JPH022544B2 - - Google Patents

Info

Publication number
JPH022544B2
JPH022544B2 JP57010587A JP1058782A JPH022544B2 JP H022544 B2 JPH022544 B2 JP H022544B2 JP 57010587 A JP57010587 A JP 57010587A JP 1058782 A JP1058782 A JP 1058782A JP H022544 B2 JPH022544 B2 JP H022544B2
Authority
JP
Japan
Prior art keywords
conductor
magnetic
current
magnetic sensor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57010587A
Other languages
Japanese (ja)
Other versions
JPS58127170A (en
Inventor
Toshishige Nagao
Yoshiaki Ida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57010587A priority Critical patent/JPS58127170A/en
Publication of JPS58127170A publication Critical patent/JPS58127170A/en
Publication of JPH022544B2 publication Critical patent/JPH022544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect

Description

【発明の詳細な説明】 本発明は、電気機器の導体電流を測定するため
の装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring conductor current in electrical equipment.

従来、導体電流を磁気センサーを用いて測定す
るものにおいては、電流導体としてコイルあるい
は円筒をコイル状に加工したものを用い、内部に
磁気センサーを置いて、コイルに流れる電流によ
つて作られる軸方向磁界を検出する電流測定装置
が考えられている。これを大電流の流れる電気機
器に適用した場合、電流による発熱の点、および
電流によつて発生する電磁力に対する機械的強度
の点から、コイル部分を含む導体を大きくしなけ
ればならない。また、磁気センサーの検出する磁
束は、これらのコイルまたは導体部を横断する磁
気回路を形成しているが、磁路中に占める導体の
割合が増すと、導体内の渦電流が周波数によつて
変化するために、磁気センサーの検出する磁束が
影響を受け、電流測定装置としての周波数特性が
悪化する欠点が生ずる。また、複数の導体が隣接
して置かれる電気機器に適用した場合、各導体内
の磁気センサーの位置においては、各導体自身の
電流による磁界のみならず、他の導体の電流によ
る磁界が存在する。各磁気センサーは、それらを
同時に検出するため、磁気センサーの出力には、
対応する被測定導体の電流成分の他、他の導体の
電流成分がかなり大きな比率で混入し、充分な測
定精度が得られないという欠点が生ずる。
Conventionally, in measuring conductor current using a magnetic sensor, a coil or a cylinder processed into a coil shape is used as the current conductor, a magnetic sensor is placed inside, and an axis created by the current flowing through the coil is used. Current measurement devices that detect directional magnetic fields have been considered. When this is applied to electrical equipment through which a large current flows, the conductor including the coil portion must be made large in terms of heat generation due to the current and mechanical strength against the electromagnetic force generated by the current. In addition, the magnetic flux detected by the magnetic sensor forms a magnetic circuit that crosses these coils or conductors, but as the proportion of the conductor in the magnetic path increases, the eddy current in the conductor increases depending on the frequency. Because of this change, the magnetic flux detected by the magnetic sensor is affected, resulting in a disadvantage that the frequency characteristics of the current measuring device deteriorate. In addition, when applied to electrical equipment in which multiple conductors are placed adjacent to each other, at the position of the magnetic sensor within each conductor, not only the magnetic field due to the current of each conductor itself but also the magnetic field due to the current of other conductors exists. . Each magnetic sensor detects them simultaneously, so the output of the magnetic sensor is
In addition to the current components of the corresponding conductor to be measured, current components of other conductors are mixed in at a considerably large proportion, resulting in a disadvantage that sufficient measurement accuracy cannot be obtained.

本発明は、らせん状の導体内に導体の軸方向の
磁束を検出するように配置された磁気センサーの
両端とU字状の磁性部材の両端とをそれぞれ対向
させ、磁性部材の磁路で導体を囲繞することによ
つて、導体中の渦電流の影響を受けず周波数特性
が良好で精度がよい電流測定装置を提供する。
In the present invention, both ends of a magnetic sensor arranged in a spiral conductor so as to detect magnetic flux in the axial direction of the conductor and both ends of a U-shaped magnetic member are respectively opposed to each other, and the conductor is connected in a magnetic path of the magnetic member. By surrounding the conductor, a current measuring device with good frequency characteristics and high accuracy is provided which is not affected by eddy currents in the conductor.

第1図〜第2図はこの発明の一実施例を示す。
第1図はその構成図、第2図は断面図である。1
は中空部を有する導体で、軸方向に所定の距離を
隔てて内外部を貫通する2つの穴1a,1bが設
けられ、また、導体1がらせん状になるように穴
1aから導体1を1周して穴1bに至るらせん状
の空隙部1cが設けられている。2は磁界に応じ
て光を変調する磁気センサーで、その感度方向が
導体軸の方向に向くように設置されている。3は
U字状の強磁性部材で、両端部3a,3bが穴1
a,1bを貫通して磁気センサー2を介して対向
している。
1 and 2 show an embodiment of the present invention.
FIG. 1 is a configuration diagram thereof, and FIG. 2 is a sectional view. 1
is a conductor having a hollow part, and is provided with two holes 1a and 1b that pass through the inside and outside at a predetermined distance in the axial direction. A spiral cavity 1c is provided that extends around the hole 1b. 2 is a magnetic sensor that modulates light according to the magnetic field, and is installed so that its sensitivity direction faces the direction of the conductor axis. 3 is a U-shaped ferromagnetic member, with both ends 3a and 3b having holes 1.
a and 1b and face each other with the magnetic sensor 2 interposed therebetween.

導体1に設けられた空隙部1cによつて導体電
流は強磁性部材3の磁路を横切ることになり、電
流によつて発生する磁束は符号4で示す経路を通
るため、磁気センサー2の位置においては、導体
電流の大きさに比例した軸方向の磁界が得られ
る。この磁界をフアラデー素子等から成る磁気セ
ンサー2で検出し、図では省略されているが、光
電変換・増幅部を通すことにより、被測定電流に
比例した電気的出力を得ることができる。
The conductor current crosses the magnetic path of the ferromagnetic member 3 due to the gap 1c provided in the conductor 1, and the magnetic flux generated by the current passes through the path indicated by the symbol 4, so the position of the magnetic sensor 2 In this case, an axial magnetic field proportional to the magnitude of the conductor current is obtained. By detecting this magnetic field with a magnetic sensor 2 made of a Faraday element or the like and passing it through a photoelectric conversion/amplification section (not shown in the figure), an electrical output proportional to the current to be measured can be obtained.

この一実施例においては、導体内外部を強磁性
部材3で磁気的に閉回路を構成しているため、磁
気センサー2の検出する磁束はほとんど強磁性部
材3を通り、導体1を横切ることはない。したが
つて、導体1を横切つた場合に発生する渦電流の
影響による周波数特性の悪化は起こらず、強磁性
部材3として積層コアまたはフエライトコア等の
高周波特性の優れた磁性体を使用すれば、周波数
特性の良好な測定が可能となる。
In this embodiment, since the ferromagnetic member 3 forms a magnetically closed circuit inside and outside the conductor, most of the magnetic flux detected by the magnetic sensor 2 passes through the ferromagnetic member 3 and does not cross the conductor 1. do not have. Therefore, deterioration of frequency characteristics due to the influence of eddy currents generated when crossing the conductor 1 does not occur, and if a magnetic material with excellent high frequency characteristics such as a laminated core or ferrite core is used as the ferromagnetic member 3, , it becomes possible to measure the frequency characteristics well.

また増体内部の磁気センサーが強磁性部材によ
つて囲まれ、外部磁界に対してシールドされてい
るため、同一容器内に多数の導体が隣接して配置
され、多相電流が流れる各導体の電流を測定する
場合に適用しても、多相電流による磁界の影響を
受け難く、小型にして高精度の電流測定装置が得
られる。
In addition, because the magnetic sensor inside the enclosure is surrounded by a ferromagnetic material and shielded from external magnetic fields, many conductors are placed adjacent to each other in the same container, and each conductor through which multiphase current flows. Even if applied to the case of measuring current, it is possible to obtain a small and highly accurate current measuring device that is less susceptible to the influence of magnetic fields caused by multiphase currents.

本発明の実施にあたつて、磁気センサーを含む
導体内部空間および導体空隙部にエポキシ等の樹
脂を充てん、凝固させ、さらに検出部全体を、導
体を保持するためのエポキシ等から成る支持絶縁
物中に埋込み、一体成形すると同時に、磁気セン
サーから外部へ引出す光ケーブルを支持絶縁物中
に埋込み、気密性を保持することによつて、気密
型光コネクタが不要になる利点が生ずる。
In carrying out the present invention, the internal space of the conductor containing the magnetic sensor and the conductor void are filled with a resin such as epoxy and solidified, and the entire detection section is covered with a supporting insulator made of epoxy or the like to hold the conductor. By simultaneously embedding the optical cable leading from the magnetic sensor to the outside in the supporting insulator and maintaining airtightness, an advantage arises in that an airtight optical connector is not required.

第3図及び第4図はこの発明の他の実施例を示
している。この他の実施例においては、穴1d,
1e間に設けられたらせん状の空隙部1fと穴1
g,1h間に設けられたらせん状の空隙部(図示
せず)によつて導体がらせん状に構成され、2個
の強磁性部材5,6が対向するように配置されて
いる。
FIGS. 3 and 4 show other embodiments of the invention. In other embodiments, the hole 1d,
Spiral gap 1f provided between 1e and hole 1
The conductor is configured in a spiral shape by a spiral gap (not shown) provided between g and 1h, and the two ferromagnetic members 5 and 6 are arranged to face each other.

また、2個以上の多数の強磁性部材を導体1の
周方向に等間隔で並設してこの発明を構成するこ
ともできる。
Further, the present invention can also be constructed by arranging two or more ferromagnetic members in parallel at equal intervals in the circumferential direction of the conductor 1.

以上のように本発明によると、らせん状の導体
内に導体の軸方向の磁束を検出するように配置さ
れた磁気センサーの両端とU字状の磁性体の両端
とをそれぞれ対向させ、磁性体の磁路で上記導体
を囲繞することによつて、周波数特性が良好とな
り測定精度を向上させることができる。
As described above, according to the present invention, both ends of a magnetic sensor arranged in a spiral conductor so as to detect magnetic flux in the axial direction of the conductor and both ends of a U-shaped magnetic body are respectively opposed to each other, and the magnetic body By surrounding the conductor with a magnetic path, frequency characteristics can be improved and measurement accuracy can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図は
第1図の断面図、第3図は本発明の他の実施例の
斜視図、第4図は第3図の断面図である。図中、
1は導体、2は磁気センサー、3は磁性部材であ
る。なお、各図中同一符号は同一又は相当部分を
示す。
FIG. 1 is a perspective view of one embodiment of the present invention, FIG. 2 is a sectional view of FIG. 1, FIG. 3 is a perspective view of another embodiment of the invention, and FIG. 4 is a sectional view of FIG. 3. It is. In the diagram,
1 is a conductor, 2 is a magnetic sensor, and 3 is a magnetic member. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 らせん状の導体内に上記導体の軸方向の磁束
を検出するように配置された磁気センサーの両端
とU字状の磁性部材の両端とをそれぞれ対向さ
せ、上記磁性部材の磁路で上記導体を囲繞するよ
うにしたことを特徴とする電流測定装置。 2 磁気センサーは磁気に応じて光を変調する磁
気光学素子であることを特徴とする特許請求の範
囲第1項記載の電流測定装置。 3 導体は複数個で構成されていることを特徴と
する特許請求の範囲第1項あるいは第2項記載の
電流測定装置。
[Scope of Claims] 1. Both ends of a magnetic sensor arranged in a spiral conductor to detect magnetic flux in the axial direction of the conductor and both ends of a U-shaped magnetic member are respectively opposed to each other, and the magnetic member A current measuring device characterized in that the conductor is surrounded by a magnetic path. 2. The current measuring device according to claim 1, wherein the magnetic sensor is a magneto-optical element that modulates light according to magnetism. 3. The current measuring device according to claim 1 or 2, characterized in that the conductor is composed of a plurality of conductors.
JP57010587A 1982-01-26 1982-01-26 Electric current measuring apparatus Granted JPS58127170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57010587A JPS58127170A (en) 1982-01-26 1982-01-26 Electric current measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57010587A JPS58127170A (en) 1982-01-26 1982-01-26 Electric current measuring apparatus

Publications (2)

Publication Number Publication Date
JPS58127170A JPS58127170A (en) 1983-07-28
JPH022544B2 true JPH022544B2 (en) 1990-01-18

Family

ID=11754371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57010587A Granted JPS58127170A (en) 1982-01-26 1982-01-26 Electric current measuring apparatus

Country Status (1)

Country Link
JP (1) JPS58127170A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262328A (en) * 1985-09-12 1987-03-19 Mitsubishi Electric Corp Optical current transformer
JPH01128173U (en) * 1988-02-26 1989-09-01
CZ2013657A3 (en) * 2013-08-28 2014-05-21 Mega - Měřící Energetické Aparáty, A.S. Closure of flexible current sensor
WO2016203781A1 (en) * 2015-06-15 2016-12-22 株式会社村田製作所 Current sensor

Also Published As

Publication number Publication date
JPS58127170A (en) 1983-07-28

Similar Documents

Publication Publication Date Title
CN100485407C (en) Magnetic field sensor and electrical current sensor thereof
FI83998C (en) Measuring transformer for measuring current in an electrical conductor
US6850053B2 (en) Device for measuring the motion of a conducting body through magnetic induction
US7365535B2 (en) Closed-loop magnetic sensor system
US5642041A (en) Alternating current sensor employing parallel plates and having high dynamic range and accuracy
EP0356171A2 (en) Direct-coupled fluxgate current sensor and sensing method using the same
GB2546532A (en) Measurement device
JPH081867B2 (en) An instrument transformer that measures the current flowing through an electrical conductor.
JP3842056B2 (en) Three-phase current transformer
US6437555B1 (en) Inductive sensor for measuring a current in a conductor
JP2010529425A (en) Device for measuring the current through a conductor
EP0435232A1 (en) Inductance-type displacement sensor having resistance to external magnetic fields
JP2001281270A (en) Split type current detector
JP6974898B2 (en) Current converter
EP2948779B1 (en) Flexible magnetic field sensor
CN113917215A (en) Current sensor
CN106018912A (en) High-precision universal alternative and direct current measuring device
JPH022544B2 (en)
US4963818A (en) Current sensor having an element made of amorphous magnetic metal
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
Wright et al. Magnetic flux guidance using h structures for miniature transducers
JPH0750658B2 (en) Current transformer
JPS58193469A (en) Measuring device for current flowing through conductor
JPS58139053A (en) Measuring device for nuclear magnetic resonance
KR20010027246A (en) An alternating current sensor and electric power instrument including it