JP7205126B2 - Corrosion sensors and corrosion evaluation systems - Google Patents

Corrosion sensors and corrosion evaluation systems Download PDF

Info

Publication number
JP7205126B2
JP7205126B2 JP2018175848A JP2018175848A JP7205126B2 JP 7205126 B2 JP7205126 B2 JP 7205126B2 JP 2018175848 A JP2018175848 A JP 2018175848A JP 2018175848 A JP2018175848 A JP 2018175848A JP 7205126 B2 JP7205126 B2 JP 7205126B2
Authority
JP
Japan
Prior art keywords
corrosion
electrode
sample
potential
sample electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018175848A
Other languages
Japanese (ja)
Other versions
JP2020046336A (en
Inventor
俊男 堀江
学 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2018175848A priority Critical patent/JP7205126B2/en
Publication of JP2020046336A publication Critical patent/JP2020046336A/en
Application granted granted Critical
Publication of JP7205126B2 publication Critical patent/JP7205126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、金属の腐食状況の把握に用いる腐食センサ等に関する。 The present invention relates to a corrosion sensor and the like used for grasping the state of corrosion of metal.

多様な気象環境に曝される部材の耐食性を評価するため、貴な金属と卑な金属の間に流れる腐食電流(ガルバニック電流)を検知する腐食センサが開発されている。例えば、試料金属(Fe、Zn等)からなる基板上に、絶縁層(SiO等)を介して導電層(Ag等)を積層したACMセンサ(Atmospheric Corrosion Monitor/大気腐食モニタあるいはガルバニック型腐食センサ)が周知である。 Corrosion sensors have been developed to detect corrosion currents (galvanic currents) flowing between noble metals and base metals in order to evaluate the corrosion resistance of members exposed to various weather environments. For example, an ACM sensor (Atmospheric Corrosion Monitor/Atmospheric Corrosion Monitor or Galvanic Corrosion Sensor) is obtained by laminating a conductive layer (Ag, etc.) on a substrate made of a sample metal (Fe, Zn, etc.) with an insulating layer ( SiO2 , etc.) interposed therebetween. ) are well known.

大気中の湿気等により、貴な金属と卑な金属が薄い水膜や結露等で短絡されると、卑な金属の腐食速度に対応した腐食電流が流れる。従来の腐食センサは、その腐食電流を検出することにより、卑な金属の腐食電流密度(icorr)または腐食速度(Vcorr)等を測定・算出していた。 When a noble metal and a base metal are short-circuited by a thin film of water or condensation due to moisture in the atmosphere, a corrosion current corresponding to the corrosion rate of the base metal flows. Conventional corrosion sensors measure and calculate the corrosion current density (icorr) or corrosion rate (Vcorr) of base metals by detecting the corrosion current.

このような腐食センサに関連する記載が下記の特許文献1、2にある。また、交流インピーダンス法により腐食量または腐食速度を算出する方法が特許文献3、4で提案されている。 Descriptions related to such corrosion sensors are found in Patent Documents 1 and 2 below. Further, Patent Documents 3 and 4 propose a method of calculating the corrosion amount or corrosion rate by the AC impedance method.

特開2009-53205号公報Japanese Patent Application Laid-Open No. 2009-53205 特開2003-215024号公報JP 2003-215024 A 特開2002-71616号公報JP-A-2002-71616 特開昭63-259456号公報JP-A-63-259456

上記の各特許文献にあるような従来の腐食センサや腐食速度等の算出方法は、単に腐食電流(密度)だけに着目したものであり、同じ腐食反応(電池反応)が試料金属の表面上で均一的に生じるような場合を前提にしていた。 The conventional corrosion sensors and methods for calculating corrosion rate, etc., as described in the above patent documents simply focus on the corrosion current (density), and the same corrosion reaction (cell reaction) occurs on the surface of the sample metal. It was assumed that it would occur uniformly.

しかし、腐食に係る形態や反応は、一様とは限らない。このため、金属表面上で生じる腐食を平均的に評価するだけでは、金属部材の寿命判定等に重要な局所腐食(孔食やすきま腐食等)の発生やその進行を適切に把握できない。 However, the forms and reactions related to corrosion are not always uniform. Therefore, the occurrence and progress of localized corrosion (pitting corrosion, crevice corrosion, etc.), which is important for judging the life of metal members, cannot be properly understood only by averaging the corrosion that occurs on the metal surface.

本発明は、このような事情に鑑みてなされたものであり、従来とは異なり、実情に沿って腐食の的確な把握に役立つ腐食センサ等を提供する。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides a corrosion sensor or the like that is useful for accurately grasping corrosion according to the actual situation, unlike conventional ones.

本発明者はこの課題を解決すべく鋭意研究した結果、腐食の形態や反応(両者を併せて単に「腐食形態」という。)の変化に応じて、腐食している金属の電位が特有な変化を生じ得ることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of intensive research to solve this problem, the inventors of the present invention have found that the potential of corroding metal changes peculiarly in accordance with changes in corrosion morphology and reaction (both are simply referred to as "corrosion morphology"). We have newly found that Developing this result led to the completion of the present invention described below.

《腐食センサ》
(1)本発明は、腐食の評価対象である試料金属からなる試料電極と、該試料電極上に絶縁層を介して配設され、該試料電極の電位の基準となる参照電極と、を備える腐食センサである。
《Corrosion sensor》
(1) The present invention comprises a sample electrode made of a sample metal to be evaluated for corrosion, and a reference electrode disposed on the sample electrode via an insulating layer and serving as a reference for the potential of the sample electrode. Corrosion sensor.

本発明の腐食センサによれば、腐食の評価対象である金属からなる試料電極の電位を測定することができる。この電位(変化)をモニタリングすることにより、腐食の形態(反応)や腐食の進行具合等を判断することが可能となる。 According to the corrosion sensor of the present invention, it is possible to measure the potential of the sample electrode made of metal, which is the target of corrosion evaluation. By monitoring this potential (change), it is possible to determine the form (reaction) of corrosion, progress of corrosion, and the like.

本発明の腐食センサにより、試料電極の電位は次のように測定される。先ず、試料電極と参照電極は絶縁層により絶縁されている。このため、当初、腐食センサがほぼ完全な乾燥状態にあるときは、試料電極と参照電極は非通電状態であり、両電極間の電位差に基づく出力はない(つまり電位は測定されない)。 The corrosion sensor of the present invention measures the potential of the sample electrode as follows. First, the sample electrode and the reference electrode are insulated by an insulating layer. Therefore, initially, when the corrosion sensor is almost completely dry, the sample electrode and the reference electrode are in a non-energized state, and there is no output based on the potential difference between the electrodes (that is, no potential is measured).

しかし、腐食センサを腐食環境(大気環境等)に曝すと、腐食環境中に含まれる(水)蒸気等により、試料電極と参照電極は通電状態となり得る。通電状態は、結露等が絶縁層を跨いで(電解液の替わりとなって)、試料電極と参照電極を直接的に導通させる場合に限らない。例えば、通気性または通液性のある絶縁層内に侵入した蒸気によっても、試料電極と参照電極は通電状態となり得る。いずれにしても、そのような通電状態が生じることにより、参照電極に対する試料電極の電位が測定可能となる。 However, when the corrosion sensor is exposed to a corrosive environment (such as an atmospheric environment), the sample electrode and the reference electrode can become energized due to (water) vapor contained in the corrosive environment. The energized state is not limited to the case where dew condensation or the like straddles the insulating layer (instead of the electrolytic solution) and directly connects the sample electrode and the reference electrode. For example, vapor that has penetrated into a breathable or liquid-permeable insulating layer can also cause the sample and reference electrodes to become energized. In any event, the occurrence of such an energized state allows the potential of the sample electrode to be measured with respect to the reference electrode.

さらに、試料電極の腐食開始後(腐食物(錆等)の生成後)であれば、仮に蒸気がない乾燥環境下に腐食センサが曝されても、試料電極の腐食は進行し得る。腐食物に含まれる酸化物や水酸化物等と試料金属とが反応して、新たな腐食物が生成され得るからである。このときもやはり、試料電極と参照電極は通電状態となり、試料電極の電位は測定可能となる。 Furthermore, after the sample electrode starts to corrode (after corrosive substances (such as rust) are formed), even if the corrosion sensor is exposed to a dry environment without steam, corrosion of the sample electrode can progress. This is because oxides, hydroxides, and the like contained in the corroded material may react with the sample metal to generate new corroded material. At this time as well, the sample electrode and the reference electrode are in a conductive state, and the potential of the sample electrode can be measured.

こうして、本発明の腐食センサを用いれば、腐食環境、腐食形態、腐食の進行度等を反映した電位が測定されるようになる。逆にいえば、その測定された電位に基づけば、腐食に関する種々の情報を把握することが可能となる。 In this way, the corrosion sensor of the present invention can measure a potential that reflects the corrosive environment, corrosion mode, progress of corrosion, and the like. Conversely, based on the measured potential, various information about corrosion can be obtained.

(2)本発明の腐食センサは、さらに、試料電極上に絶縁層を介して配設され、試料電極と対をなして通電される補助電極を備えるとよい。これにより、腐食形態の把握と併せて、腐食電流(密度)や分極抵抗等の測定・算出も可能となる。 (2) The corrosion sensor of the present invention may further include an auxiliary electrode which is disposed on the sample electrode via an insulating layer and which is paired with the sample electrode and is energized. This makes it possible to measure and calculate the corrosion current (density), polarization resistance, etc., in addition to grasping the corrosion morphology.

《被測定部材》
(1)本発明は、上述した腐食センサを用いた腐食評価システムとしても把握できる。例えば、本発明は、上述した腐食センサと、前記参照電極に対する前記試料電極の電位を測定する電位測定手段と、該試料電極の電位を閾値と比較して前記試料金属の腐食形態を判定する判定手段と、を備える腐食評価システムでもよい。
<<Method to be measured>>
(1) The present invention can also be grasped as a corrosion evaluation system using the corrosion sensor described above. For example, the present invention includes the corrosion sensor described above, a potential measuring means for measuring the potential of the sample electrode with respect to the reference electrode, and a judgment method for determining the corrosion form of the sample metal by comparing the potential of the sample electrode with a threshold value. and means for evaluating corrosion.

電位測定手段で得られた試料電極の電位を閾値と比較することにより、試料金属で生じている腐食形態(反応)を判定できる。例えば、その電位が閾値を超えている場合、腐食形態に変化が生じていると判定できる。これにより、腐食速度等の算出方法を変更または補正したりできる。また、腐食形態の変化により腐食の加速的な進行が予想されるような場合なら、その判定結果を、製品や部品の寿命または交換時期の予測・告知等に利用してもよい。なお、判定手段は、電位自体に限らず、電位の変化量、変化率、所定の変化に要する時間等と、閾値を比較してもよい。 By comparing the potential of the sample electrode obtained by the potential measuring means with the threshold value, the corrosion form (reaction) occurring in the sample metal can be determined. For example, if the potential exceeds a threshold, it can be determined that the corrosion morphology has changed. This makes it possible to change or correct the method of calculating the corrosion rate or the like. In addition, if accelerated progress of corrosion is expected due to changes in the form of corrosion, the determination results may be used for predicting/announcing the service life or replacement timing of products and parts. Note that the determination means may compare the threshold with not only the potential itself, but also the amount of change in the potential, the rate of change, the time required for a predetermined change, and the like.

(2)さらに本発明は、腐食センサが上述した補助電極を備える場合、例えば、その腐食センサと、前記参照電極に対する前記試料電極の電位を測定する電位測定手段と、該試料電極の電位を閾値と比較して前記試料金属の腐食形態を判定する判定手段と、該試料電極と前記補助電極の間で通電させて該試料電極の分極抵抗を算出する分極抵抗算出手段と、該腐食形態を考慮して該分極抵抗に基づいて腐食速度の指標値を算出する腐食速度算出手段と、を備える腐食評価システムでもよい。 (2) Further, in the case where the corrosion sensor comprises the auxiliary electrode described above, the present invention provides, for example, the corrosion sensor, a potential measuring means for measuring the potential of the sample electrode with respect to the reference electrode, and a threshold value for the potential of the sample electrode. a determination means for determining the corrosion form of the sample metal by comparing with the sample metal; a polarization resistance calculation means for calculating the polarization resistance of the sample electrode by energizing between the sample electrode and the auxiliary electrode; and considering the corrosion form and corrosion rate calculation means for calculating an index value of the corrosion rate based on the polarization resistance.

この場合、試料金属の腐食状況(実情)に応じた適切な腐食速度(指標値)の算出が可能となる。分極抵抗の算出は、例えば、直流分極法、交流インピーダンス法等によりなされる。腐食速度算出手段は、腐食速度の指標値として、腐食速度自体を算出してもよいし、腐食速度にほぼ比例する分極抵抗の逆数、さらには腐食電流密度等を算出してもよい。なお、本明細書では、試料電極における「電荷移動抵抗」も含めて、単に「分極抵抗」という。 In this case, it is possible to calculate an appropriate corrosion rate (index value) according to the corrosion state (actual situation) of the sample metal. The polarization resistance is calculated by, for example, a DC polarization method, an AC impedance method, or the like. The corrosion rate calculation means may calculate the corrosion rate itself as the index value of the corrosion rate, or may calculate the reciprocal of the polarization resistance approximately proportional to the corrosion rate, or the corrosion current density. In this specification, the term "polarization resistance" is simply used to include "charge transfer resistance" in the sample electrode.

《その他》
(1)本明細書でいう「~手段」を「~ステップ」と読み替えることにより、本発明は、腐食評価システムのみならず、腐食評価方法としても把握される。判定手段(ステップ)や算出手段(ステップ)は、例えば、コンピュータにより実行されるプログラムとして構成される。
"others"
(1) The present invention can be understood not only as a corrosion evaluation system but also as a corrosion evaluation method by replacing "- means" with "- step" in this specification. The determining means (steps) and the calculating means (steps) are configured as, for example, programs executed by a computer.

(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。 (2) Unless otherwise specified, "x to y" as used herein includes the lower limit value x and the upper limit value y. A new range such as “a to b” can be established as a new lower or upper limit of any numerical value included in the various numerical values or numerical ranges described herein.

腐食評価システムの概要を模式的に示す断面図である。1 is a cross-sectional view schematically showing an outline of a corrosion evaluation system; FIG. 腐食環境(温度、湿度)と、腐食センサを用いて測定・算出された電位・分極抵抗との関係を示すグラフである。4 is a graph showing the relationship between the corrosive environment (temperature, humidity) and the potential/polarization resistance measured/calculated using the corrosion sensor. 腐食形態毎の分極曲線を示す模式図である。FIG. 4 is a schematic diagram showing polarization curves for each corrosion mode;

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の腐食センサのみならず、それを用いた腐食評価システム、腐食評価方法等にも適宜該当し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 In addition to the components of the present invention described above, one or more components arbitrarily selected from this specification may be added. The contents described in this specification can be appropriately applied not only to the corrosion sensor of the present invention, but also to a corrosion evaluation system, a corrosion evaluation method, and the like using the sensor. Which embodiment is the best depends on the target, required performance, and the like.

《腐食センサ》
腐食センサは、試料電極、参照電極および絶縁層を少なくとも備え、補助電極および絶縁層をさらに備えるとよい。また、腐食センサは、各電極を外部回路(測定装置等)に電気的に接続する手段(例えば、端子・リード等の配線)を備えるとよい。
《Corrosion sensor》
The corrosion sensor comprises at least a sample electrode, a reference electrode and an insulating layer, and preferably further comprises an auxiliary electrode and an insulating layer. Further, the corrosion sensor preferably includes means (for example, wiring such as terminals and leads) for electrically connecting each electrode to an external circuit (measuring device, etc.).

(1)試料電極
試料電極は、腐食の評価対象である試料金属からなる。試料電極の形態は、評価対象に応じて適宜選択され得る。例えば、平板状の他、ブロック状、柱状、筒状、膜状等でもよい。通常、試料電極には、試料金属の板片を用いればよい。
(1) Sample electrode The sample electrode is made of a sample metal that is an evaluation target for corrosion. The form of the sample electrode can be appropriately selected according to the object to be evaluated. For example, in addition to the shape of a flat plate, it may be in the shape of a block, a column, a cylinder, a film, or the like. Usually, a sample metal plate piece may be used as the sample electrode.

試料金属は、評価対象に応じて選択され、鉄系、アルミニウム系、マグネシウム系、チタン系等のいずれの金属でもよい。なお、「~系」とは純金属または合金を意味する。代表例は、鉄合金の一種である鋼材(炭素鋼、ステンレス鋼等)である。 The sample metal is selected according to the object to be evaluated, and may be any metal such as iron-based, aluminum-based, magnesium-based, and titanium-based. In addition, "--series" means a pure metal or an alloy. A typical example is steel (carbon steel, stainless steel, etc.), which is a type of iron alloy.

(2)参照電極
参照電極は、電極電位が安定しており、腐食センサの電極として取扱性に優れる物質からなるとよい。参照電極は、高抵抗(低導電性)でもよく、金属に限らず、酸化物半導体や化合物を参照電極に用いてもよい。代表例として、参照電極は、銀-塩化銀からなる電極(Ag/AgCl電極)であるとよい。この他、参照電極には、白金(Pt)等の貴金属を用いてもよい。
(2) Reference electrode The reference electrode should preferably be made of a substance that has a stable electrode potential and is easy to handle as an electrode of a corrosion sensor. The reference electrode may be of high resistance (low conductivity), and may be made of not only metal but also an oxide semiconductor or a compound. As a representative example, the reference electrode may be an electrode made of silver-silver chloride (Ag/AgCl electrode). In addition, a noble metal such as platinum (Pt) may be used for the reference electrode.

(3)補助電極
補助電極は、腐食環境下でも、試料電極との間で安定した通電が確保される物質からなるとよい。補助電極には、高耐食性(不溶性または難溶性、試料電極よりも標準電極電位が貴)であると共に導電性に優れる物質を用いるとよい。代表例として、補助電極は、Pt電極であるとよい。この他、貴金属(Au、Ag等)、酸化物半導体、ニクタイド導電材等を補助電極に用いてもよい。なお、ニクタイド導電材は、例えば、TiP、FeTiP、XTiP(X:金属元素)等である。
(3) Auxiliary Electrode The auxiliary electrode is preferably made of a material that ensures stable electrical connection with the sample electrode even in a corrosive environment. For the auxiliary electrode, it is preferable to use a material having high corrosion resistance (insoluble or sparingly soluble, standard electrode potential nobler than that of the sample electrode) and excellent electrical conductivity. As a representative example, the auxiliary electrode may be a Pt electrode. In addition, noble metals (Au, Ag, etc.), oxide semiconductors, pnictide conductive materials, etc. may be used for the auxiliary electrodes. Note that the pnictide conductive material is, for example, Ti 3 P, FeTiP, XTiP (X: metal element), or the like.

(4)絶縁層
絶縁層には、種々の絶縁材を用いることができる。例えば、セラミックス、樹脂、紙等を絶縁層に用いてもよい。試料電極と補助電極の間に作用する電圧または印加される電圧は、通常、高々数V程度である。絶縁層の耐絶縁電圧は、例えば、10V程度で十分である。
(4) Insulating layer Various insulating materials can be used for the insulating layer. For example, ceramics, resin, paper, or the like may be used for the insulating layer. The voltage acting or applied between the sample electrode and the auxiliary electrode is usually several volts at most. A withstand voltage of about 10 V, for example, is sufficient for the insulating layer.

試料電極と補助電極との間の通電(またはイオン伝導)や絶縁抵抗の低下は、それらの外周囲側が液体(液滴等)で架橋されている場合に限らず、絶縁層中に液体やその蒸気が内包されている場合にも生じ得る。そこで、腐食センサの使用環境(腐食環境)にも依るが、絶縁層は、通気性(例えば含水性)または通液性(例えば保湿性)を有する絶縁材が好ましい。例えば、絶縁層は、一方面側から他方面側に連通した細孔を有する多孔質体からなるとよい。多孔質体には、例えば、各種のスポンジやフィルターを用いることができる。 Electricity (or ionic conduction) between the sample electrode and the auxiliary electrode and a decrease in insulation resistance are not limited to the case where the outer peripheral side of them is bridged with liquid (droplet etc.), It can also occur when steam is included. Therefore, depending on the usage environment (corrosive environment) of the corrosion sensor, the insulating layer is preferably made of an insulating material having air permeability (for example, water absorption) or liquid permeability (for example, moisture retention). For example, the insulating layer may be made of a porous body having pores communicating from one side to the other side. For example, various sponges and filters can be used for the porous body.

なお、試料電極と参照電極の間の絶縁層と、試料電極と補助電極の間の絶縁層とは、異種または異形態でもよいが、同種または同形態であると、取扱性や製作性の点で好ましい。 The insulating layer between the sample electrode and the reference electrode and the insulating layer between the sample electrode and the auxiliary electrode may be of different types or have different forms. is preferred.

(5)配線
腐食センサは、各電極を外部回路(測定装置等)に電気的に接続する配線(端子、リード等/これらをまとめて、単に「配線」という。)を備えるとよい。配線形態は種々あり得る。端子数(配線数)は電極数と一致していてもよいし、それよりも多くてもよい。例えば、補助電極を設ける場合、合計で4端子(試料電極と参照電極の間の2端子+試料電極と補助電極の間の2端子)があってもよい。
(5) Wiring The corrosion sensor preferably has wiring (terminals, leads, etc./these are simply referred to as “wiring”) for electrically connecting each electrode to an external circuit (measuring device, etc.). Various wiring forms are possible. The number of terminals (the number of wires) may be the same as the number of electrodes, or may be larger than that. For example, when the auxiliary electrodes are provided, there may be four terminals in total (two terminals between the sample electrode and the reference electrode+two terminals between the sample electrode and the auxiliary electrode).

《腐食評価システム》
参照電極に対する試料電極の電位を測定する電位測定手段は、例えば、電圧計である。試料電極と補助電極の間の電流量は、例えば、(無抵抗)電流計により測定される。これらの測定には、ポテンショスタットやガルバノスタットを用いてもよい。各測定手段は、汎用品で構成されてよいし、専用品(腐食評価用に開発された回路素子等)で構成されてもよい。
《Corrosion Evaluation System》
Potential measuring means for measuring the potential of the sample electrode with respect to the reference electrode is, for example, a voltmeter. The amount of current between the sample electrode and the auxiliary electrode is measured by, for example, a (non-resistive) ammeter. A potentiostat or galvanostat may be used for these measurements. Each measuring means may be composed of a general-purpose product or may be composed of a dedicated product (such as a circuit element developed for corrosion evaluation).

交流インピーダンス法により試料電極の分極抵抗を算出する場合なら、その分極抵抗算出手段は、例えば、ポテンショスタットと、周波数応答解析装置(FRA)または高速フーリエ変換アナライザ(FFT)と、演算装置(コンピュータ)とにより構成される。この場合、分極抵抗(電荷移動抵抗)は、例えば、低周波数(1mHz~100mHz)と高周波数(1Hz~10kHz)とにおけるインピーダンス差(実数成分の差)として求まる。 When calculating the polarization resistance of the sample electrode by the AC impedance method, the polarization resistance calculation means includes, for example, a potentiostat, a frequency response analyzer (FRA) or a fast Fourier transform analyzer (FFT), and an arithmetic device (computer). Consists of In this case, the polarization resistance (charge transfer resistance) is determined as, for example, the difference in impedance (difference between real components) between low frequencies (1 mHz to 100 mHz) and high frequencies (1 Hz to 10 kHz).

