JP2007003235A - Non-destructive inspection method of change in wall thickness of measuring target - Google Patents

Non-destructive inspection method of change in wall thickness of measuring target Download PDF

Info

Publication number
JP2007003235A
JP2007003235A JP2005181038A JP2005181038A JP2007003235A JP 2007003235 A JP2007003235 A JP 2007003235A JP 2005181038 A JP2005181038 A JP 2005181038A JP 2005181038 A JP2005181038 A JP 2005181038A JP 2007003235 A JP2007003235 A JP 2007003235A
Authority
JP
Japan
Prior art keywords
potential difference
terminals
measured
change
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005181038A
Other languages
Japanese (ja)
Inventor
Keisuke Arita
圭介 有田
Tominari Uchiyama
富徳 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlus KK
Original Assignee
Atlus KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlus KK filed Critical Atlus KK
Priority to JP2005181038A priority Critical patent/JP2007003235A/en
Publication of JP2007003235A publication Critical patent/JP2007003235A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-destructive inspection method which enables a simple and precise measurement of a change in the wall thickness of a measuring target. <P>SOLUTION: A plurality of potential difference measuring terminals are arranged on the surface of the measuring target in a matrix state so as to be mutually separated at a predetermined interval and the potential difference or rate of change in potential difference produced between the respective potential difference measuring terminals is measured while supplying a current to the surface of the measuring target through a pair of the electrodes provided so as to hold a plurality of the potential difference measuring terminals to calculate the potential difference distribution or rate-of-change distribution of potential difference in a measuring region. On reference to the relation between the preliminarily related potential difference distribution or the rate-of-change distribution of potential difference and the change in the wall thickness of the measuring target, the change position and change quantity in the wall thickness of the measuring target, the shape of the region changed in the wall thickness of the measuring target and the advance state of the region changed in the wall thickness of the measuring target are detected and measured. The supply current is preferably measured with respect to a plurality of directions and preferably set to a DC or AC pulse. Further, in order to eliminate the change in potential difference due to a factor other than the change in the wall thickness, a plurality of reference terminals are arranged on a reference plate comprising the same material as the measuring target and the reference plate is preferably installed under the same environment as the measuring target to perform measurement. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非破壊検査方法に係り、とくに材料(被測定物)の使用中に発生する被測定物の肉厚変化を検知する非破壊検査方法に関する。   The present invention relates to a nondestructive inspection method, and more particularly, to a nondestructive inspection method for detecting a change in the thickness of an object to be measured that occurs during use of a material (object to be measured).

石油プラントや電力プラント等では、装置および配管等(以下、装置等という)が強い腐食環境や侵食環境に晒される場合が多く、装置等を構成する材料には応力腐食(SCC)、硫化物応力腐食(SSCC)、あるいは粒界腐食等や侵食により、肉厚が全面あるいは局部的に減少する場合がある。これら材料に生じた全面あるいは局部的な肉厚減少は、装置等の破壊原因となることが多いため、装置等の安全確保という観点から早期に検知する必要がある。   In oil and power plants, equipment and piping (hereinafter referred to as equipment) are often exposed to a strong corrosive or erosive environment, and the materials constituting the equipment include stress corrosion (SCC) and sulfide stress. Corrosion (SSCC) or intergranular corrosion or erosion may cause the wall thickness to decrease entirely or locally. Since the overall or local thickness reduction that occurs in these materials often causes damage to the device, it is necessary to detect it from the viewpoint of ensuring the safety of the device.

肉厚減少の検知方法として、従来から超音波探傷法、X線透過法等の非破壊検査方法が提案されている。しかし、これらの検知方法には、測定個所の制限があり、さらに肉厚の絶対値および変化量を精度高く得ることが難しいことや、あるいは複雑で高価な装置を必要とすることなどの問題があった。
比較的精度高く、亀裂等の欠陥の大きさ、形状に関する情報が得られる非破壊検査方法として、電位差法がある。亀裂等の欠陥を含む被測定材に電流を流した際に、欠陥は寸法に応じた電気抵抗を有し、欠陥を挟む両側でこれに対応した電位差が生じる。電位差法は、被測定物に電流を流し、この欠陥を挟む位置での電位差を測定し、その結果から予め求めた校正曲線を利用して、被測定物に含まれる欠陥の形状、寸法に関する情報を得ようとするものである。なお、電位差法には、直流を利用した直流電位差法と交流を利用した交流電位差法がある。
Conventionally, non-destructive inspection methods such as an ultrasonic flaw detection method and an X-ray transmission method have been proposed as methods for detecting a decrease in thickness. However, these detection methods have limitations on measurement points, and it is difficult to obtain the absolute value and change amount of the wall thickness with high accuracy, or complicated and expensive devices are required. there were.
There is a potential difference method as a non-destructive inspection method capable of obtaining information on the size and shape of defects such as cracks with relatively high accuracy. When a current is passed through a material to be measured including a defect such as a crack, the defect has an electrical resistance corresponding to its size, and a potential difference corresponding to this occurs on both sides of the defect. In the potentiometric method, a current is passed through the object to be measured, the potential difference at the position where this defect is sandwiched is measured, and information on the shape and size of the defect contained in the object to be measured is obtained using a calibration curve obtained in advance from the result. Is going to get. The potential difference method includes a direct current potential method using direct current and an alternating current potential method using alternating current.

例えば、特許文献1には、直流電位差法による三次元亀裂の非破壊検査方法が提案されている。特許文献1に記載された技術は、基板表面の電位差分布を測定し、これら測定値と仮定した形状の亀裂から求められる仮想的な電位差分布との差を比較し、測定値と計算値との差が小さくなるように亀裂形状を変化させて亀裂の形状を推定するものであり、任意の縦横比の三次元亀裂の形状、寸法、傾きを定量評価できるとしている。なお、特許文献1に記載された技術によれば、超音波探傷法、X線透過法などの適用が困難な溶接部への適用が容易となるとしている。しかし、特許文献1に記載された方法では、構造物の肉厚変化については、精度よく測定することはできないという問題があった。   For example, Patent Document 1 proposes a non-destructive inspection method for a three-dimensional crack by a DC potential difference method. The technique described in Patent Document 1 measures the potential difference distribution on the surface of the substrate, compares the difference between the measured value and the virtual potential difference distribution obtained from the assumed shape crack, and compares the measured value with the calculated value. The shape of the crack is estimated by changing the crack shape so as to reduce the difference, and the shape, size, and inclination of the three-dimensional crack having an arbitrary aspect ratio can be quantitatively evaluated. In addition, according to the technique described in Patent Document 1, it is said that application to a welded portion where application of an ultrasonic flaw detection method, an X-ray transmission method, or the like is difficult becomes easy. However, the method described in Patent Document 1 has a problem that the thickness change of the structure cannot be accurately measured.

電位差法を利用して、構造物の肉厚変化、構造欠陥の検知を行なう検知装置が、例えば特許文献2に提案されている。特許文献2に記載された検知装置では、溶接等による測定端子の設定を行なうことなく簡便に、測定端子間の電位差を測定することができ、腐食等の環境下における構造物の肉厚変化、構造欠陥の検知を行なうことができるとしている。
特許第3167449号公報 国際公開WO 00/50907号パンフレット
For example, Patent Document 2 proposes a detection device that detects a change in the thickness of a structure and a structural defect using a potential difference method. In the detection device described in Patent Document 2, the potential difference between the measurement terminals can be easily measured without setting the measurement terminals by welding or the like, and the change in the thickness of the structure in an environment such as corrosion, It is said that structural defects can be detected.
Japanese Patent No. 3167449 International Publication WO 00/50907 Pamphlet

しかしながら、特許文献2に記載された検知装置では、測定面上に設定した各端子間の電位差を測定するため、全面腐食の場合のような構造物の肉厚全体が変化する場合には有効であるが、局部腐食や小さな腐食の肉厚変化の検出には、精度が不十分で、最近の更なる精度向上要求に対応できないという問題を残していた。
本発明は、このような従来技術の問題に鑑みてなされたものであり、被測定物の肉厚の絶対値、肉厚変化量、肉厚変化率およびそれらの分布を簡便でかつ精度よく測定できる、被測定物の肉厚変化の非破壊検査方法を提案することを目的とする。
However, since the detection device described in Patent Document 2 measures the potential difference between the terminals set on the measurement surface, it is effective when the entire thickness of the structure changes as in the case of general corrosion. However, there is a problem that the accuracy is insufficient to detect the thickness change of local corrosion or small corrosion, and it cannot meet the recent demand for further accuracy improvement.
The present invention has been made in view of such problems of the prior art, and simply and accurately measures the absolute value of the thickness of the object to be measured, the amount of change in thickness, the rate of change in thickness, and their distribution. An object of the present invention is to propose a nondestructive inspection method for the change in thickness of an object to be measured.

本発明者らは、上記した課題を達成するため、電位差法における肉厚変化の検出精度に及ぼす要因について鋭意研究した。その結果、本発明者らは、直線状またはマトリックス状に電位差測定用端子を配置して、好ましくは複数方向に電流を印加して、各測定端子間の電位差、変化率およびそれらの分布を測定することにより、被測定物の肉厚変化の検出精度が顕著に向上することを見出した。   In order to achieve the above-mentioned problems, the present inventors diligently studied the factors affecting the detection accuracy of the wall thickness change in the potentiometric method. As a result, the present inventors have arranged the potential difference measurement terminals in a linear or matrix form, and preferably applied a current in multiple directions to measure the potential difference, the rate of change, and their distribution between the measurement terminals. By doing so, it has been found that the detection accuracy of the change in thickness of the object to be measured is significantly improved.

本発明は、このような知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)被測定物表面に複数の電位差測定用端子を所定の間隔で離隔して配置し、該複数の電位差測定用端子を挟んで設けられた一対の電極を介して該被測定物表面に電流を供給しながら、前記複数の電位差測定用端子間に生じる電位差を測定して被測定物の肉厚の変化を検出する非破壊検査方法であって、前記複数の電位差測定用端子を直線状またはマトリックス状に配置し、該複数の電位差測定用端子の各端子間に生じる電位差を間歇的または連続的に測定し、測定領域における電位差分布を求め、予め関連づけられた電位差分布と被測定物の肉厚との関係を参照して、被測定物に生じた肉厚変化量および/または肉厚変化率を検知・測定することを特徴とする、被測定物の肉厚変化の非破壊検査方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) A plurality of potential difference measuring terminals are arranged on the surface of the object to be measured at a predetermined interval, and are provided on the surface of the object to be measured via a pair of electrodes provided with the plurality of potential difference measuring terminals interposed therebetween. A nondestructive inspection method for detecting a change in the thickness of an object to be measured by measuring a potential difference generated between the plurality of potential difference measuring terminals while supplying a current, wherein the plurality of potential difference measuring terminals are linearly arranged. Alternatively, it is arranged in a matrix, and the potential difference generated between the terminals of the plurality of potential difference measurement terminals is measured intermittently or continuously to obtain the potential difference distribution in the measurement region. A non-destructive inspection method for thickness change of an object to be measured, characterized by detecting and measuring the thickness change amount and / or the rate of change in thickness of the object to be measured with reference to the relationship with the thickness .

(2)被測定物表面に複数の電位差測定用端子を所定の間隔で離隔して配置するとともに、被測定物の肉厚変化が発生しない領域表面に参照電位差測定用の複数の参照用端子を所定の間隔で離隔して配置し、該複数の電位差測定用端子および該参照用端子を挟んで設けられた一対の電極を介して該被測定物表面に電流を供給しながら、前記複数の電位差測定用端子間及び前記複数の参照用端子間に生じる電位差を測定して被測定物に生じた肉厚の変化を検出する非破壊検査方法であって、少なくとも前記複数の電位差測定用端子を直線状またはマトリックス状に配置し、該複数の電位差測定用端子の各端子間及び該複数の参照用端子の各端子間に生じる電位差を同時に間歇的または連続的に測定し、測定領域における電位差分布を求め、予め関連づけられた電位差分布と被測定物の肉厚との関係を参照して、被測定物に生じた肉厚変化量および/または肉厚変化率を検知・測定することを特徴とする、被測定物の肉厚変化の非破壊検査方法。   (2) A plurality of potential difference measuring terminals are arranged at predetermined intervals on the surface of the object to be measured, and a plurality of reference terminals for measuring the reference potential difference are provided on the surface of the region where the thickness of the object to be measured does not change. The plurality of potential differences are arranged while supplying a current to the surface of the object to be measured through a pair of electrodes arranged at a predetermined interval and sandwiching the plurality of potential difference measurement terminals and the reference terminal. A non-destructive inspection method for measuring a potential difference generated between measurement terminals and between a plurality of reference terminals to detect a change in thickness generated in an object to be measured, wherein at least the plurality of potential difference measurement terminals are linearly connected. The potential difference generated between the terminals of the plurality of potential difference measuring terminals and between the terminals of the plurality of reference terminals is measured intermittently or continuously at the same time, and the potential difference distribution in the measurement region is measured. In advance Referring to the relationship between the linked potential difference distribution and the thickness of the object to be measured, the amount of change in thickness and / or the rate of change in thickness occurring in the object to be measured is detected and measured. Non-destructive inspection method for change in thickness of workpiece.

(3)(1)または(2)において、電位差測定用端子の前記各端子間の初期肉厚を入力し、前記各端子間の、測定時における被測定物の肉厚を算出し、あるいはさらに表示することを特徴とする非破壊検査方法。
(4)(2)または(3)のいずれかにおいて、前記参照用端子を、前記被測定物と同種材料の参照板上に配設することを特徴とする非破壊検査方法。
(3) In (1) or (2), the initial thickness between the terminals of the potential difference measuring terminal is input, and the thickness of the object to be measured at the time of measurement between the terminals is calculated. A non-destructive inspection method characterized by displaying.
(4) The nondestructive inspection method according to any one of (2) and (3), wherein the reference terminal is disposed on a reference plate made of the same material as the object to be measured.

(5)(1)ないし(4)のいずれかにおいて、前記電位差を、基準時からの電位差変化率とし、前記電位差分布を、電位差変化率分布とすることを特徴とする非破壊検査方法。
(6)(1)ないし(5)のいずれかにおいて、前記電流の方向で各端子間の電位差を測定したのち、前記電流の方向に対し、異なる方向に電流を供給しながら、前記各端子間の電位差を測定することを特徴とする非破壊検査方法。
(5) The nondestructive inspection method according to any one of (1) to (4), wherein the potential difference is a potential difference change rate from a reference time, and the potential difference distribution is a potential difference change rate distribution.
(6) In any one of (1) to (5), after measuring the potential difference between the terminals in the direction of the current, while supplying the current in a different direction with respect to the direction of the current, A non-destructive inspection method characterized by measuring a potential difference between the two.

(7)(1)ないし(6)のいずれかにおいて、前記電流が、直流または直流パルスであることを特徴とする非破壊検査方法。
(8)(1)ないし(7)のいずれかにおいて、前記電流が、10〜2000Aであることを特徴とする非破壊検査方法。
(9)(1)ないし(8)のいずれかにおいて、前記電流が、蓄電池を電源とする電流であることを特徴とする非破壊検査方法。
(7) The nondestructive inspection method according to any one of (1) to (6), wherein the current is a direct current or a direct current pulse.
(8) The nondestructive inspection method according to any one of (1) to (7), wherein the current is 10 to 2000 A.
(9) The nondestructive inspection method according to any one of (1) to (8), wherein the current is a current using a storage battery as a power source.

(10)電源と、該電源に接続され該電源から被測定物に電流を印加する一対の電極と、前記一対の電極間に、所定の間隔で離隔されて直線状またはマトリックス状に配置される複数の電位差測定用端子と、該複数の電位差測定用端子の各々に接続可能に配設され、各電位差測定用端子間の電位差を測定する電位差測定手段と、該電位差測定手段で測定した各電位差測定用端子間の電位差を入力データとして演算し、被測定物の肉厚変化量および肉厚変化率を算出する演算手段と、前記入力データおよび演算結果を保存するデータ保存手段と、あるいはさらに表示手段と、を有することを特徴とする、被測定物の肉厚変化の非破壊検査装置。   (10) A power source, a pair of electrodes connected to the power source and applying a current from the power source to the object to be measured, and a pair of electrodes spaced apart from each other at a predetermined interval and arranged in a linear or matrix form A plurality of potential difference measuring terminals, a potential difference measuring means arranged to be connectable to each of the plurality of potential difference measuring terminals and measuring a potential difference between the potential difference measuring terminals, and each potential difference measured by the potential difference measuring means Calculation means for calculating the potential difference between the measurement terminals as input data and calculating the thickness change amount and thickness change rate of the object to be measured, and data storage means for storing the input data and calculation results, or further display And a non-destructive inspection device for a change in thickness of the object to be measured.

(11)電源と、該電源に接続され該電源から被測定物に電流を印加する一対の電極と、前記一対の電極間に、所定の間隔で離隔されて直線状またはマトリックス状に配置される複数の電位差測定用端子とさらに参照電位差測定用の複数の参照用端子と、該複数の電位差測定用端子及び前記複数の参照用端子の各々に接続可能に配設され、各電位差測定用端子間の電位差及び参照用端子間の電位差を測定する電位差測定手段と、該電位差測定手段で測定した各電位差測定用端子間の電位差及び前記参照用端子間の電位差を入力データとして演算し、被測定物の肉厚変化量および肉厚変化率を算出する演算手段と、前記入力データおよび演算結果を保存するデータ保存手段と、あるいはさらに表示手段と、を有することを特徴とする、被測定物の肉厚変化の非破壊検査装置。   (11) A power source, a pair of electrodes connected to the power source and applying a current from the power source to the object to be measured, and a pair of electrodes spaced apart from each other at a predetermined interval and arranged in a straight line or a matrix A plurality of potential difference measuring terminals, a plurality of reference terminals for measuring a reference potential difference, and a plurality of potential difference measuring terminals and the plurality of reference terminals are arranged to be connectable to each other and between the potential difference measuring terminals. A potential difference measuring means for measuring a potential difference between the reference terminals and a potential difference between the reference terminals, a potential difference between the potential difference measuring terminals measured by the potential difference measuring means and a potential difference between the reference terminals as input data, An object to be measured, comprising: a calculation means for calculating a wall thickness change amount and a wall thickness change rate; a data storage means for storing the input data and calculation results; or a display means. Non-destructive inspection equipment for meat thickness change.

(12)(10)または(11)において、前記演算手段が、さらに各電位差測定用端子間の初期肉厚を入力データとして演算し、さらに前記各電位差測定用端子間の測定時の被測定物の肉厚を算出する演算手段であることを特徴とする非破壊検査装置。
(13)(10)ないし(12)のいずれかにおいて、前記参照用端子を、前記被測定物と同種材料の参照板上に配設することを特徴とする非破壊検査装置。
(12) In (10) or (11), the calculation means further calculates an initial thickness between the potential difference measuring terminals as input data, and further measures an object at the time of measurement between the potential difference measuring terminals. A non-destructive inspection apparatus, characterized in that it is a calculation means for calculating the wall thickness.
(13) The nondestructive inspection apparatus according to any one of (10) to (12), wherein the reference terminal is disposed on a reference plate made of the same material as the object to be measured.

(14)(10)ないし(13)のいずれかにおいて、前記電源を複数台の電源とし、前記一対の電極に加えてさらに、前記電流の方向と異なる方向に電流を印加できる他の一対または複数対の電極を有することを特徴とする非破壊検査装置。
(15)(14)において、前記複数台の電源に代えて、切替手段付の一台の電源とすることを特徴とする非破壊検査装置。
(14) In any one of (10) to (13), the power source is a plurality of power sources, and in addition to the pair of electrodes, another pair or a plurality of other currents that can apply a current in a direction different from the current direction A nondestructive inspection apparatus comprising a pair of electrodes.
(15) The nondestructive inspection apparatus according to (14), wherein the plurality of power supplies are replaced with a single power supply with switching means.

(16)(10)ないし(15)のいずれかにおいて、前記電源がパルス電流を発生する電源であることを特徴とする非破壊検査装置。
(17)(10)ないし(16)のいずれかにおいて、前記電源が、蓄電池であることを特徴とする非破壊検査装置。
(16) The nondestructive inspection apparatus according to any one of (10) to (15), wherein the power source is a power source that generates a pulse current.
(17) The nondestructive inspection device according to any one of (10) to (16), wherein the power source is a storage battery.

本発明によれば、装置・設備等を停止することなく、被測定物の肉厚変化,肉厚変化率およびそれらの分布を、あるいはさらに測定時の肉厚の絶対値を、簡便でかつ精度よく測定できるうえ、高温、高圧、高真空、深海などの水中、腐食性環境、放射線環境等の人が容易に近寄れない環境下での連続的かつ長時間の被測定物の肉厚変化のモニタリングが可能であり、装置、設備等の安全性の確認に適用でき、産業上格段の効果を奏する。また、本発明によれば、測定端子をマトリックス状に配置することにより従来の超音波探傷法等による被測定物の肉厚測定では点状でしかとらえられかった肉厚変化を、面状に検出可能となるという効果もある。また、本発明によれば、局部腐食による肉厚変化も検知、測定可能になるという効果もある。   According to the present invention, the thickness change, thickness change rate and distribution of the object to be measured, or the absolute value of the thickness at the time of measurement can be easily and accurately measured without stopping the apparatus / equipment. In addition to being able to measure well, continuously and long-term monitoring of changes in the thickness of the object under high temperature, high pressure, high vacuum, deep sea water, corrosive environment, radiation environment, etc. Therefore, it can be applied to confirm the safety of equipment, equipment, etc., and has a remarkable industrial effect. In addition, according to the present invention, by arranging the measurement terminals in a matrix shape, the change in thickness, which can only be detected in the form of dots in the measurement of the thickness of the object to be measured by the conventional ultrasonic flaw detection method or the like, is planarized. There is also an effect that detection becomes possible. In addition, according to the present invention, it is possible to detect and measure a change in thickness due to local corrosion.

本発明で使用する非破壊検査装置は、図1に示すように、電源1と、電源1から被測定物Wに電流を印加するための一対の電極11、11と、複数の電位差測定用端子2と、電位差測定手段3と、演算手段4と、データ保存手段5と、あるいはさらに表示手段(図示せず)を有する。
本発明で使用する非破壊検査装置では、被測定物の肉厚変化の発生しない領域表面に複数の参照用端子(図示せず)を有することが好ましい。この複数の参照用端子は、複数の電位差測定用端子2とともに、一対の電極11、11に挟まれるように配設されることが好ましい。参照用端子は、被測定物の温度変化など、肉厚変化等以外の原因による抵抗変化(電位差の変化)を消去するために設けられる。なお、この複数の参照用端子は、被測定物と同一環境下に置かれた、被測定物と同種材料で肉厚変化等のない参照板上に配設してもよい。その場合は、被測定物と同一の電流が流れるようにするため、参照板を絶縁することが必要となる。参照板上に参照用端子を配設して測定することにより、すでに肉厚変化等が発生している被測定物についても、肉厚変化等の位置、分布や大きさ等を推定することが可能となる。
As shown in FIG. 1, the nondestructive inspection apparatus used in the present invention includes a power source 1, a pair of electrodes 11 and 11 for applying a current from the power source 1 to the workpiece W, and a plurality of potential difference measuring terminals. 2, potential difference measuring means 3, computing means 4, data storage means 5, or further display means (not shown).
In the nondestructive inspection apparatus used in the present invention, it is preferable to have a plurality of reference terminals (not shown) on the surface of the region where the thickness of the object to be measured does not change. The plurality of reference terminals are preferably disposed so as to be sandwiched between the pair of electrodes 11 and 11 together with the plurality of potential difference measuring terminals 2. The reference terminal is provided to erase a resistance change (change in potential difference) caused by a cause other than a change in thickness, such as a change in temperature of an object to be measured. The plurality of reference terminals may be disposed on a reference plate that is placed in the same environment as the device under test and is of the same material as the device under test and has no change in thickness. In that case, it is necessary to insulate the reference plate so that the same current as that of the object to be measured flows. By locating and measuring the reference terminal on the reference plate, it is possible to estimate the position, distribution, size, etc. of the thickness change, etc., even for the object to be measured that has already undergone a thickness change, etc. It becomes possible.

被測定物W表面の所望の電位差測定領域に、複数の電位差測定用端子2を圧接、溶接、圧着、接着等の接合手段で、図1に例示するように好ましくは、マトリックス状に配設する。電位差測定用端子の圧接による接合としては、先端のとがったピンをクランプを使用して被測定物に突き立てる方法が好ましい。なお、接合は接触抵抗が変化しなければとくにその方法は限定されない。そして、この電位差測定領域の両端部近傍には、一対の電極11、11が溶接等の接合手段で配設される。一対の電極11、11には、電流供給用電線が配線され、電源1から電流が供給可能とされる。   A plurality of potential difference measuring terminals 2 are preferably arranged in a matrix shape as illustrated in FIG. 1 in a desired potential difference measurement region on the surface of the object W to be measured by a joining means such as pressure welding, welding, pressure bonding, or adhesion. . As the bonding by pressure-contact of the potential difference measuring terminal, a method in which a pin having a sharp tip is pushed to the object to be measured using a clamp is preferable. Note that the bonding method is not particularly limited as long as the contact resistance does not change. A pair of electrodes 11 and 11 are disposed in the vicinity of both ends of the potential difference measurement region by a joining means such as welding. A pair of electrodes 11, 11 are wired with a current supply wire, and current can be supplied from the power source 1.

参照用端子は、電位差測定用端子と同様な方法で、被測定物の肉厚変化等のない領域、あるいは被測定物と同一環境下に置かれ、被測定物と同種材料の肉厚変化等のない参照板上に、好ましくはマトリックス状に複数配設することが好ましい。なお、参照用端子を配設する場合には、電位差測定領域と参照用端子を配設する領域とは離れている場合が多いため、電位差測定領域と参照用端子を配設する領域とが電気的に直列に接続されるように電極11、11を配置することが好ましい。   The reference terminal is placed in an area where there is no change in the thickness of the object to be measured, or in the same environment as the object to be measured, in the same manner as the terminal for measuring the potential difference. It is preferable to dispose a plurality of elements in a matrix on a reference plate having no surface. When the reference terminal is provided, the potential difference measurement area and the reference terminal area are often separated from each other. Therefore, the potential difference measurement area and the reference terminal area are electrically connected. It is preferable to arrange the electrodes 11 and 11 so as to be connected in series.

本発明では、一対の電極11、11に加えてさらに、該一対の電極11、11により供給される電流の方向と異なる方向に電流を印加できる他の一対の電極12、12または複数対の電極を被測定物Wの表面に設けることができる。異なる方向としては、とくに限定する必要はないが、前記電流の方向と45°、あるいは90°異なる方向とすることが好ましい。電流供給方向を複数方向とすることにより、肉厚変化の検知精度が格段に向上し、とくに局部腐食等の狭い領域における肉厚変化を精度高く検知測定が可能となる。なお、複数対の電極を設ける場合には、電源は複数台とするか、あるいは一台の電源として切替手段を付設し、電流を供給する電極を切り替えて電流を供給してもよい。   In the present invention, in addition to the pair of electrodes 11, 11, another pair of electrodes 12, 12 or a plurality of pairs of electrodes capable of applying a current in a direction different from the direction of the current supplied by the pair of electrodes 11, 11. Can be provided on the surface of the workpiece W. The direction of the difference is not particularly limited, but it is preferably a direction different from the current direction by 45 ° or 90 °. By making the current supply direction a plurality of directions, the detection accuracy of the wall thickness change is remarkably improved, and the wall thickness change in a narrow region such as local corrosion can be detected and measured with high accuracy. In the case where a plurality of pairs of electrodes are provided, a plurality of power sources may be provided, or switching means may be provided as a single power source to switch the electrodes that supply current and supply current.

マトリックス状に配設された複数の電位差測定用端子2e、2f、…、2k、あるいはさらに肉厚変化のない領域又は肉厚変化のない参照板上に配設された複数の参照用端子には、電位差測定用リード線を介して電位差測定手段3の測定端が接続される。電位差測定用リード線の材質は使用環境において使い分けることが好ましい。例えば700℃程度までの高温あるいは高温高圧環境下においては、電位差測定用リード線は3〜5%程度のAlを含むAl−Ni合金の単線を用いることが好ましい。撚り線では酸化が著しく耐久性が劣化する。さらに耐久性が要求される場合には、シリカ被覆を施すことが好ましい。一方、例えば−30℃程度までの低温においては、銅または銅基合金を用いることが好ましい。また、腐食環境下では、銅線にNiめっきを施した線材を電位差測定用リード線とすることが好ましく、この場合単線でも撚り線でも使用可能である。なお、さらに耐久性が要求される場合には、透明樹脂被覆を施すことが好ましい。透明樹脂被覆を施すことにより、耐久性がさらに向上するうえ、線材の腐食状況が観察可能となる。なお、透明樹脂としては、フッ素樹脂の1種であるポリテトラフルオロエチレン(商標名:テフロン)とすることがより好ましい。   A plurality of potential difference measuring terminals 2e, 2f,..., 2k arranged in a matrix, or a plurality of reference terminals arranged on a reference plate without a change in thickness or a thickness change. The measuring end of the potential difference measuring means 3 is connected via a potential difference measuring lead wire. The material of the lead wire for potential difference measurement is preferably properly used in the usage environment. For example, in a high temperature or high temperature and high pressure environment up to about 700 ° C., it is preferable to use a single wire of an Al—Ni alloy containing about 3 to 5% Al as the lead wire for potential difference measurement. In the case of a stranded wire, oxidation is remarkably deteriorated. Further, when durability is required, it is preferable to apply silica coating. On the other hand, it is preferable to use copper or a copper-based alloy at a low temperature of, for example, about −30 ° C. Further, in a corrosive environment, it is preferable to use a wire material obtained by applying Ni plating to a copper wire as a lead wire for potential difference measurement. In this case, either a single wire or a stranded wire can be used. In addition, when durability is requested | required, it is preferable to provide a transparent resin coating. By applying the transparent resin coating, the durability is further improved and the corrosion state of the wire can be observed. The transparent resin is more preferably polytetrafluoroethylene (trade name: Teflon), which is a kind of fluororesin.

電位差測定手段3は、測定する一対の端子間に接続され、それら端子間の電位差を測定する。該端子間の電位差測定が終了したのち、ついで接続する端子を切り替えて、異なる一対の端子間の電位差を測定する。電位差測定手段3の測定端の切替は、切替スイッチ等の切替手段(図示せず)により手動あるいは予めプログラムされた順序に従って自動的に切り替えることが好ましい。   The potential difference measuring means 3 is connected between a pair of terminals to be measured, and measures a potential difference between the terminals. After the measurement of the potential difference between the terminals is completed, the connected terminals are then switched to measure the potential difference between a pair of different terminals. The measurement end of the potential difference measuring means 3 is preferably switched manually or automatically according to a preprogrammed order by a switching means (not shown) such as a changeover switch.

なお、電位差の測定に際しては、被測定物の温度変化など、肉厚変化等以外の原因による抵抗変化を消去するために、上記したように複数の参照用端子を設け、参照用端子間の電位差を電位差測定用端子間の測定と同時に測定しておくことが好ましい。
本発明で使用する非破壊検査装置では、演算手段4を必要とする。演算手段4は、電位差測定手段3により測定された各電位差測定用端子間の電位差、あるいはさらに参照用端子間の電位差、あるいはさらに各電位差測定用端子間の初期の肉厚を入力データとして各種演算を実行し、各電位差測定用端子間の肉厚変化量、肉厚変化率およびそれらの分布、さらには、測定時の肉厚の絶対値を算出し、表示手段(図示せず)に出力し、各種の帳票作成を遂行できるようにすることが好ましい。演算手段は、上記した演算が遂行できるものであればよく、その種類はとくに限定されない。
In measuring the potential difference, a plurality of reference terminals are provided as described above in order to eliminate the resistance change caused by causes other than the wall thickness change such as the temperature change of the object to be measured. Is preferably measured simultaneously with the measurement between the terminals for potential difference measurement.
The nondestructive inspection apparatus used in the present invention requires the calculation means 4. The calculation means 4 performs various calculations using the potential difference between the potential difference measurement terminals measured by the potential difference measurement means 3, or the potential difference between the reference terminals, or the initial thickness between the potential difference measurement terminals as input data. To calculate the amount of change in wall thickness, the rate of change in wall thickness and their distribution, and the absolute value of the wall thickness at the time of measurement, and output it to the display means (not shown). It is preferable that various forms can be created. The calculation means is not particularly limited as long as it can perform the above-described calculation.

さらに、本発明で使用する非破壊検査装置では、入力データおよび演算結果が保存可能なデータ保存手段5を有する。データ保存手段5は、上記したデータが保存可能な記憶手段(メモリー)であればよく、とくにその種類を限定する必要はない。
また、本発明で使用する非破壊検査装置では、電源1は、複数台の電源とするか、あるいは切替手段付の一台の電源とすることが好ましい。電源1は、交流電源又は直流電源いずれでもよいが、発熱を考慮してパルス電流を発生する電源とすることが好ましい。なかでも、安定した直流パルスを供給できるという観点から蓄電池、とくに鉛蓄電池とすることが好ましい。なお、モニタリングする領域が広範囲な場合や、モニタリング領域と電源との距離が長い場合には、蓄電池による電流供給では、電流損失が大きくなり蓄電池の消耗が激しく、かつ配線を太くする必要がある。このような場合には、電源を交流電源とし、モニタリング領域の近くにAD変換器を設定し直流に変換して供給することが好ましい。これにより、配線を細くでき、結果的に広範囲でかつ長距離となる環境下でも精度良くモニタリングができる。
Furthermore, the nondestructive inspection apparatus used in the present invention has data storage means 5 capable of storing input data and calculation results. The data storage means 5 may be any storage means (memory) that can store the above-described data, and there is no particular limitation on the type of the data storage means 5.
In the nondestructive inspection apparatus used in the present invention, the power source 1 is preferably a plurality of power sources or a single power source with switching means. The power source 1 may be either an AC power source or a DC power source, but is preferably a power source that generates a pulse current in consideration of heat generation. Especially, it is preferable to set it as a storage battery, especially a lead storage battery from a viewpoint that a stable direct current | flow pulse can be supplied. When the monitoring area is wide or when the distance between the monitoring area and the power source is long, current supply by the storage battery requires a large current loss, so that the storage battery is exhausted and the wiring needs to be thick. In such a case, it is preferable to use an AC power source as the power source, set an AD converter near the monitoring region, and convert it into a direct current. As a result, the wiring can be thinned, and as a result, monitoring can be performed with high accuracy even in an environment where the distance is wide and long.

つぎに、上記した非破壊検査装置を用いた、本発明の被測定物の肉厚変化の非破壊検査方法について説明する。
本発明では、複数の電位差測定用端子2を、図1に示すように、好ましくはマトリックス状に配置する。なお、ここでいう、マトリックス状とは、格子状、あるいはちどり格子状をも含むものとする。測定条件によっては直線状に配置してもよい。肉厚変化が存在する測定用端子間はもちろん、それ以外の測定用端子間においても、肉厚変化の存在により電場が乱れ、測定位置により電位差の変化が大きく相違する。肉厚変化が存在する領域ではもちろんであるが、存在する肉厚変化の下流側に位置する領域でもその変化が大きく観察される。このため、マトリックス状に測定用端子間を配置して、多くの測定用端子間の組合せについて電位差を測定することにより、被測定物の肉厚変化をより精度よく検知できる。
Next, a nondestructive inspection method for thickness change of an object to be measured according to the present invention using the above-described nondestructive inspection apparatus will be described.
In the present invention, a plurality of potential difference measuring terminals 2 are preferably arranged in a matrix as shown in FIG. Here, the matrix shape includes a lattice shape or a dust lattice shape. Depending on the measurement conditions, they may be arranged in a straight line. The electric field is disturbed by the presence of the thickness change, not only between the measurement terminals where the thickness change exists, but also between the other measurement terminals, and the change in potential difference greatly differs depending on the measurement position. Of course, in the region where the thickness change exists, the change is greatly observed also in the region located downstream of the existing thickness change. For this reason, by arranging the measurement terminals in a matrix and measuring the potential difference with respect to many combinations between the measurement terminals, it is possible to detect a change in the thickness of the object to be measured with higher accuracy.

電位差測定領域の両端部近傍に、電流供給用の少なくとも一対の電極11、11を設ける。電源1から、一対の電極11、11を介して被測定物表面に電流を供給する。
供給する電流は、交流、直流いずれでも測定可能であるが、本発明では、直流とすることが好ましい。なお、供給する電流は、抵抗発熱による温度上昇を考慮して、とくに直流パルスとすることがより好ましい。供給する電流は、各電位差測定用端子間の電位差が測定可能であれば、その値はとくに限定されないが、10〜2000Aとすることが好ましい。とくに、被測定物が厚肉の場合では、100A以上の高電流とすることにより、測定領域に均一電場が形成でき、肉厚変化の測定精度を向上させることができる。またより高電流とすることにより広い測定領域を確保することができる。
At least a pair of electrodes 11 and 11 for supplying current are provided in the vicinity of both ends of the potential difference measurement region. A current is supplied from the power source 1 to the surface of the object to be measured through the pair of electrodes 11 and 11.
The supplied current can be measured by either alternating current or direct current, but in the present invention, it is preferably a direct current. The supplied current is particularly preferably a direct current pulse in consideration of a temperature rise due to resistance heat generation. The value of the supplied current is not particularly limited as long as the potential difference between each potential difference measurement terminal can be measured, but is preferably 10 to 2000 A. In particular, when the object to be measured is thick, by setting a high current of 100 A or more, a uniform electric field can be formed in the measurement region, and the measurement accuracy of the thickness change can be improved. In addition, a wider measurement area can be secured by using a higher current.

被測定物の表面に設置した電極間に電流を供給しながら、電位差測定手段3により、好ましくはこのマトリックス状に配置された各電位差測定用端子間、例えば図1の、2i−2j間、2j−2k間、2e−2f間、2f−2g間等の電位差を測定する。本発明では、肉厚変化の検知精度向上の観点からは、設定した各電位差測定端子間のあらゆる組合せにおける電位差を測定することが好ましい。なお、電位差の測定に際しては、被測定物の温度変化など、肉厚変化等以外の原因による電位差変化を消去するために複数の参照用端子を設け、参照用端子間の電位差も同時に測定することが好ましい。なお、複数の参照用端子は、肉厚変化のない領域あるいは肉厚変化のない参照板上に、所定の間隔に隔離して直線上に配設してもよいが、マトリックス状に配設しておくことが検知精度向上の観点から好ましい。複数の参照用端子を配設した領域への電流の供給は、電位差測定領域と電気的に直列となるように電極を配設することが好ましい。   While supplying a current between the electrodes placed on the surface of the object to be measured, the potential difference measuring means 3 preferably connects each potential difference measuring terminal arranged in this matrix, for example, between 2i and 2j, 2j in FIG. Measure potential difference between -2k, 2e-2f, 2f-2g, etc. In the present invention, from the viewpoint of improving the detection accuracy of the wall thickness change, it is preferable to measure the potential difference in every combination between the set potential difference measuring terminals. In measuring the potential difference, a plurality of reference terminals should be provided to eliminate potential difference changes due to causes other than wall thickness changes, such as temperature changes of the object to be measured, and the potential difference between the reference terminals should be measured simultaneously. Is preferred. The plurality of reference terminals may be arranged on a straight line with a predetermined interval on a reference plate where there is no change in thickness or on a reference plate where there is no change in thickness. It is preferable from the viewpoint of improving detection accuracy. It is preferable that the electrodes are arranged so that the current supply to the region where the plurality of reference terminals are arranged is electrically in series with the potential difference measuring region.

また、本発明では、電位差測定に際し、供給する電流の方向を一方向のみとして電位差を測定してもよいが、一方向の電流を供給して電位差測定を行ったのち、さらに供給する電流の方向を、該一方向とは異なる方向、例えば、該一方向に対し45°、90°、あるいはそれらの中間の角度といった所定の角度を有する方向に電流を供給して、各電位差測定用端子間の電位差を測定することが好ましい。   In the present invention, the potential difference may be measured with only one direction of the supplied current in the potential difference measurement. However, after the potential difference is measured by supplying the current in one direction, the direction of the further supplied current is measured. Current in a direction different from the one direction, for example, a direction having a predetermined angle such as 45 °, 90 °, or an intermediate angle with respect to the one direction, It is preferable to measure the potential difference.

供給する電流の方向を変化することにより、被測定物に存在する肉厚変化による電場の乱れ方が異なり、電流の方向が一方向のみとする場合にくらべ、複数方向の電流について電位差を測定することにより、肉厚変化の検知精度が向上し、局部腐食等のような狭い範囲の肉厚変化をより精度高く検知・測定可能とすることができる。
本発明では、設定した各電位差測定端子間に生じる電位差あるいはさらに参照用端子間に生じる電位差を同時に、基準時以降任意の時間に間歇的に、または連続的に測定し、各端子間の電位差の変化率を算出する。電位差の変化率としては、例えば、次式
変化率={(Ai/Bi)×(B/A0)−1}×1000
(ここで、Ai:i刻(測定時)の測定端子間の電位差、Bi:i刻(測定時)の参照端子間電位差、A0 :0刻(基準:測定開始)時の測定端子間の電位差、B:0刻(基準:測定開始)時の参照端子間電位差)
を用いることが好ましい。
By changing the direction of the supplied current, the disturbance of the electric field due to the change in thickness existing in the object to be measured is different, and the potential difference is measured for currents in multiple directions compared to when the current direction is only one direction. As a result, the thickness change detection accuracy can be improved, and a narrow range thickness change such as local corrosion can be detected and measured with higher accuracy.
In the present invention, the potential difference generated between the set potential difference measuring terminals or the potential difference generated between the reference terminals is simultaneously measured intermittently or continuously at an arbitrary time after the reference time, and the potential difference between the terminals is measured. Calculate the rate of change. As the rate of change of the potential difference, for example, the following formula rate of change = {(Ai / Bi) × (B 0 / A 0 ) −1} × 1000
(Here, Ai: Potential difference between measurement terminals at the time of i (measurement), Bi: Potential difference between reference terminals at the time of i (measurement), A 0 : Between measurement terminals at the time of 0 (standard: start of measurement) Potential difference, B 0 : Potential difference between reference terminals at 0 time (standard: start of measurement)
Is preferably used.

得られた電位差の変化、または電位差の変化率から、肉厚変化の発生の有無、肉厚変化領域の位置、形状、および肉厚変化量を把握して、さらには肉厚変化領域の進展状況を把握する。
なお、本発明では、予め、測定端子間の電位差の変化の大きさ、または電位差の変化率と、既知の肉厚変化量、肉厚変化領域の大きさ、形状との関係をシュミレーションにより求めておき、データ保存手段に保存しておく。測定した電位差の変化、または電位差の変化率から、この関係を参照して、被測定物に含まれる肉厚変化量、肉厚変化領域の大きさ、形状等を決定する。これらの演算は、いずれも演算手段4で行うものとする。なお、本発明では、各電位差測定端子間の初期肉厚を入力することにより、演算手段により、測定時の各電位差測定端子間の肉厚の絶対値を求めることができ,その結果を表示手段により表示できる。
Based on the obtained potential difference change or potential difference change rate, the presence / absence of occurrence of thickness change, the position and shape of the thickness change area, and the thickness change amount are grasped, and the progress of the thickness change area To figure out.
In the present invention, the relationship between the magnitude of the potential difference between the measurement terminals or the rate of change of the potential difference and the known thickness change amount, the thickness change area size, and the shape is obtained in advance by simulation. And stored in the data storage means. Based on the measured potential difference change or the potential difference change rate, the thickness change amount included in the object to be measured, the size and shape of the thickness change region, and the like are determined with reference to this relationship. These calculations are all performed by the calculation means 4. In the present invention, by inputting the initial thickness between each potential difference measurement terminal, the absolute value of the thickness between each potential difference measurement terminal at the time of measurement can be obtained by the calculation means, and the result is displayed on the display means. Can be displayed.

シュミレーションの方法としては、例えば、表面に4個以上の測定端子をマトリックス状に設定し、その領域内に肉厚変化量、肉厚変化領域の大きさ、形状等が既知の肉厚変化領域を導入した被測定片について、例えば1°ずつ電流方向をずらして電流を流しながら、各測定端子間の電位差を測定し、肉厚変化量、肉厚変化領域の大きさ、形状と電位差との関係を求めておく方法がある。また、例えば、有限要素法を用いて、肉厚変化量、肉厚変化領域の大きさ、形状と電位差との関係を予めマスターカーブとして作成しておいてもよい。なお、本発明は、この方法に限定されるものではない。   As a simulation method, for example, four or more measurement terminals are set in a matrix shape on the surface, and a thickness change region in which the thickness change amount, the size change shape, and the shape of the thickness change region are known in the region. For the introduced measurement piece, measure the potential difference between each measurement terminal while flowing the current by shifting the current direction by, for example, 1 °, and the relationship between the wall thickness change amount, the wall thickness change area size and shape, and the voltage difference. There is a way to ask for. Further, for example, the relationship between the thickness change amount, the size of the thickness change region, the shape, and the potential difference may be created in advance as a master curve by using a finite element method. Note that the present invention is not limited to this method.

なお、得られた測定結果から、各測定用端子間の電位差分布、あるいは電位差の変化率分布、あるいは肉厚の絶対値として表示することにより、被測定物の肉厚変化の状態をより明瞭にすることができる。   In addition, from the obtained measurement results, the thickness difference state of the object to be measured can be clarified by displaying the potential difference distribution between each measurement terminal, the change rate distribution of the potential difference, or the absolute value of the thickness. can do.

(実施例1)
被測定物として、炭素鋼板(肉厚:10mm)を選んだ。被測定物の肉厚を裏面から人工的に減肉し、その都度、次に示すような方法で各電位差測定端子間の電位差を測定した。なお、減肉は機械的方法で、鋼板全面に亘り段階的に行なった。減肉量は、デプスマイクロメータで別途測定した。
Example 1
A carbon steel plate (wall thickness: 10 mm) was selected as the object to be measured. The thickness of the object to be measured was artificially reduced from the back surface, and each time, the potential difference between the potential difference measuring terminals was measured by the following method. In addition, the thickness reduction was performed stepwise over the entire surface of the steel sheet by a mechanical method. The amount of thinning was measured separately with a depth micrometer.

被測定物の表面に、図2に示すようなマトリックス状配置に複数の電位差測定用端子(2a〜2p:計16個)をスタッド溶接により配置した。各端点間の間隔は20mmとした。また、これら複数の電位差測定用端子が形成する領域に電流を供給するために、電位差測定領域の端部周辺に一対の電極11、11を設置した。
一対の電極11、11間には、直流パルス(パルス高さ:110A、パルス時間:1.7s)を印加した。電流差測定手段として、直流電位差計を使用して、各測定用端子間を図2に示すようにペアーとして各ペアー(ペアーNo.1〜No.12)の電位差を間歇的に測定した。なお、各測定用端子には予め測定用リード線が取り付けられ、切替スイッチにより切替可能に設定されることはいうまでもない。そして、被測定物と同種の炭素鋼板(肉厚:10mm)を参照板として用意し、端子間の距離を電位差測定用端子間の距離と同じ20mmとして、該参照板上にマトリックス状に参照用端子を配設した。この参照用端子を、印加電流のプラス(+)側に設置して被測定物と同じ環境下に置き、肉厚変化以外の要因による電位差の変化を消去するために、電位差測定用端子間の電位差および参照用端子間の電位差を同時に測定した。
On the surface of the object to be measured, a plurality of potential difference measuring terminals (2a to 2p: 16 pieces in total) were arranged by stud welding in a matrix arrangement as shown in FIG. The distance between each end point was 20 mm. In addition, in order to supply a current to a region formed by the plurality of potential difference measurement terminals, a pair of electrodes 11 and 11 are provided around the end of the potential difference measurement region.
A direct-current pulse (pulse height: 110 A, pulse time: 1.7 s) was applied between the pair of electrodes 11 and 11. A DC potentiometer was used as a current difference measuring means, and the potential difference of each pair (pair No. 1 to No. 12) was measured intermittently as a pair between the terminals for measurement as shown in FIG. Needless to say, a measurement lead wire is attached to each measurement terminal in advance and is set to be switchable by a changeover switch. The same type of carbon steel plate (thickness: 10 mm) as the object to be measured is prepared as a reference plate, and the distance between terminals is set to 20 mm, which is the same as the distance between potential difference measurement terminals. Terminals were arranged. Place this reference terminal on the plus (+) side of the applied current and place it in the same environment as the object to be measured, in order to eliminate the potential difference change due to factors other than thickness change, between the potential difference measurement terminals The potential difference and the potential difference between the reference terminals were measured simultaneously.

測定された、各ペアー間の電位差を、測定開始時を基準にして、次式
変化率={(Ai/Bi)×(B0/A0)−1}×1000
(ここで、Ai:当該ペアー(測定端子間)の測定電位差、Bi:測定時の参照端子間電位差、A0:当該ペアー(測定端子間)の測定開始時の電位差、B0:測定開始時の参照端子間電位差)
で定義される電位差の変化率を算出した。得られた電位差の変化率から、予めシュミレーションにより求めておいた電位差の変化率と肉厚変化量との関係を参照して、各端子間の肉厚変化量に換算した。
Based on the measured potential difference between each pair, based on the measurement start time, the following equation: change rate = {(Ai / Bi) × (B 0 / A 0 ) −1} × 1000
(Here, Ai: measurement potential difference between the pair (between measurement terminals), Bi: potential difference between reference terminals at the time of measurement, A 0 : potential difference at the start of measurement of the pair (between measurement terminals), B 0 : at the start of measurement Potential difference between reference terminals)
The rate of change of the potential difference defined by is calculated. From the change rate of the obtained potential difference, the relationship between the change rate of the potential difference and the change in thickness obtained in advance by simulation was referred to and converted into the change in thickness between the terminals.

得られた結果を、本発明の方法で得られた肉厚変化量と、実際の減肉量との関係で図3に示す。図3から、各ペアーとも、本発明の方法で得られた肉厚変化量と実際の減肉量とはよく一致している。本発明によれば、精度よく被測定物の肉厚変化を検知することができることがわかる。
なお、一対の電極11、11から90°ずらした位置に予め設置した電極12、12間に電流を流し、各電位差測定用端子間を図4に示すようにペアーとして,同様に各ペアー(ペアーNo.13〜No.24)の電位差を同様に測定したが、図3と同様の結果を得た。
(実施例2)
被測定物として、炭素鋼板(肉厚:10mm)を選んだ。実施例1と同様に、被測定物の表面に、図2に示すようなマトリックス状配置に複数の電位差測定用端子(2a〜2p:計16個)をスタッド溶接により配置した。各端点間の間隔は20mmとした。また、これら複数の電位差測定用端子が形成する領域に電流を供給するために、電位差測定用端子領域の端部周辺に一対の電極11、11を配置した。そしてまず被測定物の肉厚を、図5に示すように、電位差測定用端子2fと2g間で長さ方向を電位差測定用端子2f〜2g間の方向と平行に、裏面から機械的方法で局部的に減肉した。なお、初期の減肉は、長さ5mm×幅2mmの大きさで深さ0.1mmとし、深さを順次深くし、その都度、次に示すような方法で各電位差測定端子間の電位差を測定した。
The obtained results are shown in FIG. 3 in relation to the thickness change amount obtained by the method of the present invention and the actual thickness reduction amount. From FIG. 3, the thickness change amount obtained by the method of the present invention and the actual thinning amount are in good agreement with each pair. According to this invention, it turns out that the thickness change of a to-be-measured object can be detected accurately.
It should be noted that a current is passed between the electrodes 12 and 12 previously installed at positions shifted by 90 ° from the pair of electrodes 11 and 11, and each potential difference measurement terminal is paired as shown in FIG. The potential difference of No. 13 to No. 24) was measured in the same manner, and the same result as in FIG. 3 was obtained.
(Example 2)
A carbon steel plate (wall thickness: 10 mm) was selected as the object to be measured. In the same manner as in Example 1, a plurality of potential difference measurement terminals (2a to 2p: 16 in total) were arranged by stud welding in a matrix arrangement as shown in FIG. The distance between each end point was 20 mm. Further, in order to supply a current to a region formed by the plurality of potential difference measuring terminals, a pair of electrodes 11 and 11 are arranged around the end of the potential difference measuring terminal region. First, as shown in FIG. 5, the thickness of the object to be measured is measured from the back side by a mechanical method with the length direction between the potential difference measuring terminals 2f and 2g parallel to the direction between the potential difference measuring terminals 2f to 2g. Local thinning. The initial thinning is 5mm long x 2mm wide, with a depth of 0.1mm. The depth is gradually increased, and the potential difference between each potential difference measurement terminal is measured each time as shown below. did.

一対の電極11、11間には、実施例1と同様に、直流パルス(パルス高さ:110A、パルス時間:1.7s)を印加した。電流差測定手段は、実施例1と同様とし、各電位差測定用端子間を図2に示すようなペアーとして各ペアー間の電位差を測定した。なお、被測定物と同種の炭素鋼板(肉厚:10mm)を参照板として用意し、端子間の距離を電位差測定用端子間の距離と同じ20mmとして、該参照板上にマトリックス状に参照用端子を配設した。この参照用端子を、印加電流のプラス(+)側に設置して被測定物と同じ環境下に置き、肉厚変化以外の要因による電位差の変化を消去するために、電位差測定用端子間の電位差および参照用端子間の電位差も同時に測定した。   A DC pulse (pulse height: 110 A, pulse time: 1.7 s) was applied between the pair of electrodes 11, 11 as in Example 1. The current difference measuring means was the same as in Example 1, and the potential difference between each pair was measured with the pair of potential difference measuring terminals as a pair as shown in FIG. The same type of carbon steel plate (thickness: 10 mm) as the object to be measured is prepared as a reference plate, and the distance between the terminals is set to 20 mm, which is the same as the distance between the terminals for potential difference measurement. Terminals were arranged. Place this reference terminal on the plus (+) side of the applied current and place it in the same environment as the object to be measured, in order to eliminate the potential difference change due to factors other than thickness change, between the potential difference measurement terminals The potential difference and the potential difference between the reference terminals were also measured at the same time.

測定された、各ペアー間の電位差を、測定開始時を基準にして、実施例1と同様に、電位差の変化率を算出した。得られた電位差の変化率から、予めシュミレーションにより求めておいた電位差の変化率と肉厚変化量との関係を参照して、各端子間の肉厚変化量に換算した。
また、一対の電極11、11から90°ずらした位置に予め設置した電極12、12間に電流を流し、各電位差測定用端子間を同様に、図2に示すようなペアーとして、各ペアーの電位差を同様に測定した。
With respect to the measured potential difference between each pair, the rate of change in potential difference was calculated in the same manner as in Example 1 with reference to the start of measurement. From the change rate of the obtained potential difference, the relationship between the change rate of the potential difference and the change in thickness obtained in advance by simulation was referred to and converted into the change in thickness between the terminals.
In addition, a current is passed between the electrodes 12 and 12 previously placed at positions shifted by 90 ° from the pair of electrodes 11 and 11, and the potential difference measurement terminals are similarly paired as shown in FIG. The potential difference was measured in the same way.

得られた結果を、本発明の方法で得られた肉厚変化量と、導入した局部減肉量との関係で図6に示す。図6(a)は、電流を電極11、11間に、すなわち局部減肉の長さ方向(ペアーNo.5)と平行な方向に流した場合であり、図6(b)は、電流を電極12、12間に、すなわち局部減肉の長さ方向と直交する方向に流した場合である。
局部減肉の存在する、電位差測定用端子間(ペアーNo.5)では、電位差の変化が見られ、肉厚変化量として検知可能であるが、図6(a)に示す局部減肉長さ方向と平行方向に(電極11、11間に)電流を流した場合には、電位差の変化は少なく、また、測定された肉厚変化量は、実際の局部減肉量とは一致していない。一方、図6(b)に示す局部減肉長さ方向と直交する方向に(電極12、12間に)電流を流した場合には、ペアーNo.5で測定された電位差の変化量は大きく、電流方向を変更することにより肉厚変化を精度よく測定できることがわかる。また、そのペアーNo.5で測定された肉厚変化量は、実際の局部減肉量と精度よく一致しており、本発明によれば、精度よく被測定物の肉厚変化を検知することができることがわかる。さらに、局部減肉の存在する位置より、電流の流れる上流側のペアーNo.2では電位差の変化は認められず、一方、下流側のペアーNo.8では、電位差の変化が見られ、局部的減肉の存在位置をより明確にすることができる。
The obtained results are shown in FIG. 6 in relation to the change in thickness obtained by the method of the present invention and the amount of local thinning introduced. FIG. 6 (a) shows a case where a current is passed between the electrodes 11, 11, that is, a direction parallel to the length direction (pair No. 5) of local thinning, and FIG. This is a case where the gas flows between the electrodes 12, 12, that is, in a direction orthogonal to the length direction of local thinning.
Between the terminals for potential difference measurement (pair No. 5) where there is local thinning, a change in potential difference is seen and can be detected as a change in thickness, but the local thinning length shown in FIG. 6 (a) When a current is passed in parallel to the direction (between the electrodes 11 and 11), the potential difference changes little, and the measured thickness change amount does not match the actual local thinning amount. . On the other hand, when a current is passed in the direction perpendicular to the local thinning length direction shown in FIG. 6B (between the electrodes 12 and 12), the amount of change in the potential difference measured by the pair No. 5 is large. It can be seen that the change in thickness can be accurately measured by changing the current direction. Moreover, the thickness change amount measured with the pair No. 5 is in good agreement with the actual local thickness reduction amount, and according to the present invention, the thickness change of the object to be measured can be detected with high accuracy. You can see that Furthermore, from the position where the local thinning exists, no change in the potential difference is observed in the upstream pair No. 2 where the current flows, whereas in the downstream pair No. 8, the potential difference is changed, which is localized. The location of thinning can be made clearer.

本発明で使用する非破壊検査装置の概略構成を模式的に示す説明図である。It is explanatory drawing which shows typically schematic structure of the nondestructive inspection apparatus used by this invention. 本発明の実施例で使用した電極、電位差測定用端子の配置とペアーの組合せを示す説明図である。It is explanatory drawing which shows the combination of the arrangement | positioning of an electrode used in the Example of this invention, the terminal for a potential difference measurement, and a pair. 本発明の実施例で得られた肉厚変化量と,実際の減肉量との関係を示すグラフである。It is a graph which shows the relationship between the amount of wall thickness changes obtained in the Example of this invention, and actual amount of thickness reduction. 本発明の実施例で使用した、他の電極、電位差測定用端子の配置とペアーの組合せを示す説明図である。It is explanatory drawing which shows the combination of another electrode and arrangement | positioning of a terminal for a potential difference measurement, and a pair used in the Example of this invention. 局部減肉を施した位置(局部減肉個所)を模式的に示す説明図である。It is explanatory drawing which shows typically the position (local thinning part) which performed the local thinning. 本発明の実施例で得られた各ペアー間における肉厚変化量と、実際の局部減肉量との関係を示すグラフである。It is a graph which shows the relationship between the thickness variation | change_quantity between each pair obtained in the Example of this invention, and an actual local thinning amount.

符号の説明Explanation of symbols

1 電源
11、12 電極
2、2a、2b、……2p 電位差測定用端子
3 電位差測定手段
4 演算手段
5 データ保存手段
1 Power supply
11, 12 Electrodes 2, 2a, 2b, ... 2p Potential difference measurement terminal 3 Potential difference measurement means 4 Calculation means 5 Data storage means

Claims (7)

被測定物表面に複数の電位差測定用端子を所定の間隔で離隔して配置し、該複数の電位差測定用端子を挟んで設けられた一対の電極を介して該被測定物表面に電流を供給しながら、前記複数の電位差測定用端子間に生じる電位差を測定して被測定物の肉厚の変化を検出する非破壊検査方法であって、前記複数の電位差測定用端子を直線状またはマトリックス状に配置し、該複数の電位差測定用端子の各端子間に生じる電位差を間歇的または連続的に測定し、測定領域における電位差分布を求め、予め関連づけられた電位差分布と被測定物の肉厚との関係を参照して、被測定物に生じた肉厚変化量および/または肉厚変化率を検知・測定することを特徴とする、被測定物の肉厚変化の非破壊検査方法。   A plurality of potential difference measuring terminals are arranged at predetermined intervals on the surface of the object to be measured, and current is supplied to the surface of the object to be measured via a pair of electrodes provided with the plurality of potential difference measuring terminals interposed therebetween. A nondestructive inspection method for detecting a change in the thickness of an object to be measured by measuring a potential difference generated between the plurality of potential difference measuring terminals, wherein the plurality of potential difference measuring terminals are linear or matrix-shaped. The potential difference generated between the terminals of the plurality of potential difference measuring terminals is measured intermittently or continuously, the potential difference distribution in the measurement region is obtained, and the potential difference distribution previously associated with the thickness of the object to be measured The non-destructive inspection method for the change in the thickness of the object to be measured is characterized by detecting and measuring the thickness change amount and / or the thickness change rate generated in the object to be measured. 被測定物表面に複数の電位差測定用端子を所定の間隔で離隔して配置するとともに、被測定物の肉厚変化が発生しない領域表面に参照電位差測定用の複数の参照用端子を所定の間隔で離隔して配置し、該複数の電位差測定用端子および該参照用端子を挟んで設けられた一対の電極を介して該被測定物表面に電流を供給しながら、前記複数の電位差測定用端子間及び前記複数の参照用端子間に生じる電位差を測定して被測定物に生じた肉厚の変化を検出する非破壊検査方法であって、少なくとも前記複数の電位差測定用端子を直線状またはマトリックス状に配置し、該複数の電位差測定用端子の各端子間及び該複数の参照用端子の各端子間に生じる電位差を同時に間歇的または連続的に測定し、測定領域における電位差分布を求め、予め関連づけられた電位差分布と被測定物の肉厚との関係を参照して、被測定物に生じた肉厚変化量および/または肉厚変化率を検知・測定することを特徴とする、被測定物の肉厚変化の非破壊検査方法。   A plurality of potential difference measuring terminals are spaced apart from each other on the surface of the object to be measured with a predetermined interval, and a plurality of reference terminals for measuring the reference potential difference are provided on the surface of the region where the thickness of the object to be measured does not change at a predetermined interval. The plurality of potential difference measurement terminals while supplying current to the surface of the object to be measured through a pair of electrodes provided with the plurality of potential difference measurement terminals and the reference terminal interposed therebetween. A non-destructive inspection method for detecting a change in thickness generated in a measurement object by measuring a potential difference generated between the plurality of reference terminals and between the plurality of reference terminals, wherein at least the plurality of potential difference measuring terminals are linear or matrix The potential difference generated between the terminals of the plurality of potential difference measuring terminals and between the terminals of the plurality of reference terminals is measured intermittently or continuously at the same time, and the potential difference distribution in the measurement region is obtained in advance. Association The object to be measured is characterized by detecting and measuring the change in thickness and / or rate of change in thickness of the object to be measured with reference to the relationship between the measured potential difference distribution and the thickness of the object to be measured. Non-destructive inspection method for wall thickness change. 電位差測定用端子の前記各端子間の初期肉厚を入力し、前記各端子間の、測定時における被測定物の肉厚を算出し、あるいはさらに表示することを特徴とする請求項1または2に記載の非破壊検査方法。   The initial thickness between the terminals of the potential difference measuring terminal is input, and the thickness of the object to be measured at the time of measurement between the terminals is calculated or further displayed. Non-destructive inspection method described in 1. 前記参照用端子を、前記被測定物と同種材料の参照板上に配設することを特徴とする請求項2または3に記載の非破壊検査方法。   4. The nondestructive inspection method according to claim 2, wherein the reference terminal is disposed on a reference plate made of the same material as the object to be measured. 前記電位差を、基準時からの電位差変化率とし、前記電位差分布を、電位差変化率分布とすることを特徴とする請求項1ないし4のいずれかに記載の非破壊検査方法。   The non-destructive inspection method according to claim 1, wherein the potential difference is a potential difference change rate from a reference time, and the potential difference distribution is a potential difference change rate distribution. 前記電流の方向で各端子間の電位差を測定したのち、前記電流の方向に対し、異なる方向に電流を供給しながら、前記各端子間の電位差を測定することを特徴とする請求項1ないし5のいずれかに記載の非破壊検査方法。   6. The potential difference between the terminals is measured while measuring the potential difference between the terminals in the direction of the current, while supplying the current in a direction different from the direction of the current. The nondestructive inspection method as described in any one of. 前記電流が、直流または直流パルスであることを特徴とする請求項1ないし6のいずれかに記載の非破壊検査方法。
The non-destructive inspection method according to claim 1, wherein the current is a direct current or a direct current pulse.
JP2005181038A 2005-06-21 2005-06-21 Non-destructive inspection method of change in wall thickness of measuring target Pending JP2007003235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181038A JP2007003235A (en) 2005-06-21 2005-06-21 Non-destructive inspection method of change in wall thickness of measuring target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181038A JP2007003235A (en) 2005-06-21 2005-06-21 Non-destructive inspection method of change in wall thickness of measuring target

Publications (1)

Publication Number Publication Date
JP2007003235A true JP2007003235A (en) 2007-01-11

Family

ID=37689027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181038A Pending JP2007003235A (en) 2005-06-21 2005-06-21 Non-destructive inspection method of change in wall thickness of measuring target

Country Status (1)

Country Link
JP (1) JP2007003235A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074923A (en) * 2007-09-20 2009-04-09 Atlus:Kk Damage detection method for structure made of conductive material
JP2009204564A (en) * 2008-02-29 2009-09-10 Atlus:Kk Monitoring method of damage occurrence/growth of steel bridge
JP2010096504A (en) * 2008-10-14 2010-04-30 Hioki Ee Corp Thickness nondestructive inspection method of measuring object, and device therefor
JP2011017575A (en) * 2009-07-08 2011-01-27 Chugoku Electric Power Co Inc:The Terminal fixing tool for potential difference method
JP2023169936A (en) * 2022-05-18 2023-12-01 北海道電力株式会社 Metal cylinder resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612544A (en) * 1979-06-26 1981-02-06 Sumitomo Metal Ind Ltd Method and apparatus for detecting cracking in shell of blast furnace
JPS63101742A (en) * 1986-10-20 1988-05-06 Hitachi Ltd Defect inspection
JP2003527612A (en) * 2000-03-14 2003-09-16 ブリティッシュ ニュークリア フュエルス ピーエルシー Corrosion investigation improvement and corrosion investigation method and apparatus
WO2005036152A1 (en) * 2003-09-17 2005-04-21 General Electric Company System and method for monitoring defects in structures
JP2005208039A (en) * 2003-12-22 2005-08-04 Atlus:Kk Nondestructive inspection method and nondestructive inspection device for flaw

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612544A (en) * 1979-06-26 1981-02-06 Sumitomo Metal Ind Ltd Method and apparatus for detecting cracking in shell of blast furnace
JPS63101742A (en) * 1986-10-20 1988-05-06 Hitachi Ltd Defect inspection
JP2003527612A (en) * 2000-03-14 2003-09-16 ブリティッシュ ニュークリア フュエルス ピーエルシー Corrosion investigation improvement and corrosion investigation method and apparatus
WO2005036152A1 (en) * 2003-09-17 2005-04-21 General Electric Company System and method for monitoring defects in structures
JP2005208039A (en) * 2003-12-22 2005-08-04 Atlus:Kk Nondestructive inspection method and nondestructive inspection device for flaw

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074923A (en) * 2007-09-20 2009-04-09 Atlus:Kk Damage detection method for structure made of conductive material
JP2009204564A (en) * 2008-02-29 2009-09-10 Atlus:Kk Monitoring method of damage occurrence/growth of steel bridge
JP2010096504A (en) * 2008-10-14 2010-04-30 Hioki Ee Corp Thickness nondestructive inspection method of measuring object, and device therefor
JP2011017575A (en) * 2009-07-08 2011-01-27 Chugoku Electric Power Co Inc:The Terminal fixing tool for potential difference method
JP2023169936A (en) * 2022-05-18 2023-12-01 北海道電力株式会社 Metal cylinder resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method
JP7402270B2 (en) 2022-05-18 2023-12-20 北海道電力株式会社 Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method

Similar Documents

Publication Publication Date Title
Sposito et al. Potential drop mapping for the monitoring of corrosion or erosion
US8111078B1 (en) Oxidizing power sensor for corrosion monitoring
EP2917717B1 (en) Field measurement of corrosion and erosion
CN107505256A (en) Weld corrosion monitoring device and its monitoring method under stress can be simulated
WO2009045629A2 (en) Apparatus, system, and associated method for monitoring surface corrosion
JP2007003235A (en) Non-destructive inspection method of change in wall thickness of measuring target
WO2007088913A1 (en) Damage detecting device or and damage detection method
JP2011220331A5 (en)
Brand et al. Detachable electrical connection of battery cells by press contacts
JP2005208039A (en) Nondestructive inspection method and nondestructive inspection device for flaw
JP2014139547A (en) Test piece for corrosion monitoring, corrosion monitoring apparatus, and corrosion monitoring method
JP2010266342A (en) Metal corrosion diagnostic method
KR101164518B1 (en) Monitoring Method for Crack Growth in Real Steel Structure and Estimation Method for Residual life of Real Steel Structure
JP5718190B2 (en) Defect estimation method for structures made of conductive materials
JPWO2018088273A1 (en) CTOD specimen manufacturing method and plastic strain adjustment jig
JP7024553B2 (en) Probe of corrosion environment measuring device and corrosion environment measuring device
JP2009074923A (en) Damage detection method for structure made of conductive material
JP2008209180A (en) Measuring electrode, corrosion monitoring device, and corrosion monitoring method
JP2007010385A (en) Potential difference measuring terminal substrate and non-destructive inspection method
JP2008096158A (en) Method and apparatus for specifying position of coil damage
KR20110109579A (en) A welding test apparatus and welding test method the apparatus
GB2365977A (en) Corrosion monitoring system for use in multiple phase solutions
JP5739649B2 (en) Crack inspection method for pipe welds and crack inspection apparatus for pipe welds
JP2019113534A (en) Corrosion environment measuring device, and measure method of liquid film thickness and electrical conductivity using the same
JPS58208654A (en) Apparatus for measuring corrosion in soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920