JP2007139750A - Method and device for estimating leakage of electromagnetic wave - Google Patents

Method and device for estimating leakage of electromagnetic wave Download PDF

Info

Publication number
JP2007139750A
JP2007139750A JP2006224922A JP2006224922A JP2007139750A JP 2007139750 A JP2007139750 A JP 2007139750A JP 2006224922 A JP2006224922 A JP 2006224922A JP 2006224922 A JP2006224922 A JP 2006224922A JP 2007139750 A JP2007139750 A JP 2007139750A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
metal plate
current
leakage
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006224922A
Other languages
Japanese (ja)
Other versions
JP4998682B2 (en
Inventor
Yuichi Watanabe
裕一 渡辺
Toshio Ishii
俊夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006224922A priority Critical patent/JP4998682B2/en
Publication of JP2007139750A publication Critical patent/JP2007139750A/en
Application granted granted Critical
Publication of JP4998682B2 publication Critical patent/JP4998682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic-wave leakage estimation method and device for estimating the intensity of a leakage electromagnetic wave easily at high precision. <P>SOLUTION: The positions and shapes of current-carrying portions produced between a metal plate and another metal plate are measured in such a state that the metal plates are lapped mutually, and the intensity of an electromagnetic wave leaking through the gap between the metal plates is estimated from the maximum interval out of the intervals among the current-carrying portions, and the length of the current-carrying portions with respect to the direction of transmission of the electromagnetic wave. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、OA・電機製品などの内部に組み込まれた電子回路からの電磁波漏洩の評価方法および装置に関するものである。   The present invention relates to an evaluation method and apparatus for leakage of electromagnetic waves from an electronic circuit incorporated in an OA / electrical product or the like.

OA・電機製品には、製品内部に組み込まれた電子回路からの漏洩電磁波をシールドすることが求められている。これは、漏洩電磁波が他OA・電機商品を誤作動させる可能性があるだけでなく、心臓ペースメーカなどの電子機器を誤作動させて、使用している人へ影響を及ぼす可能性があるためである。   OA / electrical products are required to shield leakage electromagnetic waves from electronic circuits built into the products. This is because leaked electromagnetic waves may not only cause other OA / electrical products to malfunction, but may also cause electronic devices such as cardiac pacemakers to malfunction and affect people using them. is there.

漏洩電磁波の強度を低下させるために、発信源を導電体で囲み電磁波を遮断することが広く行われている。例えば電磁波シールド室の場合、壁、床、天井を電磁波シールド用の導電性シートで覆い電磁波の漏洩を抑制している。また、コンピュータ等の電子機器の中では、発信源となる回路を金属製の箱で覆って、電磁波の漏洩を抑制している。   In order to reduce the strength of the leaked electromagnetic wave, it is widely performed to surround the transmission source with a conductor and block the electromagnetic wave. For example, in the case of an electromagnetic wave shielding room, walls, floors, and ceilings are covered with a conductive sheet for electromagnetic wave shielding to suppress leakage of electromagnetic waves. Further, in electronic devices such as computers, leakage of electromagnetic waves is suppressed by covering a circuit serving as a transmission source with a metal box.

しかし、発信源を金属製の箱で囲む場合、金属板が重なった部分を溶接など連続的な接合を施さない限り、隙間ができてしまい、ここから電磁波が漏洩することが問題となる。一般にこのすき間の部分での電気的な導通を確保することで、漏洩する電磁波の強度を小さくできることは広く知られている。   However, when the transmission source is surrounded by a metal box, there is a problem that a gap is formed unless electromagnetic waves are leaked from the overlapped portion unless a continuous joining such as welding is performed on the overlapping portion of the metal plates. In general, it is widely known that the strength of electromagnetic waves leaking can be reduced by ensuring electrical continuity at the gaps.

例えば、特許文献1には、電磁波シールド室の庫口周縁と閉鎖部材周縁とを通電しうる状態に保ち、電気の流れがとだえないようにして、電磁波の漏洩を抑制する電磁波シールド技術が開示されている。また、特許文献2には、電磁波シールド用ガスケットとして、スポンジ状の芯材の周囲にシート状の導電性シートを覆設する技術が開示されている。さらに、特許文献3には、導電性の布で弾性体を被覆する技術が開示されている。
実開平3−98号公報 特開平10−93281号公報 特開平10−284869号公報
For example, Patent Document 1 discloses an electromagnetic wave shielding technique that suppresses leakage of electromagnetic waves by keeping the peripheral edge of the opening of the electromagnetic wave shielding chamber and the peripheral edge of the closing member energized and preventing the flow of electricity. ing. Patent Document 2 discloses a technique for covering a sheet-like conductive sheet around a sponge-like core material as an electromagnetic shielding gasket. Furthermore, Patent Document 3 discloses a technique for covering an elastic body with a conductive cloth.
Japanese Utility Model Publication No. 3-98 Japanese Patent Laid-Open No. 10-93281 JP-A-10-284869

特許文献1ないし特許文献3に記載の技術は、いずれも接触部での通電を確保するためのものである。しかしながら、これらは接触部での通電を良くして、漏洩電磁波をかなりの程度少なくすることが可能な場合があるものの、一般にばらつきが大きく完全な電磁波シールド技術とは言えないものである。これは、電磁波漏洩の機構が明確になっておらず、電磁波漏洩に影響する因子を定量的に評価できないためであり、これら電磁波シールド技術を評価するためにも、簡便かつ高精度に漏洩電磁波に影響する因子を評価する技術が要望されている。   The techniques described in Patent Documents 1 to 3 are all for ensuring energization at the contact portion. However, although these may improve the energization at the contact portion and reduce the leakage electromagnetic wave to a considerable extent, they are generally inconsistent and cannot be said to be a complete electromagnetic wave shielding technique. This is because the mechanism of electromagnetic wave leakage is not clear, and the factors affecting electromagnetic wave leakage cannot be quantitatively evaluated. In order to evaluate these electromagnetic wave shielding technologies, leakage electromagnetic waves can be easily and accurately detected. There is a need for a technique for evaluating the influencing factors.

本発明は上記事情に鑑みてなされたもので、簡便かつ高精度に漏洩電磁波に影響する因子を評価する電磁波漏洩の評価方法および装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electromagnetic leakage evaluation method and apparatus for evaluating factors that affect leakage electromagnetic waves in a simple and highly accurate manner.

本発明の請求項1に係る発明は、金属板と金属板を重ねた状態で、金属板間に生ずる通電部の位置と形状を測定し,前記通電部同士の間隔の中で最大の間隔に基づいて、金属板間の隙間を漏洩する電磁波の強度を評価することを特徴とする電磁波漏洩の評価方法である。   The invention according to claim 1 of the present invention measures the position and shape of the current-carrying portion generated between the metal plates in a state where the metal plate and the metal plate are overlapped, and sets the maximum distance among the intervals between the current-carrying portions. This is an electromagnetic wave leakage evaluation method characterized by evaluating the intensity of electromagnetic waves leaking through the gaps between the metal plates.

また本発明の請求項2に係る発明は、金属板と金属板を重ねた状態で、金属板間に生ずる通電部の位置と形状を測定し,前記通電部同士の間隔の中で最大の間隔と、電磁波の透過する方向に対する前記通電部の長さとに基づいて、金属板間の隙間を漏洩する電磁波の強度を評価することを特徴とする電磁波漏洩の評価方法である。   Further, the invention according to claim 2 of the present invention is to measure the position and shape of the current-carrying portion generated between the metal plates in a state where the metal plate and the metal plate are overlapped, and to determine the maximum interval among the intervals between the current-carrying portions. And the strength of the electromagnetic wave leaking through the gap between the metal plates based on the length of the current-carrying part with respect to the direction in which the electromagnetic wave is transmitted.

また本発明の請求項3に係る発明は、請求項1または請求項2に記載の電磁波漏洩の評価方法において、前記金属板間に電流を流し、金属板表面に生ずる電位分布を測定することによって通電部の位置と形状を測定することを特徴とする電磁波漏洩の評価方法である。   According to a third aspect of the present invention, in the electromagnetic wave leakage evaluation method according to the first or second aspect, a current is passed between the metal plates, and a potential distribution generated on the metal plate surface is measured. It is an electromagnetic leakage evaluation method characterized by measuring the position and shape of a current-carrying part.

また本発明の請求項4に係る発明は、請求項3に記載の電磁波漏洩の評価方法において、前記金属板表面に複数の導線を接続して、その導線間の電位差を測定することによって、前記金属板表面の電位分布を測定することを特徴とする電磁波漏洩の評価方法である。   The invention according to claim 4 of the present invention is the electromagnetic wave leakage evaluation method according to claim 3, wherein a plurality of conductors are connected to the surface of the metal plate, and a potential difference between the conductors is measured. An electromagnetic wave leakage evaluation method characterized by measuring a potential distribution on a metal plate surface.

また本発明の請求項5に係る発明は、請求項3または請求項4に記載の電磁波漏洩の評価方法において、金属板表面の電位分布より電流密度の分布を求め、求めた電流密度分布の発散の値が負または正となっている部分を通電部と判断して電磁波漏洩を評価することを特徴とする電磁波漏洩の評価方法である。   According to claim 5 of the present invention, in the electromagnetic wave leakage evaluation method according to claim 3 or 4, the current density distribution is obtained from the potential distribution on the surface of the metal plate, and the divergence of the obtained current density distribution is obtained. This is a method for evaluating electromagnetic wave leakage, wherein a portion where the value of is negative or positive is judged as an energized portion and electromagnetic wave leakage is evaluated.

また本発明の請求項6に係る発明は、請求項1ないし請求項5のいずれか1項に記載の電磁波漏洩の評価方法において、前記金属板は、鋼板であることを特徴とする電磁波漏洩の評価方法である。   The invention according to claim 6 of the present invention is the electromagnetic wave leakage evaluation method according to any one of claims 1 to 5, wherein the metal plate is a steel plate. It is an evaluation method.

さらに本発明の請求項7に係る発明は、金属板と金属板を重ねた状態で、前記金属板の表面に接続した導線と、該導線間の電位差を測定する電位差計と、該電位差計で測定した電位差から前記金属板の表面での電位分布を求めて、金属板間で生ずる通電部の位置と形状を演算し、前記通電部同士の間隔の中で最大の間隔と、電磁波の透過する方向に対する前記通電部の長さとに基づいて、金属板間の隙間を漏洩する電磁波の強度を評価する演算装置と、を備えることを特徴とする電磁波漏洩の評価装置である。   Furthermore, the invention according to claim 7 of the present invention includes a conductive wire connected to the surface of the metal plate in a state where the metal plate and the metal plate are overlapped, a potentiometer that measures a potential difference between the conductive wires, and the potentiometer. Obtain the potential distribution on the surface of the metal plate from the measured potential difference, calculate the position and shape of the current-carrying part generated between the metal plates, and transmit the electromagnetic wave at the maximum interval among the current-carrying parts. An evaluation device for electromagnetic wave leakage, comprising: an arithmetic device that evaluates the intensity of electromagnetic waves leaking through a gap between metal plates based on the length of the energization portion with respect to a direction.

本発明では、通電部の位置と形状を測定し、通電部の間隔および長さを求めて電磁波の強度を評価するようにしたので、簡便かつ高精度に漏洩電磁波の強度を評価することができる。   In the present invention, the position and shape of the current-carrying part are measured, and the strength and the length of the current-carrying part are obtained to evaluate the strength of the electromagnetic wave. Therefore, the strength of the leaked electromagnetic wave can be evaluated easily and with high accuracy. .

図1は、金属板と金属板を重ねた部分を透過する電磁波の様子を模式的に示す図である。図中、1は金属板、2は電磁波(入力)、3は電磁波(出力)、および4は通電部をそれぞれ表す。   FIG. 1 is a diagram schematically showing an electromagnetic wave that passes through a portion where a metal plate and a metal plate are overlapped. In the figure, 1 is a metal plate, 2 is an electromagnetic wave (input), 3 is an electromagnetic wave (output), and 4 is an energizing part.

本発明者らは、金属板1と金属板1を重ねた部分を電磁波が透過する(電磁波(入力)2として入り、電磁波(出力)3として出て行く)場合、電磁波の透過する方向に対して、通電部間の間隔dが狭く、通電部の長さlが長いほど電磁波の減衰が大きく、漏洩する電磁波の強度が弱くなることを見出した。この知見より金属板と金属板間の通電部の位置と形状を特定し、通電部間の最大の間隔dと通電部の長さlによって、漏洩する電磁波の強度が評価できることが分かった。   When the electromagnetic wave permeate | transmits the part which piled up the metal plate 1 and the metal plate 1 (entering as electromagnetic wave (input) 2 and going out as electromagnetic wave (output) 3), the present inventors are with respect to the direction which electromagnetic waves permeate | transmit. Thus, it has been found that the shorter the interval d between the energization parts and the longer the length l of the energization part, the greater the attenuation of the electromagnetic wave and the weaker the intensity of the leaking electromagnetic wave. From this knowledge, it was found that the position and shape of the current-carrying part between the metal plates were specified, and the strength of the leaked electromagnetic wave could be evaluated by the maximum distance d between the current-carrying parts and the length l of the current-carrying part.

しかし、一般に2つの物体を重ねた界面で起きている事象を測定することは非常に困難であり、この場合も金属板と金属板を重ねた界面の通電部の位置と形状を特定することは非常に困難である。通電部の位置と形状を測定するためには、金属板と金属板を重ねその板間に電流を流し、(1)板表面の温度分布を測定する(2)板表面での磁界の分布を測定する(3)板表面の電位分布を測定する等の方法が考えられる。   However, in general, it is very difficult to measure an event occurring at the interface where two objects are overlapped. In this case as well, it is not possible to specify the position and shape of the current-carrying part at the interface where the metal plates overlap. It is very difficult. In order to measure the position and shape of the current-carrying part, metal plates are stacked and current is passed between them, (1) the temperature distribution on the plate surface is measured, and (2) the magnetic field distribution on the plate surface is measured. Measurement (3) A method such as measuring the potential distribution on the plate surface can be considered.

しかし、前記(1)の方法では、通電部の面積が広くなったときに、電流密度の低下によって発熱密度が低下し、温度上昇が非常に小さくなるため、測定が困難となる場合が多い。前記(2)の方法の場合、電流によって発生する磁界が非常に小さく、電流によって発生する磁界を地磁気に影響されずに測定することは、非常に困難である。また、鋼板等の磁性体表面で磁界を測定する場合、磁性体の残留磁気の影響が大きく測定がさらに困難となる。   However, in the method (1), when the area of the energization part is widened, the heat generation density is reduced due to the decrease in the current density, and the temperature rise is very small, so that measurement is often difficult. In the case of the method (2), the magnetic field generated by the current is very small, and it is very difficult to measure the magnetic field generated by the current without being affected by the geomagnetism. In addition, when measuring a magnetic field on the surface of a magnetic material such as a steel plate, the influence of the residual magnetism of the magnetic material is large, making measurement more difficult.

前記(3)の方法を採る場合、金属板と金属板を重ね、上側におかれた板の電位を下側におかれた板の電位より高くして、電流を流したとき、上側の板表面では通電部付近の電位がその周囲より低くなることが理論的に計算される。板が導電性の高い(抵抗が低い)金属の場合には、金属板と金属板間に流す電流値が小さいと、この電位差も小さくなる。例えば数A程度の電流を金属板と金属板間に流した場合には、板表面の電位分布をμV程度の精度で測定する。   When the method (3) is adopted, when the metal plate and the metal plate are overlapped, the potential of the plate placed on the upper side is made higher than the potential of the plate placed on the lower side, and a current is passed, the upper plate It is theoretically calculated that on the surface, the electric potential in the vicinity of the energized portion is lower than the surrounding area. In the case where the plate is a metal having high conductivity (low resistance), this potential difference is reduced when the value of current flowing between the metal plates is small. For example, when a current of about several A is passed between the metal plates, the potential distribution on the plate surface is measured with an accuracy of about μV.

金属板と金属板間に流す電流を大きくすると、電位差は大きくなり測定は容易となる。一般に10A程度以上の大電流を流すとなると、電源が大きくなり測定の費用が高くなる。さらに、配線や板での発熱も大きくなるため、小さい電流を流すとよい。   When the current passed between the metal plates is increased, the potential difference increases and the measurement becomes easy. In general, when a large current of about 10 A or more is passed, the power supply becomes large and the cost of measurement increases. Furthermore, since heat generation in the wiring and the board also increases, it is preferable to flow a small current.

板表面の電位分布の測定には、探針を板表面に接触させて測定する方法、板表面に導線を直接接続してその導線によって、電位を測定する方法等が考えられる。前者の方法の場合、板表面と探針の接触状態によって、接触抵抗が大きく変化するため、電位に大きなばらつきが生じる傾向がある。一方後者の方法を用いれば、数μV程度の精度で電位分布の測定が可能で、金属板と金属板間の通電部の位置と形状が測定可能であることを本発明者らは見出した。   For measuring the potential distribution on the surface of the plate, there are a method in which the probe is brought into contact with the surface of the plate, a method in which a lead wire is directly connected to the plate surface, and a potential is measured by the lead wire. In the case of the former method, the contact resistance varies greatly depending on the contact state between the plate surface and the probe, so that the potential tends to vary greatly. On the other hand, using the latter method, the present inventors have found that the potential distribution can be measured with an accuracy of about several μV, and the position and shape of the current-carrying portion between the metal plates can be measured.

測定された電位分布より、電位が極小(あるいは極大)となっている部分を通電部と判断できるが、より正確に通電部を求める方法を以下に示す。   From the measured potential distribution, the portion where the potential is minimum (or maximum) can be determined as the energized portion. A method for obtaining the energized portion more accurately will be described below.

板表面で測定された2次元(x,y)の電位分布をV(x,y)とする。板の導電率をσとすると電流密度の分布(i(x,y))は、(1)式で与えられる。   Let V (x, y) be a two-dimensional (x, y) potential distribution measured on the plate surface. If the conductivity of the plate is σ, the current density distribution (i (x, y)) is given by equation (1).

さらに、電流密度の分布から以下の(2)式のように発散(divergence)を求める。   Further, the divergence is obtained from the current density distribution as shown in the following equation (2).

発散の値が、負である部分では電流の吸い込みが、正である部分では電流の湧き出しが生じている部分である。このように、電位分布から電流密度の分布を求め、その発散が負(あるいは正)である部分は通電部とみなせる。   In the portion where the divergence value is negative, the current is absorbed, and in the portion where the divergence value is positive, the current is generated. In this way, the current density distribution is obtained from the potential distribution, and the portion where the divergence is negative (or positive) can be regarded as the energization portion.

本発明の実施例1を以下に示す。図2は、電磁波の漏洩の測定方法と通電部の評価方法を説明する図であり、上図は上面図、下図は側面図を表している。図中、5はシールドボックス、6は発信機、7はアンテナ、8は受信機、9は溶接部、10は絶縁部、および11は通電測定部をそれぞれ表す。   Example 1 of the present invention is shown below. FIG. 2 is a diagram for explaining a method for measuring leakage of electromagnetic waves and a method for evaluating a current-carrying unit. The upper diagram shows a top view and the lower diagram shows a side view. In the figure, 5 is a shield box, 6 is a transmitter, 7 is an antenna, 8 is a receiver, 9 is a welded part, 10 is an insulating part, and 11 is an energization measuring part.

箱型形状のシールドボックス5の中に発信機6を入れ、幅70mm、長さ50mmのふちから漏洩する電磁波3の強度を、通電部の状態とともに測定し、周波数fでの電磁波の強度をE(f)とする。シールドボックス5の材料は、厚さ1.2mmの電気亜鉛めっき鋼板である。ふちの端部(溶接部9)は溶接されておりここからの電磁波の漏洩はない。またふちから10mm内側(図中の斜線部)は厚さ50μmの絶縁シートを挟み、通電のない状態(絶縁部10)とした。絶縁部10以外の通電測定部11からの電磁波(出力)3を、発信機6から3m離れたアンテナ7を経由して受信機8で測定した。   The transmitter 6 is placed in a box-shaped shield box 5 and the intensity of the electromagnetic wave 3 leaking from the edge having a width of 70 mm and a length of 50 mm is measured together with the state of the current-carrying part. (f). The material of the shield box 5 is an electrogalvanized steel sheet having a thickness of 1.2 mm. The edge part (welded part 9) of the edge is welded, and there is no leakage of electromagnetic waves from here. Further, an insulating sheet having a thickness of 50 μm was sandwiched 10 mm inside (hatched portion in the figure) from the edge so that no current was applied (insulating portion 10). The electromagnetic wave (output) 3 from the energization measuring unit 11 other than the insulating unit 10 was measured by the receiver 8 via the antenna 7 separated from the transmitter 6 by 3 m.

次に電磁波の強度は、以下のようにして評価する。図3は、電磁波の基準強度(Est(f))の測定を示す図である。図に示すようにふち全体(幅70mm長さ50mm)に50μmの絶縁シートをはさんだときに、ふちから測定される電磁波の強度を基準強度とする。基準強度は測定する周波数毎に測定され、基準強度をEst(f) (f:周波数)とする。
ここで、E(f)/Est(f)(電磁波の強度/電磁波の基準強度)を電磁波の強度を評価する指標とした。
Next, the intensity of the electromagnetic wave is evaluated as follows. FIG. 3 is a diagram showing measurement of the reference intensity (Est (f)) of electromagnetic waves. As shown in the figure, when a 50 μm insulating sheet is sandwiched between the entire edge (width 70 mm, length 50 mm), the intensity of the electromagnetic wave measured from the edge is taken as the reference intensity. The reference intensity is measured for each frequency to be measured, and the reference intensity is set to Est (f) (f: frequency).
Here, E (f) / Est (f) (electromagnetic wave intensity / electromagnetic wave reference intensity) was used as an index for evaluating the electromagnetic wave intensity.

さらに通電点の状態の評価方法を説明する。まず、図2に示すように、通電部間の距離(d1,2,3,4)を求め、最も距離の遠いもの(d3)を通電部の最大間隔とする。また、電磁波の透過する方向に対する通電部の長さの一例としては、最大の通電部間となる通電部を結ぶ直線(l3)に垂線を引きその垂線に投影される通電部の長さla,lbを求め、長さの短い方(lb)を通電部長さとする。   Furthermore, the evaluation method of the state of a conduction point is demonstrated. First, as shown in FIG. 2, the distance (d1, 2, 3, 4) between the energization parts is obtained, and the distance (d3) farthest from the distance is set as the maximum interval between the energization parts. Further, as an example of the length of the energization part with respect to the direction in which the electromagnetic wave is transmitted, the length la of the energization part projected on the perpendicular line drawn on the straight line (13) connecting the energization parts between the largest energization parts, lb is obtained, and the shorter one (lb) is defined as the length of the energizing portion.

図4は、電位分布の測定方法を説明する図である。5mm×5mm間隔で導線12をシールドボックス5のふちの表面にはんだ付けによって接続した。ふちの板同士に電圧を印加し、4Aの電流を流した。そして図中でGroundと記されている導線に対する電位差を導線毎に測定を行い、電位分布を求めた。図5は、電位分布の測定結果例を示す図である。同図中のa,bおよびc点では、その電位が周囲より低く極小値となっており、通電部となっていることが分かる。   FIG. 4 is a diagram illustrating a method for measuring a potential distribution. Conductive wires 12 were connected to the edge of the shield box 5 by soldering at intervals of 5 mm × 5 mm. A voltage was applied between the edge plates and a current of 4 A was applied. Then, the potential difference with respect to the conductor indicated as “Ground” in the figure was measured for each conductor to obtain the potential distribution. FIG. 5 is a diagram illustrating an example of the measurement result of the potential distribution. At points a, b, and c in the figure, the potential is a minimum value lower than that of the surroundings, and it can be seen that this is an energizing portion.

このようして通電部の位置と形状を測定し、通電部の間隔および長さを求め、これらと電磁波の強度との関係を調べたのが、次に示す図6である。   FIG. 6 shows the relationship between the position and the shape of the energization part, the interval and length of the energization part, and the relationship between these and the intensity of the electromagnetic wave.

通電部長さが5mm(図5中、電位−50μVでaの大きさを決定した)の場合の、通電部の最大間隔d(図5中のaとbの間隔)による、漏洩電磁波の強度(電磁波の強度/電磁波の基準強度)の変化を、図6に示す。通電部の最大間隔が小さくなる程電磁波の強度が弱くなることが分かる。   Intensity of leaked electromagnetic waves due to the maximum interval d (interval between a and b in FIG. 5) when the energization portion length is 5 mm (in FIG. 5, the magnitude of a is determined at a potential of −50 μV) The change in electromagnetic wave intensity / electromagnetic wave reference intensity is shown in FIG. It turns out that the intensity | strength of electromagnetic waves becomes weak, so that the maximum space | interval of an electricity supply part becomes small.

以上説明したように、金属板と金属板間の通電部の位置と形状を特定し、それらから求めた通電部間の最大の間隔dと通電部の長さlに基づいて、図6の関係から演算装置(図示せず)を用いて、直接漏洩する電磁波を測定するのではなく、間接的に漏洩する電磁波の強度を特定できる。   As described above, the position and shape of the current-carrying part between the metal plates are specified, and the relationship shown in FIG. 6 is based on the maximum distance d between the current-carrying parts and the length l of the current-carrying part obtained therefrom. The intensity of electromagnetic waves leaking indirectly can be specified instead of directly measuring electromagnetic waves leaking using an arithmetic device (not shown).

図1中のd(通電部間の最大間隔)による電磁波(出力)の変化を、図7に示す(通電部長さl=30mm)。d=0mmの場合、板-板間を透過する電磁波はほとんど測定されない。通電部間の最大間隔dが40,さらに80mmと広くなると、透過する電磁波の強度が強くなり、また透過する電磁波の周波数の下限値が低くなることが分かる。このように通電部の長さ(=l)を30mmとし、通電部間の最大間隔dが0,40,80mmなどと測定されると、板-板間のすき間を漏洩する電磁波の強度が評価できる。   FIG. 7 shows the change in electromagnetic wave (output) due to d (maximum distance between the energized portions) in FIG. 1 (the energized portion length l = 30 mm). When d = 0 mm, the electromagnetic wave transmitted between the plates is hardly measured. It can be seen that when the maximum distance d between the current-carrying parts is widened to 40, further 80 mm, the intensity of the transmitted electromagnetic wave increases and the lower limit value of the frequency of the transmitted electromagnetic wave decreases. Thus, when the length (= l) of the current-carrying part is 30 mm and the maximum distance d between the current-carrying parts is measured to be 0, 40, 80 mm, etc., the strength of the electromagnetic wave leaking through the gap between the plates is evaluated. it can.

図8に示すように、幅100mm,長さ35mmのふちの電位分布を測定して通電部を求め、
板−板間を透過する電磁波を測定した。(状態−1)および(状態−2)の場合の電位分布を、図9および10に示す。白い矢印の部分で電位が極小となっており、通電部となっていることが分かる。通電点間の最大距離は、(状態−1)の場合は80mm,(状態−2)の場合は60mmであった。
As shown in FIG. 8, the potential distribution of the edge having a width of 100 mm and a length of 35 mm is measured to obtain the energized portion.
Electromagnetic waves transmitted between the plates were measured. The potential distribution in the case of (State-1) and (State-2) is shown in FIGS. It can be seen that the white arrow indicates that the potential is minimal and that the current-carrying portion is formed. The maximum distance between the energization points was 80 mm in (State-1) and 60 mm in (State-2).

それぞれの場合に板−板間を透過した電磁波の周波数特性を、図11および12に示す。(状態−2)の場合は、(状態−1)の場合と比較して電磁波の強度が弱くなっている。つまり、通電点間の最大距離が小さくなると、板−板間を透過する電磁波の強度が弱くなり、通電点間の最大距離から透過する電磁波の強度を評価することが可能であることが分かる。   The frequency characteristics of the electromagnetic waves transmitted between the plates in each case are shown in FIGS. In the case of (State-2), the intensity of the electromagnetic wave is weaker than in the case of (State-1). That is, when the maximum distance between the energization points is reduced, the intensity of the electromagnetic wave transmitted between the plates decreases, and it is understood that the intensity of the electromagnetic wave transmitted from the maximum distance between the energization points can be evaluated.

図13に、板−板を重ね、電流を流したときに測定された板表面の電位分布を示す。この電位分布より電流密度の分布を求め、それから計算された発散の分布を、図14に示す。発散が負となっている部分(矢印)が、板−板間の通電部であると考えられる。   FIG. 13 shows the potential distribution on the plate surface measured when plates are stacked and current is passed. FIG. 14 shows the distribution of current density obtained from this potential distribution and the distribution of divergence calculated therefrom. The portion (arrow) where the divergence is negative is considered to be a current-carrying portion between the plates.

金属板と金属板を重ねた部分を透過する電磁波の様子を模式的に示す図である。It is a figure which shows typically the mode of the electromagnetic wave which permeate | transmits the part which accumulated the metal plate and the metal plate. 電磁波の漏洩の測定方法と通電部の評価方法を説明する図である。It is a figure explaining the measuring method of electromagnetic wave leakage, and the evaluation method of an electricity supply part. 電磁波の基準強度(Est(f))の測定を示す図である。It is a figure which shows the measurement of the reference | standard intensity | strength (Est (f)) of electromagnetic waves. 電位分布の測定方法を説明する図である。It is a figure explaining the measuring method of potential distribution. 電位分布の測定結果例を示す図である。It is a figure which shows the example of a measurement result of electric potential distribution. 通電部の最大間隔による電磁波の減衰を示す図である。It is a figure which shows attenuation | damping of the electromagnetic wave by the largest space | interval of an electricity supply part. 通電部の最大間隔による電磁波の周波数特性の変化を示す図である。It is a figure which shows the change of the frequency characteristic of the electromagnetic waves by the largest space | interval of an electricity supply part. 電位分布の測定条件を示す図である。It is a figure which shows the measurement conditions of electric potential distribution. 電位分布(状態−1)を示す図である。It is a figure which shows electric potential distribution (state-1). 電位分布(状態−2)を示す図である。It is a figure which shows electric potential distribution (state-2). 測定された電磁波の特性(状態−1)を示す図である。It is a figure which shows the characteristic (state-1) of the measured electromagnetic wave. 測定された電磁波の特性(状態−2)を示す図である。It is a figure which shows the characteristic (state-2) of the measured electromagnetic wave. 電位分布を示す図である。It is a figure which shows electric potential distribution. 電流密度の発散の分布を示す図である。It is a figure which shows distribution of the divergence of an electric current density.

符号の説明Explanation of symbols

1 金属板
2 電磁波(入力)
3 電磁波(出力)
4 通電部
5 シールドボックス
6 発信機
7 アンテナ
8 受信機
9 溶接部
10 絶縁部
11 通電測定部
12 導線
1 Metal plate 2 Electromagnetic wave (input)
3 Electromagnetic waves (output)
4 Current-carrying part 5 Shield box 6 Transmitter 7 Antenna 8 Receiver 9 Welding part 10 Insulating part 11 Current-measuring part 12 Conductor

Claims (7)

金属板と金属板を重ねた状態で、金属板間に生ずる通電部の位置と形状を測定し,前記通電部同士の間隔の中で最大の間隔に基づいて、金属板間の隙間を漏洩する電磁波の強度を評価することを特徴とする電磁波漏洩の評価方法。 Measure the position and shape of the current-carrying parts that occur between the metal plates with the metal plates stacked, and leak the gaps between the metal plates based on the maximum distance between the current-carrying parts. An evaluation method of electromagnetic wave leakage characterized by evaluating the intensity of electromagnetic waves. 金属板と金属板を重ねた状態で、金属板間に生ずる通電部の位置と形状を測定し,前記通電部同士の間隔の中で最大の間隔と、電磁波の透過する方向に対する前記通電部の長さとに基づいて、金属板間の隙間を漏洩する電磁波の強度を評価することを特徴とする電磁波漏洩の評価方法。 With the metal plate and the metal plate being overlapped, the position and shape of the energization part generated between the metal plates are measured, and the maximum interval of the intervals between the energization units and the direction of transmission of the electromagnetic wave to the electromagnetic wave transmission direction. An electromagnetic wave leakage evaluation method characterized by evaluating the strength of an electromagnetic wave leaking through a gap between metal plates based on the length. 請求項1または請求項2に記載の電磁波漏洩の評価方法において、
前記金属板間に電流を流し、金属板表面に生ずる電位分布を測定することによって通電部の位置と形状を測定することを特徴とする電磁波漏洩の評価方法。
In the evaluation method of electromagnetic wave leakage according to claim 1 or 2,
An electromagnetic wave leakage evaluation method characterized by measuring the position and shape of a current-carrying portion by passing a current between the metal plates and measuring a potential distribution generated on the surface of the metal plate.
請求項3に記載の電磁波漏洩の評価方法において、
前記金属板表面に複数の導線を接続して、その導線間の電位差を測定することによって、前記金属板表面の電位分布を測定することを特徴とする電磁波漏洩の評価方法。
In the electromagnetic wave leakage evaluation method according to claim 3,
An electromagnetic wave leakage evaluation method, comprising: measuring a potential distribution on a surface of the metal plate by connecting a plurality of conductive wires to the surface of the metal plate and measuring a potential difference between the conductive wires.
請求項3または請求項4に記載の電磁波漏洩の評価方法において、
金属板表面の電位分布より電流密度の分布を求め、求めた電流密度分布の発散の値が負または正となっている部分を通電部と判断して電磁波漏洩を評価することを特徴とする電磁波漏洩の評価方法。
In the evaluation method of electromagnetic wave leakage according to claim 3 or claim 4,
An electromagnetic wave characterized in that a current density distribution is obtained from a potential distribution on the surface of a metal plate, and an electromagnetic wave leakage is evaluated by determining a portion where the divergence value of the obtained current density distribution is negative or positive as a current-carrying part. Leakage assessment method.
請求項1ないし請求項5のいずれか1項に記載の電磁波漏洩の評価方法において、
前記金属板は、鋼板であることを特徴とする電磁波漏洩の評価方法。
In the electromagnetic wave leakage evaluation method according to any one of claims 1 to 5,
The method for evaluating electromagnetic wave leakage, wherein the metal plate is a steel plate.
金属板と金属板を重ねた状態で、前記金属板の表面に接続した導線と、
該導線間の電位差を測定する電位差計と、
該電位差計で測定した電位差から前記金属板の表面での電位分布を求めて、金属板間で生ずる通電部の位置と形状を演算し、前記通電部同士の間隔の中で最大の間隔と、電磁波の透過する方向に対する前記通電部の長さとに基づいて、金属板間の隙間を漏洩する電磁波の強度を評価する演算装置と、
を備えることを特徴とする電磁波漏洩の評価装置。
In a state where the metal plate and the metal plate are stacked, a conductive wire connected to the surface of the metal plate,
A potentiometer for measuring the potential difference between the conductors;
Obtaining the potential distribution on the surface of the metal plate from the potential difference measured by the potentiometer, calculating the position and shape of the energization portion generated between the metal plates, the maximum interval among the intervals between the energization portions, An arithmetic device that evaluates the strength of the electromagnetic wave leaking through the gap between the metal plates, based on the length of the energization part with respect to the direction in which the electromagnetic wave is transmitted;
An apparatus for evaluating leakage of electromagnetic waves, comprising:
JP2006224922A 2005-10-18 2006-08-22 Electromagnetic leakage evaluation method and apparatus Expired - Fee Related JP4998682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006224922A JP4998682B2 (en) 2005-10-18 2006-08-22 Electromagnetic leakage evaluation method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005302610 2005-10-18
JP2005302610 2005-10-18
JP2006224922A JP4998682B2 (en) 2005-10-18 2006-08-22 Electromagnetic leakage evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2007139750A true JP2007139750A (en) 2007-06-07
JP4998682B2 JP4998682B2 (en) 2012-08-15

Family

ID=38202773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006224922A Expired - Fee Related JP4998682B2 (en) 2005-10-18 2006-08-22 Electromagnetic leakage evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP4998682B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part
JP2011232063A (en) * 2010-04-26 2011-11-17 Jfe Steel Corp Method and device for measuring potential distribution of metal plate
JP2017009420A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method and device for measuring current
JP2017009421A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method of measuring current

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302946A (en) * 1992-04-15 1993-11-16 Nec Corp Evaluation method of electromagnetic shielding effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302946A (en) * 1992-04-15 1993-11-16 Nec Corp Evaluation method of electromagnetic shielding effect

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part
JP2011232063A (en) * 2010-04-26 2011-11-17 Jfe Steel Corp Method and device for measuring potential distribution of metal plate
JP2017009420A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method and device for measuring current
JP2017009421A (en) * 2015-06-22 2017-01-12 Jfeスチール株式会社 Method of measuring current

Also Published As

Publication number Publication date
JP4998682B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4998682B2 (en) Electromagnetic leakage evaluation method and apparatus
JP2012123019A (en) Flexible electromagnetic acoustic transducer sensor
CN212275677U (en) Electromagnetic ultrasonic phased array probe
EP2975417B1 (en) Measurement device and mounting unit
JP5157323B2 (en) Method and apparatus for measuring position of current-carrying part
Xie et al. A novel variable-length meander-line-coil EMAT for side lobe suppression
Majidnia et al. Investigations on a pulsed eddy current system for flaw detection using an encircling coil on a steel pipe
JP5410827B2 (en) Electromagnetic wave source determination method and apparatus
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JP2017040591A (en) Current sensor
US20220229094A1 (en) Magnetic sensor and current detecting apparatus including the same
JP5741228B2 (en) Current point evaluation device for metal plate surface
JP2011232063A (en) Method and device for measuring potential distribution of metal plate
WO2020179454A1 (en) Common mode noise transmission path estimation device
Azizzadeh et al. Detection of sub-surface defects in ferromagnetic steels using a pulsed eddy current technique
JP5000672B2 (en) Electromagnetic field analysis method, electromagnetic field analysis apparatus, and computer program
WO2013018458A1 (en) Surface current probe
JP2009145056A (en) Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detector
US20140312889A1 (en) Magnet evaluation device and method
Sunaga et al. Electromagnetic Noise Analysis of High-Voltage Wiring Harnesses
Grcev et al. Comparison between exact and quasi-static methods for HF analysis of horizontal buried wires
JP5433202B2 (en) Noise evaluation device
JP7452285B2 (en) coil device
KR101256501B1 (en) Emat for improving electromagnetic ultrasonic by using magnetism at edge of magnet
Mori et al. A Practical Method of Evaluating the Effectiveness of the Use of a Magneto-dielectric Absorber for Common Mode Suppression on Coaxial Cables

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Ref document number: 4998682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees