JPH09297117A - Corrosion measuring device for metallic material - Google Patents

Corrosion measuring device for metallic material

Info

Publication number
JPH09297117A
JPH09297117A JP13267696A JP13267696A JPH09297117A JP H09297117 A JPH09297117 A JP H09297117A JP 13267696 A JP13267696 A JP 13267696A JP 13267696 A JP13267696 A JP 13267696A JP H09297117 A JPH09297117 A JP H09297117A
Authority
JP
Japan
Prior art keywords
corrosion
current
same
metal
measurement data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13267696A
Other languages
Japanese (ja)
Inventor
Masazumi Miyazawa
正純 宮澤
Yutaka Tanaka
豊 田中
Shigeo Iwahashi
茂雄 岩橋
Kenji Morita
謙司 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP13267696A priority Critical patent/JPH09297117A/en
Publication of JPH09297117A publication Critical patent/JPH09297117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To grasp the state of corrosion with high reliability by exposing a metal electrode of the same material as a metal surface to be measured to accumulate current measurement data, exposing a metal sample of the same material to measure the corrosion degree from the corrosion loss, and comparing the current measurement data with the corrosion degree measurement data. SOLUTION: Measuring electrodes 21, 22, 23 of the same material as a metal surface to be measured are dipped in a corrosive solution 12 and exposed to the same corrosive condition. A coupling current (a) is generated between the electrodes 21, 22, and accumulated in the data memory part 72 of a computer 71 in time series. An electrochemical current noise (b) and an electrochemical potential noise (c) are also accumulated in the data memory part 72. Further, a sample test piece 61 of the same material is used, and the corrosion degree (d) obtained by dipping it in the corrosive solution 12 for a fixed time under the same condition and then measuring the corrosion loss is also accumulated in the memory part 72. In the computer 71, corrosion coefficients K1 , K2 , K3 are calculated, and corrosion speeds C1 , C2 , C3 and average corrosion speed C4 are then calculated to easily measure the general corrosion and local corrosion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属材質の腐食測
定に適用される腐食測定装置に関し、さらに詳しくは、
金属材質の全面腐食および局所腐食を測定して、該全面
腐食および局所腐食の状態を把握可能にした電気化学的
ノイズ法による腐食測定装置に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring corrosion of metal materials, and more particularly, to an apparatus for measuring corrosion.
The present invention relates to a corrosion measuring device by an electrochemical noise method capable of measuring general corrosion and local corrosion of a metal material and grasping the states of the general corrosion and local corrosion.

【0002】[0002]

【従来の技術】化学プラントなどにおいて、冷却水また
はプラント液などの流体と接触する装置内部の金属面、
この場合には、反応器、蒸留塔、タンク(貯槽)、熱交
換器の各内部金属面、それに、これらの相互間を接続す
る金属配管の各内部金属面などでは、その金属材質の腐
食がしばしば問題となる。即ち、例えば、熱交換器の内
部配管では、流体に接する部分が、いわゆる伝熱面にな
るために腐食を生じ易いことが知られており、このよう
な腐食障害を未然に防止する必要上、該当金属表面の腐
食速度ないしは腐食傾向を確認しなければならない。
2. Description of the Related Art In a chemical plant or the like, a metal surface inside a device that comes into contact with a fluid such as cooling water or plant liquid,
In this case, the corrosion of the metal material on the internal metal surfaces of the reactor, the distillation tower, the tank (reservoir), the heat exchanger, and the internal metal surfaces of the metal piping connecting these components to each other, etc. Often a problem. That is, for example, in the internal piping of the heat exchanger, it is known that the portion in contact with the fluid is likely to be corroded because it becomes a so-called heat transfer surface, and it is necessary to prevent such a corrosion obstacle beforehand. The corrosion rate or tendency of the metal surface must be checked.

【0003】一般に、この種の金属材質の腐食測定法と
しては、従来からよく知られている如く、重量減少測定
法と分極抵抗測定法(直流分極抵抗法、交流分極抵抗
法、インピーダンス法)と電気抵抗測定法とのそれぞれ
がある。ここで、これらの各測定法における概要と作用
の得失との詳細を次に述べる。
[0003] In general, as methods for measuring the corrosion of metal materials of this type, as is well known, a weight loss measurement method and a polarization resistance measurement method (DC polarization resistance method, AC polarization resistance method, impedance method) are known. Each with electrical resistance measurement method. Here, the outline and the details of the advantages and disadvantages of each of these measurement methods will be described below.

【0004】前記重量減少測定法(クーポン法または浸
漬試験法とも称される)は、測定対象金属表面と同一材
質の金属からなる試料試験片(細片クーポン)を腐食性
の試験流体中に浸漬して腐食を進行(該腐食に伴って試
料試験片自体の重量が減少する)させておき、一定期間
経過(通常の場合、30日〜90日程度)後、該浸漬前
後の試料試験片の腐食減量(質量差)から試験期間中の
平均的な腐食速度(腐食度)を求める手段である。
In the weight loss measurement method (also called a coupon method or an immersion test method), a sample test piece (strip coupon) made of the same material as the surface of a metal to be measured is immersed in a corrosive test fluid. The corrosion is allowed to proceed (the weight of the sample test piece itself decreases with the corrosion), and after a certain period of time (usually about 30 to 90 days), the sample test piece before and after the immersion is removed. It is a means to determine the average corrosion rate (corrosion rate) during the test period from the corrosion weight loss (mass difference).

【0005】本重量減少測定法では、(a)腐食速度を
瞬時(リアルタイム)的に測定できないこと、(b)測
定結果を得るまでに比較的長時間を要して対応が手遅れ
になる惧れを有すること、(c)局所腐食を測定できな
いことなどの不利がある。
In this weight loss measuring method, (a) the corrosion rate cannot be measured instantaneously (real time), and (b) it takes a relatively long time to obtain the measurement result, and the response may be too late. And (c) local corrosion cannot be measured.

【0006】前記分極抵抗測定法は、電気化学的な分極
抵抗から測定時点での腐食速度を求める手段、即ち、複
数の試料試験片を相互に対極となるように腐食性の試験
流体中に浸漬して腐食を進行させた状態で、該各試料試
験片間に直流または交流の微弱な一定電流を通電し、該
通電によって生ずる電流または電位の変化を測定するこ
とで、瞬時(リアルタイム)の全面腐食速度を求める手
段である。
The polarization resistance measuring method is a means for determining the corrosion rate at the time of measurement from electrochemical polarization resistance, that is, immersing a plurality of sample test pieces in a corrosive test fluid so that they are opposite to each other. In the state where the corrosion has progressed, a weak constant current of DC or AC is applied between the test specimens, and a change in the current or potential caused by the current is measured, thereby instantaneously (in real time) over the entire surface. It is a means to determine the corrosion rate.

