JP2001215203A - Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution - Google Patents

Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution

Info

Publication number
JP2001215203A
JP2001215203A JP2000024246A JP2000024246A JP2001215203A JP 2001215203 A JP2001215203 A JP 2001215203A JP 2000024246 A JP2000024246 A JP 2000024246A JP 2000024246 A JP2000024246 A JP 2000024246A JP 2001215203 A JP2001215203 A JP 2001215203A
Authority
JP
Japan
Prior art keywords
current path
electrode
soil
electric conductivity
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000024246A
Other languages
Japanese (ja)
Inventor
Tomoyasu Kawasaki
智康 川▲崎▼
Shiko Ba
志洪 馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kiko Co Ltd
Original Assignee
Kawasaki Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kiko Co Ltd filed Critical Kawasaki Kiko Co Ltd
Priority to JP2000024246A priority Critical patent/JP2001215203A/en
Publication of JP2001215203A publication Critical patent/JP2001215203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric conductivity measuring instrument enhanced in meaurement precision, and to provide a soil conductivity measuring method and an instrument for measuring an electric conductivity of a soil solution enhanced in measuring precision using the electric conductivity measuring instrument. SOLUTION: Current routes (34, the first current route 44, the second current route 46) formed by power supply side electrodes (8, 10, the first electrode 38, the second electrode 40, the third electrode 42) in a measured object (soil 2) are limited in a specified range, voltages are taken out from the current routes by detection side electrodes 12, 14, 48, 50, an influence caused by a foreign matter 36 comprising an insulator and a good conductor contained in the object is evaded to enhance the precision of the electric conductivity, and the measuring precision in the method of measuring the electric conductivity of the soil solution is enhanced by using a measured value therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土壌中の肥料成分
や塩分の動態把握等、導電率測定に用いられる電気伝導
度測定装置、土壌導電率測定方法及び土壌溶液導電率測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric conductivity measuring device, a soil electric conductivity measuring method, and a soil solution electric conductivity measuring device used for measuring electric conductivity such as grasping dynamics of fertilizer components and salts in soil.

【0002】[0002]

【従来の技術】土壌中の肥料成分や塩分の動態把握は、
先ず、土壌溶液の導電率を測定し、その測定値を用いて
土壌成分の含有率を算出することにより行われる。即
ち、土壌の電気伝導度は抵抗の逆数であるから、この電
気伝導度の測定値から土壌導電率(体積抵抗率の逆数)
を算出することができる。そして、この土壌導電率を用
いて土壌溶液の導電率を算出し、この土壌溶液の導電率
を用いて土壌中の肥料等の成分含有率を算出することが
できる。
2. Description of the Related Art To grasp the dynamics of fertilizer components and salts in soil,
First, the conductivity is measured by measuring the conductivity of the soil solution and calculating the content of the soil component using the measured value. That is, since the electric conductivity of the soil is the reciprocal of the resistance, the measured value of the electric conductivity is used to calculate the soil conductivity (the reciprocal of the volume resistivity).
Can be calculated. Then, the conductivity of the soil solution is calculated using the soil conductivity, and the content of components such as fertilizer in the soil can be calculated using the conductivity of the soil solution.

【0003】ところで、土壌の電気伝導度は、土壌中に
電極を直に接触させて測定する方法が簡便であるが、接
触抵抗の影響を回避するため、複数の電極を用いる4極
法が採用されている。この4極法は、例えば、文献「4
極法による土壌カラム内の電気伝導度測定とその応用」
(土壌の物理性、第70号別冊、1994年11月井上
光弘・塩沢昌著)等に開示されて公知であり、また、そ
の商品化も進んでいる。
[0003] By the way, the method of measuring the electrical conductivity of the soil by directly contacting the electrodes with the soil is simple, but the four-electrode method using a plurality of electrodes is adopted in order to avoid the influence of contact resistance. Have been. This quadrupole method is described in, for example, the document “4.
Polar Conductivity Measurement in Soil Columns and Its Application "
(Soil Physical Properties, Vol. 70 Separate Volume, November 1994, written by Mitsuhiro Inoue and Masao Shiozawa) and the like, and their commercialization is in progress.

