
憲太郎 堀内
道夫 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP61265579A priority Critical patent/JP2514338B2/en
Publication of JPS63120259A publication Critical patent/JPS63120259A/en
Application granted granted Critical
Publication of JP2514338B2 publication Critical patent/JP2514338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,強磁性体コアに巻回したコイル,又は貫
通した電線に被検出直流電流を流し,これによって変化
する上記コアの磁気を検出して直流電流を検出する電流
検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention detects a magnetism of the core which is changed by applying a detected DC current to a coil wound around a ferromagnetic core or an electric wire passing through the coil. The present invention relates to a current detector for detecting a direct current.

〔従来の技術〕[Conventional technology]

第7図は従来の電流検出器の一例を示す構成図であ
る。図において、31はリング状の強磁性体コアで円周形
状を有する磁路の一部に磁気ギャップ32が設けられてい
る。この磁気ギャップ32内にはホール素子等の感磁素子
33が樹脂等で固定されて配設されている。又,強磁性体
コア31の磁路には被検出電流が流れるコイル35が巻回さ
れている。被測定電流に比例した磁界が磁気ギャップ32
内に発生し感磁素子33により磁界に比例した電気信号が
リード線34を通って図示しない信号処理回路に導かれ
る。
FIG. 7 is a block diagram showing an example of a conventional current detector. In the figure, 31 is a ring-shaped ferromagnetic core, and a magnetic gap 32 is provided in a part of a magnetic path having a circumferential shape. In this magnetic gap 32, a magnetic sensing element such as a Hall element
33 is fixedly provided with resin or the like. A coil 35 through which a current to be detected flows is wound around the magnetic path of the ferromagnetic core 31. The magnetic field proportional to the measured current is the magnetic gap 32
An electric signal generated therein and proportional to the magnetic field is guided by the magnetic sensitive element 33 through the lead wire 34 to a signal processing circuit (not shown).

〔本発明が解決しようとする問題点〕 上記構造の電流検出器は強磁性体コア31に設けた磁気
ギャップ32中に感磁素子33を入れるため,磁気ギャップ
32の長さは感磁素子33の厚さより大きくする必要があ
る。第8図に示す磁気回路において磁気ギャップ32内に
発生する磁界Hoは HoNI/lg 但しN;コイル巻回し数 I;測定電流 lg;磁気ギャップ長さ で表わされ磁気ギャップ長に反比例する。
[Problems to be Solved by the Present Invention] In the current detector having the above structure, since the magnetic sensitive element 33 is placed in the magnetic gap 32 provided in the ferromagnetic core 31, the magnetic gap is reduced.
The length of 32 must be larger than the thickness of the magnetic sensing element 33. In the magnetic circuit shown in FIG. 8, the magnetic field Ho generated in the magnetic gap 32 is HoNI / lg, where N is the number of coil turns I, the measured current is lg, and the magnetic gap length is inversely proportional to the magnetic gap length.

被測定電流が小さい場合,コイル35の巻回数を増す
か,感磁素子33からの信号を大きく増幅する必要があ
り,そのため、それぞれ,コイルのインピーダンス又は
形状が大きくなったり,SN比が悪くなる等の問題が生じ
る。これらの問題を解決し,小電流で大きな磁界を発生
させるには磁気ギャップ32の長さlgを小さくしなければ
ならず,従来の構造では小電流の検出は困難とされてい
る。
When the current to be measured is small, it is necessary to increase the number of turns of the coil 35 or greatly amplify the signal from the magnetic sensitive element 33. Therefore, the impedance or shape of the coil becomes large, or the SN ratio deteriorates. Problems such as occur. In order to solve these problems and generate a large magnetic field with a small current, the length lg of the magnetic gap 32 must be reduced, and it is difficult to detect a small current with the conventional structure.

〔本発明の目的〕[Purpose of the present invention]

