JP3777934B2 - Method and apparatus for measuring corrosion in non-aqueous organic liquids - Google Patents

Method and apparatus for measuring corrosion in non-aqueous organic liquids Download PDF

Info

Publication number
JP3777934B2
JP3777934B2 JP2000016816A JP2000016816A JP3777934B2 JP 3777934 B2 JP3777934 B2 JP 3777934B2 JP 2000016816 A JP2000016816 A JP 2000016816A JP 2000016816 A JP2000016816 A JP 2000016816A JP 3777934 B2 JP3777934 B2 JP 3777934B2
Authority
JP
Japan
Prior art keywords
corrosion
electrochemical
metal
aqueous organic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000016816A
Other languages
Japanese (ja)
Other versions
JP2001208713A (en
Inventor
正純 宮澤
孝夫 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000016816A priority Critical patent/JP3777934B2/en
Publication of JP2001208713A publication Critical patent/JP2001208713A/en
Application granted granted Critical
Publication of JP3777934B2 publication Critical patent/JP3777934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系有機液中における金属材料の腐食測定方法及びその測定装置に関する。詳しくは、非水系有機液中における金属材料の腐食を電気化学的測定法(以下、電気化学的ノイズ法ということがある)により測定する方法及びその測定装置に関する。
本発明の方法により、化学プラント等において有機液と接触する金属材料の腐食を信頼性高く、迅速に、且つ簡便に測定することができる。
【0002】
【従来の技術】
化学プラント等において、有機物からなるプラント液流体と接触する装置内部の金属面、例えば、反応器、蒸留塔、タンク(貯槽)、熱交換器等の内部金属面、及び、これらの相互間を接続する金属配管の内部金属面等においては、その金属材質の腐食がしばしば問題となる。例えば、熱交換器の内部配管では、流体に接する部分が、いわゆる伝熱面になるために腐食を生じ易いことが知られており、このような腐食障害を未然に防止する必要上、その金属表面の腐食速度ないしは腐食傾向を確認しなければならない。
一般に、この種の金属材質の腐食測定法としては、重量減少測定法、電気抵抗測定法及び電気化学的測定法(ノイズ法)等が従来から知られている。
【0003】
これらの中、重量減少測定法(クーポン法又は浸漬試験法とも称される)については、測定対象金属表面と同一材質の金属からなる試料試験片(細片クーポン)を腐食性の試験流体中に浸漬して腐食を進行(該腐食に伴って試料試験片自体の重量が減少する)させておき、一定期間経過(通常の場合、30日〜90日程度)後、該浸漬前後の試料試験片の腐食減量(質量差)から試験期間中の平均的な腐食速度(腐食度)を求める手段である。
この方法の場合、(a)腐食速度を瞬時(リアルタイム)的に測定できないこと、(b)測定結果を得るまでに比較的長時間を要して対応が手遅れになる惧れを有すること、(c)局所腐食を測定できないこと等の不利がある。
【0004】
電気抵抗測定法については、試料試験片を腐食性の試験流体中に浸漬して腐食を進行(該腐食に伴う試料試験自体の断面積の減少に対応して、その電気抵抗値が増加する)させると共に、一定期間毎に該試料試験片の電気抵抗値を測定し、その測定値勾配から該当時間における平均腐食速度を求める手段である。
この方法の場合、(a)腐食速度を瞬時(リアルタイム)的に測定できないこと、(b)測定感度が低くて温度の影響が大であり、且つ高温下での測定ができないこと、(c)局所腐食を測定できない等の不利がある。
【0005】