【0004】従来の電気伝導度測定装置は、例えば、図
22〜図24に示すセンサ100を備えている。このセ
ンサ100は、内部に接着剤102を充填した絶縁支持
筒104の周面部に給電側電極106、108及び検出
側電極110、112が取り付けられている。給電側電
極106、108には、電源114及び参照抵抗116
が直列に接続されているとともに、参照抵抗116の端
子間には電圧計118が接続されいる。また、検出側電
極110、112間には電圧計120が接続されてい
る。このセンサ100を用いて土壌122の電気伝導度
を測定する場合、センサ100を土壌122中に埋設さ
せると、電圧計118には土壌122の電流経路124
を通して流れる電流及び参照抵抗116が有する抵抗値
1 により発生する電圧V1 が検出され、また、電圧計
120には電流経路124中の土壌122から検出側電
極110、112間に発生する電圧V2 が測定される。
検出側電極110、112間の電気抵抗をR2 とする
と、R2 /R1 =V2 /V1 なる関係がある。
[0004] A conventional electric conductivity measuring apparatus includes, for example, a sensor 100 shown in FIGS. In the sensor 100, power supply side electrodes 106 and 108 and detection side electrodes 110 and 112 are attached to a peripheral surface of an insulating support cylinder 104 in which an adhesive 102 is filled. A power supply 114 and a reference resistor 116 are connected to the power supply electrodes 106 and 108.
Are connected in series, and a voltmeter 118 is connected between the terminals of the reference resistor 116. A voltmeter 120 is connected between the detection-side electrodes 110 and 112. When the electric conductivity of the soil 122 is measured using the sensor 100, when the sensor 100 is buried in the soil 122, the voltmeter 118 displays the current path 124 of the soil 122.
The voltage V 1 generated by the current flowing through the sensor and the resistance value R 1 of the reference resistor 116 is detected, and the voltage V 1 generated between the detection electrodes 110 and 112 from the soil 122 in the current path 124 is displayed on the voltmeter 120. 2 is measured.
Assuming that the electric resistance between the detection-side electrodes 110 and 112 is R 2 , there is a relationship of R 2 / R 1 = V 2 / V 1 .

【0005】[0005]

【発明が解決しようとする課題】ところで、この電気伝
導度測定装置では、被測定物におけるセンサ100の周
辺の状況、即ち、植物の根や石、レキ等の不導体や、金
属片等の良導体からなる異物126によって電流経路1
24が乱されるため、真の水分率及び真の土壌溶液導電
率が同じ土壌であっても、測定された電気伝導度の測定
値が真値と異なる値になる場合があり、このような測定
値を用いて算出された土壌導電率も真値と異なることと
なり、土壌溶液導電率に大きな誤差を生じる。
By the way, in this electric conductivity measuring apparatus, the situation around the sensor 100 in the object to be measured, that is, non-conductors such as plant roots, stones, and reeds, and good conductors such as metal pieces and the like. Current path 1 due to foreign matter 126 composed of
24 is disturbed, even if the soil has the same true moisture content and true soil solution conductivity, the measured value of the measured electrical conductivity may be different from the true value. The soil conductivity calculated using the measured values will also be different from the true value, causing a large error in the soil solution conductivity.

【0006】電流経路の変化の影響は、換言すれば、検
量線作成のための予備実験測定と、実際の土壌測定との
間に、物理的な位置関係、即ち、測定環境の違いが誤差
要因になるということである。実際の被測定物である土
壌は、植物の根や導電率に影響する石等を含んでおり、
実験室では予測や再現し難い状況にあり、しかも、特定
の容器内で測定するものではないため、測定誤差を無視
することができない。誤差を多く含む測定値を用いた場
合、電気伝導度と土壌溶液の導電率との相関関係が土壌
の種類によって大きく異なる上、測定した電気伝導度に
大きな誤差が含まれると、それによって算出される土壌
溶液導電率は実際の土壌溶液の導電率と大きく異なるた
め、その実用性に問題があった。
[0006] In other words, the influence of the change in the current path depends on the physical positional relationship between the preliminary experiment measurement for preparing the calibration curve and the actual soil measurement, that is, the difference in the measurement environment is an error factor. It is to become. The soil that is actually measured contains stones that affect the roots and conductivity of plants,
In the laboratory, it is difficult to predict and reproduce the information, and since the measurement is not performed in a specific container, the measurement error cannot be ignored. If a measurement value containing a large amount of error is used, the correlation between the electrical conductivity and the conductivity of the soil solution greatly differs depending on the type of soil, and if the measured electrical conductivity contains a large error, it is calculated accordingly. The conductivity of the soil solution differs greatly from the conductivity of the actual soil solution, and there is a problem in its practicality.

【0007】そこで、本発明は、測定精度を高めた電気
伝導度測定装置を提供するとともに、この電気伝導度測
定装置を用いて測定精度を高めた土壌導電率測定方法及
び土壌溶液導電率測定装置を提供することを目的とす
る。
Therefore, the present invention provides an electric conductivity measuring device with improved measurement accuracy, and a soil conductivity measuring method and a soil solution electric conductivity measuring device with improved measurement accuracy using the electric conductivity measuring device. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明の電気伝導度測定
装置、土壌導電率測定方法及び土壌溶液導電率測定装置
は、被測定物(土壌2)に給電側電極(8、10、第1
の電極38、第2の電極40、第3の電極42)によっ
て形成される電流経路(34、53、第1の電流経路4
4、第2の電流経路46)を特定範囲に限定するととも
に、前記電流経路から電圧を検出側電極(12、14、
48、50)で取り出すように構成し、被測定物に含ま
れる絶縁体や良導体からなる異物(36)による影響を
回避して電気伝導度の測定精度を高め、また、この測定
値を利用することにより、土壌溶液導電率の測定方法の
測定精度を高めることができる。
The electric conductivity measuring device, the soil electric conductivity measuring method and the soil solution electric conductivity measuring device of the present invention provide a power supply side electrode (8, 10, 1st) on an object to be measured (soil 2).
Current path (34, 53, first current path 4) formed by the first electrode 38, the second electrode 40, and the third electrode 42).
4, the second current path 46) is limited to a specific range, and a voltage is detected from the current path to the detection-side electrodes (12, 14,.
48, 50) so as to avoid the influence of a foreign substance (36) made of an insulator or a good conductor contained in an object to be measured, to improve the measurement accuracy of electric conductivity, and to use the measured value. Thereby, the measurement accuracy of the method for measuring the conductivity of the soil solution can be improved.

【0009】請求項1に係る本発明の電気伝導度測定装
置は、絶縁支持体(6)に支持されて対向し、その対向
面間に生じる電流経路(34)を通して被測定物(土壌
2)に電流を流す給電側電極(8、10)と、前記電流
経路から電圧を取り出す検出側電極(12、14)とを
備えたことを特徴とする。即ち、給電側電極によって被
測定物に形成される電流経路(34)が対向する電極の
対向面間に形成され、特定の範囲に確定されて不必要な
拡がりが抑制されており、その電流経路から検出側電極
によって電圧を取り出すことから、被測定物内に含まれ
る絶縁体や良導体等の固形の異物による電流経路の乱れ
が抑制されるので、電気伝導度の測定精度を向上させる
ことができる。
According to a first aspect of the present invention, there is provided an electric conductivity measuring apparatus which is supported by an insulating support (6), faces the object (soil 2) through a current path (34) generated between the opposing surfaces. And a detection-side electrode (12, 14) for extracting a voltage from the current path. That is, a current path (34) formed on the device under test by the power supply side electrode is formed between the opposing surfaces of the opposing electrodes, and is determined in a specific range to suppress unnecessary spread. Since the voltage is taken out from the sensor by the detection side electrode, disturbance of the current path due to solid foreign matter such as an insulator or a good conductor contained in the object to be measured is suppressed, so that the accuracy of measuring the electric conductivity can be improved. .

【0010】請求項2に係る本発明の電気伝導度測定装
置は、被測定物(土壌2)を収容する絶縁支持体(6)
に一定の間隔を設けて配置され、前記被測定物に電流経
路(34)を形成して電流を流す給電側電極(8、1
0)と、前記電流経路内に一定の間隔を以て設置され、
前記電流経路から電圧を取り出す検出側電極(12、1
4)とを備えたことを特徴とする。即ち、絶縁支持体の
内部に被測定物を収容するとともに給電側電極による電
流経路を形成するので、電流経路が絶縁支持体内に特定
されて電流経路の拡がりがなく、特定された電流経路か
ら検出側電極によって電圧を取り出すことから、被測定
物内に含まれる絶縁体や良導体等の固形の異物に電流経
路が乱されることがなく、電気伝導度の測定精度を向上
させることができる。
According to a second aspect of the present invention, there is provided an electric conductivity measuring apparatus, comprising: an insulating support for accommodating an object to be measured (soil 2);
The power supply side electrodes (8, 1) are arranged at regular intervals to form a current path (34) in the device under test and allow a current to flow.
0), and are disposed at regular intervals in the current path,
A detection-side electrode (12, 1, 1) for extracting a voltage from the current path
4). In other words, since the device under test is accommodated inside the insulating support and a current path is formed by the power supply side electrode, the current path is specified within the insulating support and the current path does not spread, and the current path is detected from the specified current path. Since the voltage is extracted by the side electrode, the current path is not disturbed by solid foreign substances such as an insulator and a good conductor contained in the object to be measured, and the measurement accuracy of the electric conductivity can be improved.

【0011】請求項3に係る本発明の電気伝導度測定装
置は、被測定物(土壌2)を収容する絶縁支持体(6)
に第1の電極(38)、この第1の電極を挟んで第2及
び第3の電極(40、42)を備え、前記第1の電極と
前記第2の電極との間に第1の電流経路(44)、前記
第1の電極と前記第3の電極との間に第2の電流経路
(46)を形成して前記被測定物に電流を流す給電側電
極と、前記第1の電流経路又は前記第2の電流経路から
電圧を取り出す検出側電極(48、50)とを備えたこ
とを特徴とする。即ち、絶縁支持体の内部に被測定物を
収容するとともに給電側電極の第1〜第3の電極を以て
第1及び第2の電流経路を形成するので、第1及び第2
の電流経路が絶縁支持体内に特定されて電流経路の拡が
りがなく、特定された第1又は第2の電流経路から検出
側電極によって電圧を取り出すことから、収容範囲外の
被測定物内に含まれる絶縁体や良導体等の固形の異物に
電流経路が乱されることがなく、電気伝導度の測定精度
を向上させることができる。
According to a third aspect of the present invention, there is provided an electric conductivity measuring apparatus, wherein an insulating support (6) for accommodating an object to be measured (soil 2).
A first electrode (38), a second electrode and a third electrode (40, 42) sandwiching the first electrode, and a first electrode between the first electrode and the second electrode. A current path (44), a power supply side electrode that forms a second current path (46) between the first electrode and the third electrode to flow a current through the device under test, A detection-side electrode (48, 50) for extracting a voltage from the current path or the second current path. That is, the first and second current paths are formed by accommodating the DUT inside the insulating support and using the first to third electrodes of the power supply side electrodes.
Current path is specified in the insulating support, and the current path does not spread, and the voltage is taken out from the specified first or second current path by the detection-side electrode. The current path is not disturbed by solid foreign matter such as an insulator or a good conductor, and the accuracy of measuring the electrical conductivity can be improved.