本発明の目的は小電流で大きな磁界を作り,感磁素子
により電気信号に変換できる小形の電流検出器を提供す
る事にある。
An object of the present invention is to provide a small-sized current detector which can generate a large magnetic field with a small current and can be converted into an electric signal by a magnetic sensing element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による電流検出器は強磁性体コアの磁気ギャッ
プ内に発生する磁界を大きくするために,磁気ギャップ
の長さを出来るだけ小さくし,磁気ギャップからの漏洩
磁束を感磁素子により検出するものである。即ち,回周
形状を有する磁路の一部に磁気ギャップを設けた強磁性
コアと感磁素子からなる電流検出器において,前記感磁
素子を前記強磁性体コアの磁気ギャップの外側の近傍に
配置した電流検出器である。感磁素子は磁気抵抗素子か
らなる磁気抵抗センサを用いることができ,また感磁素
子に被測定電流が作る磁界とは別の直流磁界を印加して
もよい。
The current detector according to the present invention detects the leakage magnetic flux from the magnetic gap by the magnetic sensitive element by reducing the length of the magnetic gap as much as possible in order to increase the magnetic field generated in the magnetic gap of the ferromagnetic core. Is. That is, in a current detector composed of a ferromagnetic core in which a magnetic gap is provided in a part of a magnetic path having a circular shape and a magnetic sensitive element, the magnetic sensitive element is placed near the outside of the magnetic gap of the ferromagnetic core. It is a current detector arranged. A magnetoresistive sensor including a magnetoresistive element can be used as the magnetic sensitive element, and a DC magnetic field different from the magnetic field generated by the measured current may be applied to the magnetic sensitive element.

〔実施例〕〔Example〕

次に本発明による実施例について図面を参照して説明
する。第1図及び第3図(a)は本発明の一実施例を示
す電流検出器の構造図である。第1図において磁気ギャ
ップ2を設けた周状の強磁性体コア1に被測定電流が流
れるコイル4が巻回されている。ホール素子又は磁気抵
抗素子からなる感磁素子3の感磁部が磁気ギャップの外
側近傍に位置するように配置されている。第2図は磁気
ギャップ上端部近傍の磁界分布をベクトル軌跡として表
わしたものである。磁気ギャップ中心軸上付近はギャッ
プの幅方面に平行なx成分磁界が強く,磁気ギャップ端
面上はこれと直角なy成分磁界が強い分布となる。感磁
素子によって各方向の磁界成分に応じた信号が取り出す
事が出来る。
Next, embodiments according to the present invention will be described with reference to the drawings. 1 and 3 (a) are structural views of a current detector showing an embodiment of the present invention. In FIG. 1, a coil 4 in which a current to be measured flows is wound around a circumferential ferromagnetic core 1 having a magnetic gap 2. The magnetically sensitive portion of the magnetically sensitive element 3 including a Hall element or a magnetoresistive element is arranged so as to be located near the outside of the magnetic gap. FIG. 2 shows the magnetic field distribution near the upper end of the magnetic gap as a vector locus. The x-component magnetic field parallel to the width direction of the gap is strong near the center axis of the magnetic gap, and the y-component magnetic field perpendicular to this is strong distribution on the end face of the magnetic gap. A signal corresponding to the magnetic field component in each direction can be taken out by the magnetic sensing element.

第3図(a)は感磁素子として磁気抵抗素子を用いた
時の本発明の他の実施例の構造を示す。2個のU字状強
性体コア11,11′を組合せ,整合部の一端を非磁性材か
らなるスペーサー12を介し整合し磁気ギャップとする。
他端はコイル13を巻いたボビン14の中空を貫通し整合す
る。2個のU字状強磁性体コア11,11′は樹脂又は金属
からなるコアホルダー16で固定され,板ばね24でケース
22に機械的に保持されている。磁気抵抗素子15は板ばね
17に固定されており,コア上端面の磁気ギャップ中心に
感磁部が位置するように板ばね17により押付けられ機械
的に保持される。磁気抵抗素子15の感磁部中心と磁気ギ
ャップの中心の位置合わせはケース22に埋め込んだ調整
ネジ23により調整する。磁気抵抗素子15からの信号は端
子19よりリード線18を介し信号処理回路を実装した回路
実装基板20に結ばれ,入出力端子21を通して外部に信号
を取り出す。
FIG. 3 (a) shows the structure of another embodiment of the present invention when a magnetoresistive element is used as the magnetic sensing element. Two U-shaped strong cores 11, 11 'are combined, and one end of the matching portion is aligned with a spacer 12 made of a non-magnetic material to form a magnetic gap.
The other end penetrates through the hollow of the bobbin 14 around which the coil 13 is wound and is aligned. The two U-shaped ferromagnetic cores 11, 11 'are fixed by a core holder 16 made of resin or metal, and a leaf spring 24 is used for the case.
It is mechanically held at 22. The magnetoresistive element 15 is a leaf spring.
It is fixed to 17 and is pressed mechanically by the leaf spring 17 so that the magnetic sensitive part is located at the center of the magnetic gap on the upper end surface of the core. The alignment of the center of the magnetic sensitive portion of the magnetoresistive element 15 and the center of the magnetic gap is adjusted by an adjusting screw 23 embedded in the case 22. A signal from the magnetoresistive element 15 is connected from a terminal 19 via a lead wire 18 to a circuit mounting board 20 on which a signal processing circuit is mounted, and the signal is taken out through an input / output terminal 21.

