JP2011232063A - Method and device for measuring potential distribution of metal plate - Google Patents

Method and device for measuring potential distribution of metal plate Download PDF

Info

Publication number
JP2011232063A
JP2011232063A JP2010100443A JP2010100443A JP2011232063A JP 2011232063 A JP2011232063 A JP 2011232063A JP 2010100443 A JP2010100443 A JP 2010100443A JP 2010100443 A JP2010100443 A JP 2010100443A JP 2011232063 A JP2011232063 A JP 2011232063A
Authority
JP
Japan
Prior art keywords
metal plate
potential distribution
measuring
current
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010100443A
Other languages
Japanese (ja)
Inventor
Yuichi Watanabe
裕一 渡辺
Toshio Ishii
俊夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010100443A priority Critical patent/JP2011232063A/en
Publication of JP2011232063A publication Critical patent/JP2011232063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring potential distribution of a metal plate for the purpose of correctly measuring a position of an energization portion when a leak of an electromagnetic wave is assessed.SOLUTION: In this method of measuring potential distribution of a metal plate for correctly measuring a position of an energization portion when a leak of an electromagnetic wave is assessed, potential distribution on the surface of the metal plate is measured by connecting multiple lead wires on the surface of one seamless metal plate and measuring a difference of potential among the lead wires.

Description

本発明は、OA・電機製品などの内部に組み込まれた電子回路からの電磁波漏洩の評価に関し、特に電磁波漏洩の評価にあたって通電部の位置を正確に測定するための金属板の電位分布測定方法および装置に関するものである。   The present invention relates to evaluation of electromagnetic wave leakage from an electronic circuit incorporated in an OA / electrical product or the like, and in particular, a method for measuring a potential distribution of a metal plate for accurately measuring the position of a current-carrying part in evaluating electromagnetic wave leakage, and It relates to the device.

OA・電機製品には、製品内部に組み込まれた電子回路からの漏洩電磁波をシールドすることが求められている。これは、漏洩電磁波が他のOA・電機商品を誤作動させる可能性があるだけでなく、心臓ペースメーカなどの電子機器を誤作動させて、使用している人へ影響を及ぼす可能性があるためである。   OA / electrical products are required to shield leakage electromagnetic waves from electronic circuits incorporated in the product. This is because leaked electromagnetic waves may not only cause other OA / electrical products to malfunction, but may also cause electronic devices such as cardiac pacemakers to malfunction and affect people who use them. It is.

OA・電機製品の筐体は、鋼板やアルミ板等の金属で作製されている場合が多い。そして、金属製の筐体内部に電磁波の発信源がある場合に、金属板が重なった部分を溶接など連続的な接合を施さない限り、隙間ができてしまい、ここから電磁波が漏洩することが問題となる。そのため、筐体外部へ電磁波が漏洩する機構に基いて、その漏洩電磁波の強度を評価する手法は、電磁波漏洩を制御する上で重要な技術である。   The casing of OA / electrical products is often made of a metal such as a steel plate or an aluminum plate. If there is an electromagnetic wave source inside the metal housing, a gap will be created unless the metal plate overlaps the welded part, and electromagnetic waves may leak from here. It becomes a problem. Therefore, a technique for evaluating the strength of the leaked electromagnetic wave based on a mechanism for leaking the electromagnetic wave to the outside of the housing is an important technique for controlling the electromagnetic wave leakage.

このような漏洩電磁波の強度を評価する技術として、特許文献1に開示された技術がある。この技術は、通電部の位置と形状を測定し、通電部の間隔および長さを求めて電磁波の強度を評価するようにしたものであり、簡便かつ高精度に漏洩電磁波の強度を評価することができるという特徴がある。   As a technique for evaluating the strength of such leakage electromagnetic waves, there is a technique disclosed in Patent Document 1. This technology measures the position and shape of the current-carrying part, calculates the interval and length of the current-carrying part, and evaluates the strength of the electromagnetic wave, and evaluates the strength of the leaked electromagnetic wave easily and with high accuracy. There is a feature that can be.