【0012】請求項4に係る本発明の電気伝導度測定装
置は、絶縁支持体内に収容された被測定物に対して対向
電極面間に電流経路を形成して電流を流す給電側電極
と、前記電流経路の側部に設置され、前記電流経路内か
ら電圧を取り出す検出側電極とを備えたことを特徴とす
る。即ち、絶縁体内に収容された被測定物に対向電極面
を持つ給電側電極によって電流経路を形成して電流を流
しているので、その電流経路は絶縁支持体内に限定さ
れ、その拡がりはなく、絶縁体や良導体等の固形の異物
に電流経路が乱されることがない。この電流経路に発生
する電圧を検出側電極で検出するので、電気伝導度の測
定精度を向上させることができる。
According to a fourth aspect of the present invention, there is provided an electric conductivity measuring apparatus according to the present invention, comprising: a power supply side electrode for forming a current path between opposing electrode surfaces with respect to an object to be measured accommodated in an insulating support; A detection-side electrode provided at a side portion of the current path, for extracting a voltage from the inside of the current path. That is, since a current path is formed by a power supply side electrode having a counter electrode surface and an electric current flows through an object to be measured accommodated in the insulator, the current path is limited to the insulating support, and the current path does not spread. The current path is not disturbed by solid foreign matter such as an insulator or a good conductor. Since the voltage generated in the current path is detected by the detection-side electrode, the measurement accuracy of the electric conductivity can be improved.

【0013】請求項5に係る本発明の電気伝導度測定装
置は、絶縁支持体の周面に一定の間隔で配置されて電流
経路を形成して被測定物に電流を流す給電側電極と、こ
の給電側電極と前記被測定物を包囲して前記電流経路を
遮蔽する遮蔽手段(絶縁筒54)と、この遮蔽手段で遮
蔽された前記電流経路から電圧を取り出す検出側電極と
を備えたことを特徴とする。即ち、給電側電極によって
被測定物に形成される電流経路が、遮蔽手段によって閉
塞される結果、その拡がりはなく、絶縁体や良導体等の
固形の異物に電流経路が乱されることがない。即ち、遮
蔽手段で包囲された電流経路に発生する電圧を検出側電
極で検出するので、電気伝導度の測定精度を向上させる
ことができる。
According to a fifth aspect of the present invention, there is provided an electric conductivity measuring device according to the present invention, comprising: a power supply side electrode arranged at a constant interval on a peripheral surface of an insulating support to form a current path and flow a current to an object to be measured; Shielding means (insulating cylinder 54) for surrounding the power supply side electrode and the device under test to shield the current path, and a detection side electrode for extracting a voltage from the current path shielded by the shielding means. It is characterized by. That is, as a result of the current path formed in the DUT by the power supply side electrode being blocked by the shielding means, the current path does not spread, and the current path is not disturbed by solid foreign matter such as an insulator or a good conductor. That is, since the voltage generated in the current path surrounded by the shielding means is detected by the detection-side electrode, the measurement accuracy of the electric conductivity can be improved.

【0014】請求項6に係る本発明の電気伝導度測定装
置は、前記給電側電極に電源(28)とともに参照抵抗
(26)を接続し、この参照抵抗に生じる電圧(V1
を測定することを特徴とする。即ち、参照抵抗に発生す
る電圧を参照電圧とすることで、検出側電極から取り出
される電圧(V2 )との比から、電気伝導度γを測定す
ることができる。
According to a sixth aspect of the present invention, a reference resistance (26) is connected to the power supply side electrode together with a power supply (28), and a voltage (V 1 ) generated in the reference resistance is connected.
Is measured. That is, by using the voltage generated at the reference resistor as the reference voltage, the electrical conductivity γ can be measured from the ratio to the voltage (V 2 ) extracted from the detection-side electrode.

【0015】請求項7に係る本発明の土壌導電率測定方
法は、前記電気伝導度測定装置を用いて測定した電気伝
導度を用いることにより、土壌の導電率を算出すること
を特徴とする。即ち、この電気伝導度の測定値から土壌
導電率(体積抵抗率の逆数)を算出し、この土壌導電率
を用いて土壌溶液の導電率を算出することができる。そ
して、この土壌溶液導電率を用いて土壌中の肥料又は塩
等の成分含有率を算出することができ、それによって土
壌中の肥料成分や塩分の動態把握に役立てることができ
る。
According to a seventh aspect of the present invention, there is provided a soil conductivity measuring method, wherein the soil conductivity is calculated by using the electric conductivity measured by using the electric conductivity measuring device. That is, the soil conductivity (the reciprocal of the volume resistivity) is calculated from the measured value of the electrical conductivity, and the conductivity of the soil solution can be calculated using the soil conductivity. Then, using the conductivity of the soil solution, the content of components such as fertilizer or salt in the soil can be calculated, which can be useful for grasping the dynamics of fertilizer components and salt in the soil.

