JP2007155368A - Flaw detection method of conductive coating film and flaw detector used therefor - Google Patents

Flaw detection method of conductive coating film and flaw detector used therefor Download PDF

Info

Publication number
JP2007155368A
JP2007155368A JP2005347385A JP2005347385A JP2007155368A JP 2007155368 A JP2007155368 A JP 2007155368A JP 2005347385 A JP2005347385 A JP 2005347385A JP 2005347385 A JP2005347385 A JP 2005347385A JP 2007155368 A JP2007155368 A JP 2007155368A
Authority
JP
Japan
Prior art keywords
film
points
coating film
conductive coating
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005347385A
Other languages
Japanese (ja)
Inventor
Yuzo Kawahara
雄三 川原
Koji Sasaki
宏二 佐々木
Yoshiyuki Yoshikawa
義幸 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005347385A priority Critical patent/JP2007155368A/en
Publication of JP2007155368A publication Critical patent/JP2007155368A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw detection method capable of precisely and simply measuring the flaw such as peeling, a crack, voids, an oxide, a corrosion product, etc. produced by the flaw and secular change of a conductive coating film, and a flaw detector. <P>SOLUTION: In the flaw detection method for detecting the flaw such as voids, a crack, an enclosure, etc. produced in the conductive coating film formed by a surface treatment method such as flame spraying, plating, diffusion penetration treatment, etc., the electric resistance across two separate points (B-C) positioned inside two points (A-D) on a surface (3) of the film to be inspected is measured in a state that a predetermined microcurrent is allowed to flow across two points (A-D) to be compared with the electric resistance value of a normal film preliminarily measured under the same condition. A probe (11) includes a support structure for supporting respective probes (A-D) at a predetermined distance interval and contact pressure regulating means (15 and 16) for bringing the respective probes (A-D) into contact with the surface (3) of the film to be inspected under predetermined contact pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、腐食性環境などの過酷条件下で使用される各種装置の部材、部品などに用いられる導電性コーティング皮膜の欠陥、経年劣化などの検査、耐久寿命予測などに利用できる導電性コーティング皮膜の欠陥検出方法及びそれに使用する検査装置に関する。   The present invention relates to a conductive coating film that can be used for inspection of defects, aging, etc. of conductive coating films used for parts and parts of various devices used under harsh conditions such as corrosive environments, durability life prediction, etc. The present invention relates to a defect detection method and an inspection apparatus used therefor.

溶射、めっきなど、およそ数μm〜数1000μmの厚さを有するコーティング皮膜は、その製造あるいは使用段階において、気孔、クラック、酸化物混入など、大小さまざまな皮膜欠陥が形成される揚合がある。このような皮膜欠陥は、基材を腐食、摩耗などの損傷から保護する上で、また、皮膜自体の長期耐久性を確保する上で間題となっている。   A coating film having a thickness of about several μm to several 1000 μm, such as thermal spraying and plating, has a tendency to form various film defects such as pores, cracks, and oxides in the production or use stage. Such a film defect is a problem in protecting the substrate from damage such as corrosion and wear, and securing the long-term durability of the film itself.

このため、腐食性環境などの過酷条件下で使用される各種装置の品質管理において、皮膜形成後に、これら欠陥の有無を非破壊的に検査する方法の必要性が古くより認識されており、交流インピーダンス法、音波法、透磁率変化、電気化学的方法など、色々な物理的あるいは化学的パラメータの変化を利用した方法の検討がなされているが、現在実用化されている方法はない。実用化が難しい理由として下記の点が挙げられる。   For this reason, in the quality control of various devices used under severe conditions such as corrosive environments, the necessity of a method for nondestructively inspecting the presence or absence of these defects after film formation has long been recognized. Methods using various physical or chemical parameter changes such as impedance method, acoustic wave method, permeability change, electrochemical method, etc. have been studied, but there is no method currently in practical use. The following points are cited as reasons why it is difficult to put to practical use.

(a)物理的、化学的パラメータの変化と欠陥の大きさ、種類との対応が、スリットなど人工的な欠陥では明瞭に現れるが、実際のコーティング皮膜では、上記のさまざまな微小欠陥や、施工による組織変化、性状のバラツキがあるため実験的に検証することが難しい。
(b)実際の皮膜では気孔、層状酸化物、結晶粒界、クラックなど色々な形態の欠陥が存在しており、また、母材/皮膜界面、皮膜表面の凹凸など影響因子が多いため、関連づけが難しい。
(c)さらに、これらのコーティング皮膜を長期間実装置で使用した場合、皮膜が除々に消耗、劣化するが、この場合下記の様な消耗、劣化形態をとる。
(A) Correspondence between changes in physical and chemical parameters and the size and type of defects appears clearly in artificial defects such as slits. It is difficult to verify experimentally because there are structural changes due to
(B) In the actual film, there are various forms of defects such as pores, layered oxides, crystal grain boundaries, cracks, etc., and there are many influencing factors such as the base material / film interface and film surface irregularities. Is difficult.
(C) Furthermore, when these coating films are used in an actual apparatus for a long period of time, the films gradually wear and deteriorate. In this case, the following consumption and deterioration forms are taken.

(c1)皮膜厚さの減少:外表面からの摩耗、腐食などによる消耗
(c2)皮膜内部の欠陥の生成:使用応力などによる皮膜破壊が起こり、縦割れ、横割れあるいは部分的剥離が発生。また皮膜欠陥を通じて腐食性ガスが内部へ侵入し、皮膜内部での腐食、スケール生成を生ずる。
(c3)皮膜/母材界面の剥離:上記の皮膜内の腐食に加えて界面で基材あるいは皮膜の腐食が起こり、皮膜に剥離が生ずる。
例えば高温で使用される溶射などの耐食コーティングの劣化メカニズムについては、本発明者による報告文が出されている(非特許文献1および図8を参照)。
(C1) Decrease in film thickness: wear from outer surface, corrosion due to corrosion, etc. (c2) Generation of defects inside the film: Film breakage due to operating stress, etc., causing vertical cracks, horizontal cracks or partial peeling. In addition, corrosive gas penetrates into the interior through coating defects, and corrosion and scale formation occur inside the coating.
(C3) Separation of film / base material interface: In addition to the above-mentioned corrosion in the film, corrosion of the substrate or film occurs at the interface, and the film peels off.
For example, a report by the present inventor has been published on the deterioration mechanism of corrosion resistant coating such as thermal spraying used at high temperatures (see Non-Patent Document 1 and FIG. 8).

以上述べたような種々の手法が試みられているにもかかわらず、様々な形態で発生する皮膜の欠陥を、皮膜特性としての物理的、化学的性質のバラツキ要因を排除して簡便かつ再現性良く検出することは困難であり、現状実用化されている方法はない。   Despite attempts at various methods as described above, film defects that occur in various forms can be easily and reproducibly eliminated by eliminating physical and chemical variation factors as film characteristics. It is difficult to detect well, and there is no method currently in practical use.