特開2007−139750号公報JP 2007-139750 A

特許文献1に開示された技術では、電磁波減衰の評価を以下のように行っている。すなわち、図1に示すように金属板1と金属板1を重ねたときの各通電部4の間隔をd、d(d>d)とする。このときの通電部の最大距離(dmax)は、dとなり、金属板1と金属板1の隙間を電磁波が透過する場合、電磁波の減衰量はこのdmaxで決まる。そこで、金属板を重ねた部分に生じる通電部の位置を測定してdmaxを求め、dmaxから隙間を透過する電磁波の減衰を推定するものである。 In the technique disclosed in Patent Document 1, the electromagnetic wave attenuation is evaluated as follows. That is, as shown in FIG. 1, the intervals between the current-carrying portions 4 when the metal plate 1 and the metal plate 1 are overlapped are d 1 and d 2 (d 1 > d 2 ). At this time, the maximum distance (d max ) of the energizing portion is d 1 , and when electromagnetic waves are transmitted through the gap between the metal plate 1 and the metal plate 1, the attenuation amount of the electromagnetic waves is determined by this d max . Therefore, seeking d max by measuring the position of the conductive portion occurring in a portion overlapped metal plates, and estimates the attenuation of electromagnetic waves transmitted through the gap from d max.

2枚の金属板が重ねられている場合、通電部の位置測定にあたっては、直流電流を印加し、電位分布を測定する。図2は、直流電流を印加した場合の電位分布測定方法を示す図である。一方の金属板1の表面に複数の導線12を接続し、この2枚の金属板1に直流電源から直流電流を印加して、そのときのGroundとの電位差を電圧計で測定して、金属板表面にわたる電位分布を測定する。このように導線12が接続されて、電位分布を測定する部分が点線で示す電位分布測定部である。   When two metal plates are stacked, a direct current is applied to measure the position of the energization unit, and the potential distribution is measured. FIG. 2 is a diagram illustrating a potential distribution measurement method when a direct current is applied. A plurality of conductive wires 12 are connected to the surface of one metal plate 1, a direct current is applied to the two metal plates 1 from a DC power source, and the potential difference from Ground at that time is measured with a voltmeter. Measure the potential distribution across the plate surface. The portion where the conductive wire 12 is connected in this way and the potential distribution is measured is a potential distribution measuring portion indicated by a dotted line.

測定された電位分布より、電位が不連続に変化している部分が通電部と判断できる。通電部をより正確に求めるには、以下の方法による。   From the measured potential distribution, the portion where the potential changes discontinuously can be determined as the energization portion. In order to obtain the energization part more accurately, the following method is used.

金属板表面で測定された2次元(x,y)の電位分布をV(x,y)とする。金属板の導電率をσとすると電流密度の分布(i(x,y))は、(1)式で与えられる。   A two-dimensional (x, y) potential distribution measured on the surface of the metal plate is defined as V (x, y). When the conductivity of the metal plate is σ, the current density distribution (i (x, y)) is given by equation (1).

さらに、上述の電流密度の分布から以下の(2)式のように発散(divergence)divi(x、y)を求める。   Further, the divergence divi (x, y) is obtained from the above-described current density distribution as shown in the following equation (2).

求めた発散の値が、負である部分では電流の吸い込みが、正である部分では電流の湧き出しが生じている部分である。このように、電位分布から電流密度の分布を求め、その発散が負(あるいは正)である部分は通電部とみなせる。こうして得られた通電部の位置から通電部の間隔を測定し、最も大きなものをdmaxとしている。 In the portion where the obtained divergence value is negative, the current is absorbed, and in the portion where the divergence is positive, the current is generated. In this way, the current density distribution is obtained from the potential distribution, and the portion where the divergence is negative (or positive) can be regarded as the energization portion. The distance between the energized portions is measured from the position of the energized portion thus obtained, and the largest value is defined as dmax .