【0016】請求項8に係る本発明の土壌溶液導電率測
定装置は、土壌溶液(62)を吸水する吸水媒体(6
0)を収容する絶縁支持体(6)と、この絶縁支持体に
一定の間隔を設けて配置され、前記吸水媒体中の前記土
壌溶液に電流経路を形成して電流を流す給電側電極
(8、10)と、前記電流経路内に一定の間隔を以て設
置され、前記電流経路から電圧を取り出す検出側電極
(12、14)とを備えたことを特徴とする。即ち、絶
縁支持体内に収容している吸水媒体に土壌溶液を吸水さ
せ、給電側電極に給電すると、土壌溶液中に電流経路が
形成されて電流が流れる。そして、検出側電極間に発生
する電圧を測定すると、その測定電圧が土壌溶液導電率
を表している。この場合、土壌溶液は絶縁支持体内の吸
水媒体に閉じ込められ、特定された範囲内で電流経路が
形成されているので、絶縁体や良導体等の固形の異物に
電流経路が乱されることがなく、土壌溶液の導電率の測
定精度を向上させることができる。
The soil solution conductivity measuring apparatus of the present invention according to claim 8 is a water absorbing medium (6) for absorbing the soil solution (62).
0) for accommodating the soil solution in the water-absorbing medium, and a current-supply-side electrode (8) that is arranged at a predetermined interval between the insulating support and a current path to flow the current through the soil solution in the water-absorbing medium. , 10) and detection-side electrodes (12, 14) which are provided at a constant interval in the current path and take out a voltage from the current path. That is, when the soil solution is absorbed by the water-absorbing medium accommodated in the insulating support and power is supplied to the power supply side electrode, a current path is formed in the soil solution and current flows. When the voltage generated between the detection electrodes is measured, the measured voltage indicates the soil solution conductivity. In this case, the soil solution is confined in the water-absorbing medium in the insulating support, and the current path is formed within the specified range, so that the current path is not disturbed by solid foreign matter such as an insulator or a good conductor. In addition, the measurement accuracy of the conductivity of the soil solution can be improved.

【0017】請求項9に係る本発明の土壌溶液導電率測
定装置は、土壌溶液(62)を吸水する吸水媒体(6
0)を収容する絶縁支持体(6)と、この絶縁支持体に
第1の電極(38)、この第1の電極を挟んで第2及び
第3の電極(40、42)を備え、前記第1の電極と前
記第2の電極との間に第1の電流経路(44)、前記第
1の電極と前記第3の電極との間に第2の電流経路(4
6)を形成して前記吸水媒体中の前記土壌溶液に電流を
流す給電側電極と、前記第1の電流経路又は前記第2の
電流経路から電圧を取り出す検出側電極(48、50)
とを備えたことを特徴とする。即ち、絶縁支持体の内部
に収容した吸水媒体に土壌溶液を吸水させ、給電側電極
の第1〜第3の電極を以て第1及び第2の電流経路を形
成するので、第1及び第2の電流経路が絶縁支持体内の
吸水媒体に特定されて電流経路の拡がりがなく、特定さ
れた第1又は第2の電流経路から検出側電極によって電
圧を取り出すことから、絶縁体や良導体等の固形の異物
に電流経路が乱されることがなく、土壌溶液の導電率の
測定精度を向上させることができる。
According to a ninth aspect of the present invention, there is provided a soil solution conductivity measuring apparatus according to the present invention, wherein the soil solution (62) absorbs water.
0), an insulating support (6) for accommodating the same, a first electrode (38) on the insulating support, and second and third electrodes (40, 42) sandwiching the first electrode. A first current path (44) between the first electrode and the second electrode, and a second current path (4) between the first electrode and the third electrode.
6) forming a feeder electrode for flowing a current through the soil solution in the water-absorbing medium, and a detecting electrode (48, 50) for extracting a voltage from the first current path or the second current path.
And characterized in that: That is, since the soil solution is absorbed by the water absorbing medium accommodated in the insulating support, and the first and second current paths are formed by the first to third electrodes on the power supply side electrodes, the first and second current paths are formed. Since the current path is specified by the water-absorbing medium in the insulating support and the current path does not spread, and the voltage is extracted by the detection-side electrode from the specified first or second current path, the solid path such as an insulator or a good conductor The current path is not disturbed by the foreign matter, and the measurement accuracy of the conductivity of the soil solution can be improved.

【0018】請求項10に係る本発明の土壌溶液導電率
測定装置は、土壌溶液(62)を吸水する吸水媒体(6
0)を収容する絶縁支持体(6)と、この絶縁支持体内
の前記吸水媒体の前記土壌溶液に電流経路を形成して電
流を流す給電側電極と、前記電流経路の側部に設置さ
れ、前記電流経路内から電圧を取り出す検出側電極とを
備えたことを特徴とする。即ち、絶縁支持体内に収容さ
れた吸水媒体に吸水させた土壌溶液に対向電極面を持つ
給電側電極によって電流経路を形成して電流を流してい
るので、その電流経路は絶縁支持体内の土壌溶液内に限
定される結果、電流経路の拡がりはなく、絶縁体や良導
体等の固形の異物に電流経路が乱されることがない。こ
の電流経路に発生する電圧を検出側電極で検出するの
で、土壌溶液導電率の測定精度を向上させることができ
る。
According to a tenth aspect of the present invention, there is provided a soil solution conductivity measuring apparatus according to the present invention.
0), a power supply-side electrode for forming a current path in the soil solution of the water-absorbing medium in the insulating support to allow a current to flow, and installed on a side of the current path; A detection-side electrode for extracting a voltage from the current path. In other words, a current path is formed by the power supply side electrode having the counter electrode surface to allow the current to flow through the soil solution absorbed by the water-absorbing medium contained in the insulating support. As a result, the current path does not spread, and the current path is not disturbed by solid foreign matter such as an insulator or a good conductor. Since the voltage generated in the current path is detected by the detection-side electrode, it is possible to improve the measurement accuracy of the conductivity of the soil solution.

【0019】[0019]

【発明の実施の形態】以下、本発明を図面に示した実施
の形態を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments shown in the drawings.

【0020】図1ないし図3は、本発明の電気伝導度測
定装置の第1の実施の形態を示し、図1はセンサの側面
図及び測定回路、図2はセンサの平面図、図3は図2に
示すセンサのIII −III 線断面図を示している。電気伝
導度測定装置は被測定物としての例えば、土壌2と電気
的に接触させるセンサ4とともに測定回路5を備えてお
り、センサ4は、円筒状の絶縁支持体6の周面部に給電
側電極8、10、検出側電極12、14を取り付けたも
のである。給電側電極8、10は、絶縁支持体6の端面
側に一定幅、一定間隔で突設させたフランジ16、18
の対向面側に埋め込む形態で取り付けられている。ま
た、検出側電極12、14は、フランジ16、18で挟
み込まれた絶縁支持体6の表面部にフランジ16、18
から一定の間隔を設けて形成された凹部20、22の内
部に設置され、その表面は絶縁支持体6の周面より凹部
20、22の内部側に後退している。そして、絶縁支持
体6の内部には接着剤等の絶縁物24が充填されてい
る。なお、絶縁支持体6の形状は、円筒形以外の形状、
角筒でもよく、内部の絶縁物24に代えて絶縁支持体6
を無垢の絶縁材料で形成してもよい。また、給電側電極
8、10はフランジ16、18の面部から突出させ、ま
た、検出側電極12、14も絶縁支持体6の周面から突
出させて設置してもよく、また、給電側電極8、10及
び検出側電極12、14は絶縁支持体6の全周に形成す
る必要はなく、部分的なものでもよい。
1 to 3 show a first embodiment of the electric conductivity measuring apparatus according to the present invention. FIG. 1 is a side view and a measuring circuit of the sensor, FIG. 2 is a plan view of the sensor, and FIG. FIG. 3 shows a cross-sectional view taken along line III-III of the sensor shown in FIG. 2. The electrical conductivity measuring device includes a measuring circuit 5 together with a sensor 4 for making electrical contact with, for example, the soil 2 as an object to be measured. The sensor 4 is provided on a peripheral surface of a cylindrical insulating support 6 with a power supply side electrode. 8, 10 and the detection-side electrodes 12 and 14 are attached. The power supply-side electrodes 8 and 10 are provided with flanges 16 and 18 protruding from the end face side of the insulating support 6 at a constant width and a constant interval.
Is mounted in the form of being buried in the opposite surface side. The detection electrodes 12 and 14 are provided on the surface of the insulating support 6 sandwiched between the flanges 16 and 18.
Are provided inside the concave portions 20, 22 formed at a predetermined interval from, and the surface thereof recedes from the peripheral surface of the insulating support 6 to the inside of the concave portions 20, 22. The inside of the insulating support 6 is filled with an insulator 24 such as an adhesive. In addition, the shape of the insulating support 6 is a shape other than the cylindrical shape,
A rectangular tube may be used, and the insulating support 6 may be used instead of the internal insulator 24.
May be formed of a solid insulating material. In addition, the power supply-side electrodes 8 and 10 may be provided so as to protrude from the surface portions of the flanges 16 and 18, and the detection-side electrodes 12 and 14 may be provided so as to protrude from the peripheral surface of the insulating support 6. The electrodes 8 and 10 and the detection electrodes 12 and 14 do not need to be formed on the entire periphery of the insulating support 6, and may be partial.

【0021】そして、給電側電極8、10には参照抵抗
26を介して電源28が接続されており、この電源28
は交流電源又は直流電源の何れでもよい。参照抵抗26
の端子間には参照電圧V1 を測定する手段として第1の
電圧計30が接続されており、また、検出側電極12、
14には電圧V2 の電圧測定手段として第2の電圧計3
2が接続されている。
A power supply 28 is connected to the power supply electrodes 8 and 10 via a reference resistor 26.
May be either an AC power supply or a DC power supply. Reference resistance 26
The first voltmeter 30 is connected as a means for measuring the reference voltage V 1 between the terminals
14 second voltmeter 3 as a voltage measuring means of the voltage V 2 to
2 are connected.

【0022】このように構成すると、図3に示すよう
に、絶縁支持体6から突出するフランジ16、18で囲
い込まれた給電側電極8、10の対向面間に電流経路3
4が形成される。この電流経路34には、検出側電極1
2、14が臨ませられており、電流経路34における土
壌2を以て検出側電極12、14間に発生する電圧V2
が電圧計32に検出される。また、電圧計30には、給
電側に流れる電流iと、参照抵抗26の抵抗値R1 との
積で与えられる電圧、即ち、参照電圧V1 が検出され
る。
With this configuration, as shown in FIG. 3, the current path 3 is provided between the opposing surfaces of the power supply electrodes 8 and 10 surrounded by the flanges 16 and 18 projecting from the insulating support 6.
4 are formed. The current path 34 includes the detection-side electrode 1
2 and 14 are exposed, and a voltage V 2 generated between the detection-side electrodes 12 and 14 through the soil 2 in the current path 34.
Is detected by the voltmeter 32. Further, the voltmeter 30 detects a voltage given by the product of the current i flowing on the power supply side and the resistance value R 1 of the reference resistor 26, that is, the reference voltage V 1 .

【0023】ここで、給電側電極8、10側に流れる電
流iと、検出側電極12、14側の電圧V2 の比、即
ち、i/V2 は、被測定物である土壌2の比抵抗に反比
例し、この値が電気伝導度である。この場合、検出側電
極12、14側にはほとんど電流が流れないため、検出
側電極12、14と土壌2との接触抵抗等、局所的な抵
抗の影響を回避できる。電極の分極による測定誤差を問
題とする場合には、電源28から高周波交流を給電すれ
ばよい。
Here, the ratio between the current i flowing on the power supply electrodes 8 and 10 and the voltage V 2 on the detection electrodes 12 and 14, that is, i / V 2 is the ratio of the soil 2 which is the object to be measured. It is inversely proportional to resistance, and this value is electrical conductivity. In this case, almost no current flows on the detection side electrodes 12 and 14 side, so that the influence of local resistance such as contact resistance between the detection side electrodes 12 and 14 and the soil 2 can be avoided. When a measurement error due to the polarization of the electrode is a problem, a high-frequency AC may be supplied from the power supply 28.

【0024】そして、電流iは参照抵抗26に流れ、参
照抵抗26には電流iと抵抗値R1との積により電圧V
1 が発生する。この電圧V1 は電圧計30で測定される
から、電流iは、式(1)から求められる。 i=V1 /R1 ・・・(1) そこで、土壌2の電気伝導度γは、 γ=k1 (i/V2 )=k1 (V1 /R1 )/V2 =k2 ・V1 /V2 ・・・(2) となり、電圧比V1 /V2 で求められる。なお、k1
びk2 (=k1 /R1 )は比例定数である。
[0024] Then, the current i flows to the reference resistor 26, the voltage by the product of the reference resistor 26 and the current i and the resistance value R 1 V
1 occurs. Since the voltage V 1 is measured by the voltmeter 30, the current i is obtained from the equation (1). i = V 1 / R 1 (1) Then, the electric conductivity γ of the soil 2 is given by: γ = k 1 (i / V 2 ) = k 1 (V 1 / R 1 ) / V 2 = k 2 V 1 / V 2 (2), which is obtained from the voltage ratio V 1 / V 2 . Note that k 1 and k 2 (= k 1 / R 1 ) are proportional constants.

【0025】ところで、電流経路34は、給電側電極
8、10の対向面間に特定され、不必要な拡がりがな
く、一定範囲に制限されている。このため、電流経路3
4が絶縁体や良導体等の固形の異物36によって乱され
ることがないから、測定される電圧の測定精度が高く、
土壌2等の被測定物の電気伝導度γを高精度に測定する
ことができる。
The current path 34 is specified between the opposing surfaces of the power supply electrodes 8 and 10, and is not limited to a certain range without unnecessary spread. Therefore, the current path 3
4 is not disturbed by a solid foreign matter 36 such as an insulator or a good conductor, so that the measurement accuracy of the measured voltage is high,
The electrical conductivity γ of the measured object such as the soil 2 can be measured with high accuracy.

【0026】次に、図4及び図5は、本発明の電気伝導
度測定装置の第2の実施の形態を示し、図4はそのセン
サ4の平面図、図5は図4に示すセンサ4のV−V線断
面及び測定回路5を示している。この実施形態では、円
筒状に形成した絶縁支持体6の内部に被測定物である土
壌2を収容し、電流経路を絶縁支持体6の内部空間側に
閉じ込めたものである。絶縁支持体6には、塩化ビニル
パイプ等の絶縁筒を使用し、その内周面側に測定電極と
して第1、第2及び第3の電極38、40、42が設置
されている。各電極38、40、42は一定幅bであっ
て、絶縁支持体6の端面側から見て中央に電極38が設
置され、この電極38を挟んで一定の間隔ピッチhを設
けて電極40、42が配置されている。そして、電極3
8と電極40との間に第1の電流経路44、電極38と
電極42との間に第2の電流経路46が形成されるの
で、その何れか一方側、この実施の形態では電極38、
40の間に検出側電極48、50が設置されている。
4 and 5 show a second embodiment of the electric conductivity measuring apparatus according to the present invention. FIG. 4 is a plan view of the sensor 4 and FIG. 5 is a sensor 4 shown in FIG. 2 shows a cross section taken along line VV of FIG. In this embodiment, the soil 2 as an object to be measured is accommodated in a cylindrical insulating support 6, and a current path is confined in the internal space of the insulating support 6. An insulating cylinder such as a vinyl chloride pipe is used for the insulating support 6, and first, second, and third electrodes 38, 40, and 42 are installed on the inner peripheral surface side as measurement electrodes. Each of the electrodes 38, 40, and 42 has a constant width b, and the electrode 38 is provided at the center when viewed from the end surface side of the insulating support 6, and the electrodes 40, 42 are arranged. And electrode 3
8 and the electrode 40, the first current path 44 is formed between the electrode 38 and the electrode 42, and the second current path 46 is formed between the electrode 38 and the electrode 42.
The detection side electrodes 48 and 50 are provided between 40.