信号処理回路には感磁素子のバラツキ等を押さえるた
め調整用の抵抗25を設けている。調整用ねじ23及び調整
部品25等の調整後は,機械的振動や衝撃等による位置ず
れを防止するため樹脂でポッティングする。
The signal processing circuit is provided with an adjusting resistor 25 in order to suppress variations in the magnetic sensing element. After the adjustment screw 23 and the adjustment component 25 are adjusted, resin potting is performed to prevent displacement due to mechanical vibration or shock.

第3図(b)に信号処理回路の一例を示す。 An example of the signal processing circuit is shown in FIG.

点線で示す磁気抵抗素子の中点の電位はコイル13に流
れる被測定電流が零の場合1/2Vccを示すが被測定電流が
増加するに従い磁気ギャップからの漏洩磁束が増加し,
それに従い磁気抵抗素子の中点電位が変化する。中点電
位と基準電圧(1/2Vcc)の差電圧を増幅する事により被
測定電流に応じた出力信号を得る事が出来る。
The potential at the midpoint of the magnetoresistive element indicated by the dotted line is 1/2 Vcc when the measured current flowing through the coil 13 is zero, but the leakage flux from the magnetic gap increases as the measured current increases,
The midpoint potential of the magnetoresistive element changes accordingly. By amplifying the difference voltage between the midpoint potential and the reference voltage (1/2 Vcc), the output signal according to the measured current can be obtained.

磁気抵抗素子は強磁性薄膜の異方性磁気抵抗効果によ
り外部磁界の強弱並に方向により抵抗値が変化する現象
を利用した磁気センサであり,磁気抵抗素子のパターン
長と磁束方向が直角になるとき抵抗値が低くなる。NiCo
合金を用いた磁気抵抗素子は飽和磁界が50〜1000eで抵
抗変化率は4.5〜6%を示す。
The magnetoresistive element is a magnetic sensor that utilizes the phenomenon that the resistance value changes depending on the direction of the external magnetic field due to the anisotropic magnetoresistive effect of the ferromagnetic thin film, and the pattern length of the magnetoresistive element is perpendicular to the magnetic flux direction. When the resistance value becomes low. NiCo
A magnetoresistive element using an alloy has a saturation magnetic field of 50 to 1000e and a resistance change rate of 4.5 to 6%.

第3図(d)に示す3端子形磁気抵抗素子の回路図を
示す。磁気抵抗素子は磁気抵抗効果をもつ同じ抵抗体
RA,RBを互に直交して配置し,直列に接続されている。R
A,RBの両端にVccの電圧を加えると中点電位は第3図
(c)に示すように,印加磁界Hが零ならば1/2Vccの値
を示すが印加磁界が増加するに従いRA抵抗が減少し,中
点電位Voは増加する。飽和磁界Hs以上で中点電位Voが安
定する。
3 is a circuit diagram of the 3-terminal magnetoresistive element shown in FIG. Magnetoresistive element is the same resistor with magnetoresistive effect
R A and R B are arranged orthogonal to each other and connected in series. R
When a voltage of Vcc is applied to both ends of A and R B, the midpoint potential shows a value of 1/2 Vcc when the applied magnetic field H is zero as shown in Fig. 3 (c). The A resistance decreases and the midpoint potential Vo increases. The midpoint potential Vo becomes stable above the saturation magnetic field Hs.

次に第3図(a)に示す本発明による電流検出器の動
作について説明する。
Next, the operation of the current detector according to the present invention shown in FIG. 3 (a) will be described.

外部入力端子21にリード線19を通しコイル13に被測定
電流を通電する事により,回周形状の強磁性体コア11の
磁路に設けた磁気ギャップ内及び外側近傍に被測定電流
に応じた磁界が発生する。磁気抵抗素子15の強磁性体コ
アの上面方向と直交するパターンの抵抗が磁気ギャップ
からの漏洩磁束に応じ変化する。この抵抗変化を電圧信
号として端子19より取り出しリード線18を通して第3図
(a)の回路実装基板20並に調整部品25を含む信号処理
回路に導く。信号処理回路で増幅された信号は外部入出
力端子21を通じ外部に取り出す事が出来る。
By passing a current to be measured to the coil 13 through the lead wire 19 to the external input terminal 21, the current to be measured was measured inside and outside the magnetic gap provided in the magnetic path of the circular ferromagnetic core 11 according to the current to be measured. A magnetic field is generated. The resistance of the pattern orthogonal to the upper surface direction of the ferromagnetic core of the magnetoresistive element 15 changes according to the leakage magnetic flux from the magnetic gap. This resistance change is taken out as a voltage signal from the terminal 19 and led through the lead wire 18 to the signal processing circuit including the circuit mounting board 20 of FIG. The signal amplified by the signal processing circuit can be taken out through the external input / output terminal 21.

第4図は第3図(a)においてコイル巻数300ター
ン,磁気ギャップ100μmの強磁性体コアと磁気抵抗素
子を組合せ,磁気抵抗素子からの出力を増幅し取り出し
たときの特性図を示す。コイルに通電する被測定電流の
増加に伴い,出力は増加し,被測定電流4mAで飽和に達
する。被測定電流の通電方向を逆とし,逆極性の被測定
電流でも同様の結果となりI=0mA軸に対して対称とな
っている。
FIG. 4 shows a characteristic diagram when the output from the magnetoresistive element is amplified and taken out by combining a ferromagnetic core with a magnetic coil of 300 turns and a magnetic gap of 100 μm in FIG. The output increases as the measured current flowing through the coil increases and reaches saturation at a measured current of 4 mA. The current flow direction was reversed, and the same results were obtained for currents of opposite polarity, which were symmetrical with respect to the I = 0mA axis.

第5図に本発明による他の実施例の構成図である。前
述の実施例と異なるところは,感磁素子103の磁気ギャ
ップ102と対向する面にマグネット105を固定し感磁素子
103に被測定電流が作る磁界とは別に,直流磁界を印加
した点である。なお図はマグネット105によりバイアス
となる直流磁界を作っているがコイルによっても同様の
働きをする磁界を作る事が出来る。
FIG. 5 is a configuration diagram of another embodiment according to the present invention. The difference from the above-described embodiment is that the magnet 105 is fixed to the surface of the magnetic sensing element 103 facing the magnetic gap 102.
In addition to the magnetic field created by the current to be measured, a DC magnetic field is applied to 103. In the figure, the magnet 105 creates a DC magnetic field as a bias, but a coil can also create a magnetic field having the same function.

第6図は第5図の実施例において感磁素子として磁気
抵抗素子を用いた時の出力電圧特性を示す図である。磁
気抵抗素子に加わる磁界はマグネット105の作る磁界と
被測定電流の作る磁気ギャップからの漏洩磁束の合成磁
界であり,被測定電流の極性に応じた出力電圧が得られ
る。
FIG. 6 is a diagram showing output voltage characteristics when a magnetoresistive element is used as the magnetic sensing element in the embodiment of FIG. The magnetic field applied to the magnetoresistive element is a combined magnetic field of the magnetic flux created by the magnet 105 and the leakage flux from the magnetic gap created by the measured current, and an output voltage corresponding to the polarity of the measured current is obtained.

〔発明の効果〕〔The invention's effect〕

以上の説明により明らかなように,本発明によれば小
さな電流で大きな磁界を作る事が出来るため,小さな被
測定電流を忠実に検出出来る。又強磁性コアの形状は小
さいものですみ,小型で安価な電流検出器を提供する事
が出来る。
As is clear from the above description, according to the present invention, since a large magnetic field can be created with a small current, a small current to be measured can be faithfully detected. Moreover, the shape of the ferromagnetic core is small, and it is possible to provide a small and inexpensive current detector.

【図面の簡単な説明】[Brief description of drawings]