図3は、金属板を重ねた部分の通電部とそこを透過する電磁波の特性の関係を求める方法を示す図であり、上図は上面図、下図は側面図を表している。図中、5はシールドボックス、6は発信機、7はアンテナ、8は受信機、9は溶接部、10は絶縁部、および11は通電測定部をそれぞれ表す。   FIG. 3 is a diagram showing a method for obtaining the relationship between the current-carrying portion of the portion where the metal plates are overlapped and the characteristics of the electromagnetic wave transmitted therethrough. The upper diagram is a top view and the lower diagram is a side view. In the figure, 5 is a shield box, 6 is a transmitter, 7 is an antenna, 8 is a receiver, 9 is a welded part, 10 is an insulating part, and 11 is an energization measuring part.

箱型形状のシールドボックス5の中に発信機6を入れ、幅70mm、長さ50mmのふちから漏洩する電磁波3の強度を、通電部の状態とともに測定し、周波数fでの電磁波の強度をE(f)とする。シールドボックス5の材料は、厚さ1.2mmの電気亜鉛めっき鋼板である。ふちの端部(溶接部9)は溶接されておりここからの電磁波の漏洩はない。またふちから10mm内側(図中の斜線部)に厚さ50μmの絶縁シートを挟み、通電のない状態(絶縁部10)とし、絶縁部10以外の通電測定部11からの電磁波(出力)3を、発信機6から3m離れたアンテナ7を経由して受信機8で測定する。   The transmitter 6 is placed in a box-shaped shield box 5 and the intensity of the electromagnetic wave 3 leaking from the edge having a width of 70 mm and a length of 50 mm is measured together with the state of the current-carrying part. (f). The material of the shield box 5 is an electrogalvanized steel sheet having a thickness of 1.2 mm. The edge part (welded part 9) of the edge is welded, and there is no leakage of electromagnetic waves from here. Further, an insulating sheet having a thickness of 50 μm is sandwiched 10 mm inside (hatched portion in the figure) from the edge so that no current is applied (insulating part 10), and electromagnetic waves (output) 3 from the current-carrying measuring part 11 other than the insulating part 10 are applied. Measured by the receiver 8 via the antenna 7 3 m away from the transmitter 6.

シールドボックス5の一部が金属板と金属板が重なった部分となるようにして、その部分に電流を印加して通電部を求め、そこを透過する電磁波の特性を求めている。5mm×5mm間隔で導線12をシールドボックス5のふちの表面にはんだ付けによって接続している。ふちの金属板同士に電圧を印加し、直流電流を流して、図中でGroundと記されている導線に対する電位差を導線毎に測定し、電位分布を求める。この方法は、電位分布測定部が四角形など比較的単純な形状の場合に適用されるものである。   A part of the shield box 5 is a part where the metal plate and the metal plate overlap each other, a current is applied to the part to obtain a current-carrying part, and the characteristics of the electromagnetic wave transmitted therethrough are obtained. Conductive wires 12 are connected to the edge of the shield box 5 by soldering at intervals of 5 mm × 5 mm. A voltage is applied between the metal plates of the edge, a direct current is passed, and a potential difference with respect to the conductor indicated as Ground in the figure is measured for each conductor to obtain a potential distribution. This method is applied when the potential distribution measuring unit has a relatively simple shape such as a square.

しかしながら、対象とする電位分布測定部の形状は、比較的単純な形状であるとは限らない。例えば、電位分布測定部の形状が図4(a)に示すような形状の場合、金属板の中央部に四角形の穴を空ける加工は困難である。そこで、図4(b)に示すように、電位分布測定部を2つの部品に分離することが考えられる。   However, the shape of the target potential distribution measurement unit is not necessarily a relatively simple shape. For example, when the shape of the potential distribution measuring portion is as shown in FIG. 4A, it is difficult to form a square hole in the central portion of the metal plate. Therefore, as shown in FIG. 4B, it is conceivable to separate the potential distribution measurement unit into two parts.