【0007】本分極抵抗測定法では、(a)測定感度が
低くて温度の影響が大であり、且つ高温下での測定がで
きないこと、(b)局所腐食を測定できないことなどの
不利がある。
The polarization resistance measurement method has disadvantages such as (a) the measurement sensitivity is low, the influence of temperature is large, and measurement at high temperatures cannot be performed, and (b) local corrosion cannot be measured. .

【0008】前記電気抵抗測定法は、試料試験片を腐食
性の試験流体中に浸漬して腐食を進行(該腐食に伴う試
料試験片自体の断面積の減少に対応して、その電気抵抗
値が増加する)させると共に、一定期間毎に該試料試験
片の電気抵抗値を測定し、その測定値勾配から該当時間
における平均腐食速度を求める手段である。
In the electric resistance measurement method, the sample test piece is immersed in a corrosive test fluid to progress corrosion (in accordance with the decrease in the cross-sectional area of the sample test piece itself due to the corrosion, the electric resistance value of the sample test piece is reduced). Is increased), and at the same time, the electric resistance value of the sample test piece is measured at regular intervals, and the average corrosion rate at the corresponding time is obtained from the measured value gradient.

【0009】本電気抵抗測定法では、(a)腐食速度を
瞬時(リアルタイム)的に測定できないこと、(b)測
定感度が低くて温度の影響が大であり、且つ高温下での
測定ができないこと、(c)局所腐食を測定できないこ
となどの不利がある。
In the present electric resistance measurement method, (a) the corrosion rate cannot be measured instantaneously (real time); (b) the measurement sensitivity is low, the influence of the temperature is large, and the measurement at a high temperature cannot be performed. (C) Local corrosion cannot be measured.

【0010】そこで、これらの不都合を改善する手段と
して、電気化学的ノイズ法が米国特許第5139627
号で提案されている。本提案は、腐食性流体中に浸漬さ
せた同一金属表面の2個の試料試験片からなる電極間の
カップリング電流と電気化学的電流ノイズとの測定をな
し、これらの双方を比較することで金属表面の局所腐食
の程度を判断する手段であり、さらに、2個の電極間に
生じている電気化学的電位ノイズを測定し、該電気化学
的電位ノイズと前記電気化学的電流ノイズとの比較で抵
抗/インピーダンスノイズを得た後、該抵抗/インピー
ダンスノイズ出力と前記局所腐食の程度の出力とを比較
して局所腐食の腐食速度を判断する手段である。
Therefore, as a means for improving these disadvantages, an electrochemical noise method is disclosed in US Pat. No. 5,139,627.
No. has been proposed. This proposal measures the coupling current between the electrodes consisting of two specimens of the same metal surface immersed in a corrosive fluid and the electrochemical current noise, and compares both of them. A means for determining the degree of local corrosion of a metal surface, further measuring electrochemical potential noise generated between two electrodes, and comparing the electrochemical potential noise with the electrochemical current noise. Means for determining the corrosion rate of local corrosion by comparing the resistance / impedance noise output with the output of the degree of local corrosion.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、前記提
案に係る電気化学的ノイズ法は、1つの腐食測定法とし
ての基本的な原理を開示するだけのもので、工業的に有
効且つ適切な腐食速度や腐食度の絶対値測定を具体的に
示してはおらず、さらには、信頼性のある局所腐食の監
視をなし得ないものであった。
However, the electrochemical noise method according to the above proposal only discloses the basic principle as one corrosion measurement method, and is industrially effective and has an appropriate corrosion rate. It does not specifically show the measurement of the absolute value of the corrosion rate or the degree of corrosion, and furthermore, cannot reliably monitor local corrosion.

【0012】本発明は、このような実情に鑑み、前記電
気化学的ノイズ法を用いて、金属表面の全面腐食および
局所腐食の腐食速度を信頼性よく工業的にも有利に監視
し得るようにした金属材質の腐食測定装置を提供するこ
とである。
In view of the above situation, the present invention enables reliable and industrially advantageous monitoring of corrosion rates of general corrosion and local corrosion of metal surfaces by using the electrochemical noise method. To provide a corrosion measuring device for a metal material.

【0013】[0013]

【課題を解決するための手段】前記目的を達成するため
に、本発明に係る請求項1に記載の発明は、腐食測定対
象の金属表面と同一もしくはほぼ同一材質の複数個の金
属電極を同一もしくはほぼ同一の腐食条件下に曝らした
状態で、該各金属電極間のカップリング電流および電気
化学的電流ノイズをそれぞれに測定する腐食電流測定手
段と、前記と同一もしくはほぼ同一材質の金属試料を同
一もしくはほぼ同一の腐食条件下に曝らした状態で、該
金属試料の腐食減量から腐食度を測定する腐食度測定手
段と、前記腐食電流測定手段で測定されたカップリング
電流および電気化学的電流ノイズの各電流測定データを
取り入れて時系列に蓄積すると共に、前記腐食度測定手
段で測定された腐食度測定データを取り入れて蓄積する
データ記憶手段と、前記データ記憶手段に蓄積した各電
流測定データと腐食度測定データとを相互に対比してそ
れぞれの腐食係数を算出する腐食係数算出手段と、前記
各電流測定データと前記腐食係数算出手段で算出された
対応する各腐食係数とから、それぞれの腐食速度および
平均腐食速度を算出する腐食速度算出手段と、前記腐食
速度算出手段で算出した腐食速度および平均腐食速度を
時系列に出力表示する出力表示手段とを備えることを特
徴とする金属材質の腐食測定装置である。
In order to achieve the above object, the invention according to claim 1 according to the present invention is characterized in that a plurality of metal electrodes made of the same or substantially the same material as the metal surface to be measured for corrosion are the same. Alternatively, a metal sample of the same or substantially the same material as the corrosion current measuring means for measuring the coupling current and the electrochemical current noise between the metal electrodes under the condition of being exposed to substantially the same corrosion conditions. Under the same or almost the same corrosion condition, the corrosion degree measuring means for measuring the corrosion degree from the corrosion weight loss of the metal sample, and the coupling current and electrochemical measured by the corrosion current measuring means. Data storage means for taking in and accumulating each current measurement data of current noise in time series, and for taking in and accumulating the corrosion degree measurement data measured by the corrosion degree measuring means Corrosion coefficient calculation means for calculating each corrosion coefficient by mutually comparing each current measurement data and corrosion degree measurement data accumulated in the data storage means, and calculated by each current measurement data and the corrosion coefficient calculation means Corrosion rate calculation means for calculating respective corrosion rates and average corrosion rates from corresponding corresponding corrosion coefficients, and output display means for outputting and displaying the corrosion rates and average corrosion rates calculated by the corrosion rate calculation means in time series. A corrosion measuring device for metallic materials, comprising:

