JP7402270B2 - Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method - Google Patents

Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method Download PDF

Info

Publication number
JP7402270B2
JP7402270B2 JP2022081288A JP2022081288A JP7402270B2 JP 7402270 B2 JP7402270 B2 JP 7402270B2 JP 2022081288 A JP2022081288 A JP 2022081288A JP 2022081288 A JP2022081288 A JP 2022081288A JP 7402270 B2 JP7402270 B2 JP 7402270B2
Authority
JP
Japan
Prior art keywords
resistance
main body
steel plate
drill blade
metal cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022081288A
Other languages
Japanese (ja)
Other versions
JP2023169936A (en
Inventor
二朗 辻野
修吉 橋田
誠隆 吉田
陸 山下
康平 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Original Assignee
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc filed Critical Hokkaido Electric Power Co Inc
Priority to JP2022081288A priority Critical patent/JP7402270B2/en
Publication of JP2023169936A publication Critical patent/JP2023169936A/en
Application granted granted Critical
Publication of JP7402270B2 publication Critical patent/JP7402270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属筒体の抵抗測定治具、抵抗測定システム、抵抗測定方法及び板厚評価方法に関する。 The present invention relates to a resistance measuring jig, a resistance measuring system, a resistance measuring method, and a plate thickness evaluation method for a metal cylinder.

鋼板組立柱や鋼管柱などの金属筒体は低コストかつ高強度の構造物であることから、様々なインフラ設備において、例えば、送配電線、照明、信号などの支持物や無線電波塔として利用されている。金属筒体では、地際部が地中の水分の影響を受けて腐食しやすいため、地際部の腐食が進行していないかどうかを確認する点検が定期的に行われている。この点検では、金属筒体のうち腐食した鋼板の板厚を測定し、測定値が基準を満たしていない場合には鋼板の取り替えが行われる。例えば、特許文献1には、超音波探傷器を用いて鋼板組立柱に超音波を照射し、鋼板組立柱からの反射波に基づいて鋼板組立柱の欠陥の程度を評価する方法が開示されている。 Metal cylindrical bodies such as assembled steel plate columns and steel pipe columns are low-cost and high-strength structures, so they are used in a variety of infrastructure facilities, such as supports for power transmission and distribution lines, lighting, and signals, and as wireless radio towers. has been done. Metal cylindrical bodies are susceptible to corrosion at the ground level due to the influence of moisture in the ground, so inspections are periodically performed to check whether corrosion has progressed at the ground level. In this inspection, the thickness of the corroded steel plate in the metal cylinder is measured, and if the measured value does not meet standards, the steel plate is replaced. For example, Patent Document 1 discloses a method of irradiating ultrasonic waves to a steel plate assembly column using an ultrasonic flaw detector and evaluating the degree of defects in the steel plate assembly column based on reflected waves from the steel plate assembly column. There is.

特開2013-160683号公報Japanese Patent Application Publication No. 2013-160683

特許文献1の方法では、広範囲に錆皮膜を除去する必要があり、ケレンに多く労力を要する。ケレンを行うことで、鋼板の板厚が減少すると共に金属母材が露出して腐食が進行するおそれも生じる。加えて、孔食状の腐食のような凹凸が鋼板に生じている場合には、超音波探傷子で鋼板表面を測定できない、という問題もある。また、汎用的な超音波厚さ計を用いることも考えられるが、汎用的な超音波厚さ計は、湾曲した金属筒体の板厚測定を考慮に入れておらず、金属筒体に腐食が存在しない場合でも正確な板厚測定が困難である。 In the method of Patent Document 1, it is necessary to remove the rust film over a wide area, and cleaning requires a lot of effort. By cleaning, the thickness of the steel plate decreases, and the metal base material is exposed, which may lead to corrosion. In addition, if the steel plate has irregularities such as pitting corrosion, there is a problem in that the surface of the steel plate cannot be measured with an ultrasonic flaw detector. It is also possible to use a general-purpose ultrasonic thickness gauge, but general-purpose ultrasonic thickness gauges do not take into account the thickness measurement of curved metal cylinders, and corrosion may occur on metal cylinders. Accurate plate thickness measurement is difficult even when there is no

本発明は、このような背景に基づいてなされたものであり、金属筒体が腐食している場合でも板厚を簡単に評価できる抵抗測定治具、抵抗測定システム、抵抗測定方法及び板厚評価方法を提供することを目的とする。 The present invention has been made based on this background, and provides a resistance measuring jig, a resistance measuring system, a resistance measuring method, and a plate thickness evaluation that can easily evaluate the plate thickness even when a metal cylinder is corroded. The purpose is to provide a method.

上記目的を達成するために、本発明に係る抵抗測定治具は、
金属筒体の形状に合わせて変形可能な板状の本体と、
前記本体の板面方向に交差する方向に延び、前記本体の板面方向に一列に並べた状態で回転可能に支持され、前記金属筒体に形成された錆皮膜を除去可能な複数のドリル刃と、
前記本体の上面部に設けられ、前記ドリル刃を回転可能に支持する支持手段と、
を備え、
前記ドリル刃は、前記ドリル刃の基端部が前記支持手段の外側に配置され、抵抗計の端子と接続可能となるように構成され、電気信号を導通可能な導電性を有している。
In order to achieve the above object, the resistance measuring jig according to the present invention includes:
A plate-shaped body that can be deformed to match the shape of the metal cylinder,
a plurality of drill blades extending in a direction intersecting the plate surface direction of the main body, rotatably supported while being arranged in a row in the plate surface direction of the main body, and capable of removing a rust film formed on the metal cylindrical body; and,
Supporting means provided on the upper surface of the main body and rotatably supporting the drill blade;
Equipped with
The drill blade is configured such that a proximal end portion of the drill blade is disposed outside the support means, is connectable to a terminal of a resistance meter, and has conductivity capable of conducting an electric signal.

本発明によれば、金属筒体が腐食している場合でも板厚を簡単に評価できる抵抗測定治具、抵抗測定システム、抵抗測定方法及び板厚評価方法を提供できる。 According to the present invention, it is possible to provide a resistance measurement jig, a resistance measurement system, a resistance measurement method, and a plate thickness evaluation method that can easily evaluate the thickness of a metal cylinder even when the metal cylinder is corroded.

本発明の実施の形態1に係る抵抗測定システムの構成を示す概略図である。1 is a schematic diagram showing the configuration of a resistance measurement system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る抵抗計の構成を示す図である。1 is a diagram showing the configuration of a resistance meter according to Embodiment 1 of the present invention. (a)、(b)は、それぞれ本発明の実施の形態1に係る抵抗測定治具の構成を示す正面図、底面図である。(a) and (b) are a front view and a bottom view, respectively, showing the configuration of a resistance measuring jig according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る抵抗測定治具の構成を示す側面図である。1 is a side view showing the configuration of a resistance measuring jig according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る演算装置のハードウェア構成を示すブロック図である。1 is a block diagram showing a hardware configuration of an arithmetic device according to Embodiment 1 of the present invention. FIG. (a)は、抵抗値記憶部のデータテーブルの一例を示す図であり、(b)は、板厚変化率記憶部のデータテーブルの一例を示す図である。(a) is a diagram showing an example of a data table of the resistance value storage section, and (b) is a diagram showing an example of the data table of the plate thickness change rate storage section. 本発明の実施の形態1に係る板厚評価方法の流れを示すフローチャートである。1 is a flowchart showing the flow of a plate thickness evaluation method according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る抵抗測定方法の流れを示すフローチャートである。1 is a flowchart showing the flow of a resistance measurement method according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る演算処理の流れを示すフローチャートである。3 is a flowchart showing the flow of arithmetic processing according to Embodiment 1 of the present invention. (a)、(b)、(c)は、それぞれ本発明の実施の形態2に係る抵抗測定治具の構成を示す正面図、平面図、側面図である。(a), (b), and (c) are a front view, a top view, and a side view, respectively, showing the configuration of a resistance measuring jig according to Embodiment 2 of the present invention. 本発明の実施の形態2に係る抵抗測定方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the resistance measurement method based on Embodiment 2 of this invention. 鋼材の抵抗値と温度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the resistance value and temperature of steel materials. 実施例1における試験片毎の抵抗値の測定結果に基づいて作成したグラフである。2 is a graph created based on the measurement results of resistance values for each test piece in Example 1. 実施例2における抵抗値と端部からの距離との関係を示すグラフである。7 is a graph showing the relationship between the resistance value and the distance from the end in Example 2. FIG. 実施例3における鋼板組立体における測定箇所を示す図である。FIG. 7 is a diagram showing measurement points in a steel plate assembly in Example 3. 実施例3における測定箇所毎の抵抗値の測定結果及び減肉率の換算結果を示す図である。FIG. 7 is a diagram showing the measurement results of the resistance value and the conversion result of the thinning rate for each measurement location in Example 3.

以下、本発明の実施の形態に係る抵抗測定治具、抵抗測定システム、抵抗測定方法及び板厚評価方法を、図面を参照しながら詳細に説明する。各図面では、同一又は同等の部分に同一の符号を付す。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A resistance measuring jig, a resistance measuring system, a resistance measuring method, and a plate thickness evaluation method according to embodiments of the present invention will be described in detail below with reference to the drawings. In each drawing, the same or equivalent parts are given the same reference numerals.

(実施の形態1)
図1~図9を参照して、実施の形態1に係る抵抗測定治具、抵抗測定システム、抵抗測定方法及び板厚評価方法を説明する。以下、抵抗測定システムを用いて鋼板組立柱の地際部に発生した腐食箇所における板厚を評価する場合を例に説明する。
(Embodiment 1)
A resistance measurement jig, a resistance measurement system, a resistance measurement method, and a plate thickness evaluation method according to the first embodiment will be described with reference to FIGS. 1 to 9. Hereinafter, an example will be described in which a resistance measurement system is used to evaluate the thickness of a steel plate assembly column at a location where corrosion has occurred at the ground level.

図1に示すように、抵抗測定システム1は、鋼板組立柱の抵抗を測定する抵抗計2と、鋼板組立柱に装着され、抵抗計2と鋼板組立柱とを電気的に接続する抵抗測定治具3と、を備える。抵抗測定治具3には、抵抗計2の端子が挿入される取り付け口が設けられ、抵抗測定治具3の取り付け口に抵抗計2の端子が挿入されることで、抵抗計2と抵抗測定治具3とが電気的に接続される。 As shown in FIG. 1, the resistance measurement system 1 includes a resistance meter 2 that measures the resistance of a steel plate assembly column, and a resistance measurement fixture that is attached to the steel plate assembly column and electrically connects the resistance meter 2 and the steel plate assembly column. A tool 3 is provided. The resistance measuring jig 3 is provided with an attachment hole into which the terminal of the resistance meter 2 is inserted, and by inserting the terminal of the resistance meter 2 into the attachment hole of the resistance measuring jig 3, the resistance meter 2 and the resistance measurement are connected. The jig 3 is electrically connected.

図2に示すように、抵抗計2は、4端子抵抗計であり、定電流電源及び電圧計を備える本体部21と、本体部21の定電流電源に接続され、測定対象に定電流を供給する一対の電流源端子22と、本体部21の電圧計に接続され、測定対象における電圧降下を検出する一対の電圧検出端子23と、を備える。4端子抵抗計では、電圧計の入力インピーダンスが高いため、電圧検出端子側のリード線にほとんど電流が流れず、リード線の抵抗や接触抵抗の影響を受けずに測定対象の抵抗を測定できる。電流源端子22及び電圧検出端子23は、抵抗測定治具3に設けられた取り付け口に挿入できるよう、いずれもピン状に形成されている。以下、電流源端子22及び電圧検出端子23の区別が不要な場合、両者を総称して端子2Aと表現する。 As shown in FIG. 2, the resistance meter 2 is a four-terminal resistance meter, and is connected to a main body 21 that includes a constant current power source and a voltmeter, and to the constant current power source of the main body 21, and supplies a constant current to the measurement target. A pair of current source terminals 22 and a pair of voltage detection terminals 23 are connected to the voltmeter of the main body 21 and detect a voltage drop in the object to be measured. In a four-terminal resistance meter, since the input impedance of the voltmeter is high, almost no current flows through the lead wire on the voltage detection terminal side, and the resistance of the measurement target can be measured without being affected by the resistance of the lead wire or contact resistance. The current source terminal 22 and the voltage detection terminal 23 are each formed into a pin shape so that they can be inserted into a mounting hole provided in the resistance measuring jig 3. Hereinafter, when it is not necessary to distinguish between the current source terminal 22 and the voltage detection terminal 23, they will be collectively referred to as the terminal 2A.

次に、図3及び図4を参照して、実施の形態1に係る抵抗測定治具3の構成を説明する。抵抗測定治具3は、鋼板組立柱に装着された状態で鋼板組立柱表面に形成された錆皮膜を除去し、金属母材が露出している鋼板組立柱表面の接点と抵抗計2の端子2Aとを電気的に接続する治具である。 Next, the configuration of the resistance measuring jig 3 according to the first embodiment will be described with reference to FIGS. 3 and 4. The resistance measuring jig 3 removes the rust film formed on the surface of the steel plate assembly column while attached to the steel plate assembly column, and connects the contact point on the surface of the steel plate assembly column where the metal base material is exposed to the terminal of the resistance meter 2. This is a jig for electrically connecting 2A.

抵抗測定治具3は、鋼板組立柱の形状に合わせて変形可能な本体3Aと、本体3Aに対して一列に並べて設けられ、抵抗計2の各端子2Aを受け入れた状態で、抵抗計2の各端子2Aを鋼板組立柱の金属母材が露出している各接点に電気的に接続させる4つの接続ユニット3Bと、を備える。各接続ユニット3Bが一列に並べられているのは、鋼板組立柱の曲率に合わせて本体3Aを湾曲しやすくすると共に、抵抗計2による抵抗の測定精度を向上させるためである。 The resistance measuring jig 3 has a main body 3A that can be deformed according to the shape of the steel plate assembly column, and is arranged in a row with respect to the main body 3A. Four connection units 3B are provided for electrically connecting each terminal 2A to each contact point where the metal base material of the steel plate assembly column is exposed. The reason why each connection unit 3B is arranged in a line is to make it easier to bend the main body 3A in accordance with the curvature of the steel plate assembly column, and to improve the accuracy of resistance measurement by the resistance meter 2.

本体3Aは、鋼板組立柱の形状に合わせて変形可能なゴム板で形成されている。本体3Aの底面部には、板面方向に等間隔で一列に並べられた4つの凹部3aが形成されている。凹部3aの中心部に凹部3aから本体3Aの上面部に向かって貫通孔3bが形成され、凹部3aの両端部には、凹部3aから本体3Aの上面部に向かって一対の貫通孔3cが形成されている。ここで板面方向とは、板状の本体3Aが拡がる面内の任意方向を示す。 The main body 3A is made of a rubber plate that can be deformed to match the shape of the steel plate assembly column. Four recesses 3a are formed in the bottom surface of the main body 3A, arranged in a row at equal intervals in the direction of the plate surface. A through hole 3b is formed in the center of the recess 3a from the recess 3a toward the upper surface of the main body 3A, and a pair of through holes 3c are formed at both ends of the recess 3a toward the upper surface of the main body 3A. has been done. Here, the plate surface direction refers to any direction within the plane in which the plate-shaped main body 3A extends.

各接続ユニット3Bは、本体3Aの凹部3aの両端で貫通孔3cに合わせて配置され、鋼板組立柱に吸着可能な一対の磁石31と、本体3Aの上面部に設けられ、各磁石31と共に本体3Aを挟み込むように配置された板状部材32と、板状部材32の上面部に設けられた枠部材33と、枠部材33により回転可能に支持され、本体3A、板状部材32及び枠部材33を貫通して配置され、鋼板組立柱表面の錆皮膜を除去するドリル刃34と、ドリル刃34の基端側に設けられ、ユーザによるドリル刃34の回転操作を受け付ける回転つまみ35と、を備える。 Each connection unit 3B is arranged at both ends of the recess 3a of the main body 3A in alignment with the through hole 3c, and has a pair of magnets 31 that can be attracted to the steel plate assembly column, and is provided on the upper surface of the main body 3A, and together with each magnet 31, the main body A plate member 32 arranged to sandwich the main body 3A, a frame member 33 provided on the upper surface of the plate member 32, and a frame member 33 rotatably supported by the main body 3A, the plate member 32, and the frame member. A drill blade 34 is disposed to penetrate through the steel plate assembly column 33 and removes a rust film on the surface of the steel plate assembly column, and a rotary knob 35 is provided on the base end side of the drill blade 34 and receives a rotation operation of the drill blade 34 by the user. Be prepared.

各磁石31は、鋼板組立柱表面に吸着するように本体3Aの底面部から僅かに突出している。各磁石31は、例えば、永久磁石であり、円盤形状に形成されている。各磁石31の中心部には、ボルト31bが挿通可能な貫通孔31aが設けられている。 Each magnet 31 slightly protrudes from the bottom surface of the main body 3A so as to be attracted to the surface of the steel plate assembly column. Each magnet 31 is, for example, a permanent magnet and is formed into a disk shape. A through hole 31a through which a bolt 31b can be inserted is provided in the center of each magnet 31.

板状部材32は、各凹部3aのそれぞれに平行に配置される板状の部材である。板状部材32は、中心部に設けられ、ドリル刃34が挿通される貫通孔32aと、貫通孔32aの両側に配置され、枠部材33に固定されるボルト33dの頭部が埋め込まれる一対の貫通孔32bと、一対の貫通孔32bの外側に配置され、ボルト31bが挿通される一対の貫通孔32cと、を備える。 The plate-like member 32 is a plate-like member arranged parallel to each of the recesses 3a. The plate-like member 32 has a through-hole 32a provided at the center through which the drill blade 34 is inserted, and a pair of through-holes 32a arranged on both sides of the through-hole 32a into which the heads of bolts 33d fixed to the frame member 33 are embedded. It includes a through hole 32b and a pair of through holes 32c that are arranged outside the pair of through holes 32b and into which the bolts 31b are inserted.

板状部材32は、一対の磁石31と共に本体3Aを上下から挟み込んだ状態で本体3Aに固定される。磁石31の貫通孔31a、本体3Aの貫通孔3c及び板状部材32の貫通孔32cには、ボルト31bが挿通された状態で、ボルト31bにナット31cが締め付けられている。 The plate-like member 32 is fixed to the main body 3A with the pair of magnets 31 sandwiching the main body 3A from above and below. Bolts 31b are inserted into the through holes 31a of the magnet 31, the through holes 3c of the main body 3A, and the through holes 32c of the plate member 32, and nuts 31c are tightened on the bolts 31b.

貫通孔32bは、ボルト33dの頭部を収容する大径部と、ボルト33dの軸が挿通でき、ボルト33dの頭部が挿通できない小径部と、を備える。貫通孔32bは、ボルト33dの頭部を完全に収容できるため、板状部材32と本体3Aとが固定された状態でも、ボルト33dの頭部が本体3Aの上面部と干渉しない。 The through hole 32b includes a large diameter portion that accommodates the head of the bolt 33d, and a small diameter portion through which the shaft of the bolt 33d can be inserted, but through which the head of the bolt 33d cannot be inserted. Since the through hole 32b can completely accommodate the head of the bolt 33d, the head of the bolt 33d does not interfere with the upper surface of the main body 3A even when the plate member 32 and the main body 3A are fixed.

枠部材33は、上面部と、下面部と、上面部及び下面部にそれぞれ接続された一対の側面部と、を備える。上面部及び下面部には、ドリル刃34が挿通される貫通孔33a、33bがそれぞれ形成され、枠部材33の上面部、下面部及び一対の側面部は、ドリル刃34を収容する内部空間を形成している。枠部材33の下面部の底面側には、一対の雌ねじ孔33cが設けられている。枠部材33は、板状部材32の貫通孔32bに挿通されたボルト33dを雌ねじ孔33cに締め付けることで、板状部材32に対して固定されている。 The frame member 33 includes an upper surface, a lower surface, and a pair of side surfaces connected to the upper and lower surfaces, respectively. Through-holes 33a and 33b into which the drill blade 34 is inserted are formed in the upper surface and the lower surface, respectively, and the upper surface, the lower surface and a pair of side surfaces of the frame member 33 define an internal space in which the drill blade 34 is accommodated. is forming. A pair of female screw holes 33c are provided on the bottom side of the lower surface portion of the frame member 33. The frame member 33 is fixed to the plate member 32 by tightening a bolt 33d inserted into the through hole 32b of the plate member 32 into a female screw hole 33c.

ドリル刃34は、電気信号を導通可能な導電性と鋼板組立体の錆皮膜を粉砕可能な硬さとを兼ね備えるドリルである。ドリル刃34は、鋼板組立体の錆皮膜を粉砕することを考慮すると、ガラスに穴を空けることが可能なガラスドリル刃であることが好ましい。ガラスドリル刃は、超硬合金、例えば、タングステンカーバイド及びコバルトの粉末を混合して焼結した合金で形成されている。ドリル刃34同士の距離は、抵抗計2による測定精度を考慮しつつ、抵抗計2の各端子2Aがそれぞれ電気的に接続される複数の接点が鋼板組立体表面で一列に並べられ、互いに一定間隔となるように設定される。凹凸の激しい腐食鋼板で平均的な値の抵抗値を得るには、ドリル刃34同士の距離を長くするとよいが、ドリル刃34同士の距離を長くすると、今度は測定電圧が小さくなるため測定誤差が大きくなる。実験を鋭意繰り返した結果によると、ドリル刃34同士の距離は、例えば、20mm~30mmの範囲内であることが好ましく、25mmであることがより好ましい。 The drill blade 34 is a drill that has both conductivity capable of transmitting electric signals and hardness capable of crushing the rust film on the steel plate assembly. The drill blade 34 is preferably a glass drill blade capable of drilling holes in glass, in view of crushing the rust film on the steel plate assembly. The glass drill blade is made of a cemented carbide, for example, an alloy made by mixing and sintering tungsten carbide and cobalt powders. The distance between the drill blades 34 is set at a constant distance from each other, while taking into account the measurement accuracy by the resistance meter 2, the plurality of contacts to which the respective terminals 2A of the resistance meter 2 are electrically connected are arranged in a line on the surface of the steel plate assembly. The interval is set as follows. In order to obtain an average resistance value on a highly uneven corroded steel plate, it is better to increase the distance between the drill blades 34, but if the distance between the drill blades 34 is increased, the measured voltage will become smaller, resulting in measurement errors. becomes larger. According to the results of repeated experiments, the distance between the drill blades 34 is preferably within a range of 20 mm to 30 mm, and more preferably 25 mm.

回転つまみ35は、抵抗計2の端子2Aに合わせて形成された差し込み口35aと、ドリル刃34に合わせて形成された取り付け口35bと、を備える。差し込み口35a及び取り付け口35bは、上面部から下面部に突き抜ける1本の貫通孔を形成している。取り付け口35bには、垂直な方向に雌ねじ孔35cが形成されている。ドリル刃34を取り付け口35bに取り付け、雌ねじ孔35cにボルトを締め付けることで、ドリル刃34が回転つまみ35に固定される。ドリル刃34が取り付け口35bに取り付けられた状態で、端子2Aを差し込み口35aに挿入すると、端子2Aの先端面がドリル刃34の基端面に接触し、端子2Aがドリル刃34に電気的に接続される。 The rotary knob 35 includes an insertion port 35a formed to match the terminal 2A of the resistance meter 2, and an attachment port 35b formed to match the drill blade 34. The insertion port 35a and the attachment port 35b form one through hole that penetrates from the upper surface to the lower surface. A female threaded hole 35c is formed in the mounting port 35b in a vertical direction. The drill blade 34 is fixed to the rotary knob 35 by attaching the drill blade 34 to the attachment port 35b and tightening a bolt into the female screw hole 35c. When the terminal 2A is inserted into the insertion port 35a with the drill blade 34 attached to the attachment port 35b, the distal end surface of the terminal 2A contacts the base end surface of the drill blade 34, and the terminal 2A is electrically connected to the drill blade 34. Connected.

抵抗測定治具3は、ドリル刃34の中間部に設けられ、ドリル刃34の軸方向の移動を規制するストッパ36と、枠部材33の上面部とストッパ36との間に配置され、ストッパ36を枠部材33の下面部に押し付けるコイルバネ37と、をさらに備える。板状部材32、枠部材33、ストッパ36及びコイルバネ37は、本体3Aの上面部に設けられ、ドリル刃34が前進する方向に向かってドリル刃34を付勢すると共にドリル刃34を回転可能に支持する支持手段の一例である。 The resistance measuring jig 3 is provided at the intermediate portion of the drill blade 34 and is arranged between a stopper 36 that restricts the movement of the drill blade 34 in the axial direction, and the top surface of the frame member 33 and the stopper 36. The frame member 33 further includes a coil spring 37 that presses the frame member 33 against the lower surface of the frame member 33. The plate member 32, the frame member 33, the stopper 36, and the coil spring 37 are provided on the upper surface of the main body 3A, and urge the drill blade 34 in the direction in which the drill blade 34 moves forward, and also enable the drill blade 34 to rotate. This is an example of supporting means.

ストッパ36は、円筒形状の部材であり、内部にドリル刃34が挿通される貫通孔を備える。ストッパ36の周壁部には、貫通孔に向かって貫通孔の径方向に貫通する雌ねじ孔が設けられ、雌ねじ孔にボルトが締め付けられることで、ストッパ36がドリル刃34の中間部に固定される。ストッパ36は、枠部材33の内部空間に配置され、枠部材33の下面部と接触することで、ドリル刃34の本体3A側への移動を規制する。 The stopper 36 is a cylindrical member, and includes a through hole into which the drill blade 34 is inserted. The peripheral wall of the stopper 36 is provided with a female screw hole that penetrates in the radial direction of the through hole toward the through hole, and by tightening a bolt into the female screw hole, the stopper 36 is fixed to the intermediate portion of the drill blade 34. . The stopper 36 is disposed in the internal space of the frame member 33 and comes into contact with the lower surface of the frame member 33 to restrict movement of the drill blade 34 toward the main body 3A side.

また、ストッパ36は、ドリル刃34に対して押し込み方向の荷重が加えられない状態でコイルバネ37により枠部材33の下面部に押し付けられている。この状態でドリル刃34は、本体3Aの底面部より僅かに、例えば、5mm程度突出している。ストッパ36は、ドリル刃34が回転つまみ35側に押し込まれると、枠部材33の上面部に向かって圧縮されたコイルバネ37の作用により元の位置に戻るように付勢される。このため、抵抗測定治具3を鋼板組立柱に装着すると、鋼板組立柱表面に接触したドリル刃34が僅かに回転つまみ35側に押し込まれ、ドリル刃34が鋼板組立柱表面に向かって付勢される。これにより抵抗測定治具3を鋼板組立柱に装着した状態で、ドリル刃34を確実に鋼板組立柱表面に接触させることができる。 Further, the stopper 36 is pressed against the lower surface portion of the frame member 33 by the coil spring 37 in a state where no load is applied to the drill blade 34 in the pushing direction. In this state, the drill blade 34 protrudes slightly, for example, about 5 mm, from the bottom surface of the main body 3A. When the drill blade 34 is pushed toward the rotary knob 35, the stopper 36 is urged to return to its original position by the action of the coil spring 37 compressed toward the upper surface of the frame member 33. Therefore, when the resistance measuring jig 3 is attached to the steel plate assembly column, the drill blade 34 that has contacted the surface of the steel plate assembly column is pushed slightly toward the rotary knob 35, and the drill blade 34 is urged toward the surface of the steel plate assembly column. be done. Thereby, the drill blade 34 can be reliably brought into contact with the surface of the steel plate assembly column while the resistance measuring jig 3 is attached to the steel plate assembly column.

抵抗測定治具3は、上記の構成を備えるため、鋼板組立柱表面に金属母材が露出した4つの接点を簡単に作成でき、鋼板組立柱の測定箇所における抵抗を測定できる。また、抵抗計2により測定された抵抗値は、表面に凹凸を有する鋼板組立柱の測定箇所における断面積の平均値に対応しているため、抵抗計2により抵抗を測定することで、鋼板の断面積に依存する鋼板の機械強度を簡便に評価できる。
以上が、抵抗測定治具3の構成である。
Since the resistance measuring jig 3 has the above-described configuration, it can easily create four contacts with exposed metal base material on the surface of the steel plate assembly column, and measure the resistance at the measurement location of the steel plate assembly column. In addition, the resistance value measured by the resistance meter 2 corresponds to the average value of the cross-sectional area at the measurement location of the steel plate assembly column that has an uneven surface. The mechanical strength of steel plates, which depends on the cross-sectional area, can be easily evaluated.
The above is the configuration of the resistance measurement jig 3.

次に、図5を参照して、実施の形態1に係る演算装置100のハードウェア構成を説明する。演算装置100は、例えば、汎用コンピュータである。演算装置100は、操作部110と、表示部120と、通信部130と、記憶部140と、制御部150と、を備える。演算装置100の各部は、内部バス(図示せず)を介して相互に接続されている。 Next, with reference to FIG. 5, the hardware configuration of the arithmetic device 100 according to the first embodiment will be described. Arithmetic device 100 is, for example, a general-purpose computer. The arithmetic device 100 includes an operation section 110, a display section 120, a communication section 130, a storage section 140, and a control section 150. Each part of the arithmetic device 100 is interconnected via an internal bus (not shown).

操作部110は、ユーザの指示を受け付け、受け付けた操作に対応する操作信号を制御部150に供給する。操作部110は、例えば、マウス、キーボードを備える。 The operation unit 110 receives a user's instruction and supplies an operation signal corresponding to the accepted operation to the control unit 150. The operation unit 110 includes, for example, a mouse and a keyboard.

表示部120は、表示駆動回路を備え、制御部150から供給されるデータに基づいて、ユーザに向けて各種の画像を表示する。 The display unit 120 includes a display drive circuit, and displays various images for the user based on data supplied from the control unit 150.

通信部130は、演算装置100が外部の機器と通信するための通信インタフェースである。通信部130は、例えば、インターネットのような通信ネットワーク、入出力端子を介して外部の機器と通信する。入出力端子は、例えば、USB(Universal Serial Bus)である。 The communication unit 130 is a communication interface through which the computing device 100 communicates with external equipment. The communication unit 130 communicates with external devices via a communication network such as the Internet and input/output terminals, for example. The input/output terminal is, for example, a USB (Universal Serial Bus).

記憶部140は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、ハードディスクを備える。記憶部140は、制御部150で実行されるプログラムや各種のデータを記憶する。また、記憶部140は、各種の情報を一時的に記憶し、制御部150が処理を実行するためのワークメモリとしても機能する。さらに、記憶部140は、抵抗値記憶部141と、板厚変化率記憶部142と、を備える。 The storage unit 140 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, and a hard disk. The storage unit 140 stores programs executed by the control unit 150 and various data. Furthermore, the storage unit 140 temporarily stores various information and also functions as a work memory for the control unit 150 to execute processing. Furthermore, the storage unit 140 includes a resistance value storage unit 141 and a plate thickness change rate storage unit 142.

図6(a)に示すように、抵抗値記憶部141は、抵抗計2により測定された抵抗値を、鋼板組立柱の識別番号及び測定位置に対応づけて記憶する。鋼板組立柱の識別番号は、鋼板組立柱毎に割り振られた固有の番号である。測定位置は、例えば、鋼板組立柱の軸方向の位置(高さ)z1、z2、…と、鋼板組立柱の軸周りの角度r1、r2、…とにより表現される。 As shown in FIG. 6A, the resistance value storage unit 141 stores the resistance value measured by the resistance meter 2 in association with the identification number and measurement position of the steel plate assembly column. The identification number of the steel plate assembly column is a unique number assigned to each steel plate assembly column. The measurement position is expressed, for example, by the axial position (height) z1, z2, . . . of the steel plate assembly column, and the angle r1, r2, . . . around the axis of the steel plate assembly column.

図6(b)に示すように、板厚変化率記憶部142は、演算装置100により算出された板厚変化率を、鋼板組立柱の識別番号及び測定位置に対応づけて記憶する。 As shown in FIG. 6B, the plate thickness change rate storage unit 142 stores the plate thickness change rate calculated by the calculation device 100 in association with the identification number and measurement position of the steel plate assembly column.

図5に戻り、制御部150は、プロセッサを備え、演算装置100の各部の制御を行う。プロセッサは、例えば、CPU(Central Processing Unit)である。制御部150は、記憶部140に記憶されているプログラムを実行することにより、図9の演算処理を実行する。制御部150は、機能的には、取得部151と、平均値算出部152と、板厚変化率算出部153と、出力部154とを備える。 Returning to FIG. 5, the control section 150 includes a processor and controls each section of the arithmetic device 100. The processor is, for example, a CPU (Central Processing Unit). The control unit 150 executes the arithmetic processing shown in FIG. 9 by executing the program stored in the storage unit 140. Functionally, the control section 150 includes an acquisition section 151, an average value calculation section 152, a plate thickness change rate calculation section 153, and an output section 154.

取得部151は、抵抗計2により測定された抵抗値に関するデータを取得し、鋼板組立柱の識別番号及び測定位置に対応づけて抵抗値記憶部141に記憶させる。取得部151によるデータの取得には、記憶部140に記憶されたデータを読み出すことが含まれる。 The acquisition unit 151 acquires data regarding the resistance value measured by the resistance meter 2, and stores it in the resistance value storage unit 141 in association with the identification number and measurement position of the steel plate assembly column. Acquisition of data by the acquisition unit 151 includes reading data stored in the storage unit 140.

平均値算出部152は、取得部151により取得された抵抗値に基づいて、健全箇所及び各腐食箇所における抵抗値の平均値を算出する。 The average value calculation unit 152 calculates the average value of the resistance values at the healthy location and each corroded location based on the resistance values acquired by the acquisition unit 151.

板厚変化率算出部153は、平均値算出部152により算出された健全箇所及び各腐食箇所における抵抗値の平均値に基づいて各腐食箇所における板厚変化率を算出し、鋼板組立柱の識別番号及び測定位置に対応付けて板厚変化率記憶部142に記憶させる。腐食箇所における板厚変化率は、腐食箇所における抵抗値の平均値を健全箇所における抵抗値の平均値で割ることで算出する。 The plate thickness change rate calculation unit 153 calculates the plate thickness change rate at each corroded location based on the average value of the resistance value at the healthy location and each corroded location calculated by the average value calculation unit 152, and identifies the steel plate assembled column. It is stored in the plate thickness change rate storage unit 142 in association with the number and the measurement position. The plate thickness change rate at a corroded location is calculated by dividing the average value of the resistance value at the corroded location by the average value of the resistance value at the healthy location.

出力部154は、板厚変化率算出部153により算出された各腐食箇所における板厚変化率のデータを外部に出力する。例えば、各腐食箇所における板厚変化率を表示部120に表示させてもよい。
以上が、演算装置100の構成である。
The output unit 154 outputs data on the plate thickness change rate at each corrosion location calculated by the plate thickness change rate calculation unit 153 to the outside. For example, the rate of change in plate thickness at each corrosion location may be displayed on the display unit 120.
The above is the configuration of the arithmetic device 100.

(板厚評価方法)
次に、図7を参照して、実施の形態1に係る抵抗測定システム1を用いてユーザが実行する板厚評価方法の流れを説明する。
(Plate thickness evaluation method)
Next, with reference to FIG. 7, the flow of the plate thickness evaluation method performed by the user using the resistance measurement system 1 according to the first embodiment will be described.

まず、鋼板組立体表面に腐食が発生している腐食箇所の抵抗を測定する(ステップS11)。鋼板組立柱の腐食箇所は土中部にあるため、スコップ等で穴を掘って鋼板組立柱を露出させる。腐食箇所は、鋼板組立柱を露出させた時点で、鋼板組立体を目視で確認し、減肉していそうなところを中心に何箇所かをピックアップして選択する。抵抗測定は、例えば、図8に示す方法で実行する。現場での抵抗測定では、周囲環境の影響により誤差が生じやすいため、同一箇所に対する抵抗測定は、少なくとも5回以上行うことが好ましい。 First, the resistance of a corrosion location where corrosion has occurred on the surface of the steel plate assembly is measured (step S11). Since the corroded part of the steel plate assembly column is located in the soil, dig a hole with a shovel or the like to expose the steel plate assembly column. Corrosion points are selected by visually checking the steel plate assembly once the steel plate assembly column is exposed, and picking out several locations that are likely to have thinning. The resistance measurement is performed, for example, by the method shown in FIG. In on-site resistance measurements, errors are likely to occur due to the influence of the surrounding environment, so it is preferable to measure the resistance at the same location at least five times or more.

次に、鋼板組立体表面に腐食が発生していない健全箇所の抵抗を測定する(ステップS12)。健全箇所は、通常腐食することのない地上部の任意の箇所を選択してもよく、土中部でも目視で腐食していない箇所を選択してもよい。抵抗測定の手法は、ステップS11の工程の場合と同一である。 Next, the resistance of a healthy area where no corrosion has occurred on the surface of the steel plate assembly is measured (step S12). As the healthy location, any location above ground that is not normally corroded may be selected, or a location in the soil that is not visually observed to be corroded may be selected. The resistance measurement method is the same as in the step S11.

次に、ステップS11の工程で測定した腐食箇所の抵抗値とステップS12の工程で測定した健全箇所の抵抗値とを比較することで、腐食箇所における板厚を評価する(ステップS13)。具体的には、演算装置100に図9の演算処理を実行させることで、腐食箇所の板厚変化率を算出する。次に、算出された腐食箇所の板厚変化率に基づいて、鋼板組立体における鋼管の交換が必要かどうかを判断すればよい。
以上が、板厚評価方法の流れである。
Next, the plate thickness at the corroded area is evaluated by comparing the resistance value of the corroded area measured in the process of step S11 with the resistance value of the healthy area measured in the process of step S12 (step S13). Specifically, the rate of change in plate thickness at the corroded location is calculated by causing the arithmetic device 100 to execute the arithmetic processing shown in FIG. Next, it may be determined whether or not the steel pipe in the steel plate assembly needs to be replaced based on the calculated plate thickness change rate at the corroded location.
The above is the flow of the plate thickness evaluation method.

(抵抗測定方法)
以下、図8を参照して、実施の形態1に係る抵抗測定システム1を用いてユーザが実行する抵抗測定方法の流れを説明する。実施の形態1に係る抵抗測定方法では、抵抗測定治具3を用いるため、4本の端子2Aを取り扱う抵抗測定であっても作業員一人で実行できる。
(Resistance measurement method)
The flow of the resistance measurement method performed by the user using the resistance measurement system 1 according to the first embodiment will be described below with reference to FIG. In the resistance measurement method according to the first embodiment, since the resistance measurement jig 3 is used, one worker can perform resistance measurement even when handling four terminals 2A.

まず、抵抗測定治具3を鋼板組立柱の測定箇所に設置する(ステップS21)。抵抗測定治具3の本体を全体に張り伸ばすように鋼板組立柱表面に接触させる。抵抗測定治具3が鋼板組立柱表面に接触すると、磁石31により鋼板組立柱表面に吸着される。なお、鋼板組立体のうち鋼管同士が重なった部分(互いに接触する部分)は、抵抗値の測定精度が低下するため、測定箇所として選択しない。できれば鋼管の端部から100mm以上離れた箇所を測定箇所として選択することが好ましい。 First, the resistance measuring jig 3 is installed at the measurement location of the steel plate assembly column (step S21). The main body of the resistance measuring jig 3 is brought into contact with the surface of the steel plate assembly column so as to stretch the entire body. When the resistance measuring jig 3 comes into contact with the surface of the steel plate assembly column, the magnet 31 attracts the resistance measurement jig 3 to the surface of the steel plate assembly column. Note that the portions of the steel plate assembly where the steel pipes overlap (the portions where they come into contact with each other) are not selected as measurement locations because the accuracy of measuring the resistance value decreases. If possible, it is preferable to select a location 100 mm or more away from the end of the steel pipe as the measurement location.

次に、抵抗測定に必要な限度で測定箇所の錆皮膜を除去し、内部の金属母材をピンポイントで露出させることで、鋼板組立柱表面に接点を作成する(ステップS22)。具体的には、本体3Aを押さえた状態で回転つまみ35を軽く回転させる。回転つまみ35の回転では、特に力を入れる必要はなく、10回程度ゆっくりと回す程度でよい。 Next, a contact point is created on the surface of the steel plate assembly column by removing the rust film at the measurement point to the extent necessary for resistance measurement and exposing the internal metal base material at a pinpoint (step S22). Specifically, the rotation knob 35 is lightly rotated while holding down the main body 3A. When rotating the rotary knob 35, there is no need to apply any particular force, and it is sufficient to turn the rotary knob 35 slowly about 10 times.

次に、抵抗測定治具3の回転つまみ35の取り付け口35bに端子2Aを挿入し、鋼板組立柱の金属母材が露出している接点と抵抗計2の端子2Aとを電気的に接続させる(ステップS23)。 Next, the terminal 2A is inserted into the attachment port 35b of the rotary knob 35 of the resistance measuring jig 3, and the contact point where the metal base material of the steel plate assembly column is exposed is electrically connected to the terminal 2A of the resistance meter 2. (Step S23).

次に、抵抗計2を用いて測定箇所における抵抗を測定する(ステップS24)。具体的には、抵抗計2が出力する測定値が安定した時点で抵抗計2の測定値を読み取る。端子の接触不良で測定値が出力されない場合や測定値が安定しない場合は、再度回転つまみ35を回して鋼板組立柱の接点と抵抗計2の端子との接触状態を改善すればよい。 Next, the resistance at the measurement location is measured using the resistance meter 2 (step S24). Specifically, the measurement value of the resistance meter 2 is read when the measurement value output by the resistance meter 2 becomes stable. If the measured value is not output or the measured value is unstable due to poor contact of the terminal, the rotary knob 35 may be turned again to improve the contact state between the contact point of the steel plate assembly column and the terminal of the resistance meter 2.

次に、鋼板組立柱から抵抗測定治具3を取り外し(ステップS25)、全ての工程が終了する。
以上が、抵抗測定方法の流れである。
Next, the resistance measuring jig 3 is removed from the steel plate assembly column (step S25), and all steps are completed.
The above is the flow of the resistance measurement method.

(演算処理)
次に、図9を参照して、実施の形態1に係る演算装置100が実行する演算処理の流れを説明する。演算処理は、抵抗計2を用いて鋼板組立柱の抵抗測定を行った後、演算装置100がユーザによる指示を受け付けた時点で開始する。
(arithmetic processing)
Next, with reference to FIG. 9, the flow of arithmetic processing executed by the arithmetic device 100 according to the first embodiment will be described. The calculation process starts when the calculation device 100 receives an instruction from the user after measuring the resistance of the steel plate assembled column using the resistance meter 2.

まず、取得部151は、抵抗計2により測定された抵抗値に関するデータを取得し、鋼板組立柱の識別番号及び測定位置に対応づけて抵抗値記憶部141に記憶させる(ステップS31)。 First, the acquisition unit 151 acquires data regarding the resistance value measured by the resistance meter 2, and stores it in the resistance value storage unit 141 in association with the identification number and measurement position of the steel plate assembly column (step S31).

次に、平均値算出部152は、取得部151により取得された抵抗値に基づいて、健全箇所及び各腐食箇所における抵抗値の平均値を算出する(ステップS32)。 Next, the average value calculation unit 152 calculates the average value of the resistance values at the healthy location and each corroded location based on the resistance values acquired by the acquisition unit 151 (step S32).

次に、板厚変化率算出部153は、平均値算出部152により算出された健全箇所及び各腐食箇所における抵抗値の平均値に基づいて、各腐食箇所における板厚変化率を算出し、鋼板組立柱の識別番号及び測定位置に対応付けて板厚変化率記憶部142に記憶させる(ステップS33)。腐食箇所における板厚変化率は、腐食箇所における抵抗値の平均値を健全箇所における抵抗値の平均値で割ることで算出する。 Next, the plate thickness change rate calculation unit 153 calculates the plate thickness change rate at each corroded location based on the average value of the resistance values at the healthy location and each corroded location calculated by the average value calculation unit 152, and calculates the plate thickness change rate at each corroded location. It is stored in the board thickness change rate storage unit 142 in association with the identification number and measurement position of the assembly column (step S33). The plate thickness change rate at a corroded location is calculated by dividing the average value of the resistance value at the corroded location by the average value of the resistance value at the healthy location.

次に、出力部154は、板厚変化率算出部153により算出された各腐食箇所における板厚変化率のデータを表示部120に表示させ(ステップS34)、処理を終了する。
以上が演算処理の流れである。
Next, the output unit 154 causes the display unit 120 to display data on the plate thickness change rate at each corrosion location calculated by the plate thickness change rate calculation unit 153 (step S34), and ends the process.
The above is the flow of the calculation process.

以上説明したように、実施の形態1に係る抵抗測定治具3は、鋼板組立体の形状に合わせて変形可能な板状の本体3Aと、本体3Aの板面方向に垂直な方向に延び、本体3Aの板面方向に一列に並べた状態で回転可能に支持され、鋼板組立体に形成された錆皮膜を除去可能な複数のドリル刃34と、を備える。このため、各ドリル刃34を回転させるという簡単な操作で鋼板組立体の錆皮膜をピンポイントで除去することで、抵抗計2の端子2Aと電気的に接続される複数の接点を一列に並べて一定間隔で作成でき、鋼板組立柱の鋼板における抵抗を測定できる。 As described above, the resistance measuring jig 3 according to the first embodiment includes a plate-shaped main body 3A that can be deformed according to the shape of a steel plate assembly, and extends in a direction perpendicular to the plate surface direction of the main body 3A. A plurality of drill blades 34 are rotatably supported in a line in a row in the direction of the plate surface of the main body 3A, and are capable of removing a rust film formed on the steel plate assembly. Therefore, by pinpointing the rust film on the steel plate assembly with the simple operation of rotating each drill blade 34, the multiple contacts that are electrically connected to the terminal 2A of the resistance meter 2 can be lined up. It can be created at regular intervals and can measure the resistance in the steel plate of the steel plate assembled column.

(実施の形態2)
図10及び図11を参照して、実施の形態2に係る抵抗測定治具、抵抗測定システム、抵抗測定方法及び板厚評価方法を説明する。実施の形態1では、抵抗測定治具3を用いて錆皮膜を除去した後、抵抗計2の端子2Aを抵抗測定治具3に電気的に接続していたが、実施の形態2では、抵抗測定治具4を用いて錆皮膜を除去した後、抵抗計2の端子2Aを直接鋼板組立柱に電気的に接続する点で相違している。実施の形態2に係る抵抗測定治具4は、実施の形態1に係る抵抗測定治具3では錆皮膜を除去できない場合に有用である。以下、両者の相違する点を中心に説明する。
(Embodiment 2)
A resistance measurement jig, a resistance measurement system, a resistance measurement method, and a plate thickness evaluation method according to the second embodiment will be described with reference to FIGS. 10 and 11. In the first embodiment, after removing the rust film using the resistance measuring jig 3, the terminal 2A of the resistance meter 2 was electrically connected to the resistance measuring jig 3, but in the second embodiment, the resistance measuring jig 3 The difference is that after removing the rust film using the measuring jig 4, the terminal 2A of the resistance meter 2 is electrically connected directly to the steel plate assembly column. The resistance measuring jig 4 according to the second embodiment is useful when the resistance measuring jig 3 according to the first embodiment cannot remove a rust film. The following will mainly explain the differences between the two.

図10を参照して、実施の形態2に係る抵抗測定治具4の構成を説明する。抵抗測定治具4は、鋼板組立柱に装着された状態で鋼板組立柱表面の錆皮膜を除去し、抵抗計2の端子2Aの接点を作成する電動ドリルのドリル刃をガイドする治具である。電動ドリルのドリル刃は、抵抗測定治具3のドリル刃34と同様に、ガラスドリル刃であることが好ましい。 With reference to FIG. 10, the configuration of the resistance measuring jig 4 according to the second embodiment will be described. The resistance measuring jig 4 is a jig that guides the drill blade of an electric drill that removes the rust film on the surface of the steel plate assembly column and creates a contact point for the terminal 2A of the resistance meter 2 while being attached to the steel plate assembly column. . The drill blade of the electric drill is preferably a glass drill blade, similar to the drill blade 34 of the resistance measurement jig 3.

抵抗測定治具4は、鋼板組立柱の形状に合わせて変形可能な本体4Aと、本体4Aに対して一列に並べて設けられ、それぞれ電動ドリルのドリル刃を受け入れる4つのガイドユニット4Bと、を備える。各ガイドユニット4Bが一列に並べられているのは、鋼板組立柱の曲率に合わせて本体4Aを湾曲しやすくすると共に、抵抗計2による抵抗の測定精度を向上させるためである。 The resistance measuring jig 4 includes a main body 4A that can be deformed to match the shape of the steel plate assembly column, and four guide units 4B that are arranged in a line with the main body 4A and each receives a drill blade of an electric drill. . The reason why each guide unit 4B is arranged in a row is to make it easier to bend the main body 4A in accordance with the curvature of the steel plate assembly column, and to improve the accuracy of resistance measurement by the resistance meter 2.

本体4Aは、鋼板組立柱の形状に合わせて変形可能なゴム板で形成されている。本体4Aには、板面方向に等間隔で一列に並べられて配置され、下面部から上面部に向かって貫通している4つの貫通孔4aが形成されている。また、貫通孔4aの両側には、それぞれ下面部から上面部に向かって貫通している一対の貫通孔4bが形成されている。 The main body 4A is made of a rubber plate that can be deformed to match the shape of the steel plate assembly column. Four through holes 4a are formed in the main body 4A, which are arranged in a line at equal intervals in the direction of the plate surface and penetrate from the lower surface toward the upper surface. Furthermore, a pair of through holes 4b are formed on both sides of the through hole 4a, each penetrating from the lower surface toward the upper surface.

各ガイドユニット4Bは、本体4Aの底面部に設けられ、貫通孔4bに合わせて配置され、鋼板組立柱に吸着可能な一対の磁石41と、本体4Aの上面部に設けられ、各磁石41と共に本体4Aを挟み込むように配置され、電動ドリルのドリル刃をガイドするガイド部材42と、を備える。 Each guide unit 4B is provided on the bottom surface of the main body 4A, is arranged in accordance with the through hole 4b, and has a pair of magnets 41 that can be attracted to the steel plate assembly column. The guide member 42 is arranged to sandwich the main body 4A and guides the drill blade of the electric drill.

各磁石41は、例えば、円盤形状に形成されている。各磁石41は、鋼板組立柱表面に吸着するように本体4Aの底面部から離れる方向に突出している。各磁石41の中心部には、ボルト41bが挿通可能な貫通孔41aが形成されている。 Each magnet 41 is formed into, for example, a disk shape. Each magnet 41 protrudes in a direction away from the bottom surface of the main body 4A so as to be attracted to the surface of the steel plate assembly column. A through hole 41a through which a bolt 41b can be inserted is formed in the center of each magnet 41.

ガイド部材42は、本体4Aの上面部に設置される板状部材42aと、板状部材の下面部から延び、本体4Aの貫通孔4aに収容される円筒スリーブ42bと、を備える。ガイド部材42の中心部には、電動ドリルのドリル刃が挿通されるガイド孔42cが形成されている。ガイド孔42cは、上面部から下面部に向かって窄まるように形成されている。隣接するガイド孔42cの中心点同士の距離は、抵抗測定治具3のドリル刃34同士の距離と同様に設定され、例えば、20mm~30mmの範囲内であることが好ましく、25mmであることがより好ましい。 The guide member 42 includes a plate member 42a installed on the upper surface of the main body 4A, and a cylindrical sleeve 42b extending from the lower surface of the plate member and accommodated in the through hole 4a of the main body 4A. A guide hole 42c is formed in the center of the guide member 42, into which a drill blade of an electric drill is inserted. The guide hole 42c is formed to narrow from the upper surface to the lower surface. The distance between the center points of adjacent guide holes 42c is set similarly to the distance between the drill blades 34 of the resistance measuring jig 3, and is preferably within the range of 20 mm to 30 mm, and preferably 25 mm. More preferred.

板状部材42aの両端部には、ボルト41bが挿通される一対の貫通孔42dが形成されている。ガイド部材42は、一対の磁石41と共に本体4Aを挟み込んだ状態で本体4Aに固定されている。磁石41の貫通孔41a、本体4Aの貫通孔4b及びガイド部材42の貫通孔42dには、ボルト41bが挿通され、ボルト41bにナット41cが締め付けられている。
以上が、抵抗測定治具4の構成である。
A pair of through holes 42d into which bolts 41b are inserted are formed at both ends of the plate member 42a. The guide member 42 is fixed to the main body 4A with the pair of magnets 41 sandwiching the main body 4A. A bolt 41b is inserted through the through hole 41a of the magnet 41, the through hole 4b of the main body 4A, and the through hole 42d of the guide member 42, and a nut 41c is tightened on the bolt 41b.
The above is the configuration of the resistance measurement jig 4.

(抵抗測定方法)
以下、図11を参照して、実施の形態2に係る抵抗測定システム1を用いてユーザが実行する抵抗測定方法の流れを説明する。この方法では、測定計2の4本の端子を人手で把持して鋼板組立柱に作成された接点に接触させる必要があるため、作業員が少なくとも2人以上必要である。
(Resistance measurement method)
Hereinafter, with reference to FIG. 11, a flow of a resistance measurement method performed by a user using the resistance measurement system 1 according to the second embodiment will be described. This method requires at least two workers because it is necessary to manually hold the four terminals of the measuring meter 2 and bring them into contact with the contacts made on the steel plate assembly column.

まず、抵抗測定治具4を鋼板組立柱の測定箇所に設置する(ステップS41)。抵抗測定治具4の本体4Aの全体を張り伸ばすように鋼板組立柱表面に接触させる。抵抗測定治具4が鋼板組立柱表面に接触すると、磁石41により鋼板組立柱表面に吸着される。 First, the resistance measuring jig 4 is installed at the measurement location of the steel plate assembly column (step S41). The entire main body 4A of the resistance measuring jig 4 is stretched and brought into contact with the surface of the steel plate assembly column. When the resistance measuring jig 4 comes into contact with the surface of the steel plate assembly column, it is attracted to the surface of the steel plate assembly column by the magnet 41.

次に、電動ドリルをガイド孔42cにセットし、電動ドリルで鋼板組立柱の錆皮膜を除去することで、鋼板組立柱に抵抗計2の端子2Aとの接点を作成する(ステップS42)。鋼板組立柱の接点では、金属母材を露出させる必要がある。金属母材が露出していることを確認するには、ペンライトで切削箇所を照らし、反射光による光沢が生じるかどうか目視で観察するとよい。 Next, an electric drill is set in the guide hole 42c, and the rust film on the steel plate assembly column is removed with the electric drill, thereby creating a contact point with the terminal 2A of the resistance meter 2 on the steel plate assembly column (step S42). At the contact points of steel plate assembly columns, it is necessary to expose the metal base material. To confirm that the metal base material is exposed, use a penlight to illuminate the cut area and visually observe whether the reflected light produces a glossy appearance.

次に、鋼板組立柱から抵抗測定治具4を取り外す(ステップS43)。 Next, the resistance measuring jig 4 is removed from the steel plate assembly column (step S43).

次に、鋼板組立柱の接点と抵抗計の端子とを電気的に接続させる(ステップS44)。鋼板組立柱の接点は、周囲に比べて僅かに凹んでいるため、ピン状に形成された抵抗計2の端子2Aを当てると、手の感触でその位置を確認できる。 Next, the contacts of the steel plate assembly column and the terminals of the resistance meter are electrically connected (step S44). Since the contact point of the steel plate assembly column is slightly recessed compared to the surrounding area, when the pin-shaped terminal 2A of the resistance meter 2 is applied to the contact point, the position can be confirmed by feeling with the hand.

次に、測定箇所における抵抗を測定する(ステップS45)。具体的には、抵抗計2が出力する測定値が安定した時点で測定値を読み取る。
以上が、抵抗測定方法の流れである。
Next, the resistance at the measurement location is measured (step S45). Specifically, the measured value output by the resistance meter 2 is read when it becomes stable.
The above is the flow of the resistance measurement method.

実施の形態2に係る抵抗測定治具4は、鋼板組立柱の形状に合わせて変形可能な本体4Aと、本体4Aを貫通するように本体4Aに対して一列に並べた状態で本体4Aに設けられ、鋼板組立柱に形成された錆皮膜を除去可能な電動ドリルのドリル刃を鋼板組立柱に向けてガイドする複数のガイド部材42と、を備える。このため、抵抗測定治具4で錆皮膜の除去が困難な場合でも、電動ドリルを用いて鋼板組立柱表面に金属母材が露出した複数の接点を同一の間隔で繰り返し作成できるため、鋼板組立柱の測定対象における抵抗を簡単に測定できると共に、各測定対象における抵抗値を互いに比較できる。 The resistance measuring jig 4 according to the second embodiment includes a main body 4A that can be deformed according to the shape of the steel plate assembly column, and a main body 4A that is arranged in a line with respect to the main body 4A so as to penetrate through the main body 4A. and a plurality of guide members 42 that guide a drill blade of an electric drill capable of removing a rust film formed on the steel plate assembly column toward the steel plate assembly column. Therefore, even if it is difficult to remove the rust film with the resistance measuring jig 4, it is possible to repeatedly create multiple contacts with the metal base material exposed on the surface of the steel plate assembly column using an electric drill at the same interval, so that the steel plate assembly The resistance of the pillar to be measured can be easily measured, and the resistance values of each measurement target can be compared with each other.

本発明は上記実施の形態に限られず、以下に述べる変形も可能である。 The present invention is not limited to the embodiments described above, and modifications described below are also possible.

(変形例)
上記実施の形態では、抵抗測定システム1を用いて鋼板組立柱に発生した腐食箇所における板厚を評価する場合を例に説明していたが、本発明はこれに限られない。例えば、抵抗測定システム1を用いて鋼板組立柱に発生した摩耗箇所における板厚を評価してもよい。
(Modified example)
In the embodiment described above, a case has been described in which the resistance measurement system 1 is used to evaluate the plate thickness at a corrosion location that has occurred in a steel plate assembly column, but the present invention is not limited to this. For example, the resistance measurement system 1 may be used to evaluate the plate thickness at a worn portion of the steel plate assembly column.

上記実施の形態では、抵抗計2として4端子抵抗計を用いていたが、本発明はこれに限られない。鋼板の抵抗を正確に測定できれば、抵抗計2はいかなる抵抗計であってもよい。抵抗測定治具3、4における接続ユニット3B及びガイドユニット4Bの数は、抵抗計2の端子の数に合わせて設定すればよい。 In the embodiment described above, a four-terminal resistance meter is used as the resistance meter 2, but the present invention is not limited to this. The resistance meter 2 may be any resistance meter as long as it can accurately measure the resistance of the steel plate. The number of connection units 3B and guide units 4B in the resistance measuring jigs 3 and 4 may be set according to the number of terminals of the resistance meter 2.

上記実施の形態では、本体3A、4Aは、いずれもゴム板で形成されていたが、本発明はこれに限られない。本体3A、4Aは、鋼板組立柱の曲率に合わせて変形可能であればよく、例えば、4枚の板部材を一列に並べ、隣接する板部材を互いにヒンジで折り曲げ可能に接続して構成してもよい。 In the embodiment described above, the main bodies 3A and 4A are both formed of rubber plates, but the present invention is not limited to this. The main bodies 3A and 4A only need to be deformable in accordance with the curvature of the steel plate assembly column, and may be constructed by, for example, arranging four plate members in a row and connecting adjacent plate members to each other so as to be bendable with a hinge. Good too.

上記実施の形態では、本体3A、4Aから磁石31、41、板状部材32及びガイド部材42がそれぞれ取り外し可能に構成されていたが、本発明はこれに限られない。例えば、磁石31、41、板状部材32及びガイド部材42を本体3A、4Aから取り外しできないように固定してもよい。 In the embodiment described above, the magnets 31 and 41, the plate member 32, and the guide member 42 are configured to be removable from the main bodies 3A and 4A, but the present invention is not limited to this. For example, the magnets 31 and 41, the plate member 32, and the guide member 42 may be fixed so that they cannot be removed from the main bodies 3A and 4A.

上記実施の形態1では、磁石31が本体3Aの凹部3aに取り付けられていたが、本発明はこれに限られない。例えば、本体3Aにおいて凹部3aを省略してもよい。 In the first embodiment, the magnet 31 is attached to the recess 3a of the main body 3A, but the present invention is not limited to this. For example, the recess 3a may be omitted in the main body 3A.

上記実施の形態では、磁石31、41は永久磁石であったが、本発明はこれに限られない。例えば、磁石31、41として通電により磁力を発生させる電磁石を用いてもよい。 In the embodiment described above, the magnets 31 and 41 are permanent magnets, but the present invention is not limited to this. For example, as the magnets 31 and 41, electromagnets that generate magnetic force when energized may be used.

上記実施の形態1では、板状部材32と枠部材33とが別体で、互いに取り外し可能に構成されていたが、本発明はこれに限られない。例えば、板状部材32と枠部材33とを一体に構成してもよい。 In the first embodiment described above, the plate-like member 32 and the frame member 33 are separate members and are configured to be removable from each other, but the present invention is not limited to this. For example, the plate-like member 32 and the frame member 33 may be integrally configured.

上記実施の形態1では、ドリル刃34が本体3Aの板面方向に垂直な方向に延びていたが、本発明はこれに限られない。ドリル刃34は本体3Aの板面方向に交差する方向に延びていればよく、例えば、ドリル刃34を本体3Aに垂直な方向を基準にして傾けてもよい。 In the first embodiment described above, the drill blade 34 extends in a direction perpendicular to the plate surface direction of the main body 3A, but the present invention is not limited to this. The drill blade 34 only needs to extend in a direction intersecting the plate surface direction of the main body 3A, and for example, the drill blade 34 may be tilted with respect to a direction perpendicular to the main body 3A.

上記実施の形態1では、ドリル刃34は導電性を有していたが、本発明はこれに限られない。例えば、抵抗測定治具3を鋼板組立柱表面に接点を作成する用途で使用するだけであれば、ドリル刃34は非導電性であってもよい。 In the first embodiment described above, the drill blade 34 has conductivity, but the present invention is not limited to this. For example, if the resistance measuring jig 3 is only used to create a contact point on the surface of a steel plate assembly column, the drill blade 34 may be non-conductive.

上記実施の形態1では、抵抗計2の端子2Aを差し込み口35aに挿入することで、端子2Aの先端面をドリル刃34の基端面に接触させていたが、本発明はこれに限られない。例えば、ドリル刃34の基端部を回転つまみ35の基端面から露出させ、ドリル刃34の基端部を抵抗計2の端子2Aに設けられたワニ口クリップで挟むようにしてもよい。また、回転つまみ35を省略して、直接ドリル刃34に端子2Aを接続するように構成してもよい。 In the first embodiment described above, the terminal 2A of the resistance meter 2 is inserted into the insertion port 35a so that the distal end surface of the terminal 2A is brought into contact with the proximal end surface of the drill blade 34, but the present invention is not limited to this. . For example, the base end of the drill blade 34 may be exposed from the base end surface of the rotary knob 35, and the base end of the drill blade 34 may be held between an alligator clip provided on the terminal 2A of the resistance meter 2. Alternatively, the rotary knob 35 may be omitted and the terminal 2A may be directly connected to the drill blade 34.

上記実施の形態1では、枠部材33の上面部とストッパ36との間にコイルバネ37が配置されていたが、本発明はこれに限られない。錆皮膜の状態を考慮してドリル刃34を鋼板組立柱表面に押し付ける必要が無いと判断できれば、ストッパ36及びコイルバネ37を省略してもよい。 In the first embodiment, the coil spring 37 is disposed between the upper surface of the frame member 33 and the stopper 36, but the present invention is not limited to this. If it is determined that there is no need to press the drill blade 34 against the surface of the steel plate assembly column in consideration of the state of the rust film, the stopper 36 and the coil spring 37 may be omitted.

上記実施の形態では、抵抗計2が出力した抵抗値をそのまま用いていたが、本発明はこれに限られない。抵抗計2は、付属の温度センサにより外気温を測定し、測定した抵抗値を予め設定された温度の抵抗値に補正して出力している。このため、鋼板組立柱表面の温度と外気温とが相違していると、抵抗値に誤差が生じる可能性がある。 In the embodiment described above, the resistance value outputted by the resistance meter 2 is used as it is, but the present invention is not limited to this. The resistance meter 2 measures the outside temperature using an attached temperature sensor, corrects the measured resistance value to a resistance value at a preset temperature, and outputs the corrected resistance value. Therefore, if the temperature on the surface of the steel plate assembly column differs from the outside temperature, an error may occur in the resistance value.

このような場合には、例えば、図12に示すような鋼材の温度と抵抗値の理論値との関係を示すグラフ等に基づいて、鋼板組立柱表面の温度と抵抗値との関係を示す変換テーブルを予め作成しておく。そして、抵抗の測定時に鋼板組立柱表面の温度を温度計で測定し、変換テーブルを参照して鋼板組立柱表面の温度の測定値に合わせて抵抗値を補正すればよい。このとき、鋼板組立柱表面の温度を測定する温度計としては、鋼板組立柱表面の温度場を乱さないように非接触式温度計を用いればよい。 In such a case, for example, based on a graph showing the relationship between the temperature of the steel material and the theoretical value of the resistance value as shown in FIG. Create a table in advance. Then, when measuring the resistance, the temperature of the surface of the steel plate assembly column is measured with a thermometer, and the resistance value is corrected according to the measured value of the temperature of the steel plate assembly column surface with reference to the conversion table. At this time, a non-contact type thermometer may be used to measure the temperature of the surface of the steel plate assembly column so as not to disturb the temperature field on the surface of the steel plate assembly column.

上記実施の形態では、抵抗計2により測定した抵抗値に基づいて腐食箇所における板厚変化率を測定していたが、本発明はこれに限られない。例えば、抵抗計2により測定した抵抗値に基づいて腐食箇所の板厚を算出してもよい。具体的には、演算装置100の記憶部140に、鋼板の抵抗値と鋼板の板厚との関係を示すマスターカーブ(関係式)を記憶させ、演算装置100の制御部150に、記憶部140に記憶されたマスターカーブに基づいて鋼板の抵抗値から鋼板の板厚に算出する板厚算出部を設けるとよい。マスターカーブは、材料毎に板厚が既知である試験片における抵抗測定を繰り返すことで予め生成しておけばよい。 In the embodiment described above, the plate thickness change rate at the corroded location is measured based on the resistance value measured by the resistance meter 2, but the present invention is not limited to this. For example, the plate thickness at the corroded location may be calculated based on the resistance value measured by the resistance meter 2. Specifically, a master curve (relational expression) indicating the relationship between the resistance value of the steel plate and the thickness of the steel plate is stored in the storage unit 140 of the calculation device 100, and the control unit 150 of the calculation device 100 is stored in the storage unit 140. It is preferable to provide a plate thickness calculation unit that calculates the thickness of the steel plate from the resistance value of the steel plate based on the master curve stored in the master curve. The master curve may be generated in advance by repeating resistance measurements on test pieces whose thicknesses are known for each material.

上記実施の形態では、演算装置100の記憶部140に各種データが記憶されていたが、本発明はこれに限定されない。例えば、各種データは、その全部又は一部が通信ネットワークを介して外部の制御装置やコンピュータに記憶されていてもよい。 In the embodiment described above, various data are stored in the storage unit 140 of the arithmetic device 100, but the present invention is not limited thereto. For example, all or part of various data may be stored in an external control device or computer via a communication network.

上記実施の形態では、演算装置100は、それぞれ記憶部140に記憶されたプログラムに基づいて動作していたが、本発明はこれに限定されない。例えば、プログラムにより実現された機能的な構成をハードウェアにより実現してもよい。 In the above embodiment, the arithmetic device 100 operates based on the programs stored in the storage unit 140, but the present invention is not limited thereto. For example, a functional configuration realized by a program may be realized by hardware.

上記実施の形態では、演算装置100は、例えば、汎用コンピュータであったが、本発明はこれに限られない。例えば、演算装置100は、クラウド上に設けられたコンピュータで実現してもよい。 In the above embodiment, the arithmetic device 100 is, for example, a general-purpose computer, but the present invention is not limited to this. For example, the arithmetic device 100 may be realized by a computer provided on a cloud.

上記実施の形態では、演算装置100が実行する処理は、上述の物理的な構成を備える装置が記憶部140に記憶されたプログラムを実行することによって実現されていたが、本発明は、プログラムとして実現されてもよく、そのプログラムが記録された記憶媒体として実現されてもよい。 In the embodiment described above, the processing executed by the arithmetic device 100 is realized by a device having the above-described physical configuration executing a program stored in the storage unit 140. The program may be realized as a storage medium on which the program is recorded.

また、上述の処理動作を実行させるためのプログラムを、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical Disk)のようなコンピュータにより読み取り可能な非一時的な記録媒体に格納して配布し、そのプログラムをコンピュータにインストールすることにより、上述の処理動作を実行する装置を構成してもよい。 In addition, the program for executing the above-mentioned processing operations can be read by a computer such as a flexible disk, CD-ROM (Compact Disk Read-Only Memory), DVD (Digital Versatile Disk), or MO (Magneto-Optical Disk). By storing and distributing the program in a non-transitory recording medium and installing the program on a computer, an apparatus that executes the above processing operations may be configured.

上記実施の形態は例示であり、本発明はこれらに限定されるものではなく、特許請求の範囲に記載した発明の趣旨を逸脱しない範囲でさまざまな実施の形態が可能である。各実施の形態や変形例で記載した構成要素は自由に組み合わせることが可能である。また、特許請求の範囲に記載した発明と均等な発明も本発明に含まれる。 The above-mentioned embodiments are illustrative, and the present invention is not limited thereto, and various embodiments are possible without departing from the spirit of the invention described in the claims. The components described in each embodiment and modification example can be freely combined. Furthermore, inventions equivalent to the inventions described in the claims are also included in the present invention.

以下、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 The present invention will be specifically described below with reference to Examples. However, the present invention is not limited to these examples.

(実施例1)
実施例1では、厚さが既知の試験片を用いて試験片の板厚と抵抗値との間に相関関係があるかどうかを検証した。まず、板厚がそれぞれ異なる5種類の試験片を作成した。各試験片は、腐食が発生していない市販の炭素鋼を400mm×400mmのサイズで切り出したものである。試験片毎の板厚は、それぞれ1.5mm、1.8mm、2.3mm、2.6mm、3.0mmである。これらの試験片に抵抗測定治具3、4のいずれかを用いて抵抗計2の端子2Aを接続し、それぞれにおいて抵抗値を5回測定した。抵抗計2は、HIOKI RM3584を使用した。
(Example 1)
In Example 1, a test piece with a known thickness was used to verify whether there was a correlation between the thickness of the test piece and the resistance value. First, five types of test pieces with different plate thicknesses were created. Each test piece was cut out from a commercially available carbon steel with a size of 400 mm x 400 mm, and had no corrosion. The plate thicknesses of each test piece were 1.5 mm, 1.8 mm, 2.3 mm, 2.6 mm, and 3.0 mm, respectively. Terminal 2A of resistance meter 2 was connected to these test pieces using either resistance measuring jig 3 or 4, and the resistance value was measured five times for each test piece. As resistance meter 2, HIOKI RM3584 was used.

その結果、図13に示すように抵抗値をグラフにプロットすると、試験片の板厚と抵抗値とは反比例の関係にあることが判明した。相関係数は0.9997である。なお、試験片毎に5回測定した抵抗値の標準偏差は、いずれの試験片でも0.4以下と十分に小さく、抵抗値の測定結果は妥当であると考えられる。 As a result, when the resistance values were plotted on a graph as shown in FIG. 13, it was found that the thickness of the test piece and the resistance value were in an inversely proportional relationship. The correlation coefficient is 0.9997. Note that the standard deviation of the resistance values measured five times for each test piece was 0.4 or less, which was sufficiently small for all test pieces, and the results of the resistance value measurement are considered to be valid.

(実施例2)
次に、鋼板組立柱の鋼板の抵抗を測定する際の鋼板が重なる箇所の影響について厚さが既知の試験片を用いて検証を行った。鋼板が重なる箇所では、鋼板の端部において電気力線の広がりが抑制されて電流密度が高くなり、その結果として見かけ上の抵抗値が高くなると考えられるためである。この検証では、厚さ2.3mmの試験片を使用し、試験片の端部から10mm間隔で測定位置をずらして抵抗を繰り返し測定した。その他の条件は実施例1と同一である。
(Example 2)
Next, we verified the influence of the location where the steel plates overlap when measuring the resistance of the steel plates of the steel plate assembly column using a test piece with a known thickness. This is because it is thought that where the steel plates overlap, the spread of the electric lines of force is suppressed at the ends of the steel plates, resulting in a higher current density, and as a result, the apparent resistance value increases. In this verification, a test piece with a thickness of 2.3 mm was used, and the resistance was repeatedly measured by shifting the measurement position at intervals of 10 mm from the end of the test piece. Other conditions were the same as in Example 1.

その結果、図14に示すように試験片の端部から100mm以上離れると試験片の端部における電流密度の影響は無視できることが判明した。したがって、鋼板の端部から100mm以上離れた箇所に金属母材を露出させた接点を作成することが望ましいと理解できる。 As a result, as shown in FIG. 14, it was found that the influence of the current density at the end of the test piece can be ignored when the distance is 100 mm or more from the end of the test piece. Therefore, it can be understood that it is desirable to create a contact point in which the metal base material is exposed at a location 100 mm or more away from the end of the steel plate.

(実施例3)
実施例3では、実設備の鋼板組立体を用いて抵抗値により板厚を評価できるかどうかを検証した。まず、実設備の鋼板組立体を採取し、図15に示す腐食レベル小、腐食レベル中、腐食レベル大の3つの測定箇所における抵抗を測定し、各測定箇所における板厚を評価した。腐食レベル小は、目視で腐食が確認できない箇所、腐食レベル中は、目視である程度の腐食が確認できる箇所、腐食レベル大は、腐食レベル中よりも明らかに腐食が進行した箇所である。抵抗の測定は、実施例1と同じ条件でそれぞれ6回ずつ実施した。
(Example 3)
In Example 3, it was verified whether plate thickness could be evaluated based on resistance value using a steel plate assembly in actual equipment. First, a steel plate assembly from an actual facility was sampled, and the resistance was measured at three measurement locations of low corrosion level, medium corrosion level, and high corrosion level shown in FIG. 15, and the plate thickness at each measurement location was evaluated. A low corrosion level is a location where corrosion cannot be visually confirmed, a medium corrosion level is a location where some corrosion can be visually confirmed, and a high corrosion level is a location where corrosion has clearly progressed compared to the medium corrosion level. The resistance measurements were carried out six times each under the same conditions as in Example 1.

その結果、図16に示すように抵抗値が得られた。腐食レベル小の減肉率(板厚変化率)を0%とし、腐食レベル中、腐食レベル大の減肉率を腐食レベル小の抵抗値に対する腐食レベル中、腐食レベル大の抵抗値の比率で表現したところ、図16に示すように腐食レベル中、腐食レベル大の減肉率は、それぞれ26.0%、35.8%であった。この減肉率は、実設備の鋼板組立体に関する目視で確認した腐食状況によく対応しており、実設備の鋼板組立体においても抵抗値により板厚を評価できることが確認できた。 As a result, resistance values were obtained as shown in FIG. The thinning rate (plate thickness change rate) for small corrosion levels is 0%, and the thinning rate for medium and large corrosion levels is the ratio of the resistance value for medium and large corrosion levels to the resistance value for small corrosion levels. When expressed, as shown in FIG. 16, the thinning rates at medium and high corrosion levels were 26.0% and 35.8%, respectively. This thinning rate corresponds well to the visually confirmed corrosion status of steel plate assemblies in actual equipment, and it was confirmed that the plate thickness can be evaluated based on the resistance value even in steel plate assemblies in actual equipment.

1 抵抗測定システム
2 抵抗計
3,4 抵抗測定治具
3A,4A 本体
31 磁石
34 ドリル刃
35 回転つまみ
35a 差し込み口
35b 取り付け口
42 ガイド部材
42c ガイド孔

1 Resistance measurement system 2 Resistance meter 3, 4 Resistance measurement jig 3A, 4A Main body 31 Magnet 34 Drill blade 35 Rotary knob 35a Insertion port 35b Mounting port 42 Guide member 42c Guide hole

Claims (8)

金属筒体の形状に合わせて変形可能な板状の本体と、
前記本体の板面方向に交差する方向に延び、前記本体の板面方向に一列に並べた状態で回転可能に支持され、前記金属筒体に形成された錆皮膜を除去可能な複数のドリル刃と、
前記本体の上面部に設けられ、前記ドリル刃を回転可能に支持する支持手段と、
を備え、
前記ドリル刃は、前記ドリル刃の基端部が前記支持手段の外側に配置され、抵抗計の端子と接続可能となるように構成され、電気信号を導通可能な導電性を有している、
抵抗測定治具。
A plate-shaped body that can be deformed to match the shape of the metal cylinder,
a plurality of drill blades extending in a direction intersecting the plate surface direction of the main body, rotatably supported while being arranged in a row in the plate surface direction of the main body, and capable of removing a rust film formed on the metal cylindrical body; and,
Supporting means provided on the upper surface of the main body and rotatably supporting the drill blade;
Equipped with
The drill blade is configured such that a base end of the drill blade is disposed outside the support means, is connectable to a terminal of a resistance meter, and has conductivity capable of conducting an electric signal.
Resistance measurement jig.
前記支持手段は、前記ドリル刃が前進する方向に向かって前記ドリル刃を付勢する、
請求項に記載の抵抗測定治具。
The support means urges the drill blade in a direction in which the drill blade advances.
The resistance measuring jig according to claim 1 .
金属筒体の形状に合わせて変形可能な板状の本体と、
前記本体の板面方向に交差する方向に延び、前記本体の板面方向に一列に並べた状態で回転可能に支持され、前記金属筒体に形成された錆皮膜を除去可能な複数のドリル刃と、
を備え、
前記本体には、各ドリル刃が貫通される複数の貫通孔が形成され、
前記本体の底面部には、前記金属筒体の表面に吸着する一対の磁石が各貫通孔の両側にそれぞれ設けられている、
抵抗測定治具。
A plate-shaped body that can be deformed to match the shape of the metal cylinder,
a plurality of drill blades extending in a direction intersecting the plate surface direction of the main body, rotatably supported while being arranged in a row in the plate surface direction of the main body, and capable of removing a rust film formed on the metal cylindrical body; and,
Equipped with
The main body is formed with a plurality of through holes through which each drill blade is passed,
A pair of magnets that attract the surface of the metal cylinder are provided on the bottom of the main body on both sides of each through hole, respectively.
Resistance measurement jig.
金属筒体の形状に合わせて変形可能な板状の本体と、
前記本体の板面方向に交差する方向に延び、前記本体の板面方向に一列に並べた状態で回転可能に支持され、前記金属筒体に形成された錆皮膜を除去可能な複数のドリル刃と、
を備え、
前記ドリル刃の基端部には、ユーザによる回転操作が可能な回転つまみが設けられ、
前記回転つまみは、その基端側に設けられ、抵抗計の端子が差し込み可能な差し込み口と、その先端側に設けられ、前記ドリル刃の基端部が取り付けられる取り付け口と、を備え、
前記差し込み口及び前記取り付け口は、前記差し込み口に前記端子を差し込むと、前記端子が前記取り付け口に取り付けられた前記ドリル刃の基端部に接触するように形成されている
抗測定治具。
A plate-shaped body that can be deformed to match the shape of the metal cylinder,
a plurality of drill blades extending in a direction intersecting the plate surface direction of the main body, rotatably supported while being arranged in a row in the plate surface direction of the main body, and capable of removing a rust film formed on the metal cylindrical body; and,
Equipped with
A rotary knob that can be rotated by the user is provided at the base end of the drill blade,
The rotary knob includes an insertion port provided on the base end side into which a terminal of a resistance meter can be inserted, and an attachment port provided on the distal end side to which the base end portion of the drill blade is attached,
The insertion port and the attachment port are formed such that when the terminal is inserted into the insertion port, the terminal comes into contact with a base end portion of the drill blade attached to the attachment port .
Resistance measurement jig.
金属筒体の形状に合わせて変形可能な板状の本体と、
前記本体の板面方向に一列に並べた状態で前記本体に設けられ、前記金属筒体に形成された錆皮膜を除去可能な電動ドリルのドリル刃を前記金属筒体表面に向けてガイドする複数のガイド部材と、
を備える抵抗測定治具であって、
前記ガイド部材には、その上面部から下面部に向かって貫通し、前記電動ドリルのドリル刃を挿通可能なガイド孔が形成されている、
抵抗測定治具。
A plate-shaped body that can be deformed to match the shape of the metal cylinder,
A plurality of units are provided on the main body arranged in a line in the direction of the plate surface of the main body, and guide a drill blade of an electric drill capable of removing a rust film formed on the metal cylinder toward the surface of the metal cylinder. a guide member;
A resistance measuring jig comprising:
A guide hole is formed in the guide member, penetrating from the upper surface to the lower surface thereof, into which a drill blade of the electric drill can be inserted.
Resistance measurement jig.
請求項1からのいずれか1項に記載の抵抗測定治具と、
前記抵抗測定治具を用いて錆皮膜が除去された前記金属筒体の各接点に電気的に接続される複数の端子を備える抵抗計と、
を備える抵抗測定システム。
The resistance measuring jig according to any one of claims 1 to 5 ,
a resistance meter comprising a plurality of terminals electrically connected to each contact point of the metal cylinder from which a rust film has been removed using the resistance measuring jig;
Resistance measurement system with.
請求項1からのいずれか1項に記載の抵抗測定治具を前記金属筒体に装着する工程と、
前記抵抗測定治具を用いて前記金属筒体の錆皮膜を除去することで、前記金属筒体に複数の接点を作成する工程と、
前記金属筒体に作成された各接点に抵抗計の各端子をそれぞれ電気的に接続する工程と、
前記抵抗計により前記金属筒体の抵抗を測定する工程と、
を含む抵抗測定方法。
A step of mounting the resistance measuring jig according to any one of claims 1 to 5 on the metal cylinder;
creating a plurality of contacts on the metal cylinder by removing a rust film on the metal cylinder using the resistance measuring jig;
a step of electrically connecting each terminal of a resistance meter to each contact made on the metal cylinder;
Measuring the resistance of the metal cylinder with the resistance meter;
Resistance measurement methods including.
請求項1からのいずれか1項に記載の抵抗測定治具を用いて前記金属筒体の腐食箇所及び健全箇所の抵抗をそれぞれ測定する工程と、
前記健全箇所の抵抗値と前記腐食箇所の抵抗値とを比較することで、前記腐食箇所の板厚を判定する工程と、
を含む板厚評価方法。
Measuring the resistance of the corroded portion and the healthy portion of the metal cylinder using the resistance measuring jig according to any one of claims 1 to 5 ;
determining the plate thickness of the corroded area by comparing the resistance value of the sound area and the resistance value of the corroded area;
Plate thickness evaluation method including
JP2022081288A 2022-05-18 2022-05-18 Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method Active JP7402270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022081288A JP7402270B2 (en) 2022-05-18 2022-05-18 Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022081288A JP7402270B2 (en) 2022-05-18 2022-05-18 Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method

Publications (2)

Publication Number Publication Date
JP2023169936A JP2023169936A (en) 2023-12-01
JP7402270B2 true JP7402270B2 (en) 2023-12-20

Family

ID=88928284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022081288A Active JP7402270B2 (en) 2022-05-18 2022-05-18 Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method

Country Status (1)

Country Link
JP (1) JP7402270B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538436A (en) 1999-02-22 2002-11-12 コルオセアン・アーエスアー Sensor device for monitoring the potential of an object exposed to corrosion
JP2007003235A (en) 2005-06-21 2007-01-11 Atlus:Kk Non-destructive inspection method of change in wall thickness of measuring target
JP2007155368A (en) 2005-12-01 2007-06-21 Mitsubishi Heavy Ind Ltd Flaw detection method of conductive coating film and flaw detector used therefor
JP2011167777A (en) 2010-02-16 2011-09-01 Sumitomo Electric Hardmetal Corp Drill and manufacturing method for the same
JP2016206157A (en) 2015-04-28 2016-12-08 日立Geニュークリア・エナジー株式会社 Coating film thickness measurement method and coating film thickness measurement device
JP2019174314A (en) 2018-03-29 2019-10-10 三菱日立パワーシステムズ株式会社 Dense crack depth measuring device using electric resistance method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4543528A (en) * 1982-09-30 1985-09-24 Republic Steel Corporation Flexible probe assembly for use in nondestructive testing of a convex workpiece surface
JPS61264248A (en) * 1985-05-18 1986-11-22 Babcock Hitachi Kk Electric resistance measuring method
JPS6214051A (en) * 1985-07-12 1987-01-22 Hitachi Ltd Defect detector for pipe joints
JPS6242044A (en) * 1985-08-17 1987-02-24 Babcock Hitachi Kk Measuring equipment for electric resistance of bar-like member
JPH0316072U (en) * 1989-06-28 1991-02-18

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538436A (en) 1999-02-22 2002-11-12 コルオセアン・アーエスアー Sensor device for monitoring the potential of an object exposed to corrosion
JP2007003235A (en) 2005-06-21 2007-01-11 Atlus:Kk Non-destructive inspection method of change in wall thickness of measuring target
JP2007155368A (en) 2005-12-01 2007-06-21 Mitsubishi Heavy Ind Ltd Flaw detection method of conductive coating film and flaw detector used therefor
JP2011167777A (en) 2010-02-16 2011-09-01 Sumitomo Electric Hardmetal Corp Drill and manufacturing method for the same
JP2016206157A (en) 2015-04-28 2016-12-08 日立Geニュークリア・エナジー株式会社 Coating film thickness measurement method and coating film thickness measurement device
JP2019174314A (en) 2018-03-29 2019-10-10 三菱日立パワーシステムズ株式会社 Dense crack depth measuring device using electric resistance method

Also Published As

Publication number Publication date
JP2023169936A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP4736753B2 (en) Eddy current flaw detection probe and lift-off amount evaluation method of test object, its evaluation apparatus, eddy current flaw detection method and eddy current flaw detection apparatus
EP1869437B1 (en) Method for measuring the condition of steel structures
US8374803B2 (en) Damage detection apparatus, damage detection method and recording medium
US7005851B2 (en) Methods and apparatus for inspection utilizing pulsed eddy current
US6734670B2 (en) Determining a surface profile of an object
US20070126422A1 (en) Conformable Eddy Current Array
US20200103322A1 (en) Test Fixtures for Evaluating Mechanical Properties of Asphalt Samples and Related Systems and Methods
MXPA01005642A (en) Electrochemical noise technique for corrosion.
US6861853B2 (en) Investigating corrosion
CN105319402B (en) A kind of microresistivity survey grip device and application method for detecting damage of metal material
US20120043962A1 (en) Method and apparatus for eddy current inspection of case-hardended metal components
JP7402270B2 (en) Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method
HU231267B1 (en) Method and measuring arrangement for determining the internal corrosion rate of steel structures
US9243883B2 (en) Apparatus and method for conducting and real-time application of EC probe calibration
CN206160911U (en) Measurement device for be used for part centre bore degree of depth
CN109030132B (en) Preparation method of creep damage reference block, damage detection method and system
US6176117B1 (en) Calibration instrument for micro-positively-sensed force and calibration method therefor
JP3201882B2 (en) Error Correction Method for Rockwell Testing Machine
CN220625228U (en) Fixing tool for small part during detection of three-coordinate measuring instrument
JP2008083038A (en) Method of detecting damage of structure made of conductive material
JP4789502B2 (en) Crack depth measurement technique and apparatus for deep cracks using potentiometric method
CN214470558U (en) Pipe inner wall defect measuring tool
JPH05164667A (en) Surface crack progress measuring method
CN216409978U (en) Tool checking fixture
US8645096B2 (en) Deflection measuring system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231208

R150 Certificate of patent or registration of utility model

Ref document number: 7402270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150