川原雄三:溶射、日本溶射協会、VoL38、No.2、(2001)p73Yuzo Kawahara: Thermal Spray, Japan Thermal Spray Association, VoL38, No.2, (2001) p73

一般に部材表面に目的に応じて形成させた薄いコーティング皮膜(表面改質皮膜、表面処理皮膜)はその形成方法に応じて特有の微小欠陥が導入される。例えば代表的な表面コーティングにおいて下記の様な欠陥が知られている。
(1)金属溶射:気孔、クラック、酸化物など
(2)溶接肉盛り:ボイド、クラック、スラグ巻込み、成分偏析、集合組織、引け巣など
(3)拡散、浸透処理:ボイド、クラックなど
(アルミナイジング、クロマイジング、シリコナイジングなど)
(4)めっき:気孔、クラック、不純物など(クロムメッキ、ニッケルメッキなど)
In general, a thin coating film (surface-modified film or surface-treated film) formed on the surface of a member according to the purpose introduces specific micro defects depending on the forming method. For example, the following defects are known in typical surface coatings.
(1) Metal spraying: pores, cracks, oxides, etc. (2) Weld overlay: voids, cracks, slag entrainment, component segregation, texture, shrinkage, etc. (3) Diffusion, penetration treatment: voids, cracks, etc. Aluminizing, chromizing, siliconizing, etc.)
(4) Plating: pores, cracks, impurities, etc. (chromium plating, nickel plating, etc.)

さらに、これらのコーティング表面、母材/皮膜界面には製法上あるいは前処理の関係で必然的に数10〜数100μmの凹凸が存在しており、これらは物理、化学的方法で検査を行う際にバラツキが発生する要因となっている。これら、表面の凹凸を除去することは皮膜を消耗することになるうえ、手間も掛かることから、そのままの状態で検査することが望まれる。   Furthermore, these coating surfaces and the base material / film interface necessarily have irregularities of several tens to several hundreds of micrometers due to the manufacturing method or pretreatment, and these are inspected by physical and chemical methods. This is a factor that causes variation. Since removing the surface irregularities consumes the film and takes time and effort, it is desirable to inspect the film as it is.

本発明はこのような実状に鑑みてなされたものであって、その目的は、導電性コーティング皮膜の欠陥および経年変化により生ずる剥離、クラック、気孔、酸化物、腐食生成物などの欠陥を精度良く、現場で簡便に計測できる方法と装置を提供するものである。   The present invention has been made in view of such a situation, and its purpose is to accurately detect defects such as peeling, cracks, pores, oxides, corrosion products, and the like caused by defects in the conductive coating film and aging. The present invention provides a method and an apparatus that can be easily measured in the field.

上記従来技術の有する課題を解決するため、本発明者は、鋭意研究を行った結果、微小電流を検出する直流電気抵抗法を用いて実用上充分な精度で皮膜欠陥を検出できることを見出した。
即ち本発明は、溶射、めっき、拡散浸透処理などの表面処理方法によって形成される導電性コーティング皮膜中に発生する気孔、クラック、介在物などの欠陥検出方法であって、被検査皮膜表面上の2地点間に所定の微小電流を流した状態で、前記2地点の内側に位置した別の2地点間の電気抵抗を測定し、予め同条件で測定した正常皮膜の電気抵抗値と比較する導電性コーティング皮膜の欠陥検出方法にある。
In order to solve the above-described problems of the prior art, the present inventor has conducted extensive research and found that a film defect can be detected with sufficient accuracy using a direct current electric resistance method for detecting a minute current.
That is, the present invention is a method for detecting defects such as pores, cracks, inclusions, etc. generated in a conductive coating film formed by a surface treatment method such as thermal spraying, plating, diffusion penetration treatment, etc. Conduction to measure the electrical resistance between two other points located inside the two points with a predetermined minute current flowing between the two points, and to compare with the electric resistance value of the normal film measured in advance under the same conditions The method is to detect defects in the conductive coating film.

本発明において、前記微小電流を流す前記2地点に対して、前記2地点の内側に等距離で位置しかつ前記2地点を結ぶ直線上にある別の2地点で電気抵抗を測定することが好適である。また、前記2地点間に微小電流を流すための2つの触針と、前記内側の2地点間の電気抵抗を測定するための2つの触針とを、それぞれ被検査皮膜表面に所定の接圧にて接触させた状態で電気抵抗を測定することがさらに好適である。   In the present invention, it is preferable that the electrical resistance is measured at two other points that are equidistant inside the two points and on a straight line connecting the two points with respect to the two points through which the minute current flows. It is. Further, two styluses for passing a minute current between the two points and two styluses for measuring the electrical resistance between the two inner points are respectively applied to the surface of the film to be inspected at a predetermined contact pressure. It is further preferable to measure the electrical resistance in the state of contact with

また本発明は、前記導電性コーティング皮膜の欠陥検出方法に使用する検査装置として、前記2地点間に微小電流を流すための2つの触針と、前記内側の2地点間の電気抵抗を測定するための2つの触針と、前記各触針を所定の距離間隔に支持する支持構造と、前記各触針を被検査皮膜表面に所定の接圧にて接触させる接圧調節手段とを備えたプローブ、前記微小電流を流すための2つの触針間に所定の微小電流を供給する定電流制御装置、前記内側の2つの触針間の電気抵抗を測定する計測装置、を含む検査装置を構成した。   Moreover, this invention measures the electrical resistance between the two styluses for passing a minute electric current between the two points, and the two points on the inside as an inspection device used for the defect detection method of the conductive coating film. Two contact styluses, a support structure for supporting the styluses at a predetermined distance, and contact pressure adjusting means for bringing the styluses into contact with the surface of the film to be inspected at a predetermined contact pressure. An inspection apparatus including a probe, a constant current control device that supplies a predetermined minute current between the two styluses for flowing the minute current, and a measuring device that measures an electrical resistance between the two inner styluses is configured. did.

また本発明の別の態様では、前記導電性コーティング皮膜の欠陥検出方法として、被検査皮膜表面上の2地点間に所定の微小電流を流した状態で前記2地点間の電気抵抗を測定し、予め同条件で測定した正常皮膜の電気抵抗値と比較することもできる。さらに本発明の別の態様では、前記欠陥検出方法として、被検査皮膜の母材を接地し、被検査皮膜表面上の1地点に所定の微小電流を流した状態で、前記1地点の電位を測定し、該測定値より電気抵抗を求め、予め同条件で測定した正常皮膜の電気抵抗値と比較することもできる。   In another aspect of the present invention, as a defect detection method for the conductive coating film, the electrical resistance between the two points is measured in a state where a predetermined minute current is passed between the two points on the surface of the film to be inspected. It can also be compared with the electrical resistance value of a normal film measured in advance under the same conditions. Furthermore, in another aspect of the present invention, as the defect detection method, the potential of the one point is set in a state where a base material of the film to be inspected is grounded and a predetermined minute current is supplied to one point on the surface of the film to be inspected. It is also possible to measure the electric resistance from the measured value and compare it with the electric resistance value of the normal film measured in advance under the same conditions.