【0014】本発明の腐食測定装置では、先ず、腐食条
件下に曝らされた各金属電極間のカップリング電流およ
び電気化学的電流ノイズが、腐食電流測定手段によって
測定された後にデータ記憶手段に時系列で蓄積され、ま
た、同一腐食条件下に曝らされた金属試料の腐食度が、
腐食度測定手段によって測定された後にデータ記憶手段
に時系列で蓄積される。次いで、腐食係数算出手段によ
って各電流測定データと腐食度測定データとが相互に対
比されることでそれぞれの腐食係数を算出し、引続き、
腐食速度算出手段によって各電流測定データと対応する
各腐食係数とからそれぞれの腐食速度および平均腐食速
度が算出され、且つ該算出された腐食速度および平均腐
食速度が出力表示手段によって時系列で出力表示される
ことになる。
In the corrosion measuring apparatus of the present invention, first, the coupling current and the electrochemical current noise between the metal electrodes exposed to the corrosive condition are stored in the data storage means after being measured by the corrosion current measuring means. Corrosion of metal samples accumulated in time series and exposed under the same corrosion conditions
After being measured by the corrosion degree measuring means, it is accumulated in time series in the data storage means. Next, the corrosion coefficient calculation means calculates each corrosion coefficient by comparing each current measurement data and corrosion degree measurement data with each other, and subsequently,
Corrosion rates and average corrosion rates are calculated from the respective current measurement data and corresponding corrosion coefficients by the corrosion rate calculation means, and the calculated corrosion rates and average corrosion rates are output and displayed in time series by the output display means. Will be done.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る金属材質の腐
食測定装置の実施形態例につき、図1ないし図5を参照
して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a metal material corrosion measuring apparatus according to the present invention will be described below in detail with reference to FIGS.

【0016】図1は、本実施形態例を含む腐食測定装置
の全体構成の概要を示すブロック図であり、ここでは、
本実施形態例を含む腐食測定装置全体の構成とその作用
ならびに効果について述べる。
FIG. 1 is a block diagram showing an outline of the overall configuration of a corrosion measuring apparatus including this embodiment.
The configuration of the entire corrosion measuring apparatus including the present embodiment, its operation and effects will be described.

【0017】この図1に示す装置構成において、本実施
形態例による腐食測定装置は、内部に所要量の腐食性溶
液12を容納した腐食測定容器11を有しており、該腐
食性溶液12中には、腐食測定対象となる金属表面と同
一またはほぼ同一の材質(以下、単に同一材質という)
の3個の測定電極、この場合、第1、第2および第3の
各電極21、22、23が浸漬されて、該金属表面と同
一またはほぼ同一の腐食条件(以下、単に同一腐食条件
という)下、この場合、同一またはほぼ同一の温度条件
(以下、単に同一温度条件という)の下に曝らされてい
る。
In the apparatus configuration shown in FIG. 1, the corrosion measuring apparatus according to the present embodiment has a corrosion measuring container 11 in which a required amount of corrosive solution 12 is stored. Is the same or almost the same material as the metal surface to be measured for corrosion (hereinafter simply referred to as the same material)
In this case, the three measurement electrodes, in this case, the first, second, and third electrodes 21, 22, and 23 are immersed in the same or almost the same corrosion condition as the metal surface (hereinafter simply referred to as the same corrosion condition). In this case, exposure is performed under the same or almost the same temperature condition (hereinafter simply referred to as the same temperature condition).

【0018】また、前記第1の電極21と第2の電極2
2間には、内部抵抗がほぼゼロの電流測定回路、いわゆ
る無抵抗電流計(zero resistance ammerter)24を接
続させ、前記第2の電極22と第3の電極23間には、
該電極側に影響を与えずに信号電圧を測定し得る入力イ
ンピーダンスが非常に大きいアンプ回路、ここではバッ
ファー回路25を接続させてある。
Further, the first electrode 21 and the second electrode 2
Between the two, a current measuring circuit having an internal resistance of almost zero, that is, a so-called zero resistance ammerter 24 is connected, and between the second electrode 22 and the third electrode 23,
An amplifier circuit having a very large input impedance capable of measuring a signal voltage without affecting the electrode side, here a buffer circuit 25 is connected.

【0019】従って、この態様の場合、前記第1の電極
21と第2の電極22間には、それぞれの各電極表面の
腐食の進行程度に応じたカップリング電流(結合電流:
me an)aを生じ、該カップリング電流aは、前記無抵
抗電流計24によって測定され、且つ後述する信号処理
をなした上で、コンピュータ71のデータ記憶部72に
時系列で蓄積される。
Accordingly, in the case of this embodiment, a coupling current (coupling current:
Ime an ) a, and the coupling current a is measured by the non-resistance ammeter 24, and after signal processing described later, is accumulated in the data storage unit 72 of the computer 71 in time series. .

【0020】このとき、電気化学的電流ノイズ(In
bについては、前記カップリング電流aの変動をフィル
ター回路、特にバンドパスフィルター回路26によっ
て、その低周波数領域、特に1Hz程度以下の周波数領
域、好ましくは0.01〜1Hz程度の周波数領域の電
流変動を測定して得ることができ、該測定された電気化
学的電流ノイズbもまた後述する信号処理をなした上
で、コンピュータ71のデータ記憶部72に時系列で蓄
積される。ここで、この電気化学的電流ノイズbは、コ
ンピュータ71に取り込まれたカップリング電流aをし
かるべく演算処理し、その標準偏差を求めることによっ
ても同様に得られる。
At this time, the electrochemical current noise (I n )
Regarding b, the fluctuation of the coupling current a is filtered by a filter circuit, particularly a band-pass filter circuit 26, to reduce the current fluctuation in a low frequency region, particularly in a frequency region of about 1 Hz or less, preferably in a frequency region of about 0.01 to 1 Hz. Is measured, and the measured electrochemical current noise b is also time-sequentially stored in the data storage unit 72 of the computer 71 after performing signal processing described later. Here, the electrochemical current noise b can be obtained in the same manner by appropriately calculating the coupling current a taken into the computer 71 and calculating the standard deviation thereof.

【0021】一方、電気化学的電位ノイズ(Vn )cに
ついては、前記第2の電極22と第3の電極23間の電
位差(Vmean)を前記バッファー回路25によって測定
すると共に、この電位差の変動をフィルター回路、特に
バンドパスフィルター回路27によって、その低周波数
領域、特に1Hz程度以下の周波数領域、好ましくは
0.01〜1Hz程度の周波数領域の電位差変動を測定
して得ることができ、該測定された電気化学的電位ノイ
ズcもまた後述する信号処理をなした上で、コンピュー
タ71のデータ記憶部72に時系列で蓄積される。ここ
でも、この電気化学的電位ノイズcは、前記電位差を直
接コンピュータ71に取り込んでしかるべく演算処理
し、その標準偏差を求めることによっても同様に得られ
る。
On the other hand, with respect to the electrochemical potential noise (V n ) c, the potential difference (V mean ) between the second electrode 22 and the third electrode 23 is measured by the buffer circuit 25, and the potential difference of this potential difference is measured. The fluctuation can be obtained by measuring a potential difference fluctuation in a low frequency region, particularly in a frequency region of about 1 Hz or less, preferably in a frequency region of about 0.01 to 1 Hz, by a filter circuit, particularly a band-pass filter circuit 27. The measured electrochemical potential noise c is also subjected to signal processing, which will be described later, and is stored in the data storage unit 72 of the computer 71 in time series. Also in this case, the electrochemical potential noise c can be obtained in the same manner by directly taking the potential difference into the computer 71, subjecting the computer 71 to appropriate arithmetic processing, and calculating the standard deviation.

【0022】次に、前記各測定データ信号(電流および
電圧の各測定データ)をコンピュータ61に入力するま
でのデータ処理の具体的な回路手段の詳細を図2
(a)、(b)および図3(a)、(b)に示す。
Next, the details of specific circuit means for data processing until each measurement data signal (each measurement data of current and voltage) is inputted to the computer 61 will be described with reference to FIG.
(A), (b) and FIGS. 3 (a), (b).

【0023】図2(a)、(b)は、同上データ処理回
路をアナログ回路によって構成したときの一例である。
この場合、先ず、前記電流信号、即ち、前記第1の電極
21と第2の電極22間のカップリング電流aは、同図
(a)にみられるように、無抵抗電流計24によって測
定されると共に、その電流信号の一方は、信号の2乗平
均を求めるRMS回路→求めた信号を直流に変換するD
C回路→直流に変換された信号を対数に変換するLOG
回路からなるコンバータ(以下、対数コンバータとい
う)31によって対数変換され、さらに、アナログ/デ
ジタルコンバータ(以下、A/Dコンバータという)3
2によってデジタル変換された後、前記コンピュータ7
1にカップリング電流(Imean)aとして入力され、電
流信号の他方は、バンドパスフィルター回路26によっ
て1Hz程度以下の周波数成分が取り出された上で、同
様に対数コンバータ41によって対数変換され、さら
に、A/Dコンバータ42によってデジタル変換された
後、前記コンピュータ71に電気化学的電流ノイズ(I
n )bとして入力される。
FIGS. 2A and 2B show an example in which the data processing circuit is formed by an analog circuit.
In this case, first, the current signal, that is, the coupling current a between the first electrode 21 and the second electrode 22 is measured by a non-resistance ammeter 24 as shown in FIG. At the same time, one of the current signals is an RMS circuit for calculating the square mean of the signal → D for converting the obtained signal to DC.
C circuit → LOG to convert DC converted signal to logarithm
The logarithmic conversion is performed by a converter (hereinafter, referred to as a logarithmic converter) 31 composed of a circuit, and further, an analog / digital converter (hereinafter, referred to as an A / D converter) 3
2 after the digital conversion by the computer 7
1 is input as a coupling current (I mean ) a, and the other of the current signals is subjected to frequency conversion of about 1 Hz or less by the band-pass filter circuit 26, and is similarly log-converted by the log converter 41, and , After being digitally converted by the A / D converter 42, the computer 71 supplies an electrochemical current noise (I
n ) Input as b.

【0024】次いで、前記電圧信号、即ち、前記第2の
電極22と第3の電極23間の電位差は、同図(b)に
みられるように、バッファー回路25によって測定さ
れ、且つこの信号からバンドパスフィルター回路27に
よって1Hz程度以下の周波数成分が取り出された上
で、ここでも、対数コンバータ51によって対数変換さ
れ、さらに、A/Dコンバータ52によってデジタル変
換された後、前記コンピュータ71に電気化学的電位ノ
イズ(Vn )cとして入力される。
Next, the voltage signal, that is, the potential difference between the second electrode 22 and the third electrode 23 is measured by a buffer circuit 25 as shown in FIG. After a frequency component of about 1 Hz or less is extracted by the band-pass filter circuit 27, the log component is again log-converted by the log converter 51, and the digital component is further converted by the A / D converter 52. Is input as the static potential noise (V n ) c.

【0025】一方、図3(a)、(b)は、前記図2
(a)、(b)のアナログ回路構成に対応してデータ処
理回路をデジタル回路で構成したときの一例で、図中、
同一符号は同一または相当部分を示しており、該デジタ
ル回路構成によっても同様な作用が得られる。
On the other hand, FIG. 3A and FIG.
In the figure, an example is shown in which the data processing circuit is configured by a digital circuit corresponding to the analog circuit configuration of (a) and (b).
The same reference numerals indicate the same or corresponding parts, and the same operation can be obtained by the digital circuit configuration.

【0026】また、前記金属表面と同一材質の金属片を
同一腐食条件下で測定して得た腐食測定データ、即ち、
例えば、前記図1において、前記金属表面と同一材質の
金属からなる試料試験片(細片クーポン)61を用い、
該試料試験片61を前記腐食測定容器11内の腐食性溶
液12中に同一腐食条件下で一定時間浸漬した後、これ
を取り出して、そのときの腐食減量を質量測定器62に
よって測定した質量測定データから求めた腐食度dにつ
いても前記コンピュータ71のデータ記憶部72に蓄積
させる。
Further, corrosion measurement data obtained by measuring a metal piece of the same material as the metal surface under the same corrosion conditions, that is,
For example, in FIG. 1, a sample test piece (strip coupon) 61 made of the same metal as the metal surface is used,
After the sample test piece 61 was immersed in the corrosive solution 12 in the corrosion measurement container 11 under the same corrosion conditions for a certain period of time, it was taken out, and the weight loss at that time was measured by the mass measuring device 62. The corrosion degree d obtained from the data is also stored in the data storage unit 72 of the computer 71.

【0027】而して、前記コンピュータ71において
は、図1に示されている如く、前記データ記憶部72に
蓄積されているそれぞれの各測定データ、つまり、前記
カップリング電流(Imean)aと、電気化学的電流ノイ
ズ(In )bおよび電気化学的電位ノイズ(Vn )c
と、それに腐食度dとの各測定データに基づき、次の
(1)、(2)、(3)式によって対応するそれぞれの
各腐食係数K1、K2、K3 を算出する。
In the computer 71, as shown in FIG. 1, each measurement data stored in the data storage section 72, that is, the coupling current (I mean ) a and , Electrochemical current noise (I n ) b and electrochemical potential noise (V n ) c
Based on the respective measured data of the corrosion rate d and the corrosion rate d, the corresponding corrosion coefficients K 1 , K 2 and K 3 are calculated by the following equations (1), (2) and (3).

【0028】第1の腐食係数K1 の算出(算出過程7
3)
Calculation of the first corrosion coefficient K 1 (calculation step 7)
3)

【式1】 ここで、Cn は、腐食溶液12中に金属試料試験片61
を所定時間浸漬したときの腐食度(mm)dであり、Σ
meanは、腐食度(d)Cn に対応した時間(所定時
間)に相当するImeanの蓄積量(アンペア)である。
(Equation 1) Here, C n is the metal sample test piece 61 in the corrosion solution 12.
Is the degree of corrosion (mm) d when the sample is immersed for a predetermined time.
I mean is the accumulated amount (ampere) of I mean corresponding to the time (predetermined time) corresponding to the corrosion degree (d) C n .

【0029】第2の腐食係数K2 の算出(算出過程7
4)
Calculation of the second corrosion coefficient K 2 (calculation step 7)
4)

【式2】 ここで、ΣIn /Vn は、腐食度Cn に対応した時間
(所定時間)に相当するIn (電気化学的電流ノイズ
b)/Vn (電気化学的電位ノイズc)の比の蓄積量
(アンペア/ボルト)である。
(Equation 2) Here, ΔI n / V n is the accumulation of the ratio of I n (electrochemical current noise b) / V n (electrochemical potential noise c) corresponding to the time (predetermined time) corresponding to the degree of corrosion C n. Quantity (amps / volt).

【0030】第3の腐食係数K3 の算出(算出過程7
5)
Calculation of the third corrosion coefficient K 3 (calculation step 7)
5)

【式3】 ここで、ΣIn と、ΣImeanおよびΣVn とは、腐食度
(d)Cn に対応した時間(所定時間)に相当するIn
(電気化学的電流ノイズb)の蓄積量(アンペア)と、
mean(カップリング電流a)の蓄積量(アンペア)お
よびVn (電気化学的電位ノイズc)の蓄積量(ボル
ト)である。
(Equation 3) Here, .SIGMA.I n and, the .SIGMA.I mean and [sigma] v n, I n corresponding to the corrosion degree (d) time corresponding to C n (predetermined time)
(Ampere) of (electrochemical current noise b)
It is the accumulated amount of I mean (coupling current a) (ampere) and the accumulated amount of V n (electrochemical potential noise c) (volt).

【0031】次に、前記算出したそれぞれの各腐食係数
1、K2、K3 を用いることで、特定の時間周期毎に測
定したImean(カップリング電流a)と、In (電気化
学的電流ノイズb)およびVn (電気化学的電位ノイズ
c)の各測定データに基づき、次の(4)、(5)、
(6)式によって対応するそれぞれの各腐食速度(mm
/年)C1、C2、C3 を算出する。
Next, the calculated respective By using each corrosion coefficients K 1, K 2, K 3 , and was measured every certain time period I mean (coupling current a), I n (Electrochemical (4), (5), and ( n ) based on the measured data of the static current noise b) and V n (electrochemical potential noise c).
The respective corrosion rates (mm
/ Year) is calculated C 1, C 2, C 3 .

【0032】第1の腐食速度C1 の算出(算出過程7
6)
Calculation of the first corrosion rate C 1 (calculation step 7)
6)

【式4】 (Equation 4)

【0033】第2の腐食速度C2 の算出(算出過程7
7)
Calculation of the second corrosion rate C 2 (calculation step 7)
7)

【式5】 [Formula 5]

【0034】第3の腐食速度C3 の算出(算出過程7
8)
Calculation of the third corrosion rate C 3 (calculation step 7)
8)

【式6】 [Formula 6]

【0035】さらに、前記算出した各腐食速度(mm/
年)C1、C2、C3 を算術平均した値を平均腐食速度C
4 として算出する。
Further, each of the calculated corrosion rates (mm /
Year) The average corrosion rate C is the value obtained by arithmetically averaging C 1 , C 2 , and C 3
Calculate as 4 .

【0036】平均腐食速度C4 の算出(算出過程79)Calculation of average corrosion rate C 4 (calculation process 79)

【式7】 [Formula 7]

【0037】ここで、以上のようにして得られる腐食速
度C1、C2、C3 および平均腐食速度C4 の推移は、C
RT101の画面上および/またはプリンター102の
プリントアウトとして出力表示され、同様に前記腐食速
度の瞬時値や、それを時系列で表わすトレンド値の推移
についても出力表示させ得る。
Here, the transitions of the corrosion rates C 1 , C 2 , C 3 and the average corrosion rate C 4 obtained as described above are represented by C
It is output and displayed on the screen of the RT 101 and / or as a printout of the printer 102. Similarly, the instantaneous value of the corrosion rate and a transition of a trend value representing the corrosion rate in a time series can be output and displayed.

【0038】また、一方では、前記カップリング電流
(Imean)aと電気化学的電流ノイズ(In )bとを対
応することによって腐食の程度、換言すると、局所腐食
の程度を把握できる。
On the other hand, by correlating the coupling current (I mean ) a and the electrochemical current noise (I n ) b, the degree of corrosion, in other words, the degree of local corrosion can be grasped.

【0039】この場合、前記In (電気化学的電流ノイ
ズb)/Imean(カップリング電流a)の比によって腐
食の形態を次の4形態に分ける。 全面腐食 :0.001<In /Imean<0.01 混合腐食 :0.01<In /Imean<0.1 局所(部分)腐食:0.1<In /Imean<1.0 ピッチング :1.0<In /Imean
In this case, the form of corrosion is classified into the following four forms according to the ratio of I n (electrochemical current noise b) / I mean (coupling current a). General corrosion: 0.001 <I n / I mean <0.01 Mixed corrosion: 0.01 <I n / I mean <0.1 Local (partial) corrosion: 0.1 <I n / I mean <1. 0 Pitching: 1.0 <I n / I mean

【0040】そして、前記In /Imeanの比は、前記出
力表示により、その瞬時値や、それを時系列で表わした
トレンド値の推移から、目的とする腐食の形態の推移を
把握することができ、さらに、該出力には、前記腐食速
度C1、C2、C3 および平均腐食速度C4 に加えて、前
記カップリング電流(Imean)a、電気化学的電流ノイ
ズ(In )bおよび電気化学的電位ノイズ(Vn )cな
どの各測定データの瞬時値や、それを時系列で表わした
トレンド値の推移、その累積値などをも各別もしくわ相
互に関連付けて表示させることもできるのである。
With respect to the ratio of I n / I mean , the transition of the desired form of corrosion can be grasped from the instantaneous value and the transition of the trend value representing it in time series by the output display. In addition to the corrosion rates C 1 , C 2 , C 3 and the average corrosion rate C 4 , the coupling current (I mean ) a, the electrochemical current noise (I n ) is added to the output. The instantaneous value of each measurement data such as b and the electrochemical potential noise (V n ) c, the transition of the trend value representing it in time series, and the cumulative value thereof are also displayed in association with each other. You can also do it.

【0041】次に、上記実施態様例を適用した実質的且
つ具体的な装置構成と実験例とについて述べる。
Next, a substantial and specific apparatus configuration to which the above-described embodiment example is applied and an experimental example will be described.

【0042】図4は、本具体例による装置構成の概要を
模式的に示す説明図であり、また、図5は、同上実験結
果の一例を示すグラフである。
FIG. 4 is an explanatory view schematically showing the outline of the apparatus configuration according to this example, and FIG. 5 is a graph showing an example of the same experimental results.

【0043】ここでは、図4に示す製品タンク101を
測定対象とし、該製品タンク101の金属製天板102
に対し、本腐食測定装置(電気化学的ノイズ測定装置)
を付設して腐食性ガスによる該金属製天板102の腐食
測定を行なった。ここで、前記製品タンク101につい
ては、製品中に含まれる腐食性ガスによる腐食防止のた
め、内部に窒素ガスを吹き込みシールすることで、その
腐食の調整をなしている。なお、この図4中、符号10
3は、製品タンク101の付帯設備である。
Here, the product tank 101 shown in FIG. 4 is used as a measurement object, and the metal top plate 102 of the product tank 101 is used.
Corresponding corrosion measurement device (electrochemical noise measurement device)
Was attached to measure corrosion of the metal top plate 102 by corrosive gas. Here, in order to prevent the corrosive gas contained in the product from corroding the product tank 101, nitrogen gas is blown into the inside of the product tank 101 to seal the product tank 101 to adjust the corrosion. In FIG. 4, reference numeral 10
3 is an auxiliary equipment of the product tank 101.

【0044】即ち、前記製品タンク101内に対して、
前記図1に示した如く、前記分極抵抗測定法を適用し
て、金属製天板102の内部金属表面と同一金属材質の
3個の電極21、22、23を配置し、且つ内部に腐食
性ガスを導入した上で、先に述べたように、カップリン
グ電流(Imean)a、電気化学的電流ノイズ(In )b
および電気化学的電位ノイズ(Vn )cをそれぞれに測
定した。一方、前記質量減少測定法を適用して、前記金
属表面と同一金属材質の試料試験片61を同一腐食条件
下に曝らし、一定時間経過後、その腐食減量を質量測定
して、該質量測定データから腐食度dを求めた。
That is, with respect to the inside of the product tank 101,
As shown in FIG. 1, the polarization resistance measurement method is applied to dispose three electrodes 21, 22, and 23 of the same metal material as the inner metal surface of the metal top plate 102, and to corrode the inside. After introducing the gas, as described above, the coupling current (I mean ) a and the electrochemical current noise (I n ) b
And electrochemical potential noise (V n) c were measured, respectively. On the other hand, by applying the mass loss measurement method, the sample test piece 61 of the same metal material as the metal surface is exposed to the same corrosion conditions, and after a certain period of time, the weight loss of the corrosion is measured, and the mass measurement is performed. The degree of corrosion d was determined from the data.

【0045】その後、前記(1)、(2)、(3)式で
演算処理して腐食係数K1、K2、K3 をそれぞれに求
め、且つ前記(4)、(5)、(6)と(7)式で演算
処理して平均腐食速度(mm/年)C4 を求めた。その
結果を図5のグラフに示す。
Then, the corrosion coefficients K 1 , K 2 and K 3 are calculated by the equations (1), (2) and (3), and the above-mentioned (4), (5) and (6) are obtained. ) And equation (7) to calculate the average corrosion rate (mm / year) C 4 . The results are shown in the graph of FIG.

【0046】この図5のグラフから明らかなように、本
腐食測定手段を用いた場合の腐食速度は、平均して約
0.3mm/年であり、ここでは、リアルタイムでの腐
食測定が容易に可能である。一方、これに対して質量減
少測定法による腐食速度は、平均して約0.3〜0.4
mm/年であって、ほぼ同様の結果であった。
As is clear from the graph of FIG. 5, the corrosion rate when the present corrosion measuring means is used is about 0.3 mm / year on average, and here it is easy to measure the corrosion in real time. It is possible. On the other hand, the corrosion rate by the mass loss measurement method is about 0.3 to 0.4 on average.
mm / year, which was almost the same result.

【0047】[0047]

【発明の効果】以上、実施態様例によって詳述したよう
に、本発明によれば、金属材質の腐食測定に適用する腐
食測定装置において、腐食測定対象の金属表面と同一も
しくはほぼ同一材質の複数個の金属電極を同一もしくは
ほぼ同一の腐食条件下に曝らした状態で、各金属電極間
のカップリング電流および電気化学的電流ノイズをそれ
ぞれに測定して、該測定された各電流測定データを時系
列で蓄積し、また、前記と同一もしくはほぼ同一材質の
金属試料を同一もしくはほぼ同一の腐食条件下に曝らし
た状態で、金属試料の腐食減量から腐食度を測定して、
該腐食度測定データを蓄積しておき、且つこれらの各電
流測定データと腐食度測定データとを相互に対比してそ
れぞれの腐食係数を算出した上で、各電流測定データと
対応する各腐食係数とからそれぞれの腐食速度および平
均腐食速度を算出するようにしたから、該当金属材質の
全面腐食および局所腐食を容易に測定し得て、該全面腐
食および局所腐食の状態を信頼性よく工業的にも有利に
把握できるという優れた特長を有するものである。
As described above in detail with reference to the embodiments, according to the present invention, in the corrosion measuring apparatus applied to the corrosion measurement of the metal material, a plurality of materials having the same or substantially the same material as the metal surface to be measured for corrosion are used. With the metal electrodes exposed to the same or almost the same corrosion condition, the coupling current and the electrochemical current noise between the metal electrodes were measured respectively, and the measured current measurement data were obtained. Accumulated in time series, and in the state where the metal sample of the same or almost the same material as the above is exposed to the same or almost the same corrosion condition, the corrosion degree is measured from the corrosion weight loss of the metal sample,
The corrosion rate measurement data is accumulated, and the respective current measurement data and the corrosion rate measurement data are compared with each other to calculate the respective corrosion coefficients, and then the respective current measurement data and the corresponding corrosion coefficients. Since the respective corrosion rate and average corrosion rate are calculated from, the general corrosion and local corrosion of the metal material can be easily measured, and the state of the general corrosion and local corrosion can be reliably and industrially determined. Also has an excellent feature that it can be grasped advantageously.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態例を含む腐食測定装置の全体
構成の概要を示すブロック図である。
FIG. 1 is a block diagram illustrating an outline of an overall configuration of a corrosion measuring apparatus including an embodiment of the present invention.

【図2】(a)、(b)は、同上装置における電流、電
圧の各測定データ信号の処理回路をアナログ回路で構成
したときの一例を示すブロック図である。
FIGS. 2A and 2B are block diagrams each showing an example in which a processing circuit for each measurement data signal of a current and a voltage in the above device is configured by an analog circuit.

【図3】(a)、(b)は、同上装置における電流、電
圧の各測定データ信号の処理回路をデジタル回路で構成
したときの一例を示すブロック図である。
FIGS. 3A and 3B are block diagrams each showing an example of a case where a processing circuit for current and voltage measurement data signals in the above device is configured by a digital circuit.

【図4】本実施態様例を含む具体化された腐食測定装置
の概要を模式的に示す説明図である。
FIG. 4 is an explanatory diagram schematically showing an outline of a corrosion measuring device embodied in the present embodiment.

【図5】同上実験結果の一例を示すグラフである。FIG. 5 is a graph showing an example of the same experimental result.

【符号の説明】[Explanation of symbols]

11 腐食測定容器 12 腐食性溶液 21、22、23 電極 24 無抵抗電流計 25 バッファー回路 26、27 バンドパスフィルター回路 31、41、51 対数コンバータ 32、42、52 A/Dコンバータ 61 試料試験片(細片クーポン) 62 質量測定器 71 コンピュータ 72 データ記憶部 73 第1の腐食係数K1 の算出過程 74 第2の腐食係数K2 の算出過程 75 第3の腐食係数K3 の算出過程 76 第1の腐食速度C1 の算出過程 77 第2の腐食速度C2 の算出過程 78 第3の腐食速度C3 の算出過程 79 平均腐食速度C4 の算出過程 81 CRT 82 プリンター 101 製品タンク 102 製品タンクの金属製天板 103 製品タンクの付帯設備 a カップリング電流(Imean) b 電気化学的電流ノイズ(In ) c 電気化学的電位ノイズ(Vn ) d 腐食度11 Corrosion Measuring Container 12 Corrosive Solution 21, 22, 23 Electrode 24 Non-Resistance Ammeter 25 Buffer Circuit 26, 27 Bandpass Filter Circuit 31, 41, 51 Logarithmic Converter 32, 42, 52 A / D Converter 61 Sample Test Piece ( 62 coupon measuring device 71 computer 72 data storage unit 73 calculation process of first corrosion coefficient K 1 74 calculation process of second corrosion coefficient K 2 75 calculation process of third corrosion coefficient K 3 76 first Corrosion rate C 1 calculation process 77 Second corrosion rate C 2 calculation process 78 Third corrosion rate C 3 calculation process 79 Average corrosion rate C 4 calculation process 81 CRT 82 Printer 101 Product tank 102 Product tank 102 Metal top plate 103 Ancillary equipment for product tank a Coupling current (I mean ) b Electrochemical current noise (I n ) c Electricity Chemical potential noise (V n ) d Corrosion degree

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 謙司 福岡県北九州市八幡西区黒崎城石1番1号 三菱化学株式会社黒崎事業所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenji Morita 1-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu-shi, Fukuoka Inside the Mitsubishi Chemical Corporation Kurosaki Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 腐食測定対象の金属表面と同一もしくは
ほぼ同一材質の複数個の金属電極を同一もしくはほぼ同
一の腐食条件下に曝らした状態で、該各金属電極間のカ
ップリング電流および電気化学的電流ノイズをそれぞれ
に測定する腐食電流測定手段と、 前記と同一もしくはほぼ同一材質の金属試料を同一もし
くはほぼ同一の腐食条件下に曝らした状態で、該金属試
料の腐食減量から腐食度を測定する腐食度測定手段と、 前記腐食電流測定手段で測定されたカップリング電流お
よび電気化学的電流ノイズの各電流測定データを取り入
れて時系列に蓄積すると共に、前記腐食度測定手段で測
定された腐食度測定データを取り入れて蓄積するデータ
記憶手段と、 前記データ記憶手段に蓄積した各電流測定データと腐食
度測定データとを相互に対比してそれぞれの腐食係数を
算出する腐食係数算出手段と、 前記各電流測定データと前記腐食係数算出手段で算出さ
れた対応する各腐食係数とから、それぞれの腐食速度お
よび平均腐食速度を算出する腐食速度算出手段と、 前記腐食速度算出手段で算出した腐食速度および平均腐
食速度を時系列に出力表示する出力表示手段とを備える
ことを特徴とする金属材質の腐食測定装置。
1. A coupling current and an electric current between each metal electrode under the condition that a plurality of metal electrodes made of the same or almost the same material as the metal surface to be measured for corrosion are exposed to the same or almost the same corrosion condition. Corrosion current measuring means for respectively measuring chemical current noise and a metal sample of the same or almost the same material as the above are exposed under the same or almost the same corrosion condition, and the corrosion weight loss of the metal sample And a corrosion degree measuring means for measuring, while accumulating in time series the current measurement data of each of the coupling current and the electrochemical current noise measured by the corrosion current measuring means and accumulating in time series, the corrosion degree is measured by the means. Data storage means for taking in and accumulating the corrosion degree measurement data, and the current measurement data and the corrosion degree measurement data accumulated in the data storage means are mutually paired. Corrosion coefficient calculation means for calculating each corrosion coefficient by comparison, and each corrosion rate and average corrosion rate are calculated from each current measurement data and each corresponding corrosion coefficient calculated by the corrosion coefficient calculation means. A corrosion measuring device for a metal material, comprising: a corrosion rate calculating means; and an output displaying means for outputting and displaying the corrosion rate and the average corrosion rate calculated by the corrosion rate calculating means in time series.
JP13267696A 1996-04-30 1996-04-30 Corrosion measuring device for metallic material Pending JPH09297117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13267696A JPH09297117A (en) 1996-04-30 1996-04-30 Corrosion measuring device for metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13267696A JPH09297117A (en) 1996-04-30 1996-04-30 Corrosion measuring device for metallic material

Publications (1)

Publication Number Publication Date
JPH09297117A true JPH09297117A (en) 1997-11-18

Family

ID=15086907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13267696A Pending JPH09297117A (en) 1996-04-30 1996-04-30 Corrosion measuring device for metallic material

Country Status (1)

Country Link
JP (1) JPH09297117A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215188A (en) * 2000-02-02 2001-08-10 Sumitomo Osaka Cement Co Ltd Electric protection tester
JP2002532681A (en) * 1998-12-10 2002-10-02 ベイカー ヒューズ インコーポレイテッド Electrochemical noise technology for corrosion
JP2002286623A (en) * 2001-03-23 2002-10-03 Mitsubishi Chemicals Corp Corrosion measuring device
JP2002286622A (en) * 2001-03-23 2002-10-03 Mitsubishi Chemicals Corp Device for measuring corrosion of metallic material
JP2003075388A (en) * 2001-09-03 2003-03-12 Kurita Water Ind Ltd Method of monitoring local corrosion in carbon steel, and method of preventing local corrosion in carbon steel
JP2011203083A (en) * 2010-03-25 2011-10-13 Kobe Steel Ltd Method for estimating corrosion rate of metal material
JP2011214881A (en) * 2010-03-31 2011-10-27 Kurita Water Ind Ltd Copper pitting corrosion evaluation method
KR101404925B1 (en) * 2006-08-25 2014-06-09 더 보잉 컴파니 Corrosion identification and management system
CN113640206A (en) * 2021-06-22 2021-11-12 苏州市轨道交通集团有限公司 Method and device for calculating corrosion rate of pipeline under dynamic direct current interference

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532681A (en) * 1998-12-10 2002-10-02 ベイカー ヒューズ インコーポレイテッド Electrochemical noise technology for corrosion
JP2001215188A (en) * 2000-02-02 2001-08-10 Sumitomo Osaka Cement Co Ltd Electric protection tester
JP2002286623A (en) * 2001-03-23 2002-10-03 Mitsubishi Chemicals Corp Corrosion measuring device
JP2002286622A (en) * 2001-03-23 2002-10-03 Mitsubishi Chemicals Corp Device for measuring corrosion of metallic material
JP2003075388A (en) * 2001-09-03 2003-03-12 Kurita Water Ind Ltd Method of monitoring local corrosion in carbon steel, and method of preventing local corrosion in carbon steel
JP4581306B2 (en) * 2001-09-03 2010-11-17 栗田工業株式会社 Carbon steel local corrosion monitoring method and carbon steel local corrosion prevention method
KR101404925B1 (en) * 2006-08-25 2014-06-09 더 보잉 컴파니 Corrosion identification and management system
JP2011203083A (en) * 2010-03-25 2011-10-13 Kobe Steel Ltd Method for estimating corrosion rate of metal material
JP2011214881A (en) * 2010-03-31 2011-10-27 Kurita Water Ind Ltd Copper pitting corrosion evaluation method
CN113640206A (en) * 2021-06-22 2021-11-12 苏州市轨道交通集团有限公司 Method and device for calculating corrosion rate of pipeline under dynamic direct current interference
CN113640206B (en) * 2021-06-22 2024-05-10 苏州市轨道交通集团有限公司 Pipeline corrosion rate calculation method and device under dynamic direct current interference

Similar Documents

Publication Publication Date Title
EP1122533B1 (en) Deterioration diagnostic method and equipment thereof
US11892391B2 (en) Field monitoring electrochemical method for anticorrosion performance of organic coatings in seawater environment
JPH09297117A (en) Corrosion measuring device for metallic material
JPH07198643A (en) Method for measuring resistance of solution, method for measuring corrosion rate of metal surface using method thereof and device therefor
US7678260B1 (en) Measurement of cumulative localized corrosion rate using coupled multielectrode array sensors
JP2002286623A (en) Corrosion measuring device
JPH1019826A (en) Apparatus for measuring corrosion of metallic material
JPH04241407A (en) Deterioration diagnosing method for insulating paper of oil-immersed electric apparatus
JPH10142219A (en) Water quality control method for circulation cooling water
JP2002286678A (en) Corrosion control-supporting apparatus for metal material
US4881037A (en) Apparatus and method for measuring the interfacial impedance in an electrochemical cell
JPH1019824A (en) System for assisting corrosion control of metallic material
JP2002286622A (en) Device for measuring corrosion of metallic material
JPH06213869A (en) Method for monitoring main component in plating bath containing simultaneously attached component
US5612621A (en) Method for monitoring cracks and critical concentration by using phase angle
JP3638392B2 (en) Metal residual stress measuring device
GB2365977A (en) Corrosion monitoring system for use in multiple phase solutions
JP3534373B2 (en) Stress corrosion cracking diagnostic device
JP3777934B2 (en) Method and apparatus for measuring corrosion in non-aqueous organic liquids
JPS63259456A (en) Corrosion rate measurement
JP4180426B2 (en) Metal surface measuring device
CN115773979A (en) Power equipment atmospheric corrosion monitoring method and system based on salt spray test system
Lu et al. AC impedance spectroscopy as a technique for investigating corrosion of iron in hot flowing Bayer liquors
JP3265185B2 (en) Corrosion rate measuring method and apparatus
JP3300327B2 (en) Electrode structure for corrosion rate measurement and corrosion rate measurement method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302