これらの不都合を改善する方法として電気化学的ノイズ法が知られている。この方法は腐食性流体中に浸漬させた同一金属表面の二個の試料試験片からなる電極間におけるカップリング電流及び電気化学的電位ノイズを測定し、これらの双方を比較することにより金属表面の腐食を測定する手段である。
【0006】
【発明が解決しようとする課題】
しかしながら、電気化学的ノイズ法については、腐食性流体が非水系有機液である場合、有機液中の電解質が母体の金属表面に付着しても金属電極の表面に付着しない限り、電極間に電気回路を形成しないため、腐食測定ができないという問題点がある。
本発明は、非水系有機液中における金属材料表面の腐食状態を電気化学的ノイズ法により信頼性高く、迅速に且つ簡便に測定する方法及びその測定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、かかる事情に鑑み鋭意検討した結果、有機液中に浸漬させる金属電極の表面に予め酸化物を形成させておくと、有機液中の電解質がこの酸化物のところに選択的に付着し、電極間に電気回路が形成されて、腐食測定ができることを見い出し、本発明を完成するに至った。
【0008】
即ち、本発明の要旨は、
1.腐食測定対象の金属表面と同じ材質を有し、且つその表面に酸化物を形成させてなる複数の電極を測定対象と同一の非水系有機液中における腐食条件下に曝らした状態で各電極間の電気化学的電流ノイズ及び電気化学的電位ノイズをそれぞれ測定し、演算処理によって腐食量を算出することを特徴とする非水系有機液中における腐食測定方法
2.腐食測定対象の金属表面と同じ材質を有する複数の電極、該電極の金属表面に酸化物を形成させる手段、該酸化物を形成させてなる電極を非水系有機液中における腐食条件下に曝らす手段、該電極間の電気化学的電流ノイズ及び電気化学的電位ノイズをそれぞれ測定する手段並びに電気化学的電流ノイズ測定値及び電気化学的電位ノイズ測定値から演算処理によって腐食量を算出する手段を具備してなることを特徴とする非水系有機液中における腐食測定装置
、にある。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
(腐食測定方法)
本発明の腐食測定方法は、非水系有機液中における金属材料の腐食を測定対象の金属表面と同じ材質を有し、且つその表面に酸化物を形成させてなる複数の金属電極を用いて同一の腐食条件下にて測定することを特徴とする。
【0010】
ここで非水系有機液とは非水系有機液状物を指し、その具体例としては、例えば化学プラントにおける原料、反応生成物又は溶媒を含んでなるプラント液が挙げられる。
また、金属については、特に限定されるものではないが、その具体例としては、例えばカーボンスチール、ステンレススチール等を挙げることができる。
【0011】
化学プラントにおける非水系有機液からなるプラント液には極く僅かな電解質を含有している場合が多い。この非水系の有機液中に電解質、例えば水が極く僅か存在していると電解質が次第に装置の母材表面に付着し、その電解質に塩素イオン等が溶け込み、母材金属表面で腐食が発生する。
【0012】
この腐食を電気化学的ノイズ法で測定する場合には有機液中の電解質が装置の母材金属表面に付着しても、腐食測定用の金属電極の表面に付着しないと、電極間に電気回路を形成しないために、腐食測定ができない。
【0013】
本発明の測定方法においては、センサーである金属電極の表面に酸化物を形成させておくと、有機液中の電解質は該酸化物の存在するところに、選択的に付着し、電極間に電気回路を形成するため、腐食測定が可能となる。
【0014】
即ち、本発明においては金属電極の表面に酸化物を形成させておくことが重要である。また、金属酸化物の形成方法については、特に制限はなく、金属電極表面を酸化雰囲気下に所定時間放置する方法、金属電極表面を空気雰囲気中に所定時間放置する方法等により該金属電極表面に酸化物被膜を形成させることができる。
なお、上記金属電極の酸化物自体は絶縁物であり、電気的短絡等は生じない。
【0015】
次に電気化学的ノイズ法による金属材質の腐食測定法については特開平9−297117号公報に記載されている。
図1において、非水系の有機物からなる被測定腐食性溶液中に腐食測定対象となる金属表面の同一の材質で、且つ、その表面に酸化物が形成された三個の測定電極を浸漬する。第1の電極1と第2の電極2との間に内部抵抗がほぼゼロの電流測定回路、いわゆる無抵抗電流計4を接続させ、前記第2の電極2と第3の電極3との間には、該電極側に影響を与えず信号電圧を測定し得る電位計5が接続されている。
【0016】
この状態では、電極1と電極2の間には、それぞれ各電極表面の腐食の進行程度に応じたカップリング電流が生じ、電流計4によってカップリング電流が測定される。また、電極2と電極3の間の電位差は電位計5によって測定される。図2は上記電流計4と電位計5によって測定された電流、電位の変化を示したものである。これらの測定結果より腐食率は下記式により算出される。
【0017】
【数1】