第1図並に第3図(a)は本発明の一実施例を示す電流
検出器の構造を示す。第2図は磁気ギャップ近傍の磁界
分布図を示す。第3図(b)は信号処理回路,第3図
(c)は第3図(d)に示す3端子形磁気抵抗素子の特
性図,第3図(d)は3端子形磁気抵抗素子を示す。第
4図は被測定電流対出力電圧の特性図を示す。第5図は
磁気ギャップと対向する面にマグネットを固定した本発
明の他の実施例,第6図はその特性図を示す。第7図は
従来の電流検出器,第8図は磁気ギャップ中の磁界を説
明する図を示す。 図において 1,11,31,101は強磁性体コア,2,32,102は磁気ギャップ3,
33,103は感磁素子,105はマグネット。
In addition to FIG. 1, FIG. 3 (a) shows the structure of a current detector showing an embodiment of the present invention. FIG. 2 shows a magnetic field distribution diagram near the magnetic gap. 3 (b) is a signal processing circuit, FIG. 3 (c) is a characteristic diagram of the 3-terminal type magnetoresistive element shown in FIG. 3 (d), and FIG. 3 (d) is a 3-terminal type magnetoresistive element. Show. FIG. 4 shows a characteristic diagram of measured current vs. output voltage. FIG. 5 shows another embodiment of the present invention in which a magnet is fixed to the surface facing the magnetic gap, and FIG. 6 shows its characteristic diagram. FIG. 7 shows a conventional current detector, and FIG. 8 shows a diagram for explaining a magnetic field in a magnetic gap. In the figure, 1,11,31,101 is the ferromagnetic core, 2,32,102 is the magnetic gap 3,
33 and 103 are magnetic sensitive elements, and 105 is a magnet.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回周形状を有する磁路の一部に磁気ギャッ
プを設けた強磁性コアと感磁素子からなる電流検出器に
おいて,前記感磁素子を前記強磁性体コアの磁気ギャッ
プの外側の近傍に配置することを特徴とする電流検出
器。
1. A current detector comprising a ferromagnetic core having a magnetic gap provided in a part of a magnetic path having a circular shape and a magnetic sensitive element, wherein the magnetic sensitive element is outside the magnetic gap of the ferromagnetic core. A current detector characterized by being arranged in the vicinity of.
【請求項2】前記感磁素子を磁気抵抗素子からなる磁気
抵抗センサを使用した特許請求の範囲第1項記載の電流
検出器。
2. The current detector according to claim 1, wherein a magnetoresistive sensor having a magnetoresistive element is used as the magnetic sensing element.
【請求項3】前記感磁素子に被測定電流が作る磁界とは
別に,直流磁界を印加する特許請求の範囲第1項又は第
2項記載の電流検出器。
3. The current detector according to claim 1 or 2, wherein a DC magnetic field is applied to the magnetic sensing element in addition to the magnetic field generated by the current to be measured.
JP61265579A 1986-11-10 1986-11-10 Current detector Expired - Lifetime JP2514338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265579A JP2514338B2 (en) 1986-11-10 1986-11-10 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265579A JP2514338B2 (en) 1986-11-10 1986-11-10 Current detector

Publications (2)

Publication Number Publication Date
JPS63120259A JPS63120259A (en) 1988-05-24
JP2514338B2 true JP2514338B2 (en) 1996-07-10

Family

ID=17419081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265579A Expired - Lifetime JP2514338B2 (en) 1986-11-10 1986-11-10 Current detector

Country Status (1)

Country Link
JP (1) JP2514338B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148868A (en) * 1990-10-12 1992-05-21 Murata Mfg Co Ltd Current signal detection device
JPH04148870A (en) * 1990-10-12 1992-05-21 Murata Mfg Co Ltd Detection coil

Also Published As

Publication number Publication date
JPS63120259A (en) 1988-05-24

Similar Documents

Publication Publication Date Title
US4506214A (en) Measuring transformer
US4309655A (en) Measuring transformer
JPS6122289Y2 (en)
JP4515905B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detection method, and magnetic bridge used in the sensor and detection method
JP6107942B2 (en) Magnetic current sensor and current measuring method
JPS589484B2 (en) magnetic reading head
JP2004317166A (en) Current sensor and current detection unit using the same
US2649568A (en) Magnetometer
JP2002228733A (en) Magnetism detecting device
JPH1014192A (en) Motor
JP3764834B2 (en) Current sensor and current detection device
JP2514338B2 (en) Current detector
US3274575A (en) Transducer having a magneto-resistive bridge circuit
JPH06176930A (en) Magnetic inductance element
JP3611776B2 (en) Pulse signal generator
JPH0676706A (en) Proximity switch for magnetic body detection
JPH0315710B2 (en)
JP2547169Y2 (en) Current detection sensor
JP3144051B2 (en) Current detector
JPH04282481A (en) Magnetoelectric converter
JP2867275B2 (en) Current detector
JP2001305163A (en) Current sensor
JP3626341B2 (en) Magnetic metal sensor and magnetic metal detection system
US3696218A (en) Magnetic flux-responsive heads
JP2514346B2 (en) Current detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term