本発明に係る導電性コーティング皮膜の欠陥検出方法は、被検査皮膜表面上の2地点間に所定の微小電流を流した状態で、前記2地点の内側に位置した別の2地点間の電気抵抗を測定し、予め同条件で測定した正常皮膜の電気抵抗値と比較する欠陥検出方法を採用したので、導電性コーティング皮膜の欠陥および経年変化により生ずる剥離、クラック、気孔、酸化物、腐食生成物などの欠陥を精度良く、現場で簡便に計測できる。   The method for detecting a defect in a conductive coating film according to the present invention is a method of detecting electrical resistance between two points located inside the two points in a state where a predetermined minute current is passed between the two points on the surface of the film to be inspected. Since a defect detection method was used to measure and compare with the electrical resistance value of the normal film measured in advance under the same conditions, peeling, cracks, pores, oxides, corrosion products caused by defects and aging of the conductive coating film Defects such as can be measured accurately and easily on site.

上記効果は、微小電流を流す前記2地点に対して、前記2地点の内側に等距離で位置しかつ前記2地点を結ぶ直線上にある別の2地点で電気抵抗を測定することにより、より顕著なものとなる。また、前記2地点間に微小電流を流すための2つの触針と、前記内側の2地点間の電気抵抗を測定するための2つの触針とを、それぞれ被検査皮膜表面に所定の接圧にて接触させた状態で電気抵抗を測定することにより、各触針の接圧差に起因する接触抵抗の電気抵抗値への影響を排除し、より精度の高い欠陥検出が可能となる。   The above effect is obtained by measuring the electrical resistance at two other points that are equidistant inside the two points and on a straight line connecting the two points with respect to the two points through which a minute current flows. It will be remarkable. Further, two styluses for passing a minute current between the two points and two styluses for measuring the electrical resistance between the two inner points are respectively applied to the surface of the film to be inspected at a predetermined contact pressure. By measuring the electrical resistance in the state of contact with the contact point, the influence of the contact resistance due to the contact pressure difference of each stylus on the electrical resistance value can be eliminated, and more accurate defect detection can be performed.

以下、本発明を図示の実施の形態に基づいて詳細に説明する。
図1に、本発明に係わる方法(4針式電気抵抗法)を実施する検査装置10の構成を示す。図において、検査装置10は、4つの触針A,B,C,Dを有するプローブ11、外側の触針A−D間に所定の微電流を流す定電流制御装置12、内側の触針B−C間の微少抵抗(電圧)を計測する計測装置13から主に構成されている。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
FIG. 1 shows a configuration of an inspection apparatus 10 that performs the method (four-needle electric resistance method) according to the present invention. In the figure, an inspection device 10 includes a probe 11 having four styluses A, B, C, and D, a constant current control device 12 for passing a predetermined minute current between outer styluses A-D, and an inner stylus B. It is mainly composed of a measuring device 13 that measures a minute resistance (voltage) between −C.

プローブ11は、繰り返し使用時の表面接触に対して測定値の再現性と精度を確保するため次の工夫がなされている。すなわち、プローブ11の先端面14から突出し、かつ、直線状に配置された4つの触針A,B,C,Dは、プローブ11の先端面14において、被検査面3に対して接離する方向に摺動自在に支持され、かつ、それぞれがスプリング16により先端部14から突出する方向に付勢されている。また、プローブ11の先端面14の両側または周囲(もしくは4つの触針A,B,C,Dそれぞれの周囲)にスペーサ15を設け、該スペーサ15により、プローブ11を被検査面3に載置した状態で、先端面14が被検査面3に対して所定の間隔をなして平行に支持されるようにしてある。これら、触針A,B,C,Dの加圧手段(スプリング16)とプローブ11の支持手段(スペーサ15)とからなる接圧調節手段により、触針A,B,C,Dの先端が所定の接圧で被検査面3に押し当てられる。なお、スペーサ15の少なくとも被検査面3との接触部は絶縁材料で構成され、かつ、4つの触針A,B,C,Dはプローブ先端面14に絶縁材料を介して支持される。   The probe 11 is devised as follows in order to ensure the reproducibility and accuracy of measured values against surface contact during repeated use. That is, the four styluses A, B, C, and D that protrude from the distal end surface 14 of the probe 11 and are arranged in a straight line contact and separate from the surface 3 to be inspected at the distal end surface 14 of the probe 11. Each is supported so as to be slidable in the direction, and each is biased by a spring 16 in a direction protruding from the tip portion 14. Further, spacers 15 are provided on both sides or around the tip surface 14 of the probe 11 (or around each of the four styluses A, B, C, and D), and the probe 11 is placed on the surface to be inspected 3 by the spacer 15. In this state, the distal end surface 14 is supported in parallel with the inspection surface 3 at a predetermined interval. The tips of the stylus A, B, C and D are moved by the contact pressure adjusting means including the pressure means (spring 16) of the stylus A, B, C and D and the support means (spacer 15) of the probe 11. It is pressed against the surface to be inspected 3 with a predetermined contact pressure. Note that at least a contact portion of the spacer 15 with the surface to be inspected 3 is made of an insulating material, and the four styluses A, B, C, and D are supported on the probe tip surface 14 via the insulating material.

また、図示例では、上記スプリング16は、触針A,B,C,Dの基端部とプローブ11の先端部14との間に介在し、引張されたスプリング16の弾性回復により付勢力を得るものであるが、圧縮されたスプリングの弾性回復により付勢力を得るものであっても良い。また、触針A,B,C,Dの加圧手段としては、スプリングのような弾性体の他に、空気シリンダー、ベローフラムなど、流体圧によるものなどを使用することができる。触針A,B,C,Dの最適な接圧はスプリング16の変位、すなわち、スプリング16のいずれかの端部の連結位置を、ネジなどの調節手段(図示せず)で調節することにより設定でき、調節できることが好ましい。   In the illustrated example, the spring 16 is interposed between the proximal end portions of the stylus A, B, C, D and the distal end portion 14 of the probe 11, and exerts an urging force by elastic recovery of the tensioned spring 16. However, the biasing force may be obtained by elastic recovery of the compressed spring. Further, as a pressurizing means for the stylus A, B, C, D, in addition to an elastic body such as a spring, an air cylinder, a bellows frame, or the like using a fluid pressure can be used. The optimum contact pressure of the stylus A, B, C, D is determined by adjusting the displacement of the spring 16, that is, the connecting position of either end of the spring 16 with an adjusting means (not shown) such as a screw. Preferably, it can be set and adjusted.