一般に金属製の導線は、抵抗が非常に低く、抵抗はほぼ0とみなされる。そこで、2つの部品を金属製の導線で接続すると、導線と部品の接続部間どうし(図4(b)のA−B間,A−B間)の電位差はほぼ0となり、2つの電位分布測定部は図4(a)に示す連続した電位分布測定部と等価とみなせると予想される。 In general, a metal lead has a very low resistance, and the resistance is regarded as almost zero. Therefore, when the two parts are connected by a metal conductor, the potential difference between the conductor and the connection part between the parts (between A 1 and B 1 and between A 2 and B 2 in FIG. 4B) is almost zero. The two potential distribution measurement units are expected to be regarded as equivalent to the continuous potential distribution measurement unit shown in FIG.

しかし、電位分布測定部内での非常に小さな抵抗と比べて、導線部分の抵抗は大きく、図4(b)に示す導線で接続された2つの電位分布測定部では、通電部を特定するための電位分布を測定できないという問題がある。すなわち、例えば、図4(b)に示す導線で接続された2つの電位分布測定部では、連続した電位分布測定部(図4(a))と等価にみなすことができないというものである。   However, the resistance of the conducting wire portion is larger than the very small resistance in the potential distribution measuring unit, and the two potential distribution measuring units connected by the conducting wire shown in FIG. There is a problem that the potential distribution cannot be measured. That is, for example, the two potential distribution measurement units connected by the conducting wire shown in FIG. 4B cannot be regarded as equivalent to the continuous potential distribution measurement unit (FIG. 4A).

本発明では、これら従来技術の問題点に鑑みなされたものであり、電磁波漏洩の評価にあたって通電部の位置を正確に測定するための金属板の電位分布測定方法および装置を提供することを課題とする。   The present invention has been made in view of these problems of the prior art, and it is an object to provide a method and an apparatus for measuring a potential distribution of a metal plate for accurately measuring the position of a current-carrying portion in evaluating electromagnetic wave leakage. To do.

上記課題は次の発明により解決される。   The above problems are solved by the following invention.

[1] 電磁波漏洩の評価にあたって通電部の位置を正確に測定するための金属板の電位分布測定方法であって、
前記金属板は、任意の形状で一枚の連続した金属板であり、
該金属板表面に複数の導線を接続し、導線間の電位差を測定することによって、前記金属板表面の電位分布を測定することを特徴とする金属板の電位分布測定方法。
[1] A method for measuring a potential distribution of a metal plate for accurately measuring the position of a current-carrying part in evaluating electromagnetic wave leakage,
The metal plate is a single continuous metal plate in an arbitrary shape,
A method for measuring a potential distribution of a metal plate, comprising: measuring a potential distribution on the surface of the metal plate by connecting a plurality of conductive wires to the surface of the metal plate and measuring a potential difference between the conductive wires.

[2] 上記[1]に記載の金属板の電位分布測定方法において、
金属板表面の電位分布より電流密度の分布を求め、求めた電流密度分布の発散の値が負または正となっている部分を通電部と判断することを特徴とする金属板の電位分布測定方法。
[2] In the method for measuring a potential distribution of a metal plate according to [1] above,
A method for measuring a potential distribution of a metal plate, comprising: obtaining a current density distribution from the potential distribution on the surface of the metal plate; and determining a portion where the divergence value of the obtained current density distribution is negative or positive as a current-carrying portion. .

[3] 電磁波漏洩の評価にあたって通電部の位置を正確に測定するための金属板の電位分布測定装置であって、
金属板と金属板を重ねた状態で、前記金属板の表面に接続した導線と、
該導線間の電位差を測定する電位差計と、
該電位差計で測定した電位差から前記金属板の表面での電位分布を求めて、金属板間で生ずる通電部の位置と形状を演算する演算装置と、を備えることを特徴とする金属板の電位分布測定装置。
[3] A potential distribution measuring device for a metal plate for accurately measuring the position of a current-carrying part in evaluating electromagnetic wave leakage,
In a state where the metal plate and the metal plate are stacked, a conductive wire connected to the surface of the metal plate,
A potentiometer for measuring the potential difference between the conductors;
A potential of the metal plate, comprising: an arithmetic unit that calculates a potential distribution on the surface of the metal plate from a potential difference measured by the potentiometer, and calculates a position and a shape of a current-carrying portion generated between the metal plates. Distribution measuring device.