Figure 0003777934
【0018】
ここで、ΔEは電位の変化量
ΔIは電流の変化量
Rは腐食の電気化学的抵抗
をそれぞれ示すものである。
【0019】
【数2】
腐食率=K×R
【0020】
ここでKは金属材質と流体性状により決まる係数であり、金属試験片の腐食減量より逆算して求めることもできるし、また測定で求めることができる。
【0021】
(腐食測定装置)
本発明の腐食測定装置とは、腐食測定対象の金属表面と同じ材質を有する複数の電極、該電極の金属表面に酸化物を形成させる手段、該酸化物を形成させてなる電極を非水系有機液中における腐食条件下に曝らす手段、該電極間の電気化学的電流ノイズ及び電気化学的電位ノイズをそれぞれ測定する手段並びに電気化学的電流ノイズ測定値及び電気化学的電位ノイズ測定値から演算処理によって腐食量を算出する手段を具備してなることを特徴とする非水系有機液中における腐食測定装置を指す。
【0022】
【実施例】
以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を越えない限り実施例に限定されるものではない。
【0023】
実施例1
図1に示す装置を用い、且つ金属電極(センサー)の表面を酸化物被膜を形成させたものを用いて、有機溶媒中に浸漬し、電流計4と電位計5によって電流、電位の変化を測定した。図3はその結果を示すものであって、有機溶媒中に水分がない場合には電流、電位はそれぞれ0(A),0(V)を示しているが、これに水分を添加した場合には電流、電位がそれぞれ変化し、腐食の進行程度が測定されることが分る。
図4は有機溶媒流れ中で測定した結果であり、電流、電位の変化の挙動が測定されており、これのデータより腐食の進行が測定できる。
【0024】
比較例1
実施例1において、金属電極表面を酸化物被膜を全く形成させずに実施したこと以外は同様にして行なった。その結果、図5においては、有機溶媒に水分を添加しても電流、電位の変化は見られなかった。図6は図4に用いたものと同じ有機溶媒を用いた場合の電流、電位の変化を示すものであるが、電流、電位は全く変化していない。
【0025】
【発明の効果】
本発明の方法によれば、化学プラント等の有機液中における金属材料の腐食を信頼性高く、迅速に且つ簡便に測定することができる。
【図面の簡単な説明】
【図1】電気化学的測定法の原理を示す図。
【図2】電流及び電位の変化を示す図。
【図3】水分滴加した有機溶媒中における錆センサーの挙動を示す図。
【図4】有機溶媒中における錆センサーの挙動を示す図。
【図5】水分滴加した有機溶媒中における通常センサーの挙動を示す図。
【図6】有機溶媒中における通常センサーの挙動を示す図。
【符号の説明】
1 センサー
2 センサー
3 センサー
4 電流計
5 電位計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring corrosion of a metal material in a non-aqueous organic liquid and a measuring apparatus therefor. Specifically, the present invention relates to a method for measuring corrosion of a metal material in a non-aqueous organic liquid by an electrochemical measurement method (hereinafter sometimes referred to as an electrochemical noise method) and a measurement apparatus therefor.
According to the method of the present invention, corrosion of a metal material in contact with an organic liquid in a chemical plant or the like can be measured with high reliability, quickly, and simply.
[0002]
[Prior art]
In a chemical plant, etc., the metal surface inside the device that comes into contact with the plant liquid fluid made of organic matter, for example, internal metal surfaces such as reactors, distillation towers, tanks (storage tanks), heat exchangers, etc., and the connection between them Corrosion of the metal material often becomes a problem on the inner metal surface of the metal pipe. For example, in the internal piping of a heat exchanger, it is known that the portion in contact with the fluid becomes a so-called heat transfer surface, and thus is susceptible to corrosion. The corrosion rate or corrosion tendency of the surface must be confirmed.
In general, as a method for measuring corrosion of this type of metal material, a weight reduction measurement method, an electric resistance measurement method, an electrochemical measurement method (noise method), and the like are conventionally known.
[0003]
Among these, for the weight loss measurement method (also called the coupon method or immersion test method), a sample test piece (strip coupon) made of the same material as the surface of the metal to be measured is placed in a corrosive test fluid. The specimen is immersed for corrosion to advance (the specimen specimen itself decreases in weight with the corrosion), and after a certain period of time (usually about 30 to 90 days), the specimen specimen before and after the immersion. This is a means for obtaining the average corrosion rate (corrosion degree) during the test period from the corrosion weight loss (mass difference).
In the case of this method, (a) the corrosion rate cannot be measured instantaneously (in real time), (b) it may take a relatively long time to obtain a measurement result, and the response may be too late. c) There are disadvantages such as inability to measure local corrosion.
[0004]
As for the electrical resistance measurement method, the specimen specimen is immersed in a corrosive test fluid and the corrosion progresses (the electrical resistance value increases corresponding to the decrease in the cross-sectional area of the specimen test itself accompanying the corrosion). In addition, the electrical resistance value of the sample test piece is measured at regular intervals, and the average corrosion rate at the corresponding time is obtained from the measured value gradient.
In this method, (a) the corrosion rate cannot be measured instantaneously (in real time), (b) the measurement sensitivity is low, the influence of temperature is large, and the measurement cannot be performed at a high temperature, (c) There are disadvantages such as inability to measure local corrosion.
[0005]
An electrochemical noise method is known as a method for improving these disadvantages. This method measures the coupling current and electrochemical potential noise between electrodes consisting of two specimen specimens of the same metal surface immersed in a corrosive fluid, and compares both of them to determine the surface of the metal surface. It is a means of measuring corrosion.