触針A,B,C,Dの先端形状は、皮膜1に微小な凹凸が存在しても良好な接触を確保できるよう先細に形成されるが、皮膜1を損傷しないように先端に丸味をもたせ、半径0.05mm〜0.3mm程度の球面とすることが好適である。また、触針A,B,C,Dの材質としては、上記先端形状で繰り返し計測を行なっても摩耗や変形が生じ難く、かつ、電気伝導性の良い高硬度材料が好適であり、このような材料としては、例えばタングステンが好適に用いられる。   The tip shape of the stylus A, B, C, D is tapered to ensure good contact even if minute irregularities are present on the coating 1, but the tip is rounded so as not to damage the coating 1. It is preferable to use a spherical surface with a radius of about 0.05 mm to 0.3 mm. Further, as the material of the stylus A, B, C, D, a high-hardness material that does not easily wear or deform even when repeatedly measured with the above-described tip shape, and has good electrical conductivity is preferable. As such a material, for example, tungsten is preferably used.

触針A,B,C,Dの設置間隔は、皮膜1の厚さ、検査領域の大きさ、被検査物の形状など、対象物によって異なる。また、プローブ11を移動させながら検査する際の作業性を考慮すると、プローブ11は小型軽量であることが好ましい。これらの点から、汎用の形態ではA−D間の距離L0が100mm程度か、それ以下が好適である。また、B−C間の距離L1は電圧変化すなわち抵抗変化を検出する上での検出性や、ばらつき、検査領域の物性に開係し、溶射皮膜など50〜600μm程度の厚さの皮膜1に対しては、A−D間距離L0の0.2〜0.8倍が好適である。そして、触針A,B,C,Dと、それに対応するプローブ11の各端子(コネクタ)とはフレキシブルな導線17で接続され、触針A,Dの端子は定電流制御装置12に、触針B,Cの端子は計測装置13に、それぞれ接続されている。 The interval between the styluses A, B, C, and D varies depending on the object, such as the thickness of the coating 1, the size of the inspection area, and the shape of the inspection object. In consideration of workability when performing inspection while moving the probe 11, it is preferable that the probe 11 is small and light. From these points, in the general-purpose form, the distance L 0 between A and D is preferably about 100 mm or less. Further, the distance L 1 between B and C is related to the detectability in detecting the voltage change, that is, the resistance change, variation, and physical properties of the inspection region, and the coating 1 having a thickness of about 50 to 600 μm such as a thermal spray coating. Is preferably 0.2 to 0.8 times the A-D distance L 0 . The stylus A, B, C, D and the corresponding terminal (connector) of the probe 11 are connected by a flexible wire 17, and the terminals of the stylus A, D are connected to the constant current control device 12. The terminals of the needles B and C are connected to the measuring device 13, respectively.

定電流制御装置12は、皮膜1の中に流す電流を一定に保持する制御を行う回路を備えた装置である。定電流制御装置12は、触針A,Dに電圧を印加し、かつ、印加する電圧を加減して、触針A,Dと被検査体との接触抵抗の大小に拘わらず1μA〜10A程度の範囲で調節可能な一定電流が流れるようにする。なお、直流とほぼ同様な効果が得られる低周波の交流を用いても計測は可能である。   The constant current control device 12 is a device that includes a circuit that performs control to keep a current flowing in the coating 1 constant. The constant current control device 12 applies a voltage to the stylus A and D, and adjusts the applied voltage to be about 1 μA to 10 A regardless of the contact resistance between the stylus A and D and the object to be inspected. A constant current that can be adjusted within the range of. Measurement can also be performed using low-frequency alternating current, which can provide substantially the same effect as direct current.

計測装置13は、定電流制御装置12を用いて触針A,Dに流した一定電流下で、触針B,Cに検出される電圧(V1)を計測するものであり、電気抵抗(R)=電圧(V)/電流(I)により、計測値を電気抵抗(R)に変換する抵抗計(電圧計)の機能を備えている。図2は、4針式電気抵抗法により皮膜欠陥を検出する場合の測定回路図(等価回路図)を示す。図2において、被検査体の電気抵抗Rは、皮膜1の電気抵抗R1、皮膜1/母材2の界面の電気抵抗R2、母材2の電気抵抗R3の合成抵抗に相当する。健全な皮膜1において電気抵抗Rは極めて小さく、良好な電導性を示すが、皮膜1の欠陥により、皮膜1の導電性が低下し、皮膜1の電気抵抗R1や界面の電気抵抗R2が増大する。 The measuring device 13 measures the voltage (V 1 ) detected by the stylus B and C under a constant current passed through the stylus A and D using the constant current control device 12, and the electrical resistance ( It has a function of a resistance meter (voltmeter) that converts a measured value into an electric resistance (R) by R) = voltage (V) / current (I). FIG. 2 shows a measurement circuit diagram (equivalent circuit diagram) when a film defect is detected by the four-needle electric resistance method. 2, the electrical resistance R of the device under test, the electrical resistance R 1 of the film 1, the electric resistance R 2 of the interface of the film 1 / base material 2, which corresponds to a combined resistance of the electrical resistance R 3 of the base material 2. The electrical resistance R is very small in the healthy film 1 and shows good electrical conductivity. However, due to defects in the film 1, the electrical conductivity of the film 1 is reduced, and the electrical resistance R 1 of the film 1 and the electrical resistance R 2 of the interface are low. Increase.

計測装置13の内部抵抗R0は、電気抵抗R1,R2,R3や触針B,Cの接触抵抗rb,rcに比べ充分に大きいため、計測装置13には殆ど電流は流れない。このため、触針B,Cの接触抵抗rb,rcは無視することができ、計測装置13に計測される電気抵抗Rは、皮膜1内部の欠陥の状況を反映したものとなる。従って、以上のように構成された検査装置10を用いて触針B−C間の微小抵抗測定を行うことにより、皮膜1の欠陥による微小抵抗変化を高精度に検出することができる。 Internal resistance R 0 of the measuring device 13, the electrical resistance R 1, R 2, R 3 and probe B, the contact resistance r b and C, for sufficiently large compared to r c, little current in the measuring device 13 flows Absent. Therefore, probe B, the contact resistance r b of C, r c is negligible, the electrical resistance R is measured in the measuring device 13 is such as to reflect the status of the film 1 inside the defect. Therefore, by measuring the minute resistance between the stylus B-C using the inspection apparatus 10 configured as described above, a minute resistance change due to a defect in the film 1 can be detected with high accuracy.

以上、4針式の検査装置10を用いた皮膜1の欠陥検出について述べたが、図3に示す2針式の検査装置20あるいは、図4に示す1針式の検査装置30においても、微少な電気抵抗を測定することにより皮膜1の欠陥を検出することが可能である。   The defect detection of the film 1 using the four-needle type inspection device 10 has been described above. However, the two-needle type inspection device 20 shown in FIG. 3 or the one-needle type inspection device 30 shown in FIG. It is possible to detect a defect in the film 1 by measuring a proper electric resistance.

図3において、2針式検査装置20は、2つの触針E,Fを有するプローブ21、触針E−F間に所定の微電流を流す定電流制御装置22、該定電流制御装置22により流される微電流をもとに触針E−F間の微少抵抗(電圧)を計測する計測装置23から構成されている。また、図4において、1針式検査装置30は、1つの触針Hを有るプローブ31、一端を接地Gされ、H−G間に所定の微電流を流す定電流制御装置22、同じく一端を接地Gされ、定電流制御装置32により流される微電流をもとにH−G間の微少抵抗(電圧)を計測する計測装置33から構成されており、この1針式検査装置30においては、母材2も接地しておく必要がある。なお、図示は省略するが、各触針E,FまたはHの被検査面3に対する接圧を一定に保持する接圧調節手段については、先に述べた4針式の検査装置10の場合と同様である。   In FIG. 3, the two-needle type inspection device 20 includes a probe 21 having two styluses E and F, a constant current control device 22 for passing a predetermined minute current between the stylus EFs, and the constant current control device 22. It is comprised from the measuring device 23 which measures the minute resistance (voltage) between the stylus EF based on the flowing microcurrent. In FIG. 4, a single-needle inspection device 30 includes a probe 31 having one stylus H, a constant current control device 22 that is grounded at one end and a predetermined minute current is passed between H-G, and one end at the same end. It is composed of a measuring device 33 that measures a minute resistance (voltage) between H and G based on a minute current that is grounded and supplied by a constant current control device 32. The base material 2 must also be grounded. Although not shown, the contact pressure adjusting means for keeping the contact pressure of each stylus E, F or H with respect to the surface 3 to be inspected is the same as in the case of the 4-needle type inspection apparatus 10 described above. It is the same.

これら2針式検査装置20、1針式検査装置30において、計測装置23,33で計測される微少抵抗(電圧)から皮膜1の欠陥の欠陥を検出する基本的な原理については、先述した4針式検査装置30の場合と同様である。しかし、2針式検査装置20、1針式検査装置30では、触針E,Fや触針Hの接触抵抗が加算されるため、予め皮膜欠陥と計測値の相関について情報を得ておく必要がある。また、1針式検査装置30は、局所的な欠陥の検出精度では、4針式検査装置10、2針式検査装置20に及ばないが、検査対象皮膜1についての広範囲な検査情報を得ることができ、他の方式と併用することも有効である。4針式を始め各方法において抵抗値から欠陥の状態を判定する場合、図6,7に示す様な欠陥のミクロ写真、欠陥形状あるいは欠陥の画像処理情報などと照合し、キャリブレーション曲線などを作成して、対応関係を調査しておくことが必要である。   In these two-needle type inspection apparatus 20 and single-needle type inspection apparatus 30, the basic principle of detecting defects of defects in the film 1 from the minute resistance (voltage) measured by the measuring apparatuses 23 and 33 is described above. This is the same as in the case of the needle type inspection apparatus 30. However, in the two-needle type inspection device 20 and the one-needle type inspection device 30, since the contact resistances of the stylus E and F and the stylus H are added, it is necessary to obtain information about the correlation between the film defect and the measured value in advance. There is. In addition, the single-needle inspection device 30 does not reach the four-needle inspection device 10 and the two-needle inspection device 20 in terms of local defect detection accuracy, but obtains a wide range of inspection information about the inspection target film 1. It can be used in combination with other methods. When judging the state of a defect from the resistance value in each method including the four-needle method, it is compared with a microphotograph of a defect as shown in FIGS. It is necessary to create and investigate the correspondence.

本発明方法は導電性の単一層皮膜のみならず2層、3層構造を有する多層皮膜についても同様に適用することができる。原理的には皮膜厚さに対する適用限度はなく、触針間の距離L1を拡大し電流分布の広がりにより皮膜内の情報を得ることができる。しかし触針間の距離L1が大きい揚合や皮膜1が薄い場合には、母材2内への流入電流の割合が増え、相対的に皮膜内情報の検出感度が低下するため、触針間の距離L1を狭めて適切に設定する必要がある。 The method of the present invention can be applied not only to a conductive single layer film but also to a multilayer film having a two-layer or three-layer structure. In principle, there is no application limit to the film thickness, and information in the film can be obtained by expanding the distance L 1 between the styluses and spreading the current distribution. However, when the distance L 1 between the styluses is large or the film 1 is thin, the ratio of the inflow current into the base material 2 increases, and the sensitivity of detecting information in the film relatively decreases. narrowing the distance L 1 between it is necessary to appropriately set.

さらに、長期間使用して劣化した皮膜については、前述の様に皮膜内の欠陥の増加のみならず、皮膜の厚さの減少、皮膜/母材の界面でのスケール生成、剥離などの現象が同時に生ずる。このような経年劣化現象は皮膜内の抵抗増加や、母材への流入電流の減少を伴うため、劣化の進行と共に大きな抵抗変化を示すようになり、定期的な計測によって劣化度、耐久寿命予測の判定を行なうことができる。   Furthermore, for films that have deteriorated over a long period of time, not only increases in defects in the film as described above, but also phenomena such as a decrease in film thickness, scale formation at the film / matrix interface, and peeling are observed. It occurs at the same time. Such aged deterioration phenomenon increases resistance in the film and decreases the inflow current to the base metal, so it shows a large change in resistance as the deterioration progresses. Can be determined.

(1)電気抵抗値と溶射皮膜欠陥との対応(4針法)
前述の4針法および2針法の検査装置10,20を用いて触針A−D間の距離L0を50mm(4針法)、B−CまたはE−F間の距離L0を32mm(4針法、2針法)に設定して、ボイラ蒸発管に施工した50Cr50Ni合金のプラズマ溶射皮膜に発生した欠陥を調査した。抵抗計測を行った後に色々な抵抗値を示した部分を切断して皮膜の欠陥発生状況をミクロ組織観察により調査した。
(2)試験片および試験方法
下記の試験片を用いて実機での使用条件を決める試験を行った。
(2.1)抜管チューブ
1年間使用済の溶射管を用いて4針法と2針法にて電気抵抗と皮膜欠陥の関係を調査し、測定条件と判定規準を求めた。
(2.2)新規溶射管
使用前の50Cr50Ni溶射管を用いて皮膜厚さが100〜400μmの正常皮膜の電気抵抗値を測定し、皮膜厚さの影響度を調査した。
(3)試験結果
表1に4針法、表2に2針法による抜管チューブの試験結果を示す。また、測定位置の代表的なミクロ組織の写真を図6、図7に示す。なお、図6、図7中の抵抗値は4針法によるものであり、表1のNo.1〜4、No.6〜9に相当する。また、表3に4針法による新規溶射管の測定結果を示す。得られた主な結果は以下の通りである。
(1) Correspondence between electric resistance value and thermal spray coating defect (4-needle method)
Using the above-described four-needle method and two-needle method inspection devices 10 and 20, the distance L 0 between the styluses A and D is 50 mm (four needle method), and the distance L 0 between B-C or EF is 32 mm. The defects generated in the plasma sprayed coating of 50Cr50Ni alloy applied to the boiler evaporator tube were investigated by setting (four needle method, two needle method). After measuring the resistance, the portions showing various resistance values were cut, and the defect occurrence state of the film was investigated by microstructural observation.
(2) Test piece and test method A test for determining use conditions in an actual machine was performed using the following test piece.
(2.1) Tubing tube Using a spray tube that has been used for one year, the relationship between electrical resistance and film defects was investigated by the 4-needle method and the 2-needle method, and the measurement conditions and criteria were determined.
(2.2) New spray tube Using a 50Cr50Ni spray tube before use, the electrical resistance value of a normal coating having a coating thickness of 100 to 400 μm was measured, and the influence of the coating thickness was investigated.
(3) Test results Table 1 shows the test results of the extubated tube by the 4-needle method and Table 2 shows the 2-needle method. Moreover, the photograph of the typical microstructure of a measurement position is shown in FIG. 6, FIG. The resistance values in FIGS. 6 and 7 are based on the 4-needle method. 1-4, no. It corresponds to 6-9. Table 3 shows the measurement results of the new spray tube by the 4-needle method. The main results obtained are as follows.

(3.1)
2針法による試験では接触抵抗、電流等の影響により40mΩ〜1500mΩ程度の抵抗値を示したが、4針法では2針法のおよそ1/103の値の13〜3600μΩの微小な皮膜抵抗変化を測定できた。また、両方法とも欠陥の増加による抵抗増加の傾向は明瞭に計測でき、充分な実用性を有することがわかる。
(3.2)
抵抗値と皮膜欠陥との対応について、4針法では使用前、使用後とも健全皮膜の抵抗値は10〜20μΩ程度の値を示している。一方、大きな欠陥、層状酸化物、クラックなどの欠陥の存在に対応して抵抗値が増加し、目視にて観察できる表面の大きなクラックでは約1000μΩ以上の大きな抵抗値となる。このような傾向から、本実験において不良皮膜と正常皮膜のしきい値は約70μΩである。これを正常皮膜の抵抗値に対する不良皮膜の抵抗値の指数α(欠陥指数α=不良皮膜抵抗値/正常皮膜抵抗値)で表すと、α≧4.0〜5.3が、不良皮膜のしきい値となる。欠陥の発生状況と抵抗のしきい値について整理すると下記のようになる。
(a)抵抗値が70μΩ以下(α<4.0):正常/スパッタなど小欠陥は存在する(No.1)。
(b)抵抗値が70〜1000μΩ(4.0≦α<60):有害欠陥あり(目視不可能)/大きな層状酸化物、微細な縦割れ、部分的剥離が存在する(No.2〜No.6)。
(c)抵抗値が1000μΩ以上(60≦α):大きな欠陥あり(目視可能)/大きなクラック、多量の酸化物、大きな剥離が存在する(No.7〜No.9)。
(3.3)
皮膜厚さの抵抗値に対する影響について、新規溶射管の測定結果(表3)から、健全な皮膜では皮膜厚さの抵抗値に対する影響は殆ど認められず、通常の皮膜厚さの範囲内では、厚さの影響を受けずに欠陥の検出ができることを示している。
(3.1)
The test using the 2-needle method showed a resistance value of about 40 mΩ to 1500 mΩ due to the effects of contact resistance, current, etc., but the 4-needle method showed a very small film resistance of 13 to 3600 μΩ, which was about 1/10 3 of the 2-needle method. The change could be measured. Moreover, the tendency of the resistance increase by the increase in a defect can be measured clearly with both methods, and it turns out that it has sufficient practicality.
(3.2)
Regarding the correspondence between the resistance value and the film defect, the resistance value of the sound film shows a value of about 10 to 20 μΩ before and after use in the four-needle method. On the other hand, the resistance value increases corresponding to the presence of defects such as large defects, layered oxides, and cracks, and large resistance values of about 1000 μΩ or more are observed for large cracks on the surface that can be visually observed. From such a tendency, the threshold value of the defective film and the normal film in this experiment is about 70 μΩ. When this is expressed by the index α of the resistance value of the defective film relative to the resistance value of the normal film (defect index α = defective film resistance value / normal film resistance value), α ≧ 4.0 to 5.3 is Threshold value. The following is a summary of defect occurrence and resistance thresholds.
(A) Resistance value is 70 μΩ or less (α <4.0): Small defects such as normal / sputtering exist (No. 1).
(B) Resistance value of 70 to 1000 μΩ (4.0 ≦ α <60): There are harmful defects (not visible) / large layered oxides, fine vertical cracks, and partial peeling (No. 2 to No. .6).
(C) Resistance value of 1000 μΩ or more (60 ≦ α): large defect (visible) / large crack, large amount of oxide, large peeling (No. 7 to No. 9).
(3.3)
Regarding the effect of film thickness on the resistance value, the measurement results of the new thermal spray tube (Table 3) show that there is almost no effect on the resistance value of the film thickness in the case of a healthy film, and within the normal film thickness range, It shows that the defect can be detected without being affected by the thickness.

抵抗値に及ぼす皮膜欠陥の影響は、酸化物量、微細割れ、スパッタ等の集合欠陥、接合界面状態など色々な欠陥の存在状況、要因に左右され、また、計測装置側要因として、流す電流などの影響を受ける。このため個々の欠陥の微小抵抗値への影響度を区分けして検出することは現時点では難しいが、μΩオーダの微小抵抗を計測することにより皮膜の耐久性に影響する有害なクラック、大きな酸化物の存在とその大きさなどは検出できる。抵抗値が大きい程、皮膜断面(電流通過部断面積)での欠陥の占める割合が多く、これにより外部からの腐食性ガスなどの侵入、皮膜を貫通するクラックなどが発生し易くなるため耐久性の低下速度が増加すると考えられる。従って皮膜の寿命予測に本方法を用いることができる。   The influence of film defects on the resistance value depends on the presence of various defects such as oxide amount, microcracking, collective defects such as spatter, bonding interface state, and other factors. to be influenced. For this reason, it is difficult at present to detect the degree of influence of each defect on the microresistance value, but harmful cracks and large oxides that affect the durability of the film by measuring microresistance on the order of μΩ. The presence and size of the can be detected. The greater the resistance value, the greater the proportion of defects in the film cross-section (current passing area cross-sectional area), which makes it easier to generate corrosive gas from the outside, cracks penetrating the film, etc. It is thought that the rate of decrease in the increase. Therefore, this method can be used for predicting the life of the coating.

なお、上記実施形態では、プローブ11の4つの触針A,B,C,Dが、被検査面3に対して接離する方向に摺動自在に支持される場合を示したが、摺動自在に支持される代わりに揺動自在に支持されていても良い。   In the above-described embodiment, the case where the four styluses A, B, C, and D of the probe 11 are supported so as to be slidable toward and away from the surface to be inspected 3 is shown. Instead of being freely supported, it may be supported so as to be swingable.

以上、本発明の実施の形態につき述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形および変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation and change are possible based on the technical idea of this invention.

本発明方法を実施する検査装置(4針式)の概略を示す正断面図である。It is a front sectional view showing the outline of an inspection device (4 needle type) which carries out the method of the present invention. 本発明方法により皮膜欠陥を検出する場合の測定回路図である。It is a measurement circuit diagram in the case of detecting a film defect by the method of the present invention. 本発明方法を実施する検査装置(2針式)の概略を示す正面図である。It is a front view which shows the outline of the test | inspection apparatus (two needle type | mold) which implements this invention method. 本発明方法を実施する検査装置(1針式)の概略を示す正面図である。It is a front view which shows the outline of the test | inspection apparatus (1 needle type) which enforces this invention method. 本発明方法に係る皮膜欠陥と抵抗値の関係、模式的な皮膜組織を示す図である。It is a figure which shows the relationship between the film | membrane defect based on this invention method, and resistance value, and a typical film | membrane structure | tissue. 溶射皮膜のミクロ組織を示す断層写真である。It is a tomogram which shows the microstructure of a thermal spray coating. 溶射皮膜のミクロ組織を示す断層写真である。It is a tomogram which shows the microstructure of a thermal spray coating. 溶射皮膜の経年劣化のメカニズムを示す図である。It is a figure which shows the mechanism of aged deterioration of a thermal spray coating.

符号の説明Explanation of symbols

1 皮膜
2 母材
3 被検査面
10,20,30 検査装置
11,21,31 プローブ
12,22,32 定電流制御装置
13,23,33 測定装置(抵抗計/電圧計)
15 スペーサ(支持手段/接圧調節手段)
16 スプリング(加圧手段/接圧調節手段)
A,B,C,D,E,F,H 触針
G 接地
DESCRIPTION OF SYMBOLS 1 Film | membrane 2 Base material 3 Surface to be inspected 10, 20, 30 Inspection device 11, 21, 31 Probe 12, 22, 32 Constant current control device 13, 23, 33 Measuring device (resistance meter / voltmeter)
15 Spacer (supporting means / contact pressure adjusting means)
16 Spring (Pressurizing means / Contact pressure adjusting means)
A, B, C, D, E, F, H Stylus G Ground

Claims (6)

溶射、めっき、拡散浸透処理などの表面処理方法によって形成される導電性コーティング皮膜中に発生する気孔、クラック、介在物などの欠陥検出方法であって、被検査皮膜表面上の2地点間に所定の微小電流を流した状態で、前記2地点の内側に位置した別の2地点間の電気抵抗を測定し、予め同条件で測定した正常皮膜の電気抵抗値と比較することを特徴とする導電性コーティング皮膜の欠陥検出方法。   A method for detecting defects such as pores, cracks, inclusions, etc. generated in a conductive coating film formed by a surface treatment method such as thermal spraying, plating, diffusion penetration treatment, etc. The electric resistance between two other points located inside the two points in a state where a minute current is passed, and compared with the electric resistance value of a normal film measured in advance under the same conditions For detecting defects in conductive coatings. 微小電流を流す前記2地点に対して、前記2地点の内側に等距離で位置しかつ前記2地点を結ぶ直線上にある別の2地点で電気抵抗を測定する請求項1に記載の導電性コーティング皮膜の欠陥検出方法。   2. The electrical conductivity according to claim 1, wherein the electrical resistance is measured at two other points that are equidistant inside the two points and on a straight line connecting the two points with respect to the two points through which a minute current flows. Defect detection method for coating film. 前記2地点間に微小電流を流すための2つの触針と、前記内側の2地点間の電気抵抗を測定するための2つの触針とを、それぞれ被検査皮膜表面に所定の接圧にて接触させた状態で電気抵抗を測定する請求項1または2に記載の導電性コーティング皮膜の欠陥検出方法。   Two styluses for passing a minute current between the two points and two styluses for measuring the electrical resistance between the two inner points at a predetermined contact pressure on the surface of the film to be inspected, respectively. The method for detecting a defect in a conductive coating film according to claim 1 or 2, wherein the electrical resistance is measured in a contacted state. 請求項1〜3のいずれかに記載の導電性コーティング皮膜の欠陥検出方法に使用する検査装置であって、
前記2地点間に微小電流を流すための2つの触針と、前記内側の2地点間の電気抵抗を測定するための2つの触針と、前記各触針を所定の距離間隔に支持する支持構造と、前記各触針を被検査皮膜表面に所定の接圧にて接触させる接圧調節手段とを備えたプローブ、
前記微小電流を流すための2つの触針間に所定の微小電流を供給する定電流制御装置、
前記内側の2つの触針間の電気抵抗を測定する計測装置、
を含む検査装置。
An inspection apparatus used in the defect detection method for a conductive coating film according to any one of claims 1 to 3,
Two styluses for passing a minute current between the two points, two styluses for measuring electrical resistance between the two inner points, and a support for supporting the styluses at a predetermined distance interval A probe having a structure and contact pressure adjusting means for bringing each stylus into contact with the surface of the film to be inspected at a predetermined contact pressure;
A constant current control device for supplying a predetermined minute current between two styluses for passing the minute current;
A measuring device for measuring electrical resistance between the two inner styluses;
Inspection equipment including
溶射、めっき、拡散浸透処理などの表面処理方法によって形成される導電性コーティング皮膜中に発生する気孔、クラック、介在物などの欠陥検出方法であって、被検査皮膜表面上の2地点間に所定の微小電流を流した状態で前記2地点間の電気抵抗を測定し、予め同条件で測定した正常皮膜の電気抵抗値と比較することを特徴とする導電性コーティング皮膜の欠陥検出方法。   A method for detecting defects such as pores, cracks, inclusions, etc. generated in a conductive coating film formed by a surface treatment method such as thermal spraying, plating, diffusion penetration treatment, etc. A method for detecting a defect in a conductive coating film, wherein the electrical resistance between the two points is measured in a state where a minute current is passed, and is compared with the electrical resistance value of a normal film measured in advance under the same conditions. 溶射、めっき、拡散浸透処理などの表面処理方法によって形成される導電性コーティング皮膜中に発生する気孔、クラック、介在物などの欠陥検出方法であって、被検査皮膜の母材を接地し、被検査皮膜表面上の1地点に所定の微小電流を流した状態で、前記1地点の電位を測定し、該測定値より電気抵抗を求め、予め同条件で測定した正常皮膜の電気抵抗値と比較することを特徴とする導電性コーティング皮膜の欠陥検出方法。   A method for detecting defects such as pores, cracks, and inclusions generated in a conductive coating film formed by a surface treatment method such as thermal spraying, plating, and diffusion / penetration treatment, wherein the base material of the film to be inspected is grounded and covered. In a state where a predetermined minute current is applied to one point on the surface of the inspection film, the electric potential at the one point is measured, the electric resistance is obtained from the measured value, and compared with the electric resistance value of the normal film measured in advance under the same conditions. A method for detecting a defect in a conductive coating film.
JP2005347385A 2005-12-01 2005-12-01 Flaw detection method of conductive coating film and flaw detector used therefor Pending JP2007155368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347385A JP2007155368A (en) 2005-12-01 2005-12-01 Flaw detection method of conductive coating film and flaw detector used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347385A JP2007155368A (en) 2005-12-01 2005-12-01 Flaw detection method of conductive coating film and flaw detector used therefor