本発明は、任意の形状で一枚の連続した金属板の表面に複数の導線を接続し電流を印加して、導線間の電位差を測定することによって、前記金属板表面の電位分布を測定するようにしたので、通電部の位置と形状を簡便かつ高精度に特定できる。   The present invention measures the potential distribution on the surface of the metal plate by connecting a plurality of conductors to the surface of one continuous metal plate in an arbitrary shape, applying a current, and measuring the potential difference between the conductors. Since it did in this way, the position and shape of an electricity supply part can be specified easily and with high precision.

金属板と金属板を重ねた部分を透過する電磁波を示す図である。It is a figure which shows the electromagnetic waves which permeate | transmit the part which accumulated the metal plate and the metal plate. 直流電流を印加した場合の電位分布測定方法を示す図である。It is a figure which shows the electric potential distribution measuring method at the time of applying a direct current. 金属板を重ねた部分の通電部とそこを透過する電磁波の特性の関係を求める方法を示す図である。It is a figure which shows the method of calculating | requiring the relationship between the electricity supply part of the part which accumulated the metal plate, and the characteristic of the electromagnetic wave which permeate | transmits there. 連続した電位分布測定部と分離した電位分布測定部とを示す図である。It is a figure which shows the continuous electric potential distribution measurement part and the separated electric potential distribution measurement part. 本実施形態で用いた電位分布測定部の形状を示す図である。It is a figure which shows the shape of the electric potential distribution measurement part used by this embodiment. 電位分布測定部の測定例(その1)を示す図である。It is a figure which shows the measurement example (the 1) of an electric potential distribution measurement part. 電位分布測定部の測定例(その2)を示す図である。It is a figure which shows the measurement example (the 2) of an electric potential distribution measurement part.

以下に本発明を実施するための形態を添付図面を参照して説明する。図5は、本実施形態で用いた電位分布測定部の形状を示す図である。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated with reference to an accompanying drawing. FIG. 5 is a diagram showing the shape of the potential distribution measurement unit used in this embodiment.

幅140mm長さ140mm正方形の中央部を口の形にくりぬいた形状の金属板を、電位分布測定部としたものである。この金属板は、板厚0.2mmの真ちゅう製で、一枚の連続したものとなっている。そして、電位分布測定部には、同図中左下のx方向及びy方向それぞれ2.5mmのところを原点にして5×5mm間隔で導線が接続されている。   A metal plate having a shape obtained by hollowing out a central part of a square having a width of 140 mm and a length of 140 mm into a mouth shape is used as a potential distribution measuring unit. This metal plate is made of brass with a thickness of 0.2 mm, and is a single continuous plate. The potential distribution measurement unit is connected with conductors at 5 × 5 mm intervals with the origin at 2.5 mm each in the x and y directions in the lower left of the figure.

電位分布測定部の上に140mm×140mmのくりぬき部の無い金属板(真ちゅう製)を載せて、金属板と電位分布測定部に約5Aの電流を通電した。ここでは、金属板と電位分布測定部を直流電源のプラスとマイナスに接続している。   A metal plate (made of brass) of 140 mm × 140 mm without a hollow portion was placed on the potential distribution measurement unit, and a current of about 5 A was passed through the metal plate and the potential distribution measurement unit. Here, the metal plate and the potential distribution measurement unit are connected to the plus and minus of the DC power supply.