[0006]
[Problems to be solved by the invention]
However, with regard to the electrochemical noise method, when the corrosive fluid is a non-aqueous organic liquid, the electrolyte in the organic liquid does not adhere to the surface of the metal electrode as long as the electrolyte in the organic liquid does not adhere to the surface of the metal electrode. Since a circuit is not formed, there is a problem that corrosion measurement cannot be performed.
An object of the present invention is to provide a method and an apparatus for measuring the corrosion state of the surface of a metal material in a non-aqueous organic liquid with high reliability, quickly and simply by an electrochemical noise method.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of such circumstances, the inventors of the present invention have made it possible to selectively form an oxide in the organic liquid on the surface of the metal electrode that is immersed in the organic liquid in advance. It was found that an electrical circuit was formed between the electrodes and corrosion could be measured, and the present invention was completed.
[0008]
That is, the gist of the present invention is as follows.
1. Each electrode is exposed to corrosion conditions in the same non-aqueous organic liquid as the object to be measured, with the same material as the metal surface of the object to be measured and oxides formed on the surface. 1. A method for measuring corrosion in a non-aqueous organic liquid, characterized in that electrochemical current noise and electrochemical potential noise are measured, and the amount of corrosion is calculated by arithmetic processing. A plurality of electrodes having the same material as the metal surface to be measured for corrosion, means for forming an oxide on the metal surface of the electrode, and exposing the electrode formed with the oxide to a corrosive condition in a non-aqueous organic liquid Means for measuring the electrochemical current noise and electrochemical potential noise between the electrodes, respectively, and means for calculating the amount of corrosion by arithmetic processing from the electrochemical current noise measurement value and the electrochemical potential noise measurement value. An apparatus for measuring corrosion in a non-aqueous organic liquid, comprising:
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
(Corrosion measurement method)
The corrosion measurement method of the present invention is the same for the corrosion of a metal material in a non-aqueous organic liquid, using a plurality of metal electrodes having the same material as the metal surface to be measured and having oxides formed on the surface. Measured under the corrosive conditions of
[0010]
Here, the non-aqueous organic liquid refers to a non-aqueous organic liquid, and specific examples thereof include a plant liquid containing a raw material, a reaction product, or a solvent in a chemical plant.
Moreover, although it does not specifically limit about a metal, As a specific example, carbon steel, stainless steel, etc. can be mentioned, for example.
[0011]
Plant liquids composed of non-aqueous organic liquids in chemical plants often contain very little electrolyte. If there is very little electrolyte, such as water, in this non-aqueous organic liquid, the electrolyte gradually adheres to the surface of the base material of the device, and chloride ions dissolve into the electrolyte, causing corrosion on the surface of the base metal. To do.
[0012]
When measuring this corrosion by the electrochemical noise method, even if the electrolyte in the organic liquid adheres to the base metal surface of the device, it does not adhere to the surface of the metal electrode for corrosion measurement. Corrosion cannot be measured because it does not form.
[0013]
In the measurement method of the present invention, when an oxide is formed on the surface of a metal electrode that is a sensor, the electrolyte in the organic liquid is selectively attached to the presence of the oxide, and the electrode is electrically connected. Corrosion measurements are possible because the circuit is formed.
[0014]
That is, in the present invention, it is important to form an oxide on the surface of the metal electrode. Further, the method for forming the metal oxide is not particularly limited, and may be applied to the surface of the metal electrode by a method of leaving the metal electrode surface in an oxidizing atmosphere for a predetermined time or a method of leaving the metal electrode surface in an air atmosphere for a predetermined time. An oxide film can be formed.
