JP2017009420A - Method and device for measuring current - Google Patents

Method and device for measuring current Download PDF

Info

Publication number
JP2017009420A
JP2017009420A JP2015124629A JP2015124629A JP2017009420A JP 2017009420 A JP2017009420 A JP 2017009420A JP 2015124629 A JP2015124629 A JP 2015124629A JP 2015124629 A JP2015124629 A JP 2015124629A JP 2017009420 A JP2017009420 A JP 2017009420A
Authority
JP
Japan
Prior art keywords
current
potential
metal plate
reference point
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015124629A
Other languages
Japanese (ja)
Other versions
JP6332162B2 (en
Inventor
渡辺 裕一
Yuichi Watanabe
裕一 渡辺
木島 剛
Takeshi Kijima
剛 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015124629A priority Critical patent/JP6332162B2/en
Publication of JP2017009420A publication Critical patent/JP2017009420A/en
Application granted granted Critical
Publication of JP6332162B2 publication Critical patent/JP6332162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current measurement method and device, which allow for identifying a section of a metal plate surface with a current flow and the amount of the current flow without using current measurement means.SOLUTION: A method of measuring current involves: defining a reference potential point and three or more potential measurement points on a surface of a metal plate opposite a surface from which current flows out; measuring a potential difference between the reference point and each of the potential measurement points; and computing an amount of the current flowing out from the metal plate based on the measured potential differences.SELECTED DRAWING: Figure 4

Description

本発明は、電気測定に関する技術分野に関し、特に、金属板表面から流れ出る電流を測定する電流の測定方法および装置に関するものである。   The present invention relates to a technical field related to electrical measurement, and more particularly to a current measuring method and apparatus for measuring a current flowing out from a metal plate surface.

一般に、界面での現象を、正確に観察あるいは測定するには困難が伴う。図1は、2枚の重なった金属板に電圧が印加されて電流が流れている様子を示す図である。また、図2は、金属板が溶液に浸漬されて腐食する様子を示す図である。   In general, it is difficult to accurately observe or measure the phenomenon at the interface. FIG. 1 is a diagram illustrating a state in which a voltage is applied to two overlapping metal plates and a current flows. Moreover, FIG. 2 is a figure which shows a mode that a metal plate is immersed in a solution and corrodes.

例えば、図1に示すように、金属板Aの上に金属板Bが重なった状態で電圧が印加されて電流が流れている場合、金属板間に複数の通電部(図1では、3つの通電部)があるとき、合計した電流値Itotalは測定可能であるものの、通電部のそれぞれの位置を特定し、通電部毎にそれぞれ流れている電流値(I、I、I)を正確に求めることは困難である。 For example, as shown in FIG. 1, when a voltage is applied and a current flows in a state where the metal plate B is overlapped on the metal plate A, a plurality of current-carrying parts (three in FIG. The total current value I total can be measured when there is a current-carrying part), but the position of each current-carrying part is specified and the current value flowing through each current-carrying part (I 1 , I 2 , I 3 ) It is difficult to determine accurately.

また、図2に示すように金属板が溶液に浸漬されて腐食している場合、アノード部では酸化反応が起きており、金属板表面から溶液へ金属板の原子Mが陽イオンMn+となって溶解する。また、カソード部では還元反応が起きている。つまり、アノード部では金属板から溶液へ、カソード部では溶液から金属板へ電流が流れている。ここで電流が流れている部位および電流値がわかれば、腐食している場所およびその程度を知ることができるが、金属板表面から外部の環境へ流れている電流を直接正確に測定することは困難である。 Further, as shown in FIG. 2, when the metal plate is immersed in the solution and corroded, an oxidation reaction occurs in the anode part, and atoms M of the metal plate from the metal plate surface to the solution become cations M n + . Dissolves. In addition, a reduction reaction occurs at the cathode portion. That is, current flows from the metal plate to the solution at the anode portion and from the solution to the metal plate at the cathode portion. If you know the part where the current is flowing and the current value, you can know the location and the degree of corrosion, but it is not possible to accurately measure the current flowing from the metal plate surface to the outside environment. Have difficulty.

図1に示す場合では、特許文献1に、一方の金属板表面の電位分布を測定し、その電位分布から通電部の位置を測定する技術が開示されている。   In the case shown in FIG. 1, Patent Document 1 discloses a technique for measuring a potential distribution on the surface of one metal plate and measuring the position of the energization unit from the potential distribution.

以下に、「発明を実施するための形態」において参照する非特許文献を含めて、先行技術文献を示す。   Prior art documents including non-patent documents referred to in the “DETAILED DESCRIPTION OF THE INVENTION” are shown below.

特開2007−139750号公報JP 2007-139750 A

「数値計算 理工系の基礎数学8」、高橋大輔、岩波書店、pp. 90−96、2000」"Numerical calculation Basic mathematics of science and engineering 8", Daisuke Takahashi, Iwanami Shoten, pp. 90-96, 2000 "

特許文献1に開示されている技術は、重ねられた2枚の金属板に電流が流れた場合、どちらか一方の金属板表面に生じた電位分布から通電部の位置を求める方法である。金属板の幅方向、長さ方向、板厚方向を、それぞれx、y、z方向とし、x、y方向の微小領域毎に「電流の発散」を求め、発散の正負によって、通電部の位置を求めるものである。   The technique disclosed in Patent Document 1 is a method for obtaining the position of the energization portion from the potential distribution generated on the surface of one of the two metal plates when a current flows through the two stacked metal plates. The width direction, the length direction, and the plate thickness direction of the metal plate are x, y, and z directions, respectively, and “current divergence” is obtained for each minute region in the x and y directions. Is what you want.

板表面で測定された2次元(x,y)の電位分布をV(x,y)とし、板の導電率をσとすると、電流密度の分布i(x,y)は、(A)式で与えられる。   When the two-dimensional (x, y) potential distribution measured on the surface of the plate is V (x, y) and the conductivity of the plate is σ, the current density distribution i (x, y) is expressed by equation (A). Given in.

Figure 2017009420
Figure 2017009420

そして、求められた電流密度の分布から、以下の(B)式のように、電流の発散D(divergence)が得られる。   Then, from the obtained current density distribution, a current divergence D (divergence) is obtained as in the following equation (B).

Figure 2017009420
Figure 2017009420

ここで、特許文献1では金属板表面に半田付け等で接続された導線によって、金属板表面の電位が測定できることが示されている。   Here, Patent Document 1 shows that the potential on the surface of the metal plate can be measured by a conductive wire connected to the surface of the metal plate by soldering or the like.

特許文献1は、(B)式のDが正あるいは負の値となる部分を通電部と判断するもので、Dは通電部に流れる電流値に正確には対応していない。したがって、通電部に流れる電流値を測定された電位から直接正確に知ることはできない。   In Patent Document 1, a portion where D in Equation (B) is a positive or negative value is determined as a current-carrying portion, and D does not accurately correspond to a current value flowing through the current-carrying portion. Therefore, the value of the current flowing through the energization unit cannot be directly and accurately known from the measured potential.

さらに、特許文献1の測定方法では、板厚による電位の変化が考慮されていない。そのため、表面の電位分布を測定する金属板がある程度厚い場合には、板厚の影響を受けて表面の電位とその反対の面との電位が異なるため、測定による誤差が大きくなる。   Further, in the measurement method of Patent Document 1, a change in potential due to the plate thickness is not taken into consideration. Therefore, when the metal plate for measuring the surface potential distribution is thick to some extent, the surface potential is different from the potential on the opposite side due to the influence of the plate thickness, and the error due to the measurement increases.

本発明は、上記のような事情に鑑みてなされたものであり、電流測定手段を用いることなく、1枚の金属板表面の電流が流れている場所およびその値を求めることができる、電流の測定方法および装置を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and it is possible to determine the location and value of the current flowing on the surface of one metal plate without using current measuring means. An object of the present invention is to provide a measurement method and apparatus.

上記課題を解決するために、本発明は以下の特徴を有している。   In order to solve the above problems, the present invention has the following features.

[1] 金属板の一方の面から外部の環境に流れ出す電流の電流値を求める電流の測定方法であって、
前記金属板の、電流が流れ出している面とは反対の面に電位の基準点および3点以上の電位測定点を決定し、
前記基準点と前記電位測定点との電位差をそれぞれ測定し、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求めることを特徴とする電流の測定方法。
[1] A current measurement method for obtaining a current value of a current flowing from one surface of a metal plate to an external environment,
Determine a potential reference point and three or more potential measurement points on the surface of the metal plate opposite to the surface from which current is flowing,
Measure the potential difference between the reference point and the potential measurement point,
A method for measuring current, characterized in that a current value flowing out of the metal plate is obtained by calculation based on the measured potential difference.

[2] 上記[1]に記載の電流の測定方法において、
前記電位の基準点および4点の電位測定点を決定し、
前記電流値を演算によって求めるにあたっては、
以下の(1)式で求めることを特徴とする電流の測定方法。
[2] In the method for measuring current according to [1] above,
Determine a reference point for the potential and four potential measurement points;
In calculating the current value by calculation,
A method for measuring current, which is obtained by the following equation (1).

Figure 2017009420
Figure 2017009420

[3] 金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定方法であって、
前記金属板の、電流が流れ出している面とは反対の面に電位の基準点および3点以上の電位測定点を決定するステップ1と、
前記基準点と前記電位測定点との電位差をそれぞれ測定するステップ2と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求めるステップ3を有し、
前記ステップ1、ステップ2、およびステップ3をこの順序で繰り返すことによって金属板から流れ出す電流の分布を決定することを特徴とする電流の測定方法。
[3] A current measurement method for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
Determining a potential reference point and three or more potential measurement points on the surface of the metal plate opposite to the surface from which current is flowing; and
Measuring a potential difference between the reference point and the potential measurement point, respectively,
A step 3 of obtaining a current value flowing out of the metal plate based on the measured potential difference by calculation;
A method of measuring current, wherein the distribution of current flowing out from the metal plate is determined by repeating Step 1, Step 2, and Step 3 in this order.

[4] 金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定方法であって、
前記金属板の、電流が流れ出している面とは反対の面全エリアにわたる所定の電位測定点における電位測定を行うステップ0と、
前記電位測定点の内、電位の基準点および3点以上の電位測定点を決定するステップ1と、
前記基準点と前記電位測定点との電位差をそれぞれ測定するステップ2と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求めるステップ3を有し、
前記ステップ1、ステップ2、およびステップ3をこの順序で繰り返すことによって金属板から流れ出す電流の分布を決定することを特徴とする電流の測定方法。
[4] A current measurement method for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
Step 0 of measuring the potential at a predetermined potential measuring point over the entire area of the surface of the metal plate opposite to the surface where current is flowing;
Determining a potential reference point and three or more potential measurement points among the potential measurement points;
Measuring a potential difference between the reference point and the potential measurement point, respectively,
A step 3 of obtaining a current value flowing out of the metal plate based on the measured potential difference by calculation;
A method of measuring current, wherein the distribution of current flowing out from the metal plate is determined by repeating Step 1, Step 2, and Step 3 in this order.

[5] 上記[3]または[4]に記載の電流の測定方法において、
前記ステップ1で電位の基準点および4点の電位測定点を決定し、
前記ステップ3で電流値を演算によって求めるにあたっては、
以下の(1)式で求めることを特徴とする電流分布の測定方法。
[5] In the method for measuring current according to [3] or [4] above,
In step 1, a reference point of potential and four potential measurement points are determined,
In calculating the current value in step 3 above,
A method for measuring a current distribution, which is obtained by the following equation (1).

Figure 2017009420
Figure 2017009420

[6] 金属板の一方の面から外部の環境に流れ出す電流の電流値を求める電流の測定装置であって、
前記金属板の、電流が流れ出す面とは反対の面に設けられた電位の基準点および3点以上の電位測定点に接続される接続部と、
前記基準点と前記電位測定点との電位差をそれぞれ測定する電位計と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求める演算器を具備することを特徴とする電流の測定装置。
[6] A current measuring device for obtaining a current value of a current flowing from one surface of a metal plate to an external environment,
A connecting portion connected to a reference point of potential and three or more potential measuring points provided on a surface of the metal plate opposite to a surface from which current flows;
An electrometer for measuring a potential difference between the reference point and the potential measurement point, respectively;
An apparatus for measuring current, comprising: a calculator for calculating a current value flowing out of the metal plate based on the measured potential difference.

[7] 上記[6]に記載の電流の測定装置において、
前記接続部は、前記電位の基準点および4点の電位測定点に接続され、
前記電流値を演算によって求めるにあたっては、
以下の(1)式で求めることを特徴とする電流の測定装置。
[7] In the current measuring device according to [6] above,
The connection part is connected to the reference point of the potential and four potential measurement points,
In calculating the current value by calculation,
A current measuring device obtained by the following equation (1).

Figure 2017009420
Figure 2017009420

[8] 金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定装置であって、
前記金属板の、電流が流れ出している面とは反対の面に設けられた電位の基準点および3点以上の電位測定点に接続される接続部と、
前記基準点と前記電位測定点との電位差をそれぞれ測定する電位計と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求める演算器を具備し、
前記接続部を所定の規則にしたがって移動させて電流の分布を測定することを特徴とする電流の測定装置。
[8] A current measuring device for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
A connecting portion connected to a reference point of potential and three or more potential measuring points provided on the surface of the metal plate opposite to the surface from which current is flowing;
An electrometer for measuring a potential difference between the reference point and the potential measurement point, respectively;
Comprising a calculator for calculating a current value flowing out of the metal plate based on the measured potential difference,
A current measuring apparatus, wherein the current distribution is measured by moving the connecting portion according to a predetermined rule.

[9] 金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定装置であって、
前記金属板は電流が流れ出す面とは反対の面に所定の間隔で設けられた測定点を有し、
該測定点のうちの任意の一点を電位の基準点、該電位の基準点の周囲の3点以上の測定点を電位測定点とし、
前記電位の基準点および前記電位測定点に接続される接続部と、
前記基準点と前記電位測定点との電位差をそれぞれ測定する電位計と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求める演算器を具備し、
前記接続部を所定の規則にしたがって移動させて電流の分布を測定することを特徴とする電流の測定装置。
[9] A current measuring device for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
The metal plate has measurement points provided at a predetermined interval on a surface opposite to a surface from which current flows.
Any one of the measurement points is a potential reference point, and three or more measurement points around the potential reference point are potential measurement points.
A connection portion connected to the reference point of the potential and the potential measurement point;
An electrometer for measuring a potential difference between the reference point and the potential measurement point, respectively;
Comprising a calculator for calculating a current value flowing out of the metal plate based on the measured potential difference,
A current measuring apparatus, wherein the current distribution is measured by moving the connecting portion according to a predetermined rule.

[10] 金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定装置であって、
前記金属板は電流が流れ出す面とは反対の面に所定の間隔で設けられた測定点すべてに接続される接続部と、
該接続部を電位測定点として予めすべての電位を測定する電位計と、
測定した電位を記憶し記憶した電位データのうち、前記電位測定点の任意の一点を電位の基準点および該電位の基準点の周囲の3点以上を測定点とし、該電位の基準点と該3点以上の測定点に対応する記憶した電位データから前記基準点と前記測定点との電位差をもとに前記金属板から流れ出す電流値を演算によって求める演算器を具備し、
前記電位の基準点および該電位の基準点の周囲の3点以上の測定点を所定の規則にしたがって移動させて電流の分布を測定することを特徴とする電流の測定装置。
[10] A current measuring device for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
The metal plate is connected to all measurement points provided at a predetermined interval on the surface opposite to the surface from which current flows, and
An electrometer that measures all potentials in advance using the connection portion as a potential measurement point;
Of the potential data stored and stored, the potential measurement point is any one of the potential measurement points, and the potential reference point and three or more points around the potential reference point are measurement points. Comprising a calculator for calculating a current value flowing out from the metal plate based on a potential difference between the reference point and the measurement point from stored potential data corresponding to three or more measurement points;
An apparatus for measuring current, wherein a current distribution is measured by moving a reference point of the potential and three or more measurement points around the reference point of the potential according to a predetermined rule.

[11] 上記[8]〜[10]のいずれか1項に記載の電流の測定装置において、
前記電位の基準点および4点の測定点を電位測定点とし、
前記電流値を演算によって求めるにあたっては、
以下の(1)式で求めることを特徴とする電流の測定装置。
[11] In the current measuring device according to any one of [8] to [10],
The potential reference point and the four measurement points are potential measurement points,
In calculating the current value by calculation,
A current measuring device obtained by the following equation (1).

Figure 2017009420
Figure 2017009420

本発明によれば、金属板表面から外部に流れ出ている電流を、金属板の裏面の電位分布から計算するようにしているので、電流計を用いることなく金属板表面から流れ出る電流の電流分布を誤差なく測定することができる。   According to the present invention, since the current flowing out from the metal plate surface is calculated from the potential distribution on the back surface of the metal plate, the current distribution of the current flowing out from the metal plate surface without using an ammeter is obtained. It can be measured without error.

2枚の重なった金属板に電圧が印加されて電流が流れている様子を示す図である。It is a figure which shows a mode that a voltage is applied to two metal plates which overlap and the electric current is flowing. 金属板が溶液に浸漬されて腐食する様子を示す図である。It is a figure which shows a mode that a metal plate is immersed in a solution and corrodes. 本発明の装置構成の一例を示す図である。It is a figure which shows an example of the apparatus structure of this invention. 本発明を模式的に説明する図である。It is a figure which illustrates this invention typically. 電位測定用治具の一例を示す図である。It is a figure which shows an example of the jig | tool for electric potential measurement. 金属板の裏面に所定の間隔で設けた電極を用いた測定例を示す図である。It is a figure which shows the example of a measurement using the electrode provided in the back surface of the metal plate at predetermined intervals. 本発明の処理手順の一例を示す図である。It is a figure which shows an example of the process sequence of this invention. 本発明の処理手順の他の一例を示す図である。It is a figure which shows another example of the process sequence of this invention. 本実施例を説明する図である。It is a figure explaining a present Example. 本実施例におけるC-実験値とC-計算値の比較を示す図である。It is a figure which shows the comparison of the C-experimental value and C-calculated value in a present Example. 実施例における電流の実験値と推定値の比較を示す図である。It is a figure which shows the comparison of the experimental value and estimated value of the electric current in an Example. 定数Cを考慮しない場合の電流の推定値と実験値の比較を示す図である。It is a figure which shows the comparison of the estimated value of an electric current when not considering the constant C, and an experimental value.

前述したとおり、外部の環境と接触している金属板一方の面(以下、表面とも称する)から外部の環境へ流れている電流を直接測定すること、特に常時測定し続けることは困難である。しかし、金属板の表面とは反対の面(以下、裏面とも称する)、すなわち外部の環境とは接触していない面から電流を測定することが出来れば、金属板の腐食部位や程度を知ることが出来る。ここで、金属板の表面から外部環境へ流れ出す電流を測定するために、裏面から電位を測定することで、金属板から流れ出す電流を求めることが出来る。   As described above, it is difficult to directly measure the current flowing from one surface (hereinafter, also referred to as a surface) of the metal plate that is in contact with the external environment to the external environment, particularly to continuously measure it. However, if the current can be measured from the surface opposite to the surface of the metal plate (hereinafter also referred to as the back surface), that is, the surface that is not in contact with the external environment, the location and degree of corrosion of the metal plate can be known. I can do it. Here, in order to measure the current flowing from the front surface of the metal plate to the external environment, the current flowing from the metal plate can be obtained by measuring the potential from the back surface.

しかし、金属板が厚い場合、板厚の影響を受けて正確な電流値が求められない。金属板の板厚が1.0mm未満の場合は、z方向(板厚方向)の電位変化が小さいので、金属板の測定面で測定された電位から、金属板表面から流れ出す電流を求めることができるが、板厚が約1.0mm以上の場合、z方向の電位の変化が大きくなり、金属板裏面で測定された電位から金属板表面から流れる電流を正確に求めることができない。   However, when the metal plate is thick, an accurate current value cannot be obtained due to the influence of the plate thickness. When the plate thickness of the metal plate is less than 1.0 mm, since the potential change in the z direction (plate thickness direction) is small, the current flowing out from the surface of the metal plate can be obtained from the potential measured on the measurement surface of the metal plate. However, when the plate thickness is about 1.0 mm or more, the change in potential in the z direction becomes large, and the current flowing from the surface of the metal plate cannot be accurately determined from the potential measured on the back surface of the metal plate.

そこで、本発明者らが鋭意研究した結果、金属板の裏面の複数の場所で電位を測定し、電位差から計算によって、金属板表面から流れ出す電流値を正確に求めることが出来ることを見出し本発明に想到した。   Therefore, as a result of intensive studies by the present inventors, it has been found that the current value flowing out from the surface of the metal plate can be accurately obtained by measuring the potential at a plurality of locations on the back surface of the metal plate and calculating from the potential difference. I came up with it.

図3は、本発明の装置構成の一例を示す図である。図中、1は金属板、15は導線、20は電位計、30は演算器をそれぞれ表す。   FIG. 3 is a diagram showing an example of the apparatus configuration of the present invention. In the figure, 1 is a metal plate, 15 is a conducting wire, 20 is an electrometer, and 30 is a calculator.

金属板1から流れ出ている電流の電流値を測定したい面(表面)の反対の面(裏面)に、電位差測定用の導線15を複数設置し、電位計20でそれぞれの電位を測定し、測定した電位に基づいて演算器30で金属板表面から流れ出す電流値を演算する。電位計20は、通常は2点間の電位を測定するものであるが、図3に示すように、多数の電位を同時に測定できるように多チャンネルの電位計を用いても良い。   A plurality of conductors 15 for potential difference measurement are installed on the surface (back surface) opposite to the surface (front surface) on which the current value of the current flowing out of the metal plate 1 is to be measured. Based on the potential, the calculator 30 calculates the current value flowing out from the surface of the metal plate. The electrometer 20 normally measures the potential between two points, but as shown in FIG. 3, a multi-channel electrometer may be used so that a large number of potentials can be measured simultaneously.

ここで、金属板1の裏面の電位測定は、1点の電位の基準点および3点以上の電位測定点で行う。電位測定点が2点以下では正確に電流が計算できないためである。なお、電位測定点の数が多ければより正確な電流値が計算できることは言うまでもないが、一方で計算自体が複雑になり、計算の負荷が大きくなるばかりでなく、計算結果の精度が計算の負荷に対して見合うほど良くならない。したがって、ここでは1点の電位の基準点および4点の電位測定点の場合を例に、以下に説明する。   Here, the potential of the back surface of the metal plate 1 is measured at one potential reference point and three or more potential measurement points. This is because the current cannot be accurately calculated when there are two or less potential measurement points. It goes without saying that more accurate current values can be calculated if the number of potential measurement points is large, but on the other hand, the calculation itself becomes complicated and not only increases the calculation load, but also the accuracy of the calculation result increases the calculation load. It does n’t get as good as it can. Therefore, the following description will be given by taking the case of one potential reference point and four potential measurement points as an example.

図4は、本発明を模式的に説明する図である。図4(a)および(b)は、1枚の金属板1の表面を上から見た上面図、および上面図のA方向から金属板の側面を見た側面図をそれぞれ表している。   FIG. 4 is a diagram schematically illustrating the present invention. 4A and 4B respectively show a top view of the surface of one metal plate 1 as viewed from above, and a side view of the side surface of the metal plate as viewed from the direction A in the top view.

図4(a)に示すように、電位の基準点p(以下、単に基準点とも称する)と4点の電位測定点(それぞれa,b,c,dとする)が配置される。(1)式の導出の容易さから、4点の電位測定点は、x、y座標において略ひし形に配置される。すなわち、図4(a)に示すように、電位測定点a,cを結ぶ線分acと電位測定点b, dを結ぶ線分bdが基準点pの位置で直交するように配置されることが重要である。このように線分acと線分bdが基準点pの位置で直交するように配置されていれば、線分ac、線分bdがそれぞれx軸、y軸と平行になっていなくてもよい。なお、測定点が3点または5点以上の場合でも電流値の計算は可能であるが、座標系が直交しないので、計算が複雑になり、また計算量も増える。   As shown in FIG. 4A, a potential reference point p (hereinafter also simply referred to as a reference point) and four potential measurement points (referred to as a, b, c, and d, respectively) are arranged. From the ease of derivation of the equation (1), the four potential measurement points are arranged in a substantially rhombus in the x and y coordinates. That is, as shown in FIG. 4A, the line segment ac connecting the potential measurement points a and c and the line segment bd connecting the potential measurement points b and d are arranged so as to be orthogonal at the position of the reference point p. is important. As described above, if the line segment ac and the line segment bd are arranged so as to be orthogonal to each other at the position of the reference point p, the line segment ac and the line segment bd may not be parallel to the x-axis and the y-axis, respectively. . Note that the current value can be calculated even when there are three or more measurement points, but since the coordinate system is not orthogonal, the calculation becomes complicated and the calculation amount increases.

電流を測定する金属板1の板厚をt、導電率をσとして、金属板1の幅方向、長さ方向、板厚方向を、それぞれx、y、z方向とする。また、金属板1のz=0の面を裏面、z=tの面を表面とする。そして、金属板1の表面が外部の環境に接触し、金属板1の表面から、外部の環境に電流が流れているとする。外部の環境は、各種液体やスラリー、空気を含む各種ガス雰囲気、各種類の金属等、測定対象となる金属板との間に電流が流れる媒体である。   Let the thickness of the metal plate 1 for measuring current be t and the conductivity be σ, and let the width direction, length direction, and plate thickness direction of the metal plate 1 be the x, y, and z directions, respectively. Further, the z = 0 plane of the metal plate 1 is the back surface, and the z = t plane is the front surface. Then, it is assumed that the surface of the metal plate 1 is in contact with the external environment, and current flows from the surface of the metal plate 1 to the external environment. The external environment is a medium in which current flows between a metal plate to be measured, such as various liquids, slurries, various gas atmospheres including air, and various types of metals.

外部へ電流が流れている金属板1の表面の中心位置の座標位置は(X,Y,t)、外部へ流れている電流値を推定する範囲は、図中で網掛けをした矩形(幅ΔX=(ΔX1+ΔX2)/2、長さΔY=(ΔY1+ΔY2)/2)の範囲である。そして、この範囲内から外部の環境に流れている電流値の総計をIとする。 The coordinate position of the center position of the surface of the metal plate 1 where the current flows to the outside is (X, Y, t), and the range for estimating the value of the current flowing to the outside is a shaded rectangle (width) ΔX = (ΔX 1 + ΔX 2 ) / 2, length ΔY = (ΔY 1 + ΔY 2 ) / 2). The total current value flowing from this range to the external environment is I.

金属板1と外部の環境との間で電流が流れる時、流れる電流の大きさに見合った電位分布が金属板1の裏面に発生する。この電位分布の状態を、電位計で測定する。ここで、金属板1の裏面の座標(X,Y,0)、(X−ΔX2,Y,0)、(X+ΔX1,Y,0)、(X,Y−ΔY2,0)、(X,Y+ΔY1,0)の5点で電位を測定する。 When a current flows between the metal plate 1 and the external environment, a potential distribution corresponding to the magnitude of the flowing current is generated on the back surface of the metal plate 1. The state of this potential distribution is measured with an electrometer. Here, the coordinates (X, Y, 0), (X−ΔX 2 , Y, 0), (X + ΔX 1 , Y, 0), (X, Y−ΔY 2 , 0) of the back surface of the metal plate 1 , Measure the potential at 5 points (X, Y + ΔY 1 , 0).

座標(X,Y,0)を電位の基準点(Ground)とし、(X−ΔX2,Y,0)、(X+ΔX1,Y,0)、(X,Y−ΔY2,0)および(X,Y+ΔY1,0)を測定点として、座標(X,Y,0)と(X−ΔX2,Y,0)、(X+ΔX1,Y,0)、(X,Y−ΔY2,0)および(X,Y+ΔY1,0)との間の電位差を、電位計を用いてそれぞれ測定し、各測定点の電位差を、それぞれV(X−ΔX2)、V(X+ΔX1)、V(Y−ΔY2)およびV(Y+ΔY1)とする。 Coordinates (X, Y, 0) are set as potential reference points (Ground), and (X−ΔX 2 , Y, 0), (X + ΔX 1 , Y, 0), (X, Y−ΔY 2 , 0) And (X, Y + ΔY 1 , 0) as measurement points, coordinates (X, Y, 0) and (X−ΔX 2 , Y, 0), (X + ΔX 1 , Y, 0), (X, Y−ΔY 2 , 0) and (X, Y + ΔY 1 , 0) are each measured using an electrometer, and the potential difference at each measurement point is V (X−ΔX 2 ), Let V (X + ΔX 1 ), V (Y−ΔY 2 ), and V (Y + ΔY 1 ).

このようにして測定された各測定点の電位から、金属板から流れ出る電流値Iを、次の(1)式で求める。(1)式は、前述した(B)式を差分法(例えば、非特許文献1を参照方)によって離散化して得られる。なお、(B)式の定義に従うと電流の発散Dは、金属板から外部へ電流が流れた場合に負、そして外部から金属板へ電流が流れた場合に正となるが、ここでは正負を逆にしている。   The current value I flowing out from the metal plate is determined by the following equation (1) from the potential at each measurement point thus measured. The expression (1) is obtained by discretizing the above-described expression (B) by a difference method (for example, refer to Non-Patent Document 1). According to the definition of equation (B), the current divergence D is negative when current flows from the metal plate to the outside, and is positive when current flows from the outside to the metal plate. It is reversed.

Figure 2017009420
Figure 2017009420

以上説明したように、本発明は、板表面から板外部に電流が流れている電流を、電流が外部に流れ出している面とは反対の面の電位分布から、正確に求める技術である。   As described above, the present invention is a technique for accurately obtaining the current flowing from the plate surface to the outside of the plate from the potential distribution on the surface opposite to the surface from which the current flows to the outside.

ここで、ΔX、ΔYを可能な限り小さくした方が推定できる電流値の精度が高くなるが、実際には測定点を非常に狭い間隔で金属板に設けることは困難であるため、ΔX、ΔYは5.0[mm]以上とする。また、求められる電流値の精度が低くなるため、ΔX、ΔYは10.0[mm]以下とする。   Here, if ΔX and ΔY are made as small as possible, the accuracy of the current value that can be estimated increases, but in reality, it is difficult to provide measurement points on the metal plate at very narrow intervals. Is 5.0 [mm] or more. Further, since the accuracy of the required current value is lowered, ΔX and ΔY are set to 10.0 [mm] or less.

なお、ここでは電位の基準点を、金属板の表面の中心位置(座標を(X,Y,0))として説明したが、実際に電流を測定する場合は、電流が流れている領域の中心に基準点を設定できるとは限らない。しかし、本発明の原理からして、電位の基準点が(X−ΔX2,Y,0)、(X+ΔX1,Y,0)、(X,Y−ΔY2,0)、(X,Y+ΔY1,0)の範囲内にあり、かつΔX=(ΔX1+ΔX2)/2、ΔY=(ΔY1+ΔY2)/2という条件を満たしていればよい。 Although the potential reference point has been described here as the center position of the surface of the metal plate (coordinates are (X, Y, 0)), the center of the region where the current is flowing is measured when the current is actually measured. It is not always possible to set a reference point. However, based on the principle of the present invention, the reference points of the potential are (X−ΔX 2 , Y, 0), (X + ΔX 1 , Y, 0), (X, Y−ΔY 2 , 0), (X , Y + ΔY 1 , 0) and satisfy the condition of ΔX = (ΔX 1 + ΔX 2 ) / 2 and ΔY = (ΔY 1 + ΔY 2 ) / 2.

測定を簡便に行うために、電位の基準点および4点の測定点に相当する電極を、電位の基準点が(X−ΔX2,Y,0)、(X+ΔX1,Y,0)、(X,Y−ΔY2,0)、(X,Y+ΔY1,0)の範囲内にあり、かつΔX=(ΔX1+ΔX2)/2、ΔY=(ΔY1+ΔY2)/2という条件を満たすように配置した接続部を用意すれば、この接続部を金属板の裏面に確実に接触させることで、電位を測定することが出来、電流値を求めることが出来る。また、この接続部を移動させて電位を測定すれば、それぞれの場所での電流値を求めることが出来、これにより広い範囲の電流分布を得ることができる。 In order to perform measurement easily, electrodes corresponding to the reference point of potential and the four measurement points are set to (X−ΔX 2 , Y, 0), (X + ΔX 1 , Y, 0) , (X, Y−ΔY 2 , 0), (X, Y + ΔY 1 , 0), and ΔX = (ΔX 1 + ΔX 2 ) / 2, ΔY = (ΔY 1 + ΔY 2 ) / 2 If the connection part arranged so as to satisfy the condition is prepared, the potential can be measured and the current value can be obtained by reliably contacting the connection part with the back surface of the metal plate. Further, if the potential is measured by moving this connection portion, the current value at each location can be obtained, and thereby a wide range of current distribution can be obtained.

図5は、電位測定用治具の一例を示す図である。図5(a)は、電位測定用治具を用いた装置構成例、(b)は、電位測定用治具の斜視図を示す。図中、10は電位測定用治具、15は導線、101は基板、102は端子、103はバネをそれぞれ表す。   FIG. 5 is a diagram illustrating an example of a potential measurement jig. FIG. 5A shows an apparatus configuration example using a potential measurement jig, and FIG. 5B shows a perspective view of the potential measurement jig. In the figure, 10 represents a potential measuring jig, 15 represents a conducting wire, 101 represents a substrate, 102 represents a terminal, and 103 represents a spring.

電位測定用治具10は、金属板1の接続部を容易に移動するための治具であり、金属板1の絶縁体等で形成された基板101に導線15接続用の複数(図では5つ)の端子102を具備する。   The electric potential measuring jig 10 is a jig for easily moving the connecting portion of the metal plate 1, and a plurality (5 in the figure) for connecting the conductive wire 15 to the substrate 101 formed of an insulator of the metal plate 1 or the like. Terminal 102.

そして、金属板1への導線15の途中に、押付け用のバネ103を配置し金属板1の裏面との接続を確実なものとしている。金属板1の裏面に沿って電位測定用治具10を移動させることによって、金属板1との接続部を移動させることができ広い範囲の電流分布を得ることができる。   A spring 103 for pressing is arranged in the middle of the conducting wire 15 to the metal plate 1 to ensure connection with the back surface of the metal plate 1. By moving the potential measurement jig 10 along the back surface of the metal plate 1, the connection portion with the metal plate 1 can be moved, and a wide range of current distribution can be obtained.

また、予め金属板の裏面に電位測定用の電極を所定の間隔で複数設けておいてもよい。図6は、金属板の裏面に所定の間隔で設けた電極を用いた測定例を示す図である。図中、1は金属板、104は電極、15は導線、20は電位計、30は演算器をそれぞれ示す。   Further, a plurality of potential measurement electrodes may be provided in advance on the back surface of the metal plate at predetermined intervals. FIG. 6 is a diagram illustrating an example of measurement using electrodes provided at predetermined intervals on the back surface of the metal plate. In the figure, 1 is a metal plate, 104 is an electrode, 15 is a conducting wire, 20 is an electrometer, and 30 is a calculator.

金属板1の裏面に所定の間隔で設けた複数の電極104の中から電位を測定する電極104を選択し導線15を接続することで、電位を測定することが可能になる。この時、電位の基準点を適宜選択すれば、その周囲の測定点との間の電位を測定することで、電流分布を得ることができる。   The potential can be measured by selecting the electrode 104 for measuring the potential from the plurality of electrodes 104 provided on the back surface of the metal plate 1 at a predetermined interval and connecting the conductive wire 15. At this time, if a potential reference point is appropriately selected, a current distribution can be obtained by measuring the potential between the surrounding measurement points.

さらに、図6のように予め電極を所定の間隔で複数設けることは同じであるが、設けた電極104全てに導線15を接続した状態で、同時に全ての測定点の電位を測定するようにしてもよい。すなわち、電位の基準点を一点決めて、その基準点に対する全ての電位測定点の電位を測定し、電位測定点間の電位差から電流値を求めるようにしてもよい。   Further, as shown in FIG. 6, it is the same that a plurality of electrodes are provided in advance at a predetermined interval. However, the potentials of all the measurement points are measured at the same time in a state in which the conducting wire 15 is connected to all the provided electrodes 104. Also good. That is, it is also possible to determine one potential reference point, measure the potential at all potential measurement points with respect to the reference point, and obtain the current value from the potential difference between the potential measurement points.

この場合、電位の基準点は金属板1の測定点の中のひとつでも、金属板1の測定点以外の点としてもよい。また金属板1の外部に基準点を設けても良い。金属板1の測定点以外、または金属板1の外部に電位の基準点を設ける場合は、電位の基準点は接地させることが望ましい。   In this case, the potential reference point may be one of the measurement points of the metal plate 1 or a point other than the measurement point of the metal plate 1. Further, a reference point may be provided outside the metal plate 1. When providing a reference point of potential other than the measurement point of the metal plate 1 or outside the metal plate 1, it is desirable to ground the reference point of potential.

各測定点の、電位の基準点に対する電位を求めた後、測定点の任意の点をあらためて電流計算の基準点とし、当該電流計算の基準点とその周囲の測定点との電位差を再計算して、電流計算の基準点の周囲を流れる電流値を求めることができる。電流計算の基準点を適宜移動させることで、金属板1の電流分布を得ることができる。   After obtaining the potential of each measurement point relative to the reference point of the potential, re-calculate the potential difference between the reference point of the current calculation and the surrounding measurement points by using any point of the measurement point as the reference point for current calculation. Thus, the value of the current flowing around the current calculation reference point can be obtained. The current distribution of the metal plate 1 can be obtained by appropriately moving the reference point for current calculation.

このように構成することで、任意の時刻での電流分布を得ることも可能になる。金属板の電流分布が時間的に変化する場合には、より好適な構成である。   With this configuration, it is possible to obtain a current distribution at an arbitrary time. This is a more preferable configuration when the current distribution of the metal plate changes with time.

なお、電極の配置は、図6に示す正方格子以外にも、例えば斜方格子や六角格子のような配置としてもよい。   In addition to the square lattice shown in FIG. 6, the electrode may be disposed in an oblique lattice or hexagonal lattice, for example.

図7は、本発明の処理手順の一例を示す図である。図7のフローに従って処理手順例を説明する。   FIG. 7 is a diagram showing an example of the processing procedure of the present invention. A processing procedure example will be described according to the flow of FIG.

先ず、Step01で、電流が流れ出している面とは反対の面に電位の基準点および3点以上の電位測定点を決定する。そして、Step02で、決定した基準点と電位測定点との電位差をそれぞれ測定する。   First, in Step 01, a potential reference point and three or more potential measurement points are determined on the surface opposite to the surface from which current flows. In Step 02, the potential difference between the determined reference point and the potential measurement point is measured.

そして、Step03で、Step02で測定した電位差に基づいて、前述の(1)式から金属板から流れ出す電流値を演算によって求める。これで、上記で決定した基準点と電位測定点とで決まるエリアから流れ出す電流値は演算できるが、金属板の他のエリアから流れ出す電流値を演算し電流分布を求めるためには、新しい電位の基準点および3点以上の電位測定点を決定する以降の処理、すなわちStep01〜Step03を繰り返す。   Then, in Step 03, based on the potential difference measured in Step 02, the current value flowing out from the metal plate is obtained by calculation from the above-described equation (1). Now, the current value flowing out from the area determined by the reference point and the potential measurement point determined above can be calculated, but in order to calculate the current value flowing out from other areas of the metal plate and obtain the current distribution, The subsequent processing for determining the reference point and three or more potential measurement points, that is, Step 01 to Step 03 are repeated.

Step04で、求めたいエリア全ての電流値演算が終了したら、Step05で、電流分布を出力し処理を終了する。以上は、測定箇所を移動しながらStep01〜Step03を繰り返して金属板からの電流分布を求める手順を示した。   When the current value calculation for all the areas to be obtained is completed in Step 04, the current distribution is output in Step 05 and the process is terminated. The above shows the procedure for obtaining the current distribution from the metal plate by repeating Step 01 to Step 03 while moving the measurement location.

図8は、本発明の処理手順の他の一例を示す図である。電流分布を求めるエリア全てに予め電極を所定の間隔で複数設けて、同時に全ての電位測定を行なう点が先の処理手順とは異なっている。   FIG. 8 is a diagram showing another example of the processing procedure of the present invention. This is different from the previous processing procedure in that a plurality of electrodes are provided in advance in all areas where current distribution is obtained at a predetermined interval and all potentials are measured simultaneously.

すなわち、先の図7のStep01の前段に図8ではStep00として、全域での電位測定を先ず行い演算器の中に電位データとして記憶しておく。そして、Step01では演算器の中でソフト的に基準点および測定点を決定し、Step02では決定した基準点および測定点に対する電位データに基づいて電位差をそれぞれ測定する。   In other words, the potential measurement in the entire area is first performed as Step 00 in FIG. 8 immediately before Step 01 of FIG. 7, and is stored as potential data in the arithmetic unit. In Step 01, the reference point and the measurement point are determined by software in the arithmetic unit, and in Step 02, the potential difference is measured based on the potential data for the determined reference point and measurement point.

そして、測定した電位差に基づいて所定エリアから流れ出す電流値を演算(Step03)の後、Step01に戻りStep03までの処理を、Step04で求めたいエリア全ての電流値演算が終了と判断するまで繰り返す。Step05で電流分布を出力し処理を終了する点は同じである。   Then, after calculating the current value flowing out from the predetermined area based on the measured potential difference (Step 03), returning to Step 01, the processing up to Step 03 is repeated until it is determined that the current value calculation for all the areas to be obtained in Step 04 is completed. It is the same in that the current distribution is output in Step 05 and the process is terminated.

本発明を確かめるために行った実施例について、以下に説明を行う。図9は、本実施例を説明する図である。金属板として普通鋼の鋼板を用いた。図9(a)および(b)は、それぞれ鋼板の表面を上から見た上面図、および鋼板を側面から見た側面図である。   Examples carried out to confirm the present invention will be described below. FIG. 9 is a diagram for explaining the present embodiment. A plain steel plate was used as the metal plate. FIGS. 9A and 9B are a top view of the surface of the steel plate as viewed from above and a side view of the steel plate as viewed from the side.

図9に示すように、鋼板の幅方向、長さ方向、板厚方向を、それぞれx、y、z方向とする。鋼板は、z=0の面を裏面、z=tの面を表面とする。以下、必要に応じて、諸元を[mm]で表す。   As shown in FIG. 9, let the width direction, length direction, and plate | board thickness direction of a steel plate be x, y, z direction, respectively. The steel sheet has the z = 0 plane as the back surface and the z = t surface as the front surface. Hereinafter, the specification is expressed in [mm] as necessary.

サンプルは、x、y方向に20[mm]の正方形、板厚tは、0.1[mm]、 0.5[mm]、 1.0[mm]、 5.0[mm]、および10.0[mm]の5種類とした。   The sample was a square of 20 [mm] in the x and y directions, and the thickness t was five types of 0.1 [mm], 0.5 [mm], 1.0 [mm], 5.0 [mm], and 10.0 [mm]. .

鋼板の裏面の中心点の座標を(10,10,0)とする。ここで、ΔX1=ΔX2=ΔY1=ΔY2= d [mm]とし、各電位測定点の電位を測定する。dは2.5、5.0、7.5[mm]とした。つまり、dが2.5[mm]の場合は、ΔX1=ΔX2=ΔY1=ΔY2=2.5[mm]、dが5.0[mm]の場合は、ΔX1=ΔX2=ΔY1=ΔY2=5.0[mm]、dが7.5[mm]の場合は、ΔX1=ΔX2=ΔY1=ΔY2=7.5[mm]となる。 Let the coordinates of the center point of the back side of the steel plate be (10, 10, 0). Here, ΔX 1 = ΔX 2 = ΔY 1 = ΔY 2 = d [mm], and the potential at each potential measurement point is measured. d was 2.5, 5.0, and 7.5 [mm]. That is, when d is 2.5 [mm], ΔX 1 = ΔX 2 = ΔY 1 = ΔY 2 = 2.5 [mm], and when d is 5.0 [mm], ΔX 1 = ΔX 2 = ΔY 1 = ΔY 2 When x = 5.0 [mm] and d is 7.5 [mm], ΔX 1 = ΔX 2 = ΔY 1 = ΔY 2 = 7.5 [mm].

各電位測定点に、電位測定用の導線を接続する。電位測定点の各座標(X−ΔX2, Y, 0)、(X+ΔX1, Y, 0)、(X, Y−ΔY2, 0)、(X, Y+ΔY1, 0)は、前述のとおり、d=2.5[mm]のときは、(7.5,10.0,0)、(12.5,10.0,0)、(10.0,7.5,0)、(10.0,12.5,0)、d=5.0[mm]のときは、(5.0,10.0,0)、(15.0,10.0,0)、(10.0,5.0,0)、(10.0,15.0,0)、d=7.5[mm]のときは、(2.5,10.0,0)、(17.5,10.0,0)、(10.0,2.5,0)、(10.0,17.5,0)となる。 A potential measurement lead wire is connected to each potential measurement point. The coordinates (X−ΔX 2 , Y, 0), (X + ΔX 1 , Y, 0), (X, Y−ΔY 2 , 0), (X, Y + ΔY 1 , 0) of the potential measurement point are As described above, when d = 2.5 [mm], (7.5,10.0,0), (12.5,10.0,0), (10.0,7.5,0), (10.0,12.5,0), d = 5.0 When [mm], (5.0,10.0,0), (15.0,10.0,0), (10.0,5.0,0), (10.0,15.0,0), and when d = 7.5 [mm] 2.5,10.0,0), (17.5,10.0,0), (10.0,2.5,0), and (10.0,17.5,0).

鋼板裏面のこれらの座標に、確実に電位測定できるように、導線を半田付けで接続した。中心点(10,10,0)点を電位の基準点(Ground)として、(X−ΔX2, Y, 0)、(X+ΔX1, Y, 0)、(X, Y−ΔY2, 0)、(X, Y+ΔY1, 0)点で測定された電位の基準点との電位を、それぞれV(X−ΔX2)、V(X+ΔX1)、V(Y−ΔY2)およびV(Y+ΔY1)とする。また、Sx=Sy=dt[mm2]とした。 Conductive wires were connected to these coordinates on the back surface of the steel plate by soldering so that potential measurement could be performed reliably. With the center point (10,10,0) as the ground reference point (Ground), (X−ΔX 2 , Y, 0), (X + ΔX 1 , Y, 0), (X, Y−ΔY 2 , 0), (X, Y + ΔY 1 , 0), the potentials measured with respect to the reference point of V (X−ΔX 2 ), V (X + ΔX 1 ), V (Y−ΔY 2 ), respectively. ) And V (Y + ΔY 1 ). Further, S x = S y = dt [mm 2 ].

ここで、前記(1)式の定数Cが明らかになれば、金属板裏面の電位から、金属板表面から外部の環境に流れ出す電流値を知ることができる。そこで、金属板の表面と外部の環境との間に電流が流れる状況を作るために、金属板に電流が流れるように実験系を構成し、金属板の裏面の電位を測定した。すなわち、図4(a)に示すように、金属板に正(+)、負(−)の電極を取り付けて、金属板に電流が流れるようにした。   Here, if the constant C in the equation (1) is clarified, the value of current flowing from the metal plate surface to the external environment can be known from the potential on the back surface of the metal plate. Therefore, in order to create a situation where a current flows between the surface of the metal plate and the external environment, an experimental system was configured so that a current flows through the metal plate, and the potential on the back surface of the metal plate was measured. That is, as shown in FIG. 4 (a), positive (+) and negative (-) electrodes were attached to the metal plate so that current would flow through the metal plate.

正(+)の給電用の導線(直径1mm)は、図中の太い点線で示すように、鋼板の4端面中心に半田付けで接続した。負(−)の給電用の導線は、図中の太い実線で示すように、鋼板の表面の座標(10、10、t)に半田付けで接続した。給電部に電圧を印加すると、鋼板周囲から鋼板表面の中心を通って電流が流れる。負の給電用の導線に流れる電流は測定可能であり、測定される電流をIとする。また、正の給電部4箇所を流れる電流も、給電部毎に測定可能であり、それらの総和はIと等しくなる。   The positive (+) power supply lead (diameter 1 mm) was connected to the center of the four end faces of the steel plate by soldering as shown by the thick dotted line in the figure. The negative (−) power supply lead wire was connected by soldering to the coordinates (10, 10, t) on the surface of the steel plate, as indicated by the thick solid line in the figure. When a voltage is applied to the power feeding unit, a current flows from the periphery of the steel sheet through the center of the steel sheet surface. The current flowing through the negative power supply lead can be measured, and the measured current is I. Further, the current flowing through the four positive power feeding units can also be measured for each power feeding unit, and the sum of them is equal to I.

金属板の裏面には、図9(b)に示すように、各測定点に電位測定用の導線を半田付けで接続した。   On the back surface of the metal plate, as shown in FIG. 9B, a potential measurement lead wire was connected to each measurement point by soldering.

負の給電用の導線を基準(Ground)とし、I=10.0Aとなるように電圧を印加したときの金属板の裏面の電位V(X−ΔX2)、V(X+ΔX1)、V(Y−ΔY2)およびV(Y+ΔY1)をそれぞれ測定し、σを鉄の値(1.0×104[1/(Ω・mm)])として、前記(1)式から定数Cを求めた。ここで、前述のとおりdの値を変え、また板厚tも、0.1[mm]、0.5[mm]、1.0[mm]、5.0[mm]、10.0[mm]として実験し、それぞれの定数Cの値を求めた。これらの値をC-実験値とする。 The potential V (X−ΔX 2 ), V (X + ΔX 1 ), V on the back side of the metal plate when a voltage is applied so that I = 10.0 A, with the negative lead wire as the reference (Ground) (Y−ΔY 2 ) and V (Y + ΔY 1 ) are measured, and σ is a value of iron (1.0 × 10 4 [1 / (Ω · mm)]), and the constant C is calculated from the above equation (1). Asked. Here, as described above, the value of d was changed, and the thickness t was also experimented with 0.1 [mm], 0.5 [mm], 1.0 [mm], 5.0 [mm], 10.0 [mm], and each constant C The value of was obtained. Let these values be C-experimental values.

一方、d=2.5、5.0、7.5[mm]それぞれの場合に対して、(2)式で定数a, b, cを求めた。さらに、板厚tを、1.0[mm]、5.0[mm]、10.0[mm]として、(3)式で求めたC、つまりこれらの計算式から求めたCをC-計算値とする。   On the other hand, the constants a, b, and c were obtained by the equation (2) for each of d = 2.5, 5.0, and 7.5 [mm]. Further, assuming that the plate thickness t is 1.0 [mm], 5.0 [mm], and 10.0 [mm], C obtained by the equation (3), that is, C obtained from these equations is defined as a C-calculated value.

Figure 2017009420
Figure 2017009420

Figure 2017009420
Figure 2017009420

図10は、本実施例におけるC-実験値とC-計算値の比較を示す図である。計算から求められたC(C-計算値 )は、実験で求めたC(C-実験値)とほぼ一致していることが分かる。ただし、C-実験値から、板厚が1.0[mm]未満の場合は、定数Cはほとんど変化がないことがわかる。よって板厚が1.0[mm]未満の場合は、C=1.1とする。   FIG. 10 is a diagram showing a comparison between C-experimental values and C-calculated values in this example. It can be seen that C (C-calculated value) obtained from the calculation almost coincides with C (C-experimental value) obtained in the experiment. However, from the C-experimental values, it can be seen that the constant C hardly changes when the plate thickness is less than 1.0 [mm]. Therefore, C = 1.1 when the plate thickness is less than 1.0 [mm].

図11は、実施例における電流の実験値と推定値の比較を示す図である。以上のようにして決めた定数Cを用いて(1)式にて演算した電流の推定値と実験値(この場合、10[A]一定)とを合わせて示している。板厚が1.0[mm]、5.0[mm]、10.0[mm]の場合は、dが2.5[mm]、5.0[mm]、7.5[mm]と変化しても、誤差5%程度(多くても10[A]に対する10.5[A]程度)に上手く収まっている。なお、板厚が1.0[mm]未満の0.1[mm]、0.5[mm]では、バラツキが多いように見えるが、これはC=1.1と一定にしたためであるが、それでも誤差10%未満(9〜11[A])に収まっている。   FIG. 11 is a diagram showing a comparison between an experimental value and an estimated value of current in the example. The estimated current value calculated by the equation (1) using the constant C determined as described above and the experimental value (in this case, 10 [A] constant) are shown together. When the plate thickness is 1.0 [mm], 5.0 [mm], 10.0 [mm], even if d changes to 2.5 [mm], 5.0 [mm], 7.5 [mm], the error is about 5% (at most Is also well within 10.5 [A] for 10 [A]. In addition, when the plate thickness is less than 1.0 [mm], 0.1 [mm] and 0.5 [mm], it seems that there are many variations, but this is because C = 1.1 was constant, but the error is still less than 10% (9 ~ 11 [A]).

図12は、定数Cを考慮しない場合の電流の推定値と実験値の比較を示す図である。すなわち、定数CをC=1とした場合の電流の推定値を表している。例えば、板厚が10.0[mm]でdが7.5[mm]の場合では、実験値10[A]に対して推定値では2[A]強と演算されてしまうことを示している。この場合(板厚が10.0[mm]でdが7.5[mm])、図11では実験値10[A]に対して推定値では10.5[A]と格段に推定精度が上がっていることが分る。   FIG. 12 is a diagram showing a comparison between an estimated current value and an experimental value when the constant C is not considered. That is, it represents an estimated current value when the constant C is C = 1. For example, when the plate thickness is 10.0 [mm] and d is 7.5 [mm], the estimated value is calculated to be slightly over 2 [A] with respect to the experimental value 10 [A]. In this case (thickness is 10.0 [mm] and d is 7.5 [mm]), the estimated accuracy is much higher in the estimated value of 10.5 [A] compared to the experimental value of 10 [A] in FIG. The

本発明により、金属板の裏面の電位分布を測定することで、金属板から外部環境に流れている電流を、電流測定手段を用いることなく正確に求めることが可能となった。電流を直接測定することが困難な環境であっても、電流計などの計測手段を用いることなく電流値を知ることができ、また電流分布も明らかになることから、金属板の腐食状況などを知ることも出来る。   According to the present invention, by measuring the potential distribution on the back surface of the metal plate, the current flowing from the metal plate to the external environment can be accurately obtained without using a current measuring means. Even in environments where it is difficult to directly measure current, the current value can be obtained without using a measuring means such as an ammeter, and the current distribution is also clarified. You can also know.

以上の説明は普通鋼板を用いて行ったが、本発明は金属板の電位を測定できればよいので、その他の金属板、例えば銅板、アルミ板、ステンレス板などの金属にも適用できる。さらに、金属板での電位差が測定可能であれば流れ出る微小な電流測定および電流分布測定ができる。   Although the above explanation was performed using a normal steel plate, the present invention only needs to be able to measure the potential of the metal plate, and therefore can be applied to other metal plates such as copper plates, aluminum plates, stainless steel plates and the like. Furthermore, if the potential difference at the metal plate can be measured, minute current measurement and current distribution measurement can be performed.

1 金属板
10 電位測定用治具
101 基板
102 端子
103 バネ
104 電極
15 導線
20 電位計
30 演算器
DESCRIPTION OF SYMBOLS 1 Metal plate 10 Electric potential measurement jig | tool 101 Board | substrate 102 Terminal 103 Spring 104 Electrode 15 Conductor 20 Electrometer 30 Calculator

Claims (11)

金属板の一方の面から外部の環境に流れ出す電流の電流値を求める電流の測定方法であって、
前記金属板の、電流が流れ出している面とは反対の面に電位の基準点および3点以上の電位測定点を決定し、
前記基準点と前記電位測定点との電位差をそれぞれ測定し、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求めることを特徴とする電流の測定方法。
A current measurement method for obtaining a current value of a current flowing from one surface of a metal plate to an external environment,
Determine a potential reference point and three or more potential measurement points on the surface of the metal plate opposite to the surface from which current is flowing,
Measure the potential difference between the reference point and the potential measurement point,
A method for measuring current, characterized in that a current value flowing out of the metal plate is obtained by calculation based on the measured potential difference.
請求項1に記載の電流の測定方法において、
前記電位の基準点および4点の電位測定点を決定し、
前記電流値を演算によって求めるにあたっては、
以下の(1)式で求めることを特徴とする電流の測定方法。
Figure 2017009420
The current measuring method according to claim 1,
Determine a reference point for the potential and four potential measurement points;
In calculating the current value by calculation,
A method for measuring current, which is obtained by the following equation (1).
Figure 2017009420
金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定方法であって、
前記金属板の、電流が流れ出している面とは反対の面に電位の基準点および3点以上の電位測定点を決定するステップ1と、
前記基準点と前記電位測定点との電位差をそれぞれ測定するステップ2と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求めるステップ3を有し、
前記ステップ1、ステップ2、およびステップ3をこの順序で繰り返すことによって金属板から流れ出す電流の分布を決定することを特徴とする電流の測定方法。
A current measurement method for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
Determining a potential reference point and three or more potential measurement points on the surface of the metal plate opposite to the surface from which current is flowing; and
Measuring a potential difference between the reference point and the potential measurement point, respectively,
A step 3 of obtaining a current value flowing out of the metal plate based on the measured potential difference by calculation;
A method of measuring current, wherein the distribution of current flowing out from the metal plate is determined by repeating Step 1, Step 2, and Step 3 in this order.
金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定方法であって、
前記金属板の、電流が流れ出している面とは反対の面全エリアにわたる所定の電位測定点における電位測定を行うステップ0と、
前記電位測定点の内、電位の基準点および3点以上の電位測定点を決定するステップ1と、
前記基準点と前記電位測定点との電位差をそれぞれ測定するステップ2と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求めるステップ3を有し、
前記ステップ1、ステップ2、およびステップ3をこの順序で繰り返すことによって金属板から流れ出す電流の分布を決定することを特徴とする電流の測定方法。
A current measurement method for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
Step 0 of measuring the potential at a predetermined potential measuring point over the entire area of the surface of the metal plate opposite to the surface where current is flowing;
Determining a potential reference point and three or more potential measurement points among the potential measurement points;
Measuring a potential difference between the reference point and the potential measurement point, respectively,
A step 3 of obtaining a current value flowing out of the metal plate based on the measured potential difference by calculation;
A method of measuring current, wherein the distribution of current flowing out from the metal plate is determined by repeating Step 1, Step 2, and Step 3 in this order.
請求項3または請求項4に記載の電流の測定方法において、
前記ステップ1で電位の基準点および4点の電位測定点を決定し、
前記ステップ3で電流値を演算によって求めるにあたっては、
以下の(1)式で求めることを特徴とする電流分布の測定方法。
Figure 2017009420
The current measuring method according to claim 3 or 4,
In step 1, a reference point of potential and four potential measurement points are determined,
In calculating the current value in step 3 above,
A method for measuring a current distribution, which is obtained by the following equation (1).
Figure 2017009420
金属板の一方の面から外部の環境に流れ出す電流の電流値を求める電流の測定装置であって、
前記金属板の、電流が流れ出す面とは反対の面に設けられた電位の基準点および3点以上の電位測定点に接続される接続部と、
前記基準点と前記電位測定点との電位差をそれぞれ測定する電位計と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求める演算器を具備することを特徴とする電流の測定装置。
A current measuring device for obtaining a current value of a current flowing from one surface of a metal plate to an external environment,
A connecting portion connected to a reference point of potential and three or more potential measuring points provided on a surface of the metal plate opposite to a surface from which current flows;
An electrometer for measuring a potential difference between the reference point and the potential measurement point, respectively;
An apparatus for measuring current, comprising: a calculator for calculating a current value flowing out of the metal plate based on the measured potential difference.
請求項6に記載の電流の測定装置において、
前記接続部は、前記電位の基準点および4点の電位測定点に接続され、
前記電流値を演算によって求めるにあたっては、
以下の(1)式で求めることを特徴とする電流の測定装置。
Figure 2017009420
The current measuring device according to claim 6,
The connection part is connected to the reference point of the potential and four potential measurement points,
In calculating the current value by calculation,
A current measuring device obtained by the following equation (1).
Figure 2017009420
金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定装置であって、
前記金属板の、電流が流れ出している面とは反対の面に設けられた電位の基準点および3点以上の電位測定点に接続される接続部と、
前記基準点と前記電位測定点との電位差をそれぞれ測定する電位計と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求める演算器を具備し、
前記接続部を所定の規則にしたがって移動させて電流の分布を測定することを特徴とする電流の測定装置。
A current measuring device for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
A connecting portion connected to a reference point of potential and three or more potential measuring points provided on the surface of the metal plate opposite to the surface from which current is flowing;
An electrometer for measuring a potential difference between the reference point and the potential measurement point, respectively;
Comprising a calculator for calculating a current value flowing out of the metal plate based on the measured potential difference,
A current measuring apparatus, wherein the current distribution is measured by moving the connecting portion according to a predetermined rule.
金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定装置であって、
前記金属板は電流が流れ出す面とは反対の面に所定の間隔で設けられた測定点を有し、
該測定点のうちの任意の一点を電位の基準点、該電位の基準点の周囲の3点以上の測定点を電位測定点とし、
前記電位の基準点および前記電位測定点に接続される接続部と、
前記基準点と前記電位測定点との電位差をそれぞれ測定する電位計と、
測定された前記電位差をもとに前記金属板から流れ出す電流値を演算によって求める演算器を具備し、
前記接続部を所定の規則にしたがって移動させて電流の分布を測定することを特徴とする電流の測定装置。
A current measuring device for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
The metal plate has measurement points provided at a predetermined interval on a surface opposite to a surface from which current flows.
Any one of the measurement points is a potential reference point, and three or more measurement points around the potential reference point are potential measurement points.
A connection portion connected to the reference point of the potential and the potential measurement point;
An electrometer for measuring a potential difference between the reference point and the potential measurement point, respectively;
Comprising a calculator for calculating a current value flowing out of the metal plate based on the measured potential difference,
A current measuring apparatus, wherein the current distribution is measured by moving the connecting portion according to a predetermined rule.
金属板の一方の面から外部の環境に流れ出す電流の電流分布を求める電流の測定装置であって、
前記金属板は電流が流れ出す面とは反対の面に所定の間隔で設けられた測定点すべてに接続される接続部と、
該接続部を電位測定点として予めすべての電位を測定する電位計と、
測定した電位を記憶し記憶した電位データのうち、前記電位測定点の任意の一点を電位の基準点および該電位の基準点の周囲の3点以上を測定点とし、該電位の基準点と該3点以上の測定点に対応する記憶した電位データから前記基準点と前記測定点との電位差をもとに前記金属板から流れ出す電流値を演算によって求める演算器を具備し、
前記電位の基準点および該電位の基準点の周囲の3点以上の測定点を所定の規則にしたがって移動させて電流の分布を測定することを特徴とする電流の測定装置。
A current measuring device for obtaining a current distribution of a current flowing from one surface of a metal plate to an external environment,
The metal plate is connected to all measurement points provided at a predetermined interval on the surface opposite to the surface from which current flows, and
An electrometer that measures all potentials in advance using the connection portion as a potential measurement point;
Of the potential data stored and stored, the potential measurement point is any one of the potential measurement points, and the potential reference point and three or more points around the potential reference point are measurement points. Comprising a calculator for calculating a current value flowing out from the metal plate based on a potential difference between the reference point and the measurement point from stored potential data corresponding to three or more measurement points;
An apparatus for measuring current, wherein a current distribution is measured by moving a reference point of the potential and three or more measurement points around the reference point of the potential according to a predetermined rule.
請求項8〜請求項10のいずれか1項に記載の電流の測定装置において、
前記電位の基準点および4点の測定点を電位測定点とし、
前記電流値を演算によって求めるにあたっては、
以下の(1)式で求めることを特徴とする電流の測定装置。
Figure 2017009420
The current measuring device according to any one of claims 8 to 10,
The potential reference point and the four measurement points are potential measurement points,
In calculating the current value by calculation,
A current measuring device obtained by the following equation (1).
Figure 2017009420
JP2015124629A 2015-06-22 2015-06-22 Current measuring method and apparatus Active JP6332162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124629A JP6332162B2 (en) 2015-06-22 2015-06-22 Current measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124629A JP6332162B2 (en) 2015-06-22 2015-06-22 Current measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2017009420A true JP2017009420A (en) 2017-01-12
JP6332162B2 JP6332162B2 (en) 2018-05-30

Family

ID=57763613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124629A Active JP6332162B2 (en) 2015-06-22 2015-06-22 Current measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP6332162B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050051425A1 (en) * 2003-09-09 2005-03-10 Chih-Cheng Wang Electroplating apparatus with functions of voltage detection and flow rectification
JP2007027022A (en) * 2005-07-21 2007-02-01 Espec Corp Device for measuring electromotive force distribution in fuel cell, and method for measuring electromotive force distribution in fuel cell
JP2007139750A (en) * 2005-10-18 2007-06-07 Jfe Steel Kk Method and device for estimating leakage of electromagnetic wave
JP2007265674A (en) * 2006-03-27 2007-10-11 Espec Corp Fuel cell local generating performance measuring device and fuel cell local generating performance measuring method
JP2007311203A (en) * 2006-05-18 2007-11-29 Espec Corp Cell electromotive current distribution measurement device, and cell electromotive current distribution measurement method
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part
JP2012255659A (en) * 2011-06-07 2012-12-27 Jfe Steel Corp Electric conduction point evaluation device of metal plate surface
JP2015124630A (en) * 2013-12-25 2015-07-06 ダイハツ工業株式会社 Vehicular radiator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050051425A1 (en) * 2003-09-09 2005-03-10 Chih-Cheng Wang Electroplating apparatus with functions of voltage detection and flow rectification
JP2007027022A (en) * 2005-07-21 2007-02-01 Espec Corp Device for measuring electromotive force distribution in fuel cell, and method for measuring electromotive force distribution in fuel cell
JP2007139750A (en) * 2005-10-18 2007-06-07 Jfe Steel Kk Method and device for estimating leakage of electromagnetic wave
JP2007265674A (en) * 2006-03-27 2007-10-11 Espec Corp Fuel cell local generating performance measuring device and fuel cell local generating performance measuring method
JP2007311203A (en) * 2006-05-18 2007-11-29 Espec Corp Cell electromotive current distribution measurement device, and cell electromotive current distribution measurement method
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part
JP2012255659A (en) * 2011-06-07 2012-12-27 Jfe Steel Corp Electric conduction point evaluation device of metal plate surface
JP2015124630A (en) * 2013-12-25 2015-07-06 ダイハツ工業株式会社 Vehicular radiator

Also Published As

Publication number Publication date
JP6332162B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP4904489B2 (en) Damage detection apparatus and damage detection method
JP5701961B2 (en) Electrical conductivity measurement method and electrical conductivity measurement system using the same
US8111059B1 (en) Electric current locator
KR102247989B1 (en) Resistance measuring apparatus, substrate test apparatus, test method and method of maintaining jig for test
US10495678B2 (en) Testing method for sheet resistance and contact resistance of connecting point of sheet material
JP5795358B2 (en) Electrical resistivity survey data acquisition method
US10495593B2 (en) Testing method for sheet resistance of sheet material
JP6332162B2 (en) Current measuring method and apparatus
JP6332163B2 (en) Current measurement method
JP6579132B2 (en) Potential distribution estimation method and potential distribution estimation apparatus
JP5156867B1 (en) Method and apparatus for measuring electrical resistivity of concrete
JP2007003235A (en) Non-destructive inspection method of change in wall thickness of measuring target
US6888359B2 (en) Investigating current
JP7024553B2 (en) Probe of corrosion environment measuring device and corrosion environment measuring device
JP2011196737A (en) Corrosion speed measurement method and corrosion speed measurement probe
JP2020063988A (en) Corrosion sensor
JP6643169B2 (en) Processing device, inspection device and processing method
JP5042166B2 (en) Conductivity measuring device and conductivity measuring method using conductivity measuring device
JP2017125822A (en) Method and device for steel material potential measurement
JP2019113534A (en) Corrosion environment measuring device, and measure method of liquid film thickness and electrical conductivity using the same
JP5463539B2 (en) Electrode current measuring method and current measuring apparatus in conductive liquid
JP6912725B2 (en) Deformation detection method, deformation detection device and deformation detection program
JP7069599B2 (en) Probe of impedance measuring device and impedance measuring device
JP2006308324A (en) Technique for crack depth measuring of deep crack using potential difference method and crack depth measuring instrument
JP2018204987A (en) Jig and device for resistance measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6332162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250