通電部を意図的に変化させた場合の電位分布の測定結果2種類を、図6及び7に示す。図6及び7中の矢印で示した部分は、前述した方法により、金属板表面の電位分布から電流密度の分布を求め、求めた電流密度分布の発散の値が負または正となっている部分であり通電部と判断するあり、実際の通電部とも一致した。   Two types of measurement results of potential distribution when the energization part is intentionally changed are shown in FIGS. 6 and 7 is a portion where the current density distribution is obtained from the potential distribution on the surface of the metal plate by the method described above, and the divergence value of the obtained current density distribution is negative or positive. It was judged as a current-carrying part and coincided with the actual current-carrying part.

図6及び7中のこれら通電部では、測定した電位分布が不連続に変化して、極値を示していることが分かる。一枚の連続した金属板では、通電部の位置が変化しても電位分布の測定結果から前述の(1)および(2)式に基づいて、通電部の位置を特定できる。   6 and 7, it can be seen that the measured potential distribution changes discontinuously and shows extreme values. With a single continuous metal plate, the position of the energization part can be specified based on the above-described equations (1) and (2) from the measurement result of the potential distribution even if the position of the energization part changes.

図4(b)のように電位分布測定部を2つに分離して、分離した電位分布測定部を金属製の導線で接続した場合についても、上記と同様に電位分布測定部に金属板を載せて、電位分布測定を行った。しかしながら、導線での電位差が大きいため、電位分布測定部全体の電位分布は測定できず、通電部の位置を特定することができなかった。   As shown in FIG. 4B, when the potential distribution measuring unit is divided into two parts and the separated potential distribution measuring unit is connected by a metal conductor, a metal plate is attached to the potential distribution measuring unit in the same manner as described above. Then, the potential distribution was measured. However, since the potential difference at the conducting wire is large, the potential distribution of the entire potential distribution measuring unit cannot be measured, and the position of the energizing unit cannot be specified.

1 金属板
2 電磁波(入力)
3 電磁波(出力)
4 通電部
5 シールドボックス
6 発信機
7 アンテナ
8 受信機
9 溶接部
10 絶縁部
11 通電測定部
12 導線
1 Metal plate 2 Electromagnetic wave (input)
3 Electromagnetic waves (output)
4 Current-carrying part 5 Shield box 6 Transmitter 7 Antenna 8 Receiver 9 Welding part 10 Insulating part 11 Current-measuring part 12 Conductor

Claims (3)

電磁波漏洩の評価にあたって通電部の位置を正確に測定するための金属板の電位分布測定方法であって、
前記金属板は、任意の形状で一枚の連続した金属板であり、
該金属板表面に複数の導線を接続し、導線間の電位差を測定することによって、前記金属板表面の電位分布を測定することを特徴とする金属板の電位分布測定方法。
A method for measuring the potential distribution of a metal plate for accurately measuring the position of a current-carrying part in evaluating electromagnetic wave leakage,
The metal plate is a single continuous metal plate in an arbitrary shape,
A method for measuring a potential distribution of a metal plate, comprising: measuring a potential distribution on the surface of the metal plate by connecting a plurality of conductive wires to the surface of the metal plate and measuring a potential difference between the conductive wires.
請求項1に記載の金属板の電位分布測定方法において、
金属板表面の電位分布より電流密度の分布を求め、求めた電流密度分布の発散の値が負または正となっている部分を通電部と判断することを特徴とする金属板の電位分布測定方法。
In the electric potential distribution measuring method of the metal plate according to claim 1,
A method for measuring a potential distribution of a metal plate, comprising: obtaining a current density distribution from the potential distribution on the surface of the metal plate; and determining a portion where the divergence value of the obtained current density distribution is negative or positive as a current-carrying portion. .
電磁波漏洩の評価にあたって通電部の位置を正確に測定するための金属板の電位分布測定装置であって、
金属板と金属板を重ねた状態で、前記金属板の表面に接続した導線と、
該導線間の電位差を測定する電位差計と、
該電位差計で測定した電位差から前記金属板の表面での電位分布を求めて、金属板間で生ずる通電部の位置と形状を演算する演算装置と、を備えることを特徴とする金属板の電位分布測定装置。
A potential distribution measuring device for a metal plate for accurately measuring the position of a current-carrying part in evaluating electromagnetic wave leakage,
In a state where the metal plate and the metal plate are stacked, a conductive wire connected to the surface of the metal plate,
A potentiometer for measuring the potential difference between the conductors;
A potential of the metal plate, comprising: an arithmetic unit that calculates a potential distribution on the surface of the metal plate from a potential difference measured by the potentiometer, and calculates a position and a shape of a current-carrying portion generated between the metal plates. Distribution measuring device.
JP2010100443A 2010-04-26 2010-04-26 Method and device for measuring potential distribution of metal plate Pending JP2011232063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010100443A JP2011232063A (en) 2010-04-26 2010-04-26 Method and device for measuring potential distribution of metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010100443A JP2011232063A (en) 2010-04-26 2010-04-26 Method and device for measuring potential distribution of metal plate

Publications (1)

Publication Number Publication Date
JP2011232063A true JP2011232063A (en) 2011-11-17

Family

ID=45321538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010100443A Pending JP2011232063A (en) 2010-04-26 2010-04-26 Method and device for measuring potential distribution of metal plate

Country Status (1)

Country Link
JP (1) JP2011232063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387707A (en) * 2017-08-07 2019-02-26 波音公司 Large surface array of magnetic field

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139750A (en) * 2005-10-18 2007-06-07 Jfe Steel Kk Method and device for estimating leakage of electromagnetic wave
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139750A (en) * 2005-10-18 2007-06-07 Jfe Steel Kk Method and device for estimating leakage of electromagnetic wave
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387707A (en) * 2017-08-07 2019-02-26 波音公司 Large surface array of magnetic field
CN109387707B (en) * 2017-08-07 2022-07-08 波音公司 Method and apparatus for analyzing current on target surface

Similar Documents

Publication Publication Date Title
KR102289789B1 (en) Voltage sensing apparatus
EP2975417B1 (en) Measurement device and mounting unit
JP2019531469A (en) Measuring device for measuring currents in the large current range
JP5157323B2 (en) Method and apparatus for measuring position of current-carrying part
MY151356A (en) Method and system for calibrating streamer electrodes in a marine electromagnetic survey system
JP6305639B2 (en) Current detector
JP6469740B2 (en) Ground resistance measurement method
CN102854365A (en) Magnetic, acoustic and electric current measuring method and magnetic, acoustic and electric current measuring device
JP4998682B2 (en) Electromagnetic leakage evaluation method and apparatus
JP2011232063A (en) Method and device for measuring potential distribution of metal plate
Santandréa et al. Using COMSOL-multiphysics in an eddy current non-destructive testing context
JP5741228B2 (en) Current point evaluation device for metal plate surface
JP2014153324A (en) Measuring method and measuring device of ground resistance
JP2019113534A (en) Corrosion environment measuring device, and measure method of liquid film thickness and electrical conductivity using the same
JP5456591B2 (en) Method and apparatus for measuring position of energization unit
JP2009145056A (en) Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detector
JP2014035243A (en) Rating method and rating system for partial discharge generation position
CN108414842A (en) A kind of cavity shield effectiveness appraisal procedure of rectangular shield containing metal seams
Samosir et al. Propagation analysis of electromagnetic wave radiated by partial discharge in single phase and three phase 150 kV Gas Insulated Switchgear
CN108709488A (en) The multrirange dual probe device measured for metal film thickness
JP5952172B2 (en) Submarine exploration device and submarine exploration method
Poljak et al. Electromagnetic field coupling to arbitrary wire configurations buried in a lossy ground: a review of antenna model and transmission line approach
Abraham et al. FDTD simulated propagation of electromagnetic pulses due to PD for transformer diagnostics
JPS58223704A (en) Method for estimating thickness of sea ice
JP2010210606A (en) Charge calibration device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224