Publications (1)

Publication Number Publication Date
JP2007155368A true JP2007155368A (en) 2007-06-21

Family

ID=38239957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347385A Pending JP2007155368A (en) 2005-12-01 2005-12-01 Flaw detection method of conductive coating film and flaw detector used therefor

Country Status (1)

Country Link
JP (1) JP2007155368A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106922A (en) * 2009-11-16 2011-06-02 Mitsubishi Heavy Ind Ltd Method for evaluating film quality of spray film
JP2013137230A (en) * 2011-12-28 2013-07-11 Ihi Inspection & Instrumentation Co Ltd Creep damage evaluation method of thermal spray coated tube of boiler furnace
JP2013238843A (en) * 2012-05-14 2013-11-28 Taiwan Mask Corp Method for testing photomask article
CN104345077A (en) * 2013-07-31 2015-02-11 上海图博可特石油管道涂层有限公司 Detecting device for coating leakage points in petroleum pipe and detecting method
JP2018032710A (en) * 2016-08-24 2018-03-01 トヨタ自動車株式会社 Method for inspecting heat sink, inspection device and manufacturing method
KR20180068414A (en) * 2016-12-14 2018-06-22 부산대학교 산학협력단 Method for measuring a deterioration degree of high hardness coating product by external stress and apparatus for measuring a deterioration degree of high hardness coating product by external stress
JP2020176294A (en) * 2019-04-17 2020-10-29 日本製鉄株式会社 Method of inspecting electrodeposition drum material for producing metal foil or electrodeposition drum for producing metal foil
JP2020189327A (en) * 2019-05-24 2020-11-26 株式会社神戸製鋼所 Manufacturing device of molding, manufacturing method of molding, program and contact type measuring instrument
CN112179948A (en) * 2020-09-29 2021-01-05 中国航发动力股份有限公司 Flaw detection device and application thereof
JP2023169936A (en) * 2022-05-18 2023-12-01 北海道電力株式会社 Metal cylinder resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106922A (en) * 2009-11-16 2011-06-02 Mitsubishi Heavy Ind Ltd Method for evaluating film quality of spray film
JP2013137230A (en) * 2011-12-28 2013-07-11 Ihi Inspection & Instrumentation Co Ltd Creep damage evaluation method of thermal spray coated tube of boiler furnace
JP2013238843A (en) * 2012-05-14 2013-11-28 Taiwan Mask Corp Method for testing photomask article
US8890539B2 (en) 2012-05-14 2014-11-18 Taiwan Mask Corporation Method for testing mask articles
CN104345077A (en) * 2013-07-31 2015-02-11 上海图博可特石油管道涂层有限公司 Detecting device for coating leakage points in petroleum pipe and detecting method
JP2018032710A (en) * 2016-08-24 2018-03-01 トヨタ自動車株式会社 Method for inspecting heat sink, inspection device and manufacturing method
KR20180068414A (en) * 2016-12-14 2018-06-22 부산대학교 산학협력단 Method for measuring a deterioration degree of high hardness coating product by external stress and apparatus for measuring a deterioration degree of high hardness coating product by external stress
KR101891411B1 (en) 2016-12-14 2018-08-23 부산대학교 산학협력단 Method for measuring a deterioration degree of high hardness coating product by external stress and apparatus for measuring a deterioration degree of high hardness coating product by external stress
JP2020176294A (en) * 2019-04-17 2020-10-29 日本製鉄株式会社 Method of inspecting electrodeposition drum material for producing metal foil or electrodeposition drum for producing metal foil
JP7269472B2 (en) 2019-04-17 2023-05-09 日本製鉄株式会社 Method for inspecting electrodeposition drum material for manufacturing metal foil or electrodeposition drum for manufacturing metal foil
JP2020189327A (en) * 2019-05-24 2020-11-26 株式会社神戸製鋼所 Manufacturing device of molding, manufacturing method of molding, program and contact type measuring instrument
JP7199306B2 (en) 2019-05-24 2023-01-05 株式会社神戸製鋼所 Modeled object manufacturing device, modeled object manufacturing method, program, contact-type measuring instrument
CN112179948A (en) * 2020-09-29 2021-01-05 中国航发动力股份有限公司 Flaw detection device and application thereof
CN112179948B (en) * 2020-09-29 2024-04-12 中国航发动力股份有限公司 Flaw detection device and application thereof
JP2023169936A (en) * 2022-05-18 2023-12-01 北海道電力株式会社 Metal cylinder resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method
JP7402270B2 (en) 2022-05-18 2023-12-20 北海道電力株式会社 Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method

Similar Documents

Publication Publication Date Title
JP2007155368A (en) Flaw detection method of conductive coating film and flaw detector used therefor
JP6366829B2 (en) Corrosion rate measurement using a sacrificial probe
CN108362637B (en) Corrosion electrochemical testing device and corrosion electrochemical testing method
JP2008534980A (en) Method and apparatus for measuring the state of a steel structure
EP2917717B1 (en) Field measurement of corrosion and erosion
Si et al. Potential difference methods for measuring crack growth: A review
Raja et al. Influence of crack length on crack depth measurement by an alternating current potential drop technique
CN106041343B (en) A kind of method for being used to monitor the change of solder bonding metal connection resistance on-line
JP2023515125A (en) Method and measurement set-up for determining internal corrosion rate of steel structures
US7106055B2 (en) Fabrication of samples having predetermined material conditions
Bosch et al. Application of electrochemical impedance spectroscopy for monitoring stress corrosion cracking
JP2008209180A (en) Measuring electrode, corrosion monitoring device, and corrosion monitoring method
CN109030132A (en) A kind of creep impairment reference block preparation method, damage detecting method and system
JP3678406B2 (en) In-situ measurement method for corrosion rate of steel structures.
KR101279210B1 (en) Electrochemical fatigue sensor system and methods
Yonezu et al. An experimental methodology for characterizing fracture of hard thin films under cyclic contact loading
US11630081B2 (en) Method for non-destructively examining an anode of an aluminium electrolysis cell
Oltra et al. Real-time monitoring of intergranular corrosion damage on AA2024
JP2013044600A (en) Method for estimating depth of crack in conductive material-made structure
JPS63101742A (en) Defect inspection
KR20110109579A (en) A welding test apparatus and welding test method the apparatus
Davies et al. Continuous creep damage monitoring using a novel potential drop technique
JP2008083038A (en) Method of detecting damage of structure made of conductive material
JP2009074923A (en) Damage detection method for structure made of conductive material
JP2005274381A (en) Nondestructive inspection method and nondestructive inspection apparatus of back defect and material characteristics by electromagnetic method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090605

A02 Decision of refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A02