Note that the oxide of the metal electrode itself is an insulator and does not cause an electrical short circuit or the like.
[0015]
Next, a method for measuring corrosion of a metal material by an electrochemical noise method is described in JP-A-9-297117.
In FIG. 1, three measurement electrodes made of the same material on a metal surface to be measured for corrosion and having an oxide formed on the surface thereof are immersed in a measured corrosive solution made of a non-aqueous organic substance. Between the first electrode 1 and the second electrode 2, a current measuring circuit having a substantially zero internal resistance, a so-called non-resistance ammeter 4 is connected, and between the second electrode 2 and the third electrode 3. Is connected to an electrometer 5 that can measure a signal voltage without affecting the electrode side.
[0016]
In this state, a coupling current is generated between the electrode 1 and the electrode 2 in accordance with the progress of corrosion on the surface of each electrode, and the coupling current is measured by the ammeter 4. The potential difference between the electrode 2 and the electrode 3 is measured by the electrometer 5. FIG. 2 shows changes in current and potential measured by the ammeter 4 and the electrometer 5. From these measurement results, the corrosion rate is calculated by the following equation.
[0017]
[Expression 1]
Figure 0003777934
[0018]
Here, ΔE is a potential change amount ΔI, and a current change amount R is an electrochemical resistance of corrosion.
[0019]
[Expression 2]
Corrosion rate = K x R
[0020]
Here, K is a coefficient determined by the metal material and fluid properties, and can be obtained by back calculation from the weight loss of the metal test piece, or can be obtained by measurement.
[0021]
(Corrosion measuring device)
The corrosion measuring apparatus of the present invention includes a plurality of electrodes having the same material as a metal surface to be measured for corrosion, a means for forming an oxide on the metal surface of the electrode, and an electrode formed with the oxide as a non-aqueous organic material. Means for exposing to corrosive conditions in liquid, means for measuring electrochemical current noise and electrochemical potential noise between the electrodes, and calculation from electrochemical current noise measurement value and electrochemical potential noise measurement value It means a device for measuring corrosion in a non-aqueous organic liquid characterized by comprising means for calculating the amount of corrosion by treatment.
[0022]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the examples unless it exceeds the gist.
[0023]
Example 1
The apparatus shown in FIG. 1 is used, and the surface of the metal electrode (sensor) having an oxide film formed thereon is immersed in an organic solvent. The ammeter 4 and the electrometer 5 change the current and potential. It was measured. FIG. 3 shows the results. When there is no moisture in the organic solvent, the current and potential are 0 (A) and 0 (V), respectively. It can be seen that the current and potential change, and the degree of progress of corrosion is measured.
FIG. 4 shows the results of measurement in an organic solvent flow, in which the behavior of changes in current and potential is measured, and the progress of corrosion can be measured from the data.
[0024]
Comparative Example 1
In Example 1, it carried out similarly except having implemented without forming the oxide film on the metal electrode surface at all. As a result, in FIG. 5, no change in current and potential was observed even when water was added to the organic solvent. FIG. 6 shows changes in current and potential when the same organic solvent as that used in FIG. 4 is used, but the current and potential are not changed at all.
[0025]
【The invention's effect】
According to the method of the present invention, corrosion of a metal material in an organic liquid such as a chemical plant can be measured with high reliability, quickly and simply.
[Brief description of the drawings]
FIG. 1 is a diagram showing the principle of an electrochemical measurement method.
FIG. 2 is a graph showing changes in current and potential.
FIG. 3 is a diagram showing the behavior of a rust sensor in an organic solvent to which moisture is added.
FIG. 4 is a diagram showing the behavior of a rust sensor in an organic solvent.
FIG. 5 is a diagram showing the behavior of a normal sensor in an organic solvent to which moisture is added.
FIG. 6 is a diagram showing the behavior of a normal sensor in an organic solvent.
[Explanation of symbols]
1 Sensor 2 Sensor 3 Sensor 4 Ammeter 5 Electrometer

Claims (4)

腐食測定対象の金属表面と同じ材質を有し、且つその表面に金属電極の酸化物を形成させてなる複数の電極を測定対象と同一の非水系有機液中における腐食条件下に曝らした状態で各電極間の電気化学的電流ノイズ及び電気化学的電位ノイズをそれぞれ測定し、演算処理によって腐食量を算出することを特徴とする非水系有機液中における腐食測定方法。  A state in which a plurality of electrodes having the same material as the metal surface of the corrosion measurement object and an oxide of a metal electrode formed on the surface are exposed to corrosion conditions in the same non-aqueous organic liquid as the measurement object A method for measuring corrosion in a non-aqueous organic liquid, characterized in that electrochemical current noise and electrochemical potential noise between the respective electrodes are respectively measured and an amount of corrosion is calculated by arithmetic processing. 腐食測定対象の金属表面と同じ材質を有する複数の電極、該電極の金属表面に金属電極の酸化物を形成させる手段、該酸化物を形成させてなる電極を非水系有機液中における腐食条件下に曝らす手段、該電極間の電気化学的電流ノイズ及び電気化学的電位ノイズをそれぞれ測定する手段並びに電気化学的電流ノイズ測定値及び電気化学的電位ノイズ測定値から演算処理によって腐食量を算出する手段を具備してなることを特徴とする非水系有機液中における腐食測定装置。  A plurality of electrodes having the same material as the metal surface to be subjected to corrosion measurement, means for forming an oxide of the metal electrode on the metal surface of the electrode, and the electrode formed with the oxide under corrosive conditions in a non-aqueous organic liquid The amount of corrosion is calculated by arithmetic processing from the means for exposing to the electrode, the means for measuring the electrochemical current noise and the electrochemical potential noise between the electrodes, respectively, and the electrochemical current noise measurement value and the electrochemical potential noise measurement value. An apparatus for measuring corrosion in a non-aqueous organic liquid, characterized by comprising: 演算処理が、下記式により行われる請求項1に記載の腐食測定方法
【数1】
△E/△I=R ・・・(式1)
(式1中、ΔEは電位の変化量を表し、ΔIは電流の変化量を表し、Rは腐食の電気化学的抵抗を表す。)
【数2】
腐食率=K×R ・・・(式2)
(式2中、Kは金属材質と流体性状により決まる係数を表し、Rは腐食の電気化学的抵抗を表す。)
The corrosion measurement method according to claim 1, wherein the arithmetic processing is performed by the following formula.
[Expression 1]
ΔE / ΔI = R (Formula 1)
(In Formula 1, ΔE represents the amount of change in potential, ΔI represents the amount of change in current, and R represents the electrochemical resistance of corrosion.)
[Expression 2]
Corrosion rate = K x R (Formula 2)
(In Equation 2, K represents a coefficient determined by the metal material and fluid properties, and R represents the electrochemical resistance of corrosion.)
演算処理が、下記式により行われる請求項2に記載の腐食測定装置
【数3】
△E/△I=R ・・・(式1)
(式1中、ΔEは電位の変化量を表し、ΔIは電流の変化量を表し、Rは腐食の電気化学的抵抗を表す。)
【数4】
腐食率=K×R ・・・(式2)
(式2中、Kは金属材質と流体性状により決まる係数を表し、Rは腐食の電気化学的抵抗を表す。)
The corrosion measurement apparatus according to claim 2, wherein the arithmetic processing is performed by the following formula.
[Equation 3]
ΔE / ΔI = R (Formula 1)
(In Formula 1, ΔE represents the amount of change in potential, ΔI represents the amount of change in current, and R represents the electrochemical resistance of corrosion.)
[Expression 4]
Corrosion rate = K x R (Formula 2)
(In Equation 2, K represents a coefficient determined by the metal material and fluid properties, and R represents the electrochemical resistance of corrosion.)
JP2000016816A 2000-01-26 2000-01-26 Method and apparatus for measuring corrosion in non-aqueous organic liquids Expired - Fee Related JP3777934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000016816A JP3777934B2 (en) 2000-01-26 2000-01-26 Method and apparatus for measuring corrosion in non-aqueous organic liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000016816A JP3777934B2 (en) 2000-01-26 2000-01-26 Method and apparatus for measuring corrosion in non-aqueous organic liquids

Publications (2)

Publication Number Publication Date
JP2001208713A JP2001208713A (en) 2001-08-03
JP3777934B2 true JP3777934B2 (en) 2006-05-24

Family

ID=18543898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000016816A Expired - Fee Related JP3777934B2 (en) 2000-01-26 2000-01-26 Method and apparatus for measuring corrosion in non-aqueous organic liquids

Country Status (1)

Country Link
JP (1) JP3777934B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019826A (en) * 1996-04-30 1998-01-23 Mitsubishi Chem Corp Apparatus for measuring corrosion of metallic material
JPH1019824A (en) * 1996-04-30 1998-01-23 Mitsubishi Chem Corp System for assisting corrosion control of metallic material
JP3583568B2 (en) * 1996-11-15 2004-11-04 三菱化学株式会社 Water quality control method for circulating cooling water
CN100385231C (en) * 1998-12-10 2008-04-30 贝克休斯公司 Electrochemical noise technique for corrosion
JP3760657B2 (en) * 1999-03-05 2006-03-29 三菱化学株式会社 Erosion measuring method and measuring device

Also Published As

Publication number Publication date
JP2001208713A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
US6077418A (en) Corrosion monitoring
US6683463B2 (en) Sensor array for electrochemical corrosion monitoring
US7309414B2 (en) Method for measuring localized corrosion rate with a multi-electrode array sensor
US6919729B2 (en) Corrosivity measuring device with temperature compensation
JP2001091299A (en) Electric resistance sensor for corrosion rate measurement and manufacturing method therefor, and corrosion rate measuring method using the sensor and the method
US8506777B2 (en) Localized corrosion monitoring device for limited conductivity fluids
Hilbert Monitoring corrosion rates and localised corrosion in low conductivity water
JP7205126B2 (en) Corrosion sensors and corrosion evaluation systems
KR101477962B1 (en) Apparatus and method for detecting pitting corrosion of metal using acoustic emission method
JP3777934B2 (en) Method and apparatus for measuring corrosion in non-aqueous organic liquids
JPH06201636A (en) Method and device for measuring local corrosion speed in cooling water system
JPH09297117A (en) Corrosion measuring device for metallic material
JP2008209180A (en) Measuring electrode, corrosion monitoring device, and corrosion monitoring method
JPH1019826A (en) Apparatus for measuring corrosion of metallic material
Rybalka et al. Determination of AISI 304 steel corrosion rate in the HCl solutions by the method of measuring specimen ohmic resistance
JP3196688B2 (en) Corrosion monitoring method and apparatus
JPH05322831A (en) Test piece
JP2000162120A (en) Method and device for predicting obstacle of water system
JPH1151849A (en) Method for monitoring corrosion of metal
JP3760657B2 (en) Erosion measuring method and measuring device
JPH1019824A (en) System for assisting corrosion control of metallic material
JP3853250B2 (en) Local corrosion sensor, local corrosion detection method and local corrosion detection apparatus using the local corrosion sensor
JPS63259456A (en) Corrosion rate measurement
JPH0612355B2 (en) Metal surface contamination degree detection method
JP3277223B2 (en) Rust stabilization degree evaluation method and rust stabilization degree measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees