JP7024553B2 - Probe of corrosion environment measuring device and corrosion environment measuring device - Google Patents

Probe of corrosion environment measuring device and corrosion environment measuring device Download PDF

Info

Publication number
JP7024553B2
JP7024553B2 JP2018062952A JP2018062952A JP7024553B2 JP 7024553 B2 JP7024553 B2 JP 7024553B2 JP 2018062952 A JP2018062952 A JP 2018062952A JP 2018062952 A JP2018062952 A JP 2018062952A JP 7024553 B2 JP7024553 B2 JP 7024553B2
Authority
JP
Japan
Prior art keywords
electrode
liquid film
film thickness
width
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062952A
Other languages
Japanese (ja)
Other versions
JP2019174289A (en
Inventor
丈時 出路
実 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018062952A priority Critical patent/JP7024553B2/en
Publication of JP2019174289A publication Critical patent/JP2019174289A/en
Application granted granted Critical
Publication of JP7024553B2 publication Critical patent/JP7024553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、腐食環境測定装置のプローブ及び腐食環境測定装置に関する。さらに詳しくは、液膜の塩分量及び液膜厚さを測定する腐食環境測定装置のプローブ及び腐食環境測定装置に関する。 The present invention relates to a probe of a corrosive environment measuring device and a corrosive environment measuring device. More specifically, the present invention relates to a probe of a corrosive environment measuring device for measuring the salt content and the liquid film thickness of a liquid film, and a corrosive environment measuring device.

金属は、様々な機械製品、構造部品等に使用される。金属は大気にさらされると、腐食することが知られている(以下、大気腐食ともいう)。金属が腐食すると金属の強度等の様々な機械特性が劣化する。金属の機械特性が劣化すると製品等の性能も劣化する。ここで、金属の腐食速度は、金属表面に付着した液膜厚さ、液膜内の塩分量等の影響を受けることが知られている。したがって、この液膜厚さ及び塩分量、すなわち腐食環境を把握することは重要である。 Metals are used in various mechanical products, structural parts, and the like. Metals are known to corrode when exposed to the atmosphere (hereinafter also referred to as atmospheric corrosion). When metal corrodes, various mechanical properties such as metal strength deteriorate. When the mechanical properties of metal deteriorate, the performance of products and the like also deteriorates. Here, it is known that the corrosion rate of a metal is affected by the thickness of the liquid adhering to the metal surface, the amount of salt in the liquid film, and the like. Therefore, it is important to understand the liquid film thickness and salt content, that is, the corrosive environment.

腐食環境を把握する方法として、電気化学インピーダンス法が知られている。電気化学インピーダンス法は、腐食環境を求める金属からなる2つの電極を用いる。2つの電極で電解質を挟み、電極間に交流電圧を印加し、電極間の周波数応答を得る。そして、種々の周波数の交流電圧について周波数応答を得る。このようにして得られた周波数特性からインピーダンス(抵抗)を求める。このインピーダンスから、液膜の電気伝導率が算出される。液膜の電気伝導率は、液膜内の塩分量に換算される。また、液膜の電気伝導率が既知であれば、インピーダンスから、液膜厚さが算出される。 The electrochemical impedance method is known as a method for grasping the corrosive environment. The electrochemical impedance method uses two electrodes made of metal that seek a corrosive environment. An electrolyte is sandwiched between two electrodes, and an AC voltage is applied between the electrodes to obtain a frequency response between the electrodes. Then, a frequency response is obtained for AC voltages of various frequencies. Impedance (resistance) is obtained from the frequency characteristics obtained in this way. From this impedance, the electrical conductivity of the liquid film is calculated. The electrical conductivity of the liquid film is converted into the amount of salt in the liquid film. If the electrical conductivity of the liquid film is known, the liquid film thickness is calculated from the impedance.

液膜内の塩分量の測定装置はたとえば、実開昭62-088952号公報(特許文献1)に開示されている。液膜厚さの測定装置はたとえば、非特許文献1に開示されている。 An apparatus for measuring the amount of salt in a liquid film is disclosed, for example, in Japanese Patent Publication No. 62-088952 (Patent Document 1). The liquid film thickness measuring device is disclosed in Non-Patent Document 1, for example.

特許文献1に記載された測定装置は、2つの電極間に結露を吸収して拡散させる吸湿材を備える。これにより、2つの電極間の絶縁板上に付着した結露粒子の大きさが均一となり、正確な塩分量を測定できる、と特許文献1には記載されている。 The measuring device described in Patent Document 1 includes a moisture absorbing material that absorbs and diffuses dew condensation between two electrodes. As a result, it is described in Patent Document 1 that the size of the dew condensation particles adhering on the insulating plate between the two electrodes becomes uniform and the amount of salt content can be measured accurately.

非特許文献1に記載された測定装置では、2つの電極からなる電極対をプローブ等の表面に格子状に数多く、高密度に配置する。これにより、少ない導線の本数で、水膜厚さの分布を計測できる、と非特許文献1には記載されている。 In the measuring device described in Non-Patent Document 1, a large number of electrode pairs composed of two electrodes are arranged in a grid pattern on the surface of a probe or the like at high density. As a result, it is described in Non-Patent Document 1 that the distribution of water film thickness can be measured with a small number of conductors.

実開昭62-088952号公報Jitsukaisho 62-088952

新井崇洋、古谷正裕、金井大造著「高密度多点電極法による液膜厚さ計測技術の開発、電力中央研究所報告L09008」財団法人電力中央研究所発行、平成22年6月、P.2-11Takahiro Arai, Masahiro Furuya, Daizo Kanai, "Development of Liquid Film Thickness Measurement Technology by High-Density Multipoint Electrode Method, Report L09008", published by Central Institute of Electric Power, June 2010, P.M. 2-11

しかしながら、特許文献1の測定装置では液膜内の塩分量は測定できても、液膜厚さは測定できない。また、非特許文献1のP.5、3.2節に記載のとおり、非特許文献1の測定装置では組成が予め判明している液膜を用いて液膜厚さを測定している。要するに、特許文献1及び非特許文献1の測定装置では、装置単体では、塩分量及び液膜厚さのいずれか一方しか得られない。また、大気腐食では、金属に付着した液膜の組成は不明であることがほとんどである。そのため、非特許文献1の測定装置を用いて、大気腐食環境に曝された金属の液膜厚さ、塩分量を把握することは難しい。 However, although the measuring device of Patent Document 1 can measure the amount of salt in the liquid film, it cannot measure the liquid film thickness. In addition, P.I. As described in Sections 5 and 3.2, the measuring device of Non-Patent Document 1 measures the liquid film thickness using a liquid film whose composition is known in advance. In short, in the measuring devices of Patent Document 1 and Non-Patent Document 1, only one of the salt content and the liquid film thickness can be obtained by the device alone. In most cases of atmospheric corrosion, the composition of the liquid film attached to the metal is unknown. Therefore, it is difficult to grasp the liquid film thickness and the salt content of the metal exposed to the atmospheric corrosion environment by using the measuring device of Non-Patent Document 1.

本発明の目的は、金属に付着した液膜厚さ及び液膜の電気伝導率(塩分量)を測定できる腐食環境測定装置を提供することである。 An object of the present invention is to provide a corrosive environment measuring device capable of measuring the liquid film thickness adhering to a metal and the electric conductivity (salt content) of the liquid film.

本実施形態の腐食環境測定装置のプローブは、第1電極と、第1電極と対になる対極とを含む。対極は、第2電極と第3電極とに分割される。第1電極、第2電極及び第3電極は一方向に並んで配置される。第1電極と第2電極との隙間は、第1電極と第3電極との隙間よりも小さい。 The probe of the corrosion environment measuring apparatus of the present embodiment includes a first electrode and a counter electrode paired with the first electrode. The counter electrode is divided into a second electrode and a third electrode. The first electrode, the second electrode, and the third electrode are arranged side by side in one direction. The gap between the first electrode and the second electrode is smaller than the gap between the first electrode and the third electrode.

本実施形態の液膜の厚さ及び電気伝導率を測定する腐食環境測定装置は、上記のプローブと、プローブに接続された交流電源とを含む。腐食環境測定装置は、第1電極に流れる電流と第2電極に流れる電流とに基づいて、液膜の厚さを算出し、液膜の厚さに基づいて、液膜の電気伝導率を算出する。 The corrosive environment measuring device for measuring the thickness and electrical conductivity of the liquid film of the present embodiment includes the above probe and an AC power source connected to the probe. The corrosion environment measuring device calculates the thickness of the liquid film based on the current flowing through the first electrode and the current flowing through the second electrode, and calculates the electric conductivity of the liquid film based on the thickness of the liquid film. do.

本発明による腐食環境測定装置は、金属に付着した液膜の液膜厚さ及び電気伝導率(塩分量)を測定できる。 The corrosive environment measuring device according to the present invention can measure the liquid film thickness and the electric conductivity (salt content) of the liquid film adhering to the metal.

図1は、電気化学インピーダンス法を説明する模式図である。FIG. 1 is a schematic diagram illustrating an electrochemical impedance method. 図2は、図1の測定における等価回路を示す図である。FIG. 2 is a diagram showing an equivalent circuit in the measurement of FIG. 1. 図3は、没水環境を示す図である。FIG. 3 is a diagram showing a submerged environment. 図4は、薄膜環境を示す図である。FIG. 4 is a diagram showing a thin film environment. 図5は、検討に用いた計算モデルを示す模式図である。FIG. 5 is a schematic diagram showing the calculation model used in the study. 図6は、検討に用いた対極上の電流密度の累積分布を示す図である。FIG. 6 is a diagram showing the cumulative distribution of the current density on the counter electrode used in the study. 図7は、本実施形態の腐食環境測定装置のプローブを示す斜視図である。FIG. 7 is a perspective view showing a probe of the corrosion environment measuring device of the present embodiment. 図8は、プローブの測定面の正面図である。FIG. 8 is a front view of the measurement surface of the probe. 図9は、本実施形態の腐食環境測定装置を模式的に示す図である。FIG. 9 is a diagram schematically showing the corrosion environment measuring device of the present embodiment. 図10は、液膜厚さマスターカーブを示す図である。FIG. 10 is a diagram showing a liquid film thickness master curve. 図11は、電気伝導率マスターカーブを示す図である。FIG. 11 is a diagram showing an electric conductivity master curve. 図12は、第1電極の幅が腐食環境の測定に及ぼす影響を示す図である。FIG. 12 is a diagram showing the effect of the width of the first electrode on the measurement of the corrosive environment. 図13は、第1電極と第2電極との隙間が腐食環境の測定に及ぼす影響を示す図である。FIG. 13 is a diagram showing the effect of the gap between the first electrode and the second electrode on the measurement of the corrosive environment. 図14は、第2電極の幅が腐食環境の測定に及ぼす影響を示す図である。FIG. 14 is a diagram showing the effect of the width of the second electrode on the measurement of the corrosive environment. 図15は、第2電極と第3電極との隙間が腐食環境の測定に及ぼす影響を示す図である。FIG. 15 is a diagram showing the effect of the gap between the second electrode and the third electrode on the measurement of the corrosive environment. 図16は、第3電極の幅が腐食環境の測定に及ぼす影響を示す図である。FIG. 16 is a diagram showing the effect of the width of the third electrode on the measurement of the corrosive environment.

以下、図面を参照して、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.

[電気化学インピーダンス法]
初めに、電気化学インピーダンス法について説明する。電気化学インピーダンス法は、交流電源に接続された2つの電極を用いて、2つの電極間のインピーダンスを測定する方法である。測定されたインピーダンスに基づいて、腐食速度に影響を及ぼす液膜厚さ又は塩分量が算出される。
[Electrochemical impedance method]
First, the electrochemical impedance method will be described. The electrochemical impedance method is a method of measuring the impedance between two electrodes using two electrodes connected to an AC power supply. Based on the measured impedance, the liquid film thickness or salt content that affects the corrosion rate is calculated.

図1は、電気化学インピーダンス法を説明する模式図である。電極100及び電極100と対をなす対極101はそれぞれ、交流電源102に接続される。この2つの電極(電極100及び対極101)は、腐食速度(腐食環境)を測定する対象となる金属からなる。電極100と対極101は並んで配列される。電極100及び対極101それぞれの端面は、プローブの測定面107から表出する。大気腐食が進行するときは、電極100及び対極101それぞれの端面上に薄い液膜104が存在する。 FIG. 1 is a schematic diagram illustrating an electrochemical impedance method. The electrode 100 and the counter electrode 101 paired with the electrode 100 are connected to the AC power supply 102, respectively. The two electrodes (electrode 100 and counter electrode 101) are made of a metal to be measured for the corrosion rate (corrosion environment). The electrode 100 and the counter electrode 101 are arranged side by side. The end faces of the electrode 100 and the counter electrode 101 are exposed from the measurement surface 107 of the probe. When atmospheric corrosion progresses, a thin liquid film 104 is present on the end faces of each of the electrode 100 and the counter electrode 101.

図2は、図1の測定における等価回路を示す図である。図2では、対極101について説明するが、電極100についても同様である。液膜104は、溶液抵抗RSを有する。特に、液膜104の厚さが薄い場合、溶液抵抗RSが測定結果に与える影響は大きい。液膜104と対極101との境界は、腐食反応抵抗RP及びコンデンサCの並列回路として置き換えることができる。 FIG. 2 is a diagram showing an equivalent circuit in the measurement of FIG. 1. In FIG. 2, the counter electrode 101 will be described, but the same applies to the electrode 100. The liquid film 104 has a solution resistance RS. In particular, when the thickness of the liquid film 104 is thin, the effect of the solution resistance RS on the measurement result is large. The boundary between the liquid film 104 and the counter electrode 101 can be replaced as a parallel circuit of the corrosion reaction resistance RP and the capacitor C.

交流電源の周波数が0(低周波)の場合、交流電流はすべて腐食反応抵抗RPを通る。したがって、低周波の場合、交流電流は溶液抵抗RS及び腐食反応抵抗RPをインピーダンスとして受ける。一方、交流電源の周波数が無限大(高周波)の場合、交流電流は全てコンデンサCを通る。したがって、高周波の場合、交流電流は溶液抵抗RSのみを抵抗(インピーダンス)として受ける。したがって、高周波によって得られたインピーダンスを用いれば、電気伝導率(塩分量)及び液膜厚さが求められる。しかしながら、従来技術では、1つの測定装置で、電気伝導率及び液膜厚さの両方を図ることはできなかった。 When the frequency of the AC power supply is 0 (low frequency), all the AC current passes through the corrosion reaction resistance RP. Therefore, at low frequencies, the alternating current receives the solution resistance RS and the corrosion reaction resistance RP as impedances. On the other hand, when the frequency of the AC power supply is infinite (high frequency), all the AC current passes through the capacitor C. Therefore, in the case of high frequency, the alternating current receives only the solution resistance RS as resistance (impedance). Therefore, if the impedance obtained by high frequency is used, the electric conductivity (salt content) and the liquid film thickness can be obtained. However, in the prior art, it was not possible to measure both the electric conductivity and the liquid film thickness with one measuring device.

そこで、本発明者らは、1つの測定装置で、電気伝導率及び液膜厚さの両方を測定することを検討した。本発明者らは、液膜の厚さとその液膜中を流れる交流電流の分布に着目し、液膜厚さが異なれば液膜中の交流電流の分布も異なると考えた。この点について説明する。 Therefore, the present inventors have considered measuring both the electric conductivity and the liquid film thickness with one measuring device. The present inventors focused on the thickness of the liquid film and the distribution of the alternating current flowing in the liquid film, and considered that the distribution of the alternating current in the liquid film differs depending on the liquid film thickness. This point will be described.

図3は、没水環境を示す図である。没水環境とは、液膜104の厚さ方向において、交流電流12が流れない領域Pがあることを意味する。簡単に言えば、没水環境とは液膜の厚さが十分に厚いことを意味する。没水環境では液膜厚さが十分に厚いため、交流電流12は液膜104の広い範囲で流れると考えられる。したがって、電極100から液膜104中に流れた交流電流12は、対極101に流れ込んだ際、対極101上に均等に流れ込むと考えられる。 FIG. 3 is a diagram showing a submerged environment. The submerged environment means that there is a region P in which the alternating current 12 does not flow in the thickness direction of the liquid film 104. Simply put, a submerged environment means that the liquid film is thick enough. Since the liquid film thickness is sufficiently thick in a submerged environment, it is considered that the alternating current 12 flows in a wide range of the liquid film 104. Therefore, it is considered that the alternating current 12 flowing from the electrode 100 into the liquid film 104 evenly flows on the counter electrode 101 when it flows into the counter electrode 101.

図4は、薄膜環境を示す図である。薄膜環境とは、液膜104の厚さ方向全域にわたり、交流電流12が流れることを意味する。簡単に言えば、薄膜環境では、液膜104の厚さが薄いことを意味する。薄膜環境では液膜厚さが薄いため、電極100から流れた交流電流12は、対極101の電極100に近い部分に流れると考えられる。対極101を構成する金属の方が液膜104よりも電気伝導率が高いためである。つまり、薄膜環境では対極101の端部に交流電流が集中して流れるため、対極101上に電位分布が生じると考えられる。 FIG. 4 is a diagram showing a thin film environment. The thin film environment means that an alternating current 12 flows over the entire thickness direction of the liquid film 104. Simply put, it means that the thickness of the liquid film 104 is thin in a thin film environment. Since the liquid film thickness is thin in the thin film environment, it is considered that the alternating current 12 flowing from the electrode 100 flows to the portion of the counter electrode 101 near the electrode 100. This is because the metal constituting the counter electrode 101 has a higher electrical conductivity than the liquid film 104. That is, in a thin film environment, alternating current is concentrated and flows at the end of the counter electrode 101, so that it is considered that a potential distribution occurs on the counter electrode 101.

要するに、液膜104の厚さによって、対極101上の電位分布が変わると考えられる。そこで、本発明者らは、この対極101上の電位分布を把握することができれば、その電位分布に基づき液膜104の厚さが求められると考えた。 In short, it is considered that the potential distribution on the counter electrode 101 changes depending on the thickness of the liquid film 104. Therefore, the present inventors considered that if the potential distribution on the counter electrode 101 could be grasped, the thickness of the liquid film 104 could be obtained based on the potential distribution.

[検討事項]
このことを実証するため、本発明者らは、数値計算により液膜厚さと対極上の電位分布との関係を検討した。
[to be considered]
To prove this, the present inventors examined the relationship between the liquid film thickness and the potential distribution on the opposite pole by numerical calculation.

図5は、検討に用いた計算モデルを示す模式図である。計算モデルとして、交流電源に接続され、水溶液(液膜)に接触させた2つの電極(電極及び対極)を想定した。水溶液中は、電気的中性条件とし、下記の式(1)のオームの法則が成立することを想定した。2つの電極は鋼材を想定した。2つの電極と水溶液との界面は電気的に短絡したと想定した。すなわち、2つの電極に高周波の交流電圧を印加したと想定した。計算は、2次元で行った。
i=-σ・(dφ/dx) (1)
ここで、iは電流密度、σは液膜の電気伝導率、φは電位を表す。
FIG. 5 is a schematic diagram showing the calculation model used in the study. As a calculation model, we assumed two electrodes (electrode and counter electrode) connected to an AC power supply and brought into contact with an aqueous solution (liquid film). It was assumed that Ohm's law of the following equation (1) was established under the condition of electrical neutrality in the aqueous solution. The two electrodes are assumed to be made of steel. It was assumed that the interface between the two electrodes and the aqueous solution was electrically short-circuited. That is, it was assumed that a high frequency AC voltage was applied to the two electrodes. The calculation was done in two dimensions.
i = -σ ・ (dφ / dx) (1)
Here, i represents the current density, σ represents the electrical conductivity of the liquid film, and φ represents the potential.

計算条件について説明する。2つの電極の寸法は同じであった。電極の水溶液と接する面の寸法は、縦10mm、横0.5mmであった。2つの電極間の距離は0.1mmであった。水溶液(液膜)の厚さは、10-5~10mmの範囲で種々の値に変更した。そして、対極101の縦方向の中央において、電極100に近い方の端105から遠い方の端106まで対極101の幅方向に沿って電流密度の累積分布を算出した(図5中の白抜き矢印参照)。 The calculation conditions will be described. The dimensions of the two electrodes were the same. The dimensions of the surface of the electrode in contact with the aqueous solution were 10 mm in length and 0.5 mm in width. The distance between the two electrodes was 0.1 mm. The thickness of the aqueous solution (liquid film) was changed to various values in the range of 10-5 to 102 mm . Then, at the center of the counter electrode 101 in the vertical direction, the cumulative distribution of the current density was calculated along the width direction of the counter electrode 101 from the end 105 closer to the electrode 100 to the end 106 farther from the electrode 100 (white arrows in FIG. 5). reference).

図6は、検討に用いた対極上の電流密度の累積分布を示す図である。横軸は対極101の電極100に近い方の端105からの距離を示し、縦軸は電流密度の累積値の割合を示す。図6中、実線は液膜厚さが10mm(没水環境)の結果を示し、一点鎖線は10mmの結果を示し、二点鎖線は10-2mmの結果を示し、破線は10-4mm(薄膜環境)の結果を示す。 FIG. 6 is a diagram showing the cumulative distribution of the current density on the counter electrode used in the study. The horizontal axis shows the distance from the end 105 of the counter electrode 101 closer to the electrode 100, and the vertical axis shows the ratio of the cumulative value of the current density. In FIG. 6, the solid line shows the result of the liquid film thickness of 102 mm (submerged environment), the alternate long and short dash line shows the result of 10 mm , the alternate long and short dash line shows the result of 10-2 mm, and the broken line shows the result of 10-. The result of 4 mm (thin film environment) is shown.

没水環境(実線)では、対極101の端105からの距離と電流密度の累積値が概ね比例関係に近いことが分かる。すなわち、没水環境では対極101上の電位差は小さく、対極101上を均一に電流が流れていることが分かった。一方、薄膜環境(破線)では、対極101の電極100に近い方の端105(横軸の値が0)での電流密度の値が約0.9であり、対極101の端105からの距離が約0.05mmでの電流密度の累積割合は1となっている。すなわち、対極101上において電極100に近い方の端部に偏った電位分布となっており、対極101の端部に集中して交流電流が流れていることが分かった。 In the submerged environment (solid line), it can be seen that the distance from the end 105 of the counter electrode 101 and the cumulative value of the current density are close to a proportional relationship. That is, it was found that the potential difference on the counter electrode 101 was small in the submerged environment, and the current flowed uniformly on the counter electrode 101. On the other hand, in the thin film environment (broken line), the value of the current density at the end 105 (the value on the horizontal axis is 0) closer to the electrode 100 of the counter electrode 101 is about 0.9, and the distance from the end 105 of the counter electrode 101. However, the cumulative ratio of the current density at about 0.05 mm is 1. That is, it was found that the potential distribution was biased toward the end closer to the electrode 100 on the counter electrode 101, and the alternating current was concentrated at the end of the counter electrode 101.

以上より、交流電流による電気化学インピーダンス法において、液膜厚さが変化すれば、対極上の電位分布が変わることが実証された。そして、没水環境では交流電流は対極上に均一に流れるが、薄膜環境に近づくにつれて交流電流は対極101の電極100に近い方の端部に集中して流れることが実証された。 From the above, it was demonstrated that in the electrochemical impedance method using alternating current, the potential distribution on the counter electrode changes when the liquid film thickness changes. It was demonstrated that the alternating current flows uniformly on the counter electrode in the submerged environment, but the alternating current concentrates on the end of the counter electrode 101 closer to the electrode 100 as it approaches the thin film environment.

続いて、本発明者らは、上述の事前計算の知見を電気化学インピーダンス法による実際の測定に適用することを検討した。従来より電気化学インピーダンス法では、一対の電極が用いられてきたが、一対の電極の一方の電極(対極)の端部のみの電流値を測定することは実際上不可能である。そこで、本発明者らは、一対の電極の一方の電極はそのまま用い、その対極となる電極を分割することを着想した。すなわち、分割された対極のうち、分割されていない電極に近い方の電極は、分割される前の対極の端部とみなすことができることを着想した。 Subsequently, the present inventors examined applying the above-mentioned pre-calculated findings to actual measurements by the electrochemical impedance method. Conventionally, a pair of electrodes has been used in the electrochemical impedance method, but it is practically impossible to measure the current value of only one end of one electrode (counter electrode) of the pair of electrodes. Therefore, the present inventors have conceived that one of the pair of electrodes is used as it is and the opposite electrode is divided. That is, it was conceived that the electrode of the divided counter electrode closer to the undivided electrode can be regarded as the end of the counter electrode before the division.

(1)以上の知見に基づいた本実施形態の腐食環境測定装置のプローブは、第1電極と、第1電極と対になる対極とを含む。対極は、第2電極と第3電極とに分割される。第1電極、第2電極及び第3電極は一方向に並んで配置される。第1電極と第2電極との隙間は、第1電極と第3電極との隙間よりも小さい。 (1) The probe of the corrosion environment measuring apparatus of the present embodiment based on the above findings includes a first electrode and a counter electrode paired with the first electrode. The counter electrode is divided into a second electrode and a third electrode. The first electrode, the second electrode, and the third electrode are arranged side by side in one direction. The gap between the first electrode and the second electrode is smaller than the gap between the first electrode and the third electrode.

このような構成によれば、第1電極と対になる対極が第2電極と第3電極とに物理的に分割され、第2電極が対極の端部の役割を担うことができる。したがって、第2電極に流れる電流を測定すれば、対極の端部に流れる電流を測定したこととみなすことができる。これにより、対極の端部に流れる交流電流の集中度合を把握することができ、液膜厚さを測定することができる。そして、後述する方法により、測定された液膜厚さに基づいて液膜の電気伝導率(塩分量)を測定することができる。 According to such a configuration, the counter electrode paired with the first electrode is physically divided into the second electrode and the third electrode, and the second electrode can play the role of the end portion of the counter electrode. Therefore, if the current flowing through the second electrode is measured, it can be regarded as measuring the current flowing through the end of the counter electrode. As a result, the degree of concentration of the alternating current flowing at the end of the counter electrode can be grasped, and the liquid film thickness can be measured. Then, by the method described later, the electric conductivity (salt content) of the liquid film can be measured based on the measured liquid film thickness.

(2)上記(1)の腐食環境測定装置のプローブにおいて、第2電極の幅は、第3電極の幅よりも小さいのが好ましい。 (2) In the probe of the corrosion environment measuring apparatus of (1) above, the width of the second electrode is preferably smaller than the width of the third electrode.

第2電極の幅が大きすぎれば、対極の端部としての機能が低下する。したがって、第2電極の幅は、第3電極の幅よりも小さいのが好ましい。 If the width of the second electrode is too large, the function as the end of the counter electrode deteriorates. Therefore, the width of the second electrode is preferably smaller than the width of the third electrode.

(3)上記(1)又は(2)の腐食環境測定装置のプローブにおいて、第2電極は、第1電極と第3電極との間に配置され、第2電極と第3電極との隙間は、第1電極と第2電極との隙間よりも小さいのが好ましい。 (3) In the probe of the corrosion environment measuring device of (1) or (2) above, the second electrode is arranged between the first electrode and the third electrode, and the gap between the second electrode and the third electrode is , It is preferably smaller than the gap between the first electrode and the second electrode.

第2電極及び第3電極は第1電極と対をなす対極を構成するため、第2電極と第3電極とが過剰に離れると、対極としての機能が低下する。したがって、第2電極と第3電極との隙間は、第1電極と第2電極との隙間よりも小さいのが好ましい。 Since the second electrode and the third electrode form a counter electrode paired with the first electrode, if the second electrode and the third electrode are excessively separated from each other, the function as the counter electrode deteriorates. Therefore, the gap between the second electrode and the third electrode is preferably smaller than the gap between the first electrode and the second electrode.

(4)上記(1)~(3)のいずれかの腐食環境測定装置のプローブにおいて、第1電極の幅は10mm以下であり、第2電極の幅は10mm以下であり、第3電極の幅は10mm以下であり、第1電極と第2電極との隙間は10mm以下であり、第2電極と第3電極との隙間は10mm以下であるのが好ましい。 (4) In the probe of the corrosion environment measuring device according to any one of (1) to (3) above, the width of the first electrode is 10 mm or less, the width of the second electrode is 10 mm or less, and the width of the third electrode. Is 10 mm or less, the gap between the first electrode and the second electrode is preferably 10 mm or less, and the gap between the second electrode and the third electrode is preferably 10 mm or less.

本実施形態のプローブは、金属の腐食環境の測定に用いられる。金属の大気腐食は、液膜厚さが1mm以下の薄い場合に顕著に進行することが知られている。このような薄い液膜は、金属に付着している面積も小さい。そのため、プローブの大きさが過剰に大きければ、このような薄い液膜の測定に適さないことが多い。したがって、各電極幅及び各電極間距離を上記のように規定している。 The probe of this embodiment is used for measuring the corrosive environment of metal. It is known that atmospheric corrosion of metal progresses remarkably when the liquid film thickness is as thin as 1 mm or less. Such a thin liquid film has a small area attached to the metal. Therefore, if the size of the probe is excessively large, it is often not suitable for measuring such a thin liquid film. Therefore, the width of each electrode and the distance between each electrode are defined as described above.

(5)本実施形態の液膜の厚さ及び電気伝導率を測定する腐食環境測定装置は、上記(1)~(4)のいずれかのプローブと、プローブに接続された交流電源とを含む。腐食環境測定装置は、第1電極に流れる電流と第2電極に流れる電流とに基づいて、液膜の厚さを算出し、液膜の厚さに基づいて、液膜の電気伝導率を算出する。 (5) The corrosive environment measuring device for measuring the thickness and electrical conductivity of the liquid film of the present embodiment includes the probe according to any one of (1) to (4) above and an AC power supply connected to the probe. .. The corrosion environment measuring device calculates the thickness of the liquid film based on the current flowing through the first electrode and the current flowing through the second electrode, and calculates the electric conductivity of the liquid film based on the thickness of the liquid film. do.

詳しくは腐食環境の測定方法で述べるが、第2電極(対極の端部)に流れる交流電流の集中度合を把握し、事前に用意した液膜厚さに関するマスターカーブと照合させることで、液膜厚さが測定できる。そして、測定された液膜厚さを事前に用意した液膜の電気伝導率に関するマスターカーブと照合させることで、液膜の電気伝導率が測定できる。 The details will be described in the measurement method of the corrosive environment, but by grasping the degree of concentration of the alternating current flowing in the second electrode (end of the counter electrode) and collating it with the master curve regarding the liquid film thickness prepared in advance, the liquid film The thickness can be measured. Then, the electric conductivity of the liquid film can be measured by collating the measured liquid film thickness with the master curve relating to the electric conductivity of the liquid film prepared in advance.

(6)上記(5)の腐食環境測定装置はさらに、第1電極に流れる電流を測定する第1電流計と、第2電極に流れる電流を測定する第2電流計とを含むのが好ましい。 (6) It is preferable that the corrosive environment measuring device of the above (5) further includes a first ammeter for measuring the current flowing through the first electrode and a second ammeter for measuring the current flowing through the second electrode.

第2電極(対極の端部)に流れる交流電流の集中度合を測定するには、具体的には電流計を用いることができる。第1電流計によって測定された値と第2電流計によって測定された値との割合から、第2電極に流れる交流電流の集中度合が把握できる。 Specifically, an ammeter can be used to measure the degree of concentration of the alternating current flowing through the second electrode (the end of the counter electrode). From the ratio of the value measured by the first ammeter and the value measured by the second ammeter, the degree of concentration of the alternating current flowing through the second electrode can be grasped.

以下、本実施形態のプローブ及び腐食環境測定装置について詳述する。 Hereinafter, the probe and the corrosion environment measuring device of this embodiment will be described in detail.

[プローブ]
図7は、本実施形態の腐食環境測定装置のプローブを示す斜視図である。本実施形態の腐食環境測定装置のプローブ5は、第1電極1と、第1電極1と対になる対極4を含む。対極4は、第2電極2と、第3電極3とに分割されている。第1電極1、第2電極2及び第3電極3は、一方向に並んで配置される。
[probe]
FIG. 7 is a perspective view showing a probe of the corrosion environment measuring device of the present embodiment. The probe 5 of the corrosion environment measuring device of the present embodiment includes a first electrode 1 and a counter electrode 4 paired with the first electrode 1. The counter electrode 4 is divided into a second electrode 2 and a third electrode 3. The first electrode 1, the second electrode 2, and the third electrode 3 are arranged side by side in one direction.

[第1電極]
第1電極1は、腐食環境を測定する対象となる金属からなる。第1電極1の形状は、四角柱である。第1電極1の1つの端面13は、プローブ5の測定面7から表出している。すなわち、第1電極1の一部分が、測定面7から表出している。なお、「表出する」とは、第1電極1の1つの端面13がプローブ5の測定面7と同一平面に存在する場合と、第1電極1の1つの端面13が測定面7から突出する場合との双方を含む。
[First electrode]
The first electrode 1 is made of a metal to be measured for a corrosive environment. The shape of the first electrode 1 is a quadrangular prism. One end surface 13 of the first electrode 1 is exposed from the measurement surface 7 of the probe 5. That is, a part of the first electrode 1 is exposed from the measurement surface 7. In addition, "exposed" means that one end surface 13 of the first electrode 1 exists on the same plane as the measurement surface 7 of the probe 5, and one end surface 13 of the first electrode 1 protrudes from the measurement surface 7. Includes both cases and cases.

[対極]
対極4は、第2電極2と第3電極3とを含む。第2電極2及び第3電極、すなわち対極4は、第1電極1と同じ金属からなる。
[Opposite pole]
The counter electrode 4 includes a second electrode 2 and a third electrode 3. The second electrode 2 and the third electrode, that is, the counter electrode 4, are made of the same metal as the first electrode 1.

第2電極2の形状は、四角柱である。第1電極1と同様に、第2電極2の1つの端面14は、プローブ5の測定面7から表出している。第3電極3の形状は、四角柱である。第1電極1及び第2電極2と同様に、第3電極3の1つの端面15は、プローブ5の測定面から表出している。 The shape of the second electrode 2 is a quadrangular prism. Similar to the first electrode 1, one end surface 14 of the second electrode 2 is exposed from the measurement surface 7 of the probe 5. The shape of the third electrode 3 is a quadrangular prism. Similar to the first electrode 1 and the second electrode 2, one end surface 15 of the third electrode 3 is exposed from the measurement surface of the probe 5.

第2電極2と第3電極3とは物理的に分割されているが、その役割は第1電極1と対をなす電極(対極)となることである。したがって、第2電極2と第3電極3とは電気的に接続されている。たとえば、第2電極2に接続された電線と第3電極3に接続された電線とを結線することで、第2電極2と第3電極3とを電気的に接続することができる。 Although the second electrode 2 and the third electrode 3 are physically separated, their role is to be an electrode (counter electrode) paired with the first electrode 1. Therefore, the second electrode 2 and the third electrode 3 are electrically connected to each other. For example, by connecting the electric wire connected to the second electrode 2 and the electric wire connected to the third electrode 3, the second electrode 2 and the third electrode 3 can be electrically connected.

図8は、プローブの測定面の正面図である。第1電極1は幅W1を有する。ここで、第1電極の幅とは、各電極の配列方向の長さを意味する。第2電極2の幅W3及び第3電極3の幅W5も同様である。第2電極2は、第1電極1に対し平行に配置される。第2電極2は、第1電極1に対し隙間W2を空けて配置される。第2電極2は、第1電極1と第3電極3との間に配置される。第3電極3は、第1電極1及び第2電極2に対し平行に配置される。第3電極3は、第2電極に対し隙間W4を空けて配置される。なお、隙間とは、配列方向において対向する各電極の辺同士の距離をいう。 FIG. 8 is a front view of the measurement surface of the probe. The first electrode 1 has a width W1. Here, the width of the first electrode means the length of each electrode in the arrangement direction. The same applies to the width W3 of the second electrode 2 and the width W5 of the third electrode 3. The second electrode 2 is arranged parallel to the first electrode 1. The second electrode 2 is arranged with a gap W2 with respect to the first electrode 1. The second electrode 2 is arranged between the first electrode 1 and the third electrode 3. The third electrode 3 is arranged parallel to the first electrode 1 and the second electrode 2. The third electrode 3 is arranged with a gap W4 with respect to the second electrode. The gap refers to the distance between the sides of the electrodes facing each other in the arrangement direction.

上述したように、第2電極2は、一体の対極(第2電極と第3電極とに分割されていない対極)の第1電極1に近い方の端部の役割を担うことである。したがって、第1電極1と第2電極2との隙間W2は、第1電極1と第3電極3との隙間(W2+W3+W4)よりも小さい。すなわち、第3電極3と比べて、第2電極2は第1電極1に近い位置に設けられる。これにより、第2電極2に流れる交流電流を、一体の対極の端部に流れる交流電流とみなすことができる。 As described above, the second electrode 2 plays the role of the end portion of the integrated counter electrode (the counter electrode not divided into the second electrode and the third electrode) closer to the first electrode 1. Therefore, the gap W2 between the first electrode 1 and the second electrode 2 is smaller than the gap (W2 + W3 + W4) between the first electrode 1 and the third electrode 3. That is, the second electrode 2 is provided at a position closer to the first electrode 1 than the third electrode 3. As a result, the alternating current flowing through the second electrode 2 can be regarded as the alternating current flowing through the end of the integrated counter electrode.

各電極の幅は、特に限定されないが、第1電極1の幅W1は、第2電極2の幅と第3電極3の幅の和(W3+W5)と等しい方が好ましい。これにより、第1電極1と対極4とが同じ形状となるためである。また、各電極の縦方向の長さは等しい方が好ましい。縦方向の長さとは、測定面から表出する電極の端面において幅方向と直交する方向の長さを意味する。また、各電極の高さも等しい方が好ましい。 The width of each electrode is not particularly limited, but it is preferable that the width W1 of the first electrode 1 is equal to the sum of the width of the second electrode 2 and the width of the third electrode 3 (W3 + W5). This is because the first electrode 1 and the counter electrode 4 have the same shape. Further, it is preferable that the lengths of the electrodes in the vertical direction are the same. The length in the vertical direction means the length in the direction orthogonal to the width direction at the end face of the electrode exposed from the measurement surface. Further, it is preferable that the heights of the electrodes are also the same.

[配線]
図9は、本実施形態の腐食環境測定装置を模式的に示す図である。第2電極2に接続された電線17と第3電極3に接続された電線18とを束ねた電線19は、交流電源6の端子に接続される。一方、第1電極1に接続された電線16は、交流電源6の別の端子に接続される。これにより、第1電極1と対極4(第2電極2及び第3電極3)との間に交流電圧を印加することで、電気化学インピーダンス法により第1電極1と対極4との間のインピーダンスを測定できる。
[wiring]
FIG. 9 is a diagram schematically showing the corrosion environment measuring device of the present embodiment. The electric wire 19 in which the electric wire 17 connected to the second electrode 2 and the electric wire 18 connected to the third electrode 3 are bundled is connected to the terminal of the AC power supply 6. On the other hand, the electric wire 16 connected to the first electrode 1 is connected to another terminal of the AC power supply 6. As a result, by applying an AC voltage between the first electrode 1 and the counter electrode 4 (second electrode 2 and third electrode 3), the impedance between the first electrode 1 and the counter electrode 4 is measured by the electrochemical impedance method. Can be measured.

[電流計]
本実施形態の腐食環境測定装置では、第1電極1に流れる電流値と、対極4の端部(すなわち、第2電極2)に流れる電流値との割合を求め、液膜厚さを求める。第1電極1の電流値及び第2電極2の電流値はたとえば、2つの電流計(第1電流計8及び第2電流計9)によって求めることができる。
[Ammeter]
In the corrosion environment measuring apparatus of the present embodiment, the ratio of the current value flowing through the first electrode 1 and the current value flowing through the end of the counter electrode 4 (that is, the second electrode 2) is obtained, and the liquid film thickness is obtained. The current value of the first electrode 1 and the current value of the second electrode 2 can be obtained by, for example, two ammeters (first ammeter 8 and second ammeter 9).

第1電流計8は、第2電極2と第3電極3との結線から交流電源6までの電線19上に設けられる。この電線19に流れる電流は、第1電極1に流れる電流に等しいため、第1電流計8により、第1電極1に流れる電流が測定できる。第2電流計9は、第2電極2から第2電極2と第3電極3との結線までの間の電線17上に設けられる。第2電流計9により、第2電極2に流れる電流が測定できる。後述するように、測定された第1電流計8の値と、第2電流計9の値とに基づいて、液膜厚さを求めることができる。 The first ammeter 8 is provided on the electric wire 19 from the connection between the second electrode 2 and the third electrode 3 to the AC power supply 6. Since the current flowing through the electric wire 19 is equal to the current flowing through the first electrode 1, the current flowing through the first electrode 1 can be measured by the first ammeter 8. The second ammeter 9 is provided on the electric wire 17 between the second electrode 2 and the connection between the second electrode 2 and the third electrode 3. The second ammeter 9 can measure the current flowing through the second electrode 2. As will be described later, the liquid film thickness can be determined based on the measured value of the first ammeter 8 and the value of the second ammeter 9.

第1電流計8及び第2電流計9の配置は、上述の例に限定されない。たとえば、第1電流計8は、交流電源6と第1電極1とを結ぶ電線16上に配置されてもよい。この場合であっても、第1電流計8は第1電極1に流れる電流を測定できるからである。また、第2電流計9は、第3電極3から第2電極2と第3電極3との結線までの間の電線18上に設けられてもよい。この場合であっても、第1電流計8の値から第2電流計9の値を差し引くことで第2電極2に流れる電流が求められるからである。さらに、第1電流計8が第3電極3から第2電極2と第3電極3との結線までの間の電線18上に設けられ、第2電流計9が第2電極2から第2電極2と第3電極3との結線までの間の電線17上に設けられてもよい。この場合であっても、第1電流計8の値と第2電流計9との値を足し合わせることで第1電極1に流れる電流を求めることができるからである。 The arrangement of the first ammeter 8 and the second ammeter 9 is not limited to the above example. For example, the first ammeter 8 may be arranged on the electric wire 16 connecting the AC power supply 6 and the first electrode 1. Even in this case, the first ammeter 8 can measure the current flowing through the first electrode 1. Further, the second ammeter 9 may be provided on the electric wire 18 between the third electrode 3 and the connection between the second electrode 2 and the third electrode 3. Even in this case, the current flowing through the second electrode 2 can be obtained by subtracting the value of the second ammeter 9 from the value of the first ammeter 8. Further, the first current meter 8 is provided on the electric wire 18 between the third electrode 3 and the connection between the second electrode 2 and the third electrode 3, and the second current meter 9 is provided from the second electrode 2 to the second electrode. It may be provided on the electric wire 17 between 2 and the connection between the 3rd electrode 3. Even in this case, the current flowing through the first electrode 1 can be obtained by adding the values of the first ammeter 8 and the values of the second ammeter 9.

[測定方法]
続いて、本実施形態の腐食環境測定方法について説明する。具体的には、上述した腐食環境測定装置を用いて金属に付着した液膜厚さ及び液膜内の塩分量を測定する。なお、塩分量は、液膜内の電気伝導率を求めることで算出できる。腐食環境測定方法は、液膜厚さマスターカーブ作成工程と、電気伝導率マスターカーブ作成工程と、液膜厚さ測定工程と、電気伝導率測定工程とを含む。
[Measuring method]
Subsequently, the method for measuring the corrosive environment of the present embodiment will be described. Specifically, the liquid film thickness and the amount of salt in the liquid film adhering to the metal are measured by using the above-mentioned corrosion environment measuring device. The amount of salt can be calculated by obtaining the electric conductivity in the liquid film. The corrosion environment measuring method includes a liquid film thickness master curve creating step, an electric conductivity master curve creating step, a liquid film thickness measuring step, and an electric conductivity measuring step.

[液膜厚さマスターカーブ作成工程]
液膜厚さを測定するには、液膜厚さに関するマスターカーブ(以下、液膜厚さマスターカーブという)を事前に作成しておく。この液膜厚さマスターカーブは、実際に液膜厚さを測定する腐食環境測定装置のプローブと同一形状のプローブを用いて作成する。電極の大きさ、配置等が変われば、液膜厚さマスターカーブも変わるためである。
[Liquid film thickness master curve creation process]
In order to measure the liquid film thickness, a master curve related to the liquid film thickness (hereinafter referred to as a liquid film thickness master curve) is created in advance. This liquid film thickness master curve is created using a probe having the same shape as the probe of the corrosion environment measuring device that actually measures the liquid film thickness. This is because if the size and arrangement of the electrodes change, the liquid film thickness master curve also changes.

図9を参照して、まず、液膜厚さ及び電気導電率が既知の液膜を用意する。上述した腐食環境測定装置のプローブ5の測定面7を用意した物性が既知の液膜に接触させる。次に、交流電源6により第1電極1と対極4との間に交流電圧を印加する。そして、第1電極1に流れる電流と第2電極2に流れる電流との割合(以下、電流割合ともいう)を算出する。これにより、ある既知の液膜厚さにおける電流割合が求められる。これを種々の液膜厚さについて行えば、電流割合と液膜厚さとの関係が求まる。この関係が、液膜厚さマスターカーブとなる。 With reference to FIG. 9, first, a liquid film having a known liquid film thickness and electrical conductivity is prepared. The measurement surface 7 of the probe 5 of the above-mentioned corrosion environment measuring device is brought into contact with a liquid film having known physical characteristics. Next, an AC voltage is applied between the first electrode 1 and the counter electrode 4 by the AC power supply 6. Then, the ratio (hereinafter, also referred to as the current ratio) between the current flowing through the first electrode 1 and the current flowing through the second electrode 2 is calculated. As a result, the current ratio at a certain known liquid film thickness can be obtained. If this is done for various liquid film thicknesses, the relationship between the current ratio and the liquid film thickness can be obtained. This relationship becomes the liquid film thickness master curve.

液膜厚さマスターカーブは実際にプローブ及び物性が既知の液膜を用いて求めてもよいし、数値計算により求めてもよい。ここでは、例として、数値計算により液膜厚さマスターカーブを算出する例を説明する。本発明者らは、上述した事前検討で用いたプローブモデルを用いて、電流割合と液膜厚さとの関係を求め、この関係を液膜厚さマスターカーブとして描いた。 The liquid film thickness master curve may be obtained by actually using a probe and a liquid film having known physical properties, or may be obtained by numerical calculation. Here, as an example, an example of calculating the liquid film thickness master curve by numerical calculation will be described. The present inventors obtained the relationship between the current ratio and the liquid film thickness using the probe model used in the above-mentioned preliminary study, and drew this relationship as the liquid film thickness master curve.

図10は、液膜厚さマスターカーブを示す図である。実線は第2電極の幅W3が0.01mmのマスターカーブを示し、一点鎖線は第2電極の幅W3が0.03mmのマスターカーブを示し、二点鎖線は第2電極の幅W3が0.07mmのマスターカーブを示し、破線は第2電極の幅W3が1.0mmのマスターカーブを示す。W3=0.01(実線)のマスターカーブを例に説明する。液膜厚さが1mmを超えると、液膜厚さが厚すぎるため液膜厚さに依らず電流割合はほぼ一定値を示す。液膜厚さが0.001mmよりも小さくなると、液膜厚さが薄すぎるため液膜厚さに依らず電流割合はほぼ一定値を示す。その一方で、液膜厚さが0.001~1mmの範囲では、液膜厚さが変わるとそれに対応して電流割合も変わる。つまり、この範囲では本実施形態の腐食環境測定装置によって、液膜厚さを測定することができる。このようにして得られた液膜厚さマスターカーブを用いて、物性が未知の液膜厚さを測定する。 FIG. 10 is a diagram showing a liquid film thickness master curve. The solid line shows the master curve in which the width W3 of the second electrode is 0.01 mm, the alternate long and short dash line shows the master curve in which the width W3 of the second electrode is 0.03 mm, and the alternate long and short dash line shows the master curve in which the width W3 of the second electrode is 0. The master curve of 07 mm is shown, and the broken line shows the master curve of the width W3 of the second electrode of 1.0 mm. The master curve of W3 = 0.01 (solid line) will be described as an example. When the liquid film thickness exceeds 1 mm, the current ratio shows a substantially constant value regardless of the liquid film thickness because the liquid film thickness is too thick. When the liquid film thickness is smaller than 0.001 mm, the liquid film thickness is too thin and the current ratio shows a substantially constant value regardless of the liquid film thickness. On the other hand, when the liquid film thickness is in the range of 0.001 to 1 mm, the current ratio changes correspondingly when the liquid film thickness changes. That is, in this range, the liquid film thickness can be measured by the corrosion environment measuring device of the present embodiment. Using the liquid film thickness master curve thus obtained, the liquid film thickness of unknown physical properties is measured.

[液膜厚さ測定工程]
液膜厚さ測定工程では、実際に物性が未知の液膜に腐食環境測定装置のプローブ5の測定面を接触させる。第1電極1と対極4との間に交流電圧を印加する。そして、第1電極1に流れる電流と第2電極2に流れる電流との割合(電流割合)を求める。この電流割合の値を、図10に示す液膜厚さマスターカーブに照合する。たとえば、第2電極の幅W3が0.01mm(実線)のプローブを用いた場合に、液膜厚さ測定工程で得られた電流割合が0.5であったとする。得られた電流割合0.5を液膜厚さマスターカーブ(実線)に照合すると、液膜厚さマスターカーブにおいて液膜厚さは約0.04mmであることが分かる。この値が測定した未知の液膜の液膜厚さとなる。
[Liquid film thickness measurement process]
In the liquid film thickness measuring step, the measuring surface of the probe 5 of the corrosive environment measuring device is brought into contact with the liquid film whose physical properties are actually unknown. An AC voltage is applied between the first electrode 1 and the counter electrode 4. Then, the ratio (current ratio) of the current flowing through the first electrode 1 and the current flowing through the second electrode 2 is obtained. The value of this current ratio is collated with the liquid film thickness master curve shown in FIG. For example, when a probe having a width W3 of the second electrode of 0.01 mm (solid line) is used, the current ratio obtained in the liquid film thickness measurement step is 0.5. When the obtained current ratio 0.5 is collated with the liquid film thickness master curve (solid line), it can be seen that the liquid film thickness is about 0.04 mm in the liquid film thickness master curve. This value is the measured liquid film thickness of the unknown liquid film.

ここで、液膜厚さマスターカーブは、電気伝導率が既知の液膜を用いて求められたものであり、電気伝導率が未知の液膜の液膜厚さ測定に適用できるかが問題となる。すなわち、液膜の電気伝導率が異なっても、ある液膜厚さに対する電流割合が同じ値を示すかが問題となる。この点について説明する。 Here, the liquid film thickness master curve is obtained by using a liquid film having a known electric conductivity, and the problem is whether it can be applied to the measurement of the liquid film thickness of a liquid film having an unknown electric conductivity. Become. That is, even if the electric conductivity of the liquid film is different, the problem is whether the current ratio to a certain liquid film thickness shows the same value. This point will be described.

測定する液膜の電気伝導率が異なれば、第1電極と対極との間に流れる電流の絶対値は異なる。しかしながら、上述したように電流割合は、第1電極と第2電極(対極の端部)とに流れる電流の比である。本実施形態の測定方法では、2つの電極間に高周波の交流電圧を印加するため、電極と液膜との界面は電気的に短絡し、電極表面の電流密度はオームの法則に従う。液膜中及び電極の電流密度がオームの法則に従うため、電極表面上の電位分布は電気伝導率と無関係となる。したがって、第1電極と第2電極との電流の比は電気伝導率と無関係である。したがって、流れる交流電流の絶対値は異なるものの、第1電極と第2電極とに流れる電流割合は液膜の電気伝導率が変わっても変わらない。したがって、電気伝導率が未知の液膜の電流割合を測定し、その値を液膜厚さマスターカーブに照合し、液膜厚さを算出することは可能である。 If the electric conductivity of the liquid film to be measured is different, the absolute value of the current flowing between the first electrode and the counter electrode is different. However, as described above, the current ratio is the ratio of the current flowing between the first electrode and the second electrode (the end of the counter electrode). In the measurement method of the present embodiment, since a high-frequency AC voltage is applied between the two electrodes, the interface between the electrodes and the liquid film is electrically short-circuited, and the current density on the electrode surface follows Ohm's law. Since the current densities in the liquid film and the electrodes follow Ohm's law, the potential distribution on the electrode surface is independent of the electrical conductivity. Therefore, the ratio of the current between the first electrode and the second electrode is independent of the electrical conductivity. Therefore, although the absolute value of the alternating current flowing is different, the ratio of the current flowing between the first electrode and the second electrode does not change even if the electric conductivity of the liquid film changes. Therefore, it is possible to measure the current ratio of a liquid film having an unknown electrical conductivity, collate the value with the liquid film thickness master curve, and calculate the liquid film thickness.

なお、液膜厚さマスターカーブ作成工程と、液膜厚さ測定工程とはどちらを先に実施してもよい。先に未知の液膜を用いて電流割合を測定しても、その電流割合を記録しておけば後に作成した液膜厚さマスターカーブと照合できるからである。 Either the liquid film thickness master curve creation step or the liquid film thickness measurement step may be performed first. This is because even if the current ratio is measured using an unknown liquid film first, if the current ratio is recorded, it can be collated with the liquid film thickness master curve created later.

[電気伝導率マスターカーブ作成工程]
電気伝導率を測定するには、電気伝導率に関するマスターカーブ(以下、電気伝導率マスターカーブという)を事前に作成しておく。この電気伝導率マスターカーブは、上述した液膜厚さマスターカーブの作成とともに行うことができる。
[Electrical conductivity master curve creation process]
In order to measure the electric conductivity, a master curve related to the electric conductivity (hereinafter referred to as an electric conductivity master curve) is created in advance. This electric conductivity master curve can be performed together with the preparation of the liquid film thickness master curve described above.

上述の液膜厚さマスターカーブ作成工程では、物性が既知の液膜を用いて第1電極1と対極4との間に交流電流を印加した。これは、電気化学インピーダンス法を実行したことに他ならない。したがって、液膜厚さマスターカーブ作成工程では、第1電極1と対極4との間のインピーダンスも求められている。電気伝導率マスターカーブ作成工程では、このインピーダンスを用いて電気伝導率マスターカーブを作成する。 In the above-mentioned liquid film thickness master curve creating step, an alternating current was applied between the first electrode 1 and the counter electrode 4 using a liquid film having known physical characteristics. This is nothing but the execution of the electrochemical impedance method. Therefore, in the process of creating the liquid film thickness master curve, the impedance between the first electrode 1 and the counter electrode 4 is also required. In the electric conductivity master curve creation process, the electric conductivity master curve is created using this impedance.

液膜中及び電極の電流密度がオームの法則に従うため、電極に流れる電流は電気伝導率と水膜厚さによって決まり、電気伝導率σと比例する。したがって印加電圧と電流の比であるインピーダンスZは、電気伝導率σと反比例の関係にあり、インピーダンスZと電気伝導率σとの積は、電気伝導率σに依らず液膜厚さによって決まる。このインピーダンスZと電気伝導率σとの積を、種々の液膜厚さについて求めれば、インピーダンスZと電気伝導率σとの積と、液膜厚さとの関係が求まる。この関係が、電気伝導率マスターカーブとなる。本発明者らは、上述の液膜厚さマスターカーブ作成工程での数値計算で得られたインピーダンスZを用いて電気伝導率マスターカーブを作成した。 Since the current densities in the liquid film and the electrodes follow Ohm's law, the current flowing through the electrodes is determined by the electrical conductivity and the water film thickness, and is proportional to the electrical conductivity σ. Therefore, the impedance Z, which is the ratio of the applied voltage and the current, has an inversely proportional relationship with the electric conductivity σ, and the product of the impedance Z and the electric conductivity σ is determined by the liquid film thickness regardless of the electric conductivity σ. If the product of the impedance Z and the electric conductivity σ is obtained for various liquid film thicknesses, the relationship between the product of the impedance Z and the electric conductivity σ and the liquid film thickness can be obtained. This relationship becomes the electrical conductivity master curve. The present inventors created an electric conductivity master curve using the impedance Z obtained by the numerical calculation in the above-mentioned liquid film thickness master curve creating step.

図11は、電気伝導率マスターカーブを示す図である。ここでは、例として第2電極の幅W3が0.01mmでの計算結果を用いて作成した電気伝導率マスターカーブを示す。この電気伝導率マスターカーブを用いて、物性が未知の液膜の電気伝導率を測定する。 FIG. 11 is a diagram showing an electric conductivity master curve. Here, as an example, the electric conductivity master curve created by using the calculation result when the width W3 of the second electrode is 0.01 mm is shown. Using this electric conductivity master curve, the electric conductivity of a liquid film whose physical characteristics are unknown is measured.

[電気伝導率測定工程]
電気伝導率測定工程では、液膜厚さ測定工程で得られた液膜厚さを用いて電気伝導率を求める。液膜厚さ測定工程で得られた液膜厚さを、図11に示す電気伝導率マスターカーブに照合する。たとえば、液膜厚さ測定工程で得られた液膜厚さが0.01mmであったとする。この液膜厚さ0.01mmを電気伝導率マスターカーブに照合すると、インピーダンスと電気伝導率との積は約1であることが分かる。ここで、液膜厚さ測定工程においてインピーダンスは既に得ている。したがって、インピーダンスと電気伝導率との積から、測定されたインピーダンスを除算すれば、電気伝導率が算出される。上述したように、電気伝導率は液膜内の塩分量と相関があるため、算出された電気伝導率から液膜内の塩分量が測定される。
[Electrical conductivity measurement process]
In the electric conductivity measuring step, the electric conductivity is obtained by using the liquid film thickness obtained in the liquid film thickness measuring step. The liquid film thickness obtained in the liquid film thickness measuring step is collated with the electric conductivity master curve shown in FIG. For example, it is assumed that the liquid film thickness obtained in the liquid film thickness measuring step is 0.01 mm. When this liquid film thickness of 0.01 mm is collated with the electric conductivity master curve, it can be seen that the product of the impedance and the electric conductivity is about 1. Here, the impedance has already been obtained in the liquid film thickness measuring step. Therefore, the electrical conductivity is calculated by dividing the measured impedance from the product of the impedance and the electrical conductivity. As described above, since the electric conductivity correlates with the amount of salt in the liquid film, the amount of salt in the liquid film is measured from the calculated electric conductivity.

以上の方法により、本実施形態の腐食環境測定装置を用いて、物性が未知の液膜の液膜厚さ及び電気伝導率(塩分量)を求めることができる。 By the above method, the liquid film thickness and the electric conductivity (salt content) of the liquid film whose physical characteristics are unknown can be obtained by using the corrosive environment measuring device of the present embodiment.

[好適態様]
以下、本実施形態の腐食環境測定装置のプローブの好適な態様について説明する。以下では、プローブの各電極の幅及び各電極間の隙間が、液膜厚さ及び電気伝導率(すなわち、腐食環境)の測定に及ぼす影響について数値計算により調査した。調査結果に基づき、プローブの各電極の幅及び各電極間の隙間の好適な態様を導き出した。
[Preferable mode]
Hereinafter, a preferred embodiment of the probe of the corrosion environment measuring device of the present embodiment will be described. In the following, the effects of the width of each electrode of the probe and the gap between the electrodes on the measurement of liquid film thickness and electrical conductivity (that is, corrosive environment) were investigated by numerical calculation. Based on the survey results, a suitable mode of the width of each electrode of the probe and the gap between the electrodes was derived.

[評価指標]
図10を参照して、各電極の幅及び隙間が腐食環境の測定に及ぼす影響についての評価指標を説明する。評価指標は、3つの指標に基づいて評価した。
[Evaluation index]
With reference to FIG. 10, an evaluation index for the influence of the width and the gap of each electrode on the measurement of the corrosive environment will be described. The evaluation index was evaluated based on three indexes.

1つ目の指標は、「感度」である。上述したように、本実施形態の腐食環境測定装置で液膜厚さ及び電気伝導率を測定できるのは、液膜厚さが変わることで電流割合も変わる範囲である。感度は、液膜厚さ及び電気伝導率を測定可能な電流割合の範囲の大きさを示す指標である。感度が大きければ、測定誤差が低減されやすく、より正確に液膜厚さ及び電気伝導率を測定することができる。 The first index is "sensitivity". As described above, the corrosive environment measuring apparatus of the present embodiment can measure the liquid film thickness and the electric conductivity in the range where the current ratio changes as the liquid film thickness changes. Sensitivity is an index indicating the size of the range of current ratios at which liquid film thickness and electric conductivity can be measured. If the sensitivity is high, the measurement error is likely to be reduced, and the liquid film thickness and the electric conductivity can be measured more accurately.

2つ目の指標は、「測定可能液膜厚さの上限」である。上述したように、没水環境になれば、液膜厚さが変わっても電流割合は変わらないため、液膜厚さ及び電気伝導率を測定することができない。測定可能液膜厚さの上限が大きければ、より厚い液膜の液膜厚さ及び電気伝導率を測定することができる。 The second index is the "upper limit of measurable liquid film thickness". As described above, in a submerged environment, the current ratio does not change even if the liquid film thickness changes, so that the liquid film thickness and the electric conductivity cannot be measured. If the upper limit of the measurable liquid film thickness is large, the liquid film thickness and the electric conductivity of the thicker liquid film can be measured.

3つ目の指標は、「測定可能液膜厚さの下限」である。上述したように、液膜厚さが薄くなり過ぎれば、液膜厚さが変わっても電流割合は変わらないため、液膜厚さ及び電気伝導率を測定することができない。測定可能液膜厚さの下限が小さければ、より薄い液膜の液膜厚さ及び電気伝導率を測定することができる。 The third index is the "lower limit of measurable liquid film thickness". As described above, if the liquid film thickness becomes too thin, the current ratio does not change even if the liquid film thickness changes, so that the liquid film thickness and the electric conductivity cannot be measured. If the lower limit of the measurable liquid film thickness is small, the liquid film thickness and the electric conductivity of the thinner liquid film can be measured.

[第1電極の幅W1]
図8を参照して、第1電極1の幅W1が腐食環境の測定に及ぼす影響について調査した。第1電極1の幅W1を0.1、0.5、及び1mmの3つのパターンについて調査した。第1電極1と第2電極2との隙間W2は0.1mm、第2電極2の幅W3は0.1mm、第2電極2と第3電極3との隙間W4は0.1mm、第3電極3の幅W5は0.4mmで固定した。そして、各パターンについて液膜厚さマスターカーブを作成した。
[Width W1 of the first electrode]
With reference to FIG. 8, the influence of the width W1 of the first electrode 1 on the measurement of the corrosive environment was investigated. The width W1 of the first electrode 1 was investigated for three patterns of 0.1, 0.5, and 1 mm. The gap W2 between the first electrode 1 and the second electrode 2 is 0.1 mm, the width W3 of the second electrode 2 is 0.1 mm, and the gap W4 between the second electrode 2 and the third electrode 3 is 0.1 mm, the third. The width W5 of the electrode 3 was fixed at 0.4 mm. Then, a liquid film thickness master curve was created for each pattern.

図12は、第1電極の幅が腐食環境の測定に及ぼす影響を示す図である。実線は第1電極の幅W1が1mmの結果を示し、一点鎖線は第1電極の幅W1が0.5mmの結果を示し、破線は第1電極の幅W1が0.1mmの結果を示す。 FIG. 12 is a diagram showing the effect of the width of the first electrode on the measurement of the corrosive environment. The solid line shows the result that the width W1 of the first electrode is 1 mm, the alternate long and short dash line shows the result that the width W1 of the first electrode is 0.5 mm, and the broken line shows the result that the width W1 of the first electrode is 0.1 mm.

この結果より、感度は第1電極の幅W1が大きい方が良いことが分かる。測定可能液膜厚さの上限は第1電極の幅W1が大きい方が良いことが分かる。測定可能液膜厚さの下限は第1電極の幅W1には影響されないことが分かる。これより、第1電極の幅W1は、大きい方が良いと言える。 From this result, it can be seen that the sensitivity should be higher when the width W1 of the first electrode is larger. It can be seen that the upper limit of the measurable liquid film thickness should be larger when the width W1 of the first electrode is larger. It can be seen that the lower limit of the measurable liquid film thickness is not affected by the width W1 of the first electrode. From this, it can be said that the width W1 of the first electrode should be large.

[第1電極と第2電極との隙間W2]
第1電極1と第2電極2との隙間W2が腐食環境の測定に及ぼす影響について調査した。第1電極1と第2電極2との隙間W2を0.01、0.1、及び1mmの3つのパターンについて調査した。第1電極1の幅W1は0.5、第2電極2の幅W3は0.1mm、第2電極2と第3電極3との隙間W4は0.1mm、第3電極3の幅W5は0.4mmで固定した。そして、各パターンについて液膜厚さマスターカーブを作成した。
[Gap between the first electrode and the second electrode W2]
The effect of the gap W2 between the first electrode 1 and the second electrode 2 on the measurement of the corrosive environment was investigated. The gap W2 between the first electrode 1 and the second electrode 2 was investigated for three patterns of 0.01, 0.1, and 1 mm. The width W1 of the first electrode 1 is 0.5, the width W3 of the second electrode 2 is 0.1 mm, the gap W4 between the second electrode 2 and the third electrode 3 is 0.1 mm, and the width W5 of the third electrode 3 is. It was fixed at 0.4 mm. Then, a liquid film thickness master curve was created for each pattern.

図13は、第1電極と第2電極との隙間が腐食環境の測定に及ぼす影響を示す図である。実線は隙間W2が1mmの結果を示し、一点鎖線は隙間W2が0.1mmの結果を示し、破線は隙間W2が0.01mmの結果を示す。 FIG. 13 is a diagram showing the effect of the gap between the first electrode and the second electrode on the measurement of the corrosive environment. The solid line shows the result of the gap W2 of 1 mm, the alternate long and short dash line shows the result of the gap W2 of 0.1 mm, and the broken line shows the result of the gap W2 of 0.01 mm.

この結果より、感度は第1電極と第2電極との隙間W2が大きい方が良いことが分かる。測定可能液膜厚さの上限は第1電極と第2電極との隙間W2が大きい方が良いことが分かる。測定可能液膜厚さの下限は第1電極と第2電極との隙間W2には影響されないことが分かる。これより、第1電極と第2電極との隙間W2は、大きい方が良いと言える。 From this result, it can be seen that the sensitivity should be higher when the gap W2 between the first electrode and the second electrode is large. It can be seen that the upper limit of the measurable liquid film thickness is better when the gap W2 between the first electrode and the second electrode is large. It can be seen that the lower limit of the measurable liquid film thickness is not affected by the gap W2 between the first electrode and the second electrode. From this, it can be said that the larger the gap W2 between the first electrode and the second electrode is, the better.

[第2電極の幅W3]
第2電極2の幅W3が腐食環境の測定に及ぼす影響について調査した。第2電極2の幅W3を0.01、0.1、及び1mmの3つのパターンについて調査した。第1電極1の幅W1は0.5mm、第1電極1と第2電極2との隙間W2は0.1mm、第2電極2と第3電極3との隙間W4は0.1mm、第3電極3の幅W5は0.4mmで固定した。そして、各パターンについて液膜厚さマスターカーブを作成した。
[Width W3 of the second electrode]
The effect of the width W3 of the second electrode 2 on the measurement of the corrosive environment was investigated. The width W3 of the second electrode 2 was investigated for three patterns of 0.01, 0.1, and 1 mm. The width W1 of the first electrode 1 is 0.5 mm, the gap W2 between the first electrode 1 and the second electrode 2 is 0.1 mm, and the gap W4 between the second electrode 2 and the third electrode 3 is 0.1 mm, the third. The width W5 of the electrode 3 was fixed at 0.4 mm. Then, a liquid film thickness master curve was created for each pattern.

図14は、第2電極の幅が腐食環境の測定に及ぼす影響を示す図である。実線は第2電極の幅W3が1mmの結果を示し、一点鎖線は第2電極の幅W3が0.1mmの結果を示し、破線は第2電極の幅W3が0.01mmの結果を示す。 FIG. 14 is a diagram showing the effect of the width of the second electrode on the measurement of the corrosive environment. The solid line shows the result that the width W3 of the second electrode is 1 mm, the alternate long and short dash line shows the result that the width W3 of the second electrode is 0.1 mm, and the broken line shows the result that the width W3 of the second electrode is 0.01 mm.

この結果より、感度は第2電極の幅W3が大きい方が良いことが分かる。測定可能液膜厚さの上限は第2電極の幅W3が大きい方が良いことが分かる。測定可能液膜厚さの下限は第2電極の幅W3が大きい方が良いことが分かる。これより、第2電極の幅W3は、大きい方が良いと言える。 From this result, it can be seen that the sensitivity should be higher when the width W3 of the second electrode is larger. It can be seen that the upper limit of the measurable liquid film thickness should be larger when the width W3 of the second electrode is larger. It can be seen that the lower limit of the measurable liquid film thickness is better when the width W3 of the second electrode is larger. From this, it can be said that the width W3 of the second electrode should be large.

特に、第2電極の幅W3が第3電極の幅W5よりも小さい場合(一点鎖線及び破線)、感度及び測定可能液膜厚さの下限が顕著に良くなる。これは、第2電極2が対極4の端部としての役割を担うためである。第2電極の幅W3が小さいほど、薄膜環境に近づくことに伴う交流電流の対極の端部集中をより捉えやすくなるためである。 In particular, when the width W3 of the second electrode is smaller than the width W5 of the third electrode (dotted chain line and broken line), the lower limit of the sensitivity and the measurable liquid film thickness is remarkably improved. This is because the second electrode 2 plays a role as an end portion of the counter electrode 4. This is because the smaller the width W3 of the second electrode, the easier it is to capture the concentration at the end of the counter electrode of the alternating current as it approaches the thin film environment.

[第2電極と第3電極との隙間W4]
第2電極と第3電極との隙間W4が腐食環境の測定に及ぼす影響について調査した。第2電極と第3電極との隙間W4を0.01、0.1、及び1mmの3つのパターンについて調査した。第1電極1の幅W1は0.5、第1電極1と第2電極2との隙間W2は0.1mm、第2電極2の幅W3は0.1mm、第3電極3の幅W5は0.4mmで固定した。
[Gap between the second electrode and the third electrode W4]
The effect of the gap W4 between the second electrode and the third electrode on the measurement of the corrosive environment was investigated. The gap W4 between the second electrode and the third electrode was investigated for three patterns of 0.01, 0.1, and 1 mm. The width W1 of the first electrode 1 is 0.5, the gap W2 between the first electrode 1 and the second electrode 2 is 0.1 mm, the width W3 of the second electrode 2 is 0.1 mm, and the width W5 of the third electrode 3 is. It was fixed at 0.4 mm.

図15は、第2電極と第3電極との隙間が腐食環境の測定に及ぼす影響を示す図である。実線は隙間W4が1mmの結果を示し、一点鎖線は隙間W4が0.1mmの結果を示し、破線は隙間W4が0.01mmの結果を示す。 FIG. 15 is a diagram showing the effect of the gap between the second electrode and the third electrode on the measurement of the corrosive environment. The solid line shows the result of the gap W4 of 1 mm, the alternate long and short dash line shows the result of the gap W4 of 0.1 mm, and the broken line shows the result of the gap W4 of 0.01 mm.

この結果より、感度は第2電極と第3電極との隙間W4が大きい方が良いことが分かる。測定可能液膜厚さの上限は第2電極と第3電極との隙間W4が大きい方が良いことが分かる。測定可能液膜厚さの下限は第2電極と第3電極との隙間W4が小さい方が良いことが分かる。金属の腐食環境は液膜厚さが1mm以下の薄い液膜で顕著に進行する。したがって、測定可能液膜厚さの上限よりも下限の方が重要である。これより、第2電極と第3電極との隙間W4は、小さい方が良いと言える。 From this result, it can be seen that the sensitivity should be higher when the gap W4 between the second electrode and the third electrode is large. It can be seen that the upper limit of the measurable liquid film thickness should be larger when the gap W4 between the second electrode and the third electrode is large. It can be seen that the lower limit of the measurable liquid film thickness should be smaller when the gap W4 between the second electrode and the third electrode is smaller. The corrosive environment of metal progresses remarkably in a thin liquid film having a liquid film thickness of 1 mm or less. Therefore, the lower limit is more important than the upper limit of the measurable liquid film thickness. From this, it can be said that the smaller the gap W4 between the second electrode and the third electrode is, the better.

特に、第2電極と第3電極との隙間W4が第1電極と第2電極との隙間W2よりも小さい場合(破線)、感度及び測定可能液膜厚さの下限が顕著に良くなる。第2電極2と第3電極3とは物理的に分割されているものの、電気的には接続されており、第1電極1に対する対極としての役割を担う。したがって、第2電極2と第3電極3とがあまりに離れていれば、様々なノイズにより、第1電極1に対する対極としての機能が低下すると考えられる。 In particular, when the gap W4 between the second electrode and the third electrode is smaller than the gap W2 between the first electrode and the second electrode (broken line), the lower limit of the sensitivity and the measurable liquid film thickness is remarkably improved. Although the second electrode 2 and the third electrode 3 are physically separated, they are electrically connected and play a role as a counter electrode to the first electrode 1. Therefore, if the second electrode 2 and the third electrode 3 are too far apart, it is considered that the function as a counter electrode to the first electrode 1 is deteriorated due to various noises.

[第3電極の幅W5]
第3電極3の幅W5が腐食環境の測定に及ぼす影響について調査した。第3電極3の幅W5を0.1、0.4、及び1mmの3つのパターンについて調査した。第1電極1の幅W1は0.5mm、第1電極1と第2電極2との隙間W2は0.1mm、第2電極2の幅W3は0.1mm、第2電極2と第3電極3との隙間W4は0.1mmで固定した。
[Width W5 of the third electrode]
The effect of the width W5 of the third electrode 3 on the measurement of the corrosive environment was investigated. The width W5 of the third electrode 3 was investigated for three patterns of 0.1, 0.4, and 1 mm. The width W1 of the first electrode 1 is 0.5 mm, the gap W2 between the first electrode 1 and the second electrode 2 is 0.1 mm, the width W3 of the second electrode 2 is 0.1 mm, and the second electrode 2 and the third electrode The gap W4 with 3 was fixed at 0.1 mm.

図16は、第3電極の幅が腐食環境の測定に及ぼす影響を示す図である。実線は第3電極の幅W5が1mmの結果を示し、一点鎖線は第3電極の幅W5が0.4mmの結果を示し、破線は第3電極の幅W5が0.1mmの結果を示す。 FIG. 16 is a diagram showing the effect of the width of the third electrode on the measurement of the corrosive environment. The solid line shows the result that the width W5 of the third electrode is 1 mm, the alternate long and short dash line shows the result that the width W5 of the third electrode is 0.4 mm, and the broken line shows the result that the width W5 of the third electrode is 0.1 mm.

この結果より、感度は第3電極の幅W5が大きい方が良いことが分かる。測定可能液膜厚さの上限は第3電極の幅W5が大きい方が良いことが分かる。測定可能液膜厚さの下限は第3電極の幅W5には影響されないことが分かる。これより、第3電極の幅W5は、大きい方が良いと言える。 From this result, it can be seen that the sensitivity should be higher when the width W5 of the third electrode is larger. It can be seen that the upper limit of the measurable liquid film thickness should be larger when the width W5 of the third electrode is larger. It can be seen that the lower limit of the measurable liquid film thickness is not affected by the width W5 of the third electrode. From this, it can be said that the width W5 of the third electrode should be large.

さらに言えば、本実施形態のプローブは金属の腐食環境測定に用いられるものである。金属の大気腐食は、金属に付着した液膜厚さが1mm以下、の薄い場合に顕著に進行することが知られている。このような薄い液膜において、金属表面を覆う面積はあまり大きくはない。したがって、プローブがあまりにも大きすぎれば、第1電極1、第2電極2及び第3電極3が同じ液膜に接触することができない。このことを考慮すれば、第1電極の幅W1、第1電極と第2電極との隙間W2、第2電極の幅W3、第2電極と第3電極との隙間W4、第3電極の幅W5はそれぞれ、10mm以下とするのが好ましい。これにより、プローブのサイズを小さくでき、金属の腐食環境測定に適する。 Furthermore, the probe of this embodiment is used for measuring the corrosive environment of metal. It is known that atmospheric corrosion of a metal progresses remarkably when the liquid film thickness attached to the metal is as thin as 1 mm or less. In such a thin liquid film, the area covering the metal surface is not so large. Therefore, if the probe is too large, the first electrode 1, the second electrode 2, and the third electrode 3 cannot come into contact with the same liquid film. Considering this, the width W1 of the first electrode, the gap W2 between the first electrode and the second electrode, the width W3 of the second electrode, the gap W4 between the second electrode and the third electrode, and the width of the third electrode. W5 is preferably 10 mm or less, respectively. As a result, the size of the probe can be reduced, which is suitable for measuring the corrosive environment of metal.

以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiment of the present invention has been described above. However, the embodiments described above are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-mentioned embodiment can be appropriately modified and carried out within a range not deviating from the gist thereof.

本実施形態の腐食環境測定装置はたとえば、材料の大気腐食調査試験において材料の腐食環境の測定に用いることができる。また、輸送機器の金属部分に取り付け、その部分の腐食の進行を把握することもできる。また、海上の橋脚等、大気腐食が進行しやすい場所の金属の腐食環境の測定に用いることができる。 The corrosive environment measuring device of the present embodiment can be used, for example, for measuring the corrosive environment of a material in an atmospheric corrosion investigation test of the material. It can also be attached to a metal part of a transport device to monitor the progress of corrosion in that part. It can also be used to measure the corrosive environment of metals in places where atmospheric corrosion is likely to progress, such as piers on the sea.

1:第1電極
2:第2電極
3:第3電極
4:対極
5:プローブ
6:交流電源
7:測定面
8:第1電流計
9:第2電流計
1: 1st electrode 2: 2nd electrode 3: 3rd electrode 4: Counter electrode 5: Probe 6: AC power supply 7: Measurement surface 8: 1st ammeter 9: 2nd ammeter

Claims (5)

液膜の厚さ及び電気伝導率を測定する腐食環境測定装置であって、
第1電極と、前記第1電極と対になり、第2電極と第3電極とに分割された対極と、を備えるプローブであって、前記第1電極、前記第2電極及び前記第3電極は一方向に並んで配置され、前記第1電極と前記第2電極との隙間は、前記第1電極と前記第3電極との隙間よりも小さい、前記プローブと、
前記プローブに接続された交流電源と、を含み、
前記第1電極に流れる電流と前記第2電極に流れる電流とに基づいて、前記液膜の厚さを算出し、
前記液膜の厚さに基づいて、前記液膜の電気伝導率を算出する、腐食環境測定装置。
A corrosive environment measuring device that measures the thickness and electrical conductivity of a liquid film.
A probe comprising a first electrode and a counter electrode paired with the first electrode and divided into a second electrode and a third electrode, wherein the first electrode, the second electrode, and the third electrode are provided. Are arranged side by side in one direction, and the gap between the first electrode and the second electrode is smaller than the gap between the first electrode and the third electrode .
Including an AC power source connected to the probe,
The thickness of the liquid film was calculated based on the current flowing through the first electrode and the current flowing through the second electrode.
A corrosive environment measuring device that calculates the electrical conductivity of the liquid film based on the thickness of the liquid film.
請求項に記載の腐食環境測定装置であってさらに、
前記第1電極に流れる電流を測定する第1電流計と、
前記第2電極に流れる電流を測定する第2電流計と、を備える、腐食環境測定装置。
The corrosive environment measuring device according to claim 1 , further
A first ammeter that measures the current flowing through the first electrode,
A corrosion environment measuring device comprising a second ammeter for measuring a current flowing through the second electrode.
請求項1又は請求項2に記載の腐食環境測定装置であって、The corrosive environment measuring device according to claim 1 or 2.
前記第2電極の幅は、前記第3電極の幅よりも小さい、腐食環境測定装置。A corrosive environment measuring device in which the width of the second electrode is smaller than the width of the third electrode.
請求項1~請求項3のいずれか1項に記載の腐食環境測定装置であって、The corrosive environment measuring apparatus according to any one of claims 1 to 3.
前記第2電極は、前記第1電極と前記第3電極との間に配置され、The second electrode is arranged between the first electrode and the third electrode.
前記第2電極と前記第3電極との隙間は、前記第1電極と前記第2電極との隙間よりも小さい、腐食環境測定装置。A corrosion environment measuring device in which the gap between the second electrode and the third electrode is smaller than the gap between the first electrode and the second electrode.
請求項1~請求項4のいずれか1項に記載の腐食環境測定装置であって、The corrosive environment measuring apparatus according to any one of claims 1 to 4.
前記第1電極の幅は10mm以下であり、The width of the first electrode is 10 mm or less, and the width is 10 mm or less.
前記第2電極の幅は10mm以下であり、The width of the second electrode is 10 mm or less, and the width of the second electrode is 10 mm or less.
前記第3電極の幅は10mm以下であり、The width of the third electrode is 10 mm or less, and the width of the third electrode is 10 mm or less.
前記第1電極と前記第2電極との隙間は10mm以下であり、The gap between the first electrode and the second electrode is 10 mm or less, and the gap is 10 mm or less.
前記第2電極と前記第3電極との隙間は10mm以下である、腐食環境測定装置。A corrosion environment measuring device in which the gap between the second electrode and the third electrode is 10 mm or less.
JP2018062952A 2018-03-28 2018-03-28 Probe of corrosion environment measuring device and corrosion environment measuring device Active JP7024553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062952A JP7024553B2 (en) 2018-03-28 2018-03-28 Probe of corrosion environment measuring device and corrosion environment measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062952A JP7024553B2 (en) 2018-03-28 2018-03-28 Probe of corrosion environment measuring device and corrosion environment measuring device

Publications (2)

Publication Number Publication Date
JP2019174289A JP2019174289A (en) 2019-10-10
JP7024553B2 true JP7024553B2 (en) 2022-02-24

Family

ID=68168686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062952A Active JP7024553B2 (en) 2018-03-28 2018-03-28 Probe of corrosion environment measuring device and corrosion environment measuring device

Country Status (1)

Country Link
JP (1) JP7024553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968610B1 (en) * 2017-06-29 2019-04-12 삼육대학교산학협력단 A method of manufacturing hemoglobin hydrolysate removed red from the slaughtered livestock's blood, hydrolyzate prepared thereby and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455707B2 (en) 2020-09-08 2024-03-26 株式会社東芝 Harsh environment chloride measurement system and harsh environment chloride measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050186A1 (en) 2003-11-20 2005-06-02 The Circle For The Promotion Of Science And Engineering Actual environment polarization measuring instrument and actual environment polarization resistance/polarization curve measuring method
WO2007020028A3 (en) 2005-08-12 2007-05-24 Thomas Mueller Production of silver layers
JP2010529471A (en) 2007-06-13 2010-08-26 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Method for measuring the threshold thickness of a layer of purely resistive material, a device for carrying it out, and its use in an exhaust pipe
JP2011196736A (en) 2010-03-18 2011-10-06 Pulstec Industrial Co Ltd Device for measurement of optical surface roughness
CN103411878B (en) 2013-07-13 2015-07-01 北京工业大学 Method for stray current corrosion test of buried steel pipeline under tensile stress action
JP2015180856A (en) 2014-03-06 2015-10-15 株式会社神戸製鋼所 Corrosion monitoring sensor, corrosion depth calculation system, and metal corrosion speed calculation system
JP2017520007A (en) 2014-06-26 2017-07-20 アナラトム インコーポレイテッド Linear polarization resistance flexible sensor and method for treating a structure as a working electrode
CN105157554B (en) 2015-10-23 2017-12-15 清华大学 A kind of device and method for measuring metal surface scale forming

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197629A (en) * 1988-02-03 1989-08-09 Hitachi Ltd Corrosion monitor element, corrosion monitor card, and corrosion environment quantifying method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050186A1 (en) 2003-11-20 2005-06-02 The Circle For The Promotion Of Science And Engineering Actual environment polarization measuring instrument and actual environment polarization resistance/polarization curve measuring method
WO2007020028A3 (en) 2005-08-12 2007-05-24 Thomas Mueller Production of silver layers
JP2010529471A (en) 2007-06-13 2010-08-26 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Method for measuring the threshold thickness of a layer of purely resistive material, a device for carrying it out, and its use in an exhaust pipe
JP2011196736A (en) 2010-03-18 2011-10-06 Pulstec Industrial Co Ltd Device for measurement of optical surface roughness
CN103411878B (en) 2013-07-13 2015-07-01 北京工业大学 Method for stray current corrosion test of buried steel pipeline under tensile stress action
JP2015180856A (en) 2014-03-06 2015-10-15 株式会社神戸製鋼所 Corrosion monitoring sensor, corrosion depth calculation system, and metal corrosion speed calculation system
JP2017520007A (en) 2014-06-26 2017-07-20 アナラトム インコーポレイテッド Linear polarization resistance flexible sensor and method for treating a structure as a working electrode
CN105157554B (en) 2015-10-23 2017-12-15 清华大学 A kind of device and method for measuring metal surface scale forming

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101968610B1 (en) * 2017-06-29 2019-04-12 삼육대학교산학협력단 A method of manufacturing hemoglobin hydrolysate removed red from the slaughtered livestock's blood, hydrolyzate prepared thereby and use thereof

Also Published As

Publication number Publication date
JP2019174289A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US7443177B1 (en) Characterization of conductor by alternating current potential-drop method with a four-point probe
WO2007088913A1 (en) Damage detecting device or and damage detection method
US20090085585A1 (en) Apparatus, system, and associated method for monitoring surface corrosion
US20150097589A1 (en) Corrosion detection in structural tendons
JP5701961B2 (en) Electrical conductivity measurement method and electrical conductivity measurement system using the same
JP7024553B2 (en) Probe of corrosion environment measuring device and corrosion environment measuring device
CN108362637B (en) Corrosion electrochemical testing device and corrosion electrochemical testing method
Raja et al. Influence of crack length on crack depth measurement by an alternating current potential drop technique
JP7032722B2 (en) Reinforced concrete corrosion evaluation method
US10495593B2 (en) Testing method for sheet resistance of sheet material
JP2001215203A (en) Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution
JP7205126B2 (en) Corrosion sensors and corrosion evaluation systems
JP5156867B1 (en) Method and apparatus for measuring electrical resistivity of concrete
JP2019113534A (en) Corrosion environment measuring device, and measure method of liquid film thickness and electrical conductivity using the same
JP5304696B2 (en) Method for measuring corrosion rate of steel in corrosive environment
JP2007003235A (en) Non-destructive inspection method of change in wall thickness of measuring target
JP2017003372A (en) Method for measuring plating thickness of plating material, method for measuring amount of corrosion of plating material, and corrosion sensor of plating material
JPH06123695A (en) Method for diagnosing corrosion of buried metal
JP2021004841A (en) Probe, corrosion environment measurement device, and corrosion environment measurement method
JP2021004834A (en) Probe, corrosion environment measurement device, and corrosion environment measurement method
JP2020153782A (en) Corrosion detection device, corrosion detection method, and corrosion detection program
RU2687892C1 (en) Flat metal sample for mechanical tests
JP2021004849A (en) Probe and corrosion environment measurement device
JP2021006763A (en) Probe and corrosion environment measurement device
JP7489047B2 (en) Equipment for detecting corrosion in rebars in concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R151 Written notification of patent or utility model registration

Ref document number: 7024553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151