判定手段や腐食速度算出手段は、コンピュータとその実行プログラムとにより実現される。判定手段は、測定された試料電極の電位に基づいて、試料金属の腐食形態(腐食反応、腐食ステージ等)を判定する。この判定結果は、そのまま出力されてもよいし、腐食速度算出手段に反映されてもよい。例えば、腐食速度算出手段は、既に算出されている分極抵抗に基づいて腐食速度の指標値を算出する際に、その腐食形態を考慮して、係数の補正や変更を行ってもよい。 The determination means and corrosion rate calculation means are implemented by a computer and its execution program. The determination means determines the corrosion mode (corrosion reaction, corrosion stage, etc.) of the sample metal based on the measured potential of the sample electrode. The determination result may be output as it is, or may be reflected in the corrosion rate calculation means. For example, the corrosion rate calculation means may correct or change the coefficient in consideration of the corrosion mode when calculating the index value of the corrosion rate based on the already calculated polarization resistance.

具体的にいうと、例えば、分極抵抗:Rp、腐食速度:Vcorr、比例係数:K、補正係数:α、試料電極の電位:E1(>s:閾値)、E2(<s)として、E1のときはVcorr =K/Rp、E2のときはVcorr =α・K/Rp とできる。電位が卑化したとき(E2<s)、腐食が促進される場合なら、α>1とするとよい。腐食の促進具合に応じて、さらに、α>10~100としてもよい。 Specifically, for example, polarization resistance: Rp, corrosion rate: Vcorr, proportional coefficient: K, correction coefficient: α, potential of sample electrode: E1 (> s: threshold value), E2 (< s), E1 Vcorr=K/Rp when E2, Vcorr=.alpha..K/Rp when E2. If corrosion is accelerated when the potential becomes base (E2<s), α>1 should be satisfied. Further, α>10 to 100 may be set depending on the degree of acceleration of corrosion.

なお、分極抵抗の算出時等に試料電極と補助電極の間で通電する際、試料電極の電位は、腐食センサに設けた参照電極に対する電位でもよいし、ポテンショスタット等に接続した別の基準電極を利用してもよい。 When energizing between the sample electrode and the auxiliary electrode when calculating the polarization resistance, etc., the potential of the sample electrode may be the potential relative to the reference electrode provided in the corrosion sensor, or the potential of another reference electrode connected to a potentiostat or the like. may be used.

《その他》
腐食センサは、一つの試料電極上に、絶縁層を介した参照電極または補助電極が複数配設されたものでもよい。腐食評価システムは、複数の腐食センサからの出力(電位)に基づいて、腐食形態等を総合的に判定してもよい。
"others"
The corrosion sensor may be one in which a plurality of reference electrodes or auxiliary electrodes are arranged on one sample electrode via an insulating layer. The corrosion evaluation system may comprehensively determine the form of corrosion based on outputs (potentials) from a plurality of corrosion sensors.

《腐食評価システム》
本発明の一実施例である腐食評価システムMの縦断面図を図1に模式的に示した。腐食評価システムMは、腐食センサSと測定解析装置Dとを備える。腐食センサSは、試料電極1と、参照電極2と、補助電極3と、試料電極1と参照電極2の間に介装される絶縁層21と、試料電極1と補助電極3の間に介装される絶縁層31とを備える。なお、試料電極1、参照電極2および補助電極3は、それぞれの端子からリード12、22、32により、測定解析装置Dへ電気的に接続されている。
《Corrosion Evaluation System》
FIG. 1 schematically shows a longitudinal sectional view of a corrosion evaluation system M that is an embodiment of the present invention. The corrosion evaluation system M includes a corrosion sensor S and a measurement analysis device D. The corrosion sensor S includes a sample electrode 1 , a reference electrode 2 , an auxiliary electrode 3 , an insulating layer 21 interposed between the sample electrode 1 and the reference electrode 2 , and an insulating layer 21 interposed between the sample electrode 1 and the auxiliary electrode 3 . and an insulating layer 31 to be applied. The sample electrode 1, the reference electrode 2, and the auxiliary electrode 3 are electrically connected to the measurement analysis device D by leads 12, 22, and 32 from respective terminals.

測定解析装置Dは、試料電極1と参照電極2の間の電位差の測定(電位測定手段)と、試料電極1と補助電極3の間のインピーダンスの測定とそのインピーダンスに基づく分極抵抗の算出(分極抵抗算出手段)を行う。測定解析装置Dは、具体的にいうと、ポテンショスタットと、ポテンショスタットへ正弦波信号(電圧、電流)を送ると共にその応答信号を受けるFRAと、FRAを制御すると共に分極抵抗を算出するコンピュータとを備える。なお、そのコンピュータ上で予め用意したプログラムを実行することにより、試料電極1の電位に基づく腐食形態の判定(判定手段)や、その分極抵抗に基づく腐食速度(指標値)の算出(腐食速度算出手段)等を行ってもよい。 The measurement analysis device D measures the potential difference between the sample electrode 1 and the reference electrode 2 (potential measuring means), measures the impedance between the sample electrode 1 and the auxiliary electrode 3, and calculates the polarization resistance based on the impedance (polarization resistance calculation means). Specifically, the measurement analysis device D includes a potentiostat, an FRA that sends a sinusoidal signal (voltage, current) to the potentiostat and receives a response signal therefrom, and a computer that controls the FRA and calculates the polarization resistance. Prepare. By executing a program prepared in advance on the computer, it is possible to determine the corrosion mode based on the potential of the sample electrode 1 (determining means) and calculate the corrosion rate (index value) based on the polarization resistance (corrosion rate calculation means), etc. may be performed.

《実験例》
(1)構成
大気雰囲気中で鋼材(試料金属)に生じる腐食を、腐食評価システムMを用いて評価した。
《Experiment example》
(1) Configuration A corrosion evaluation system M was used to evaluate corrosion occurring in a steel material (specimen metal) in an air atmosphere.

腐食センサSの試料電極1には、冷間圧延鋼板(SPC/5mm×30mm×1mm)を用いた。参照電極2には、表面を塩化銀で被覆した薄板状の銀片からなるAg/AgCl電極を用いた。補助電極3には、Pt電極(2mm×5mm×0.3mm)を用いた。絶縁層21、31には、吸湿性または通水性を有する多孔質体状の両面テープ(3M製「4390」/厚さ0.05mm)を用いた。絶縁層21と絶縁層31の大きさは、それぞれ、参照電極2と補助電極3の大きさに合わせた。 A cold-rolled steel plate (SPC/5 mm×30 mm×1 mm) was used for the sample electrode 1 of the corrosion sensor S. As the reference electrode 2, an Ag/AgCl electrode made of a thin plate-like piece of silver coated with silver chloride was used. A Pt electrode (2 mm×5 mm×0.3 mm) was used as the auxiliary electrode 3 . For the insulating layers 21 and 31, a hygroscopic or water-permeable porous double-sided tape (3M "4390"/thickness 0.05 mm) was used. The sizes of the insulating layer 21 and the insulating layer 31 are matched to the sizes of the reference electrode 2 and the auxiliary electrode 3, respectively.

(2)腐食試験
腐食センサSに、大気環境を模擬した乾燥環境と湿潤環境に交互に曝す複合サイクル腐食試験に施した。複合サイクル腐食試験は、(a)60℃×約45%RHの大気雰囲気中に、腐食センサSを6時間保持する乾燥工程と、(b)50℃×約85%RHの大気雰囲気中に、腐食センサSを6時間保持する湿潤工程とを交互に繰り返して行った(1周期:12時間)。
(2) Corrosion Test The corrosion sensor S was subjected to a combined cyclic corrosion test in which it was alternately exposed to a dry environment and a wet environment simulating an atmospheric environment. The combined cycle corrosion test consists of (a) a drying process in which the corrosion sensor S is held for 6 hours in an air atmosphere of 60°C x about 45% RH, and (b) in an air atmosphere of 50°C x about 85% RH. A wet step in which the corrosion sensor S was held for 6 hours was alternately repeated (one cycle: 12 hours).

試料電極1の電位(VS. 参照電極2)は腐食試験中、常時測定した。試料電極1の分極抵抗は、試料電極1と補助電極3の間で通電を行い、交流インピーダンス法により算出した。具体的にいうと、低周波数(100mHz)と高周波数(1Hz)におけるインピーダンスを測定し、それらの実部の差を分極抵抗とした。インピーダンスの測定および分極抵抗の算出は、低周波数を考慮して、30分毎に行った。 The potential of sample electrode 1 (VS. reference electrode 2) was constantly measured during the corrosion test. The polarization resistance of the sample electrode 1 was calculated by the alternating current impedance method by energizing between the sample electrode 1 and the auxiliary electrode 3 . Specifically, the impedance was measured at a low frequency (100 mHz) and a high frequency (1 Hz), and the difference between the real parts was taken as the polarization resistance. Impedance measurements and polarization resistance calculations were performed every 30 minutes to account for the low frequencies.

腐食センサSを曝した腐食環境(温度×湿度)と、各環境下における試料電極1の分極抵抗および電位とを、図2にまとめて示した。 FIG. 2 summarizes the corrosive environment (temperature×humidity) to which the corrosion sensor S was exposed and the polarization resistance and potential of the sample electrode 1 under each environment.

(3)評価
図2から次のようなことがわかる。先ず、試験開始当初の試料電極1は、絶縁層21により絶縁された状態にあるから、その電位は測定されず、ほぼ零である。
(3) Evaluation Fig. 2 shows the following. First, since the sample electrode 1 is insulated by the insulating layer 21 at the beginning of the test, its potential is not measured and is almost zero.

しかし、試験開始後、直ぐに、試料電極1の電位が測定されるようになる。そして、湿潤環境下で電位は低下し(卑となり)、乾燥環境下で電位は上昇した(貴となった)。電位の変動幅は、初期(試験開始時~20時間後まで)から中期(試験開始後の経過時間が125~180時間)にかけて縮小傾向となった。 However, immediately after the start of the test, the potential of the sample electrode 1 is measured. Then, the potential decreased (became noble) in a wet environment, and the potential increased (became noble) in a dry environment. The variation width of the potential tended to decrease from the initial period (from the start of the test to 20 hours later) to the middle period (125 to 180 hours after the start of the test).

また、初期では、約1.5時間程度で電位が復帰したが、中期では電位の復帰に約2~3時間程度要した。さらに、初期では分極抵抗の変動幅が大きかったが、中期になるとその変動が安定した。 Also, in the initial period, the potential recovered in about 1.5 hours, but in the middle period, it took about 2 to 3 hours to recover the potential. Furthermore, the fluctuation range of the polarization resistance was large in the early period, but the fluctuation became stable in the middle period.

後期になると、腐食環境の変化と、電位および分極抵抗の変化とが、ほぼ対応するようになった。但し、後期の中頃で、電位が極小値を示した。それ以降、電位と分極抵抗の波形が、それ以前の形態と異なるようになった。 In the later stage, the changes in the corrosive environment almost corresponded to the changes in potential and polarization resistance. However, in the middle of the late period, the potential showed a minimum value. Since then, the potential and polarization resistance waveforms have become different from the previous morphology.

(4)考察
環境変化と時間経過により試料電極1の電位が変動する理由について、図3を用いて考察する。図3は、試料電極1と補助電極3の間で生じていると考えられる腐食反応(酸化還元反応)を模式的に示した分極曲線である。図3の横軸は電位で、縦軸は電流の対数表示である。その横軸より上側の曲線は、試料電極1側で生じている腐食反応を示す局部アノード分極曲線である。横軸より下側の曲線は、補助電極3側で生じている腐食反応を示す局部カソード分極曲線である。
(4) Discussion The reason why the potential of the sample electrode 1 fluctuates due to environmental changes and the passage of time will be discussed with reference to FIG. FIG. 3 is a polarization curve schematically showing a corrosion reaction (oxidation-reduction reaction) that is considered to occur between the sample electrode 1 and the auxiliary electrode 3. As shown in FIG. The horizontal axis of FIG. 3 is potential, and the vertical axis is logarithmic representation of current. The curve above the horizontal axis is the local anodic polarization curve showing the corrosion reaction occurring on the sample electrode 1 side. The curve below the horizontal axis is the local cathodic polarization curve that indicates the corrosion reaction occurring on the auxiliary electrode 3 side.

図3の上側に示した分極曲線は、初期の湿潤環境下における腐食反応を示している。この段階では、アノードである試料電極1上で、主にFe→Fe2+ +2e-という腐食反応(酸化反応)が生じる。カソードである補助電極3上では、環境中から取り込まれた蒸気(HO)と酸素(O)が還元されてOH-が生成される。 The polarization curve shown in the upper part of FIG. 3 shows the corrosion response in an initial wet environment. At this stage, a corrosion reaction (oxidation reaction) of mainly Fe→Fe 2+ +2e occurs on the sample electrode 1 which is the anode. On the auxiliary electrode 3 which is the cathode, vapor (H 2 O) and oxygen (O 2 ) taken in from the environment are reduced to produce OH .

乾燥環境下になると、図3の下側に示す分極曲線のような腐食反応を起こすと考えられる。すなわち、環境中から供給されるHOが減り、オキシ水酸化鉄(FeOOH)が腐食反応に関与するようになる。このとき、試料電極1の電位の卑化が生じる。このような段階では、分極抵抗から予測される平均的な腐食速度(∝1/分極抵抗)では把握できない。つまり、局所的な腐食(孔食等)が加速的に進行し始めると考えられる。 In a dry environment, it is thought that corrosion reactions such as the polarization curve shown in the lower part of FIG. 3 occur. That is, H 2 O supplied from the environment decreases, and iron oxyhydroxide (FeOOH) participates in the corrosion reaction. At this time, the potential of the sample electrode 1 is lowered. At such a stage, the average corrosion rate (∝1/polarization resistance) predicted from the polarization resistance cannot be grasped. In other words, it is considered that localized corrosion (pitting corrosion, etc.) begins to progress at an accelerated rate.

腐食の進行するメカニズムは複雑であり、その詳細は必ずしも定かではない。しかし、電位が卑化したり極小値を示すようになる時期に、試料電極1に孔食等の局部腐食が発生し始めることを発明者は確認している。従って、本発明の腐食センサを用いて試料電極の電位をモニタリングすることにより、腐食反応または腐食形態の変化を検出できることは確かである。 The mechanism by which corrosion progresses is complicated, and its details are not necessarily clear. However, the inventor has confirmed that local corrosion such as pitting corrosion begins to occur in the sample electrode 1 when the potential becomes base or exhibits a minimum value. Therefore, it is certain that by monitoring the potential of the sample electrode using the corrosion sensor of the present invention, it is possible to detect corrosion reactions or changes in corrosion morphology.

M 腐食評価システム
D 測定解析装置
S 腐食センサ
1 試料電極
2 参照電極
3 補助電極
21、31 絶縁層
M Corrosion evaluation system D Measurement analysis device S Corrosion sensor 1 Sample electrode 2 Reference electrode 3 Auxiliary electrode 21, 31 Insulating layer

Claims (8)

大気環境下における腐食を評価する対象である試料金属からなる試料電極と、
該試料電極上に絶縁層を介して配設され、該試料電極の電位の基準となる参照電極と、
該試料電極上に絶縁層を介して該参照電極と同じ面側に配設され、該試料電極と対をなして通電される補助電極とを備え、
該絶縁層は、一方面側から他方面側への通気性を有する絶縁材からなる腐食センサ。
a sample electrode made of a sample metal to be evaluated for corrosion in an atmospheric environment;
a reference electrode disposed on the sample electrode via an insulating layer and serving as a reference for the potential of the sample electrode;
an auxiliary electrode disposed on the sample electrode on the same side as the reference electrode with an insulating layer interposed therebetween and paired with the sample electrode to be energized ;
A corrosion sensor in which the insulating layer is made of an insulating material having air permeability from one side to the other side.
前記参照電極は、Ag/AgCl電極である請求項1に記載の腐食センサ。 The corrosion sensor of claim 1, wherein said reference electrode is an Ag/AgCl electrode. 前記補助電極は、Pt電極である請求項1または2に記載の腐食センサ。 3. The corrosion sensor according to claim 1, wherein said auxiliary electrode is a Pt electrode. 前記絶縁層は、スポンジまたはフィルターである請求項1~3のいずれかに記載の腐食センサ。 The corrosion sensor according to any one of claims 1 to 3, wherein the insulating layer is sponge or filter. 前記試料金属は、鉄または鉄合金である請求項1~4のいずれかに記載の腐食センサ。 The corrosion sensor according to any one of claims 1 to 4, wherein the sample metal is iron or an iron alloy. 前記試料電極は、鋼板である請求項5に記載の腐食センサ。 6. The corrosion sensor according to claim 5, wherein said sample electrode is a steel plate. 請求項1~6のいずれかに記載の腐食センサと、
前記参照電極に対する前記試料電極の電位を測定する電位測定手段と、
該試料電極の電位を閾値と比較して前記試料金属の腐食形態を判定する判定手段と、
を備える腐食評価システム。
a corrosion sensor according to any one of claims 1 to 6;
potential measuring means for measuring the potential of the sample electrode with respect to the reference electrode;
determining means for determining the corrosion form of the sample metal by comparing the potential of the sample electrode with a threshold value;
corrosion rating system.
さらに、前記試料電極と前記補助電極の間で通電させて該試料電極の分極抵抗を算出する分極抵抗算出手段と、
該腐食形態を考慮して該分極抵抗に基づいて腐食速度の指標値を算出する腐食速度算出手段と、
を備える請求項7に記載の腐食評価システム。
further, polarization resistance calculation means for calculating the polarization resistance of the sample electrode by energizing between the sample electrode and the auxiliary electrode;
Corrosion rate calculation means for calculating an index value of the corrosion rate based on the polarization resistance in consideration of the corrosion mode;
8. The corrosion assessment system of claim 7, comprising:
JP2018175848A 2018-09-20 2018-09-20 Corrosion sensors and corrosion evaluation systems Active JP7205126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175848A JP7205126B2 (en) 2018-09-20 2018-09-20 Corrosion sensors and corrosion evaluation systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175848A JP7205126B2 (en) 2018-09-20 2018-09-20 Corrosion sensors and corrosion evaluation systems

Publications (2)

Publication Number Publication Date
JP2020046336A JP2020046336A (en) 2020-03-26
JP7205126B2 true JP7205126B2 (en) 2023-01-17

Family

ID=69901130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175848A Active JP7205126B2 (en) 2018-09-20 2018-09-20 Corrosion sensors and corrosion evaluation systems

Country Status (1)

Country Link
JP (1) JP7205126B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230213464A1 (en) * 2020-06-12 2023-07-06 Tripod Design Co., Ltd. Sensor
AU2021325484A1 (en) * 2020-08-11 2023-04-13 Tripod Design Co., Ltd. Sensor system, sensor device, and sensing method
CN113324895B (en) * 2021-05-26 2024-03-01 武汉科思特仪器股份有限公司 Stainless steel corrosion resistance rapid detection device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203083A (en) 2010-03-25 2011-10-13 Kobe Steel Ltd Method for estimating corrosion rate of metal material
JP2013079830A (en) 2011-10-03 2013-05-02 Hitachi-Ge Nuclear Energy Ltd Corrosion potential sensor and installation structure of corrosion potential sensor
JP2013200271A (en) 2012-03-26 2013-10-03 Osaka Gas Co Ltd Macrocell corrosion evaluation system and macrocell corrosion evaluation method
US20140210494A1 (en) 2013-01-30 2014-07-31 Giatec Scientific Inc. Electrical methods and systems for concrete testing
JP2018017518A (en) 2016-07-25 2018-02-01 株式会社Nttファシリティーズ Corrosion degree estimation method, corrosion degree estimation device and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383659A (en) * 1986-09-29 1988-04-14 Fuji Electric Co Ltd Monitor for atmospheric corrosion
JP3689796B2 (en) * 1996-03-05 2005-08-31 シーシーアイ株式会社 Method for measuring corrosion resistance of heat medium used in cooling or heating / cooling system, measuring device and electrode using the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203083A (en) 2010-03-25 2011-10-13 Kobe Steel Ltd Method for estimating corrosion rate of metal material
JP2013079830A (en) 2011-10-03 2013-05-02 Hitachi-Ge Nuclear Energy Ltd Corrosion potential sensor and installation structure of corrosion potential sensor
JP2013200271A (en) 2012-03-26 2013-10-03 Osaka Gas Co Ltd Macrocell corrosion evaluation system and macrocell corrosion evaluation method
US20140210494A1 (en) 2013-01-30 2014-07-31 Giatec Scientific Inc. Electrical methods and systems for concrete testing
JP2018017518A (en) 2016-07-25 2018-02-01 株式会社Nttファシリティーズ Corrosion degree estimation method, corrosion degree estimation device and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒔田鐵夫,コンクリートの電気的特性に関する基礎的研究,電気設備学会誌,2007年,Vol.27, No.1,p.63

Also Published As

Publication number Publication date
JP2020046336A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP4141841B2 (en) Sensor array and method for electrochemical corrosion monitoring
JP7205126B2 (en) Corrosion sensors and corrosion evaluation systems
JP2007532887A (en) An improved method for measuring local corrosion degree using a multi-electrode array sensor
JP6319195B2 (en) Method of measuring plating thickness of plating material, method of measuring corrosion amount of plating material, and corrosion sensor of plating material
JP2019158377A (en) Measurement method of corrosion rate using acm sensor
JP2019174289A (en) Probe of corrosion environment measurement device and corrosion environment measurement device
US20040020772A1 (en) Method and system for measuring active animal glue concentration in industrial electrolytes
Bastos et al. Concerning the efficiency of corrosion inhibitors as given by SVET
Han et al. Online monitoring of the atmospheric corrosion of aluminium alloys using electrochemical noise technique
RU2378640C1 (en) Method of determining corrosive activity of fuels for jet propulsion motors
JP2019113534A (en) Corrosion environment measuring device, and measure method of liquid film thickness and electrical conductivity using the same
Wu et al. On‐line corrosion and corrosion‐wear monitoring using a modified electrochemical noise technique
JP2690947B2 (en) Dissimilar metal contact corrosion monitoring method and corrosion resistance test equipment
JP5327178B2 (en) Metal corrosion rate prediction method and metal corrosion life prediction system
Kapatou et al. An electrical resistance monitor study of the post-excavation corrosion of archaeological iron
JP4703345B2 (en) Coating film deterioration diagnosis apparatus and coating film deterioration diagnosis method
JPS63259456A (en) Corrosion rate measurement
SU1141327A1 (en) Method of checking protective dielectric coatings
JP2022077635A (en) Corrosion state evaluation system
Kuzmak et al. A coulometric method for estimation of the anti-corrosion efficiency of polymer coatings
JPH095285A (en) Method and device for evaluating organic film
RU1772692C (en) Method of determining corrosion rate of iron and its alloys in electroconductive media
JP2021006763A (en) Probe and corrosion environment measurement device
RU1784908C (en) Metal surface corrosion inhibitor protecting film quality estimating method
JP3777934B2 (en) Method and apparatus for measuring corrosion in non-aqueous organic liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7205126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150