【0027】そして、電極38、40には参照抵抗26
を介して電源28が接続され、また、電極38、42に
は参照抵抗26の抵抗値R1 と同一の抵抗値を持つ調整
抵抗27を介して電源28が接続されている。この電源
28は交流電源又は直流電源の何れでもよい。参照抵抗
26の端子間には参照電圧V1 を測定する手段として第
1の電圧計30が接続されており、また、検出側電極4
8、50には電圧V2の電圧測定手段として第2の電圧
計32が接続されている。
The reference resistance 26 is applied to the electrodes 38 and 40.
, And the power supply 28 is connected to the electrodes 38 and 42 via an adjusting resistor 27 having the same resistance value as the resistance value R 1 of the reference resistor 26. This power supply 28 may be either an AC power supply or a DC power supply. A first voltmeter 30 is connected between the terminals of the reference resistor 26 as a means for measuring the reference voltage V 1.
Second voltmeter 32 is connected as a voltage measuring means of the voltage V 2 to 8,50.

【0028】このように、被測定物である土壌2を絶縁
支持体6の内部に収容し、電流経路44、46をその中
に閉じ込めることで、周辺の異物の影響を全く受けるこ
となく、絶縁支持体6の内部の土壌2について、電圧V
1 、V2 を測定でき、土壌2の電気伝導度を測定するこ
とができる。また、被測定物である土壌2は絶縁支持体
6、即ち、容器内に充填するだけで、土壌2の電気伝導
度が測定できるとともに、その測定精度を向上させるこ
とができる。
As described above, the soil 2 to be measured is accommodated in the insulating support 6 and the current paths 44 and 46 are confined therein, so that there is no influence of peripheral foreign substances at all. For the soil 2 inside the support 6, the voltage V
1 , V 2 can be measured, and the electric conductivity of the soil 2 can be measured. Further, the electric conductivity of the soil 2 can be measured and the measurement accuracy can be improved only by filling the soil 2, which is the object to be measured, into the insulating support 6, that is, the container.

【0029】次に、図6は、本発明の電気伝導度測定装
置の第3の実施の形態を示している。即ち、この実施形
態では電極40、42を短絡して共通化し、この短絡回
路52と電極38との間に参照抵抗26を介して電源2
8を接続すれば、電極40、42側に参照抵抗26を通
して共通の電流iを流すことができるから、図5に示し
た測定回路5における調整抵抗27は不要になる。
Next, FIG. 6 shows a third embodiment of the electric conductivity measuring apparatus of the present invention. That is, in this embodiment, the electrodes 40 and 42 are short-circuited and shared, and the power supply 2 is connected between the short-circuit 52 and the electrode 38 via the reference resistor 26.
By connecting 8, the common current i can flow through the reference resistor 26 to the electrodes 40 and 42, so that the adjusting resistor 27 in the measuring circuit 5 shown in FIG.

【0030】次に、図7は、本発明の電気伝導度測定装
置の第4の実施の形態を示している。即ち、参照抵抗2
6及び調整抵抗27の各抵抗値R1 、R2 の値を調整す
れば、電極40の幅b1 より電極42の幅b2 (>
1 )を大きく形成し、電極38と電極40との間隔ピ
ッチh1 より電極38と電極42との間隔ピッチh2
狭く設定することができる。このようにすれば、図5に
示すセンサ4より絶縁支持体6の長さを短く設定でき
る。なお、電極40、42は、絶縁支持体6の内周面に
設置する必要はなく、絶縁支持体6の開口端面側に設置
してもよい。
Next, FIG. 7 shows a fourth embodiment of the electric conductivity measuring apparatus according to the present invention. That is, the reference resistance 2
6 and the resistance values R 1 and R 2 of the adjustment resistor 27, the width b 2 of the electrode 42 is larger than the width b 1 of the electrode 40 (>).
b 1 ) can be made large and the interval pitch h 2 between the electrodes 38 and 42 can be set smaller than the interval pitch h 1 between the electrodes 38 and 40. In this way, the length of the insulating support 6 can be set shorter than that of the sensor 4 shown in FIG. The electrodes 40 and 42 do not need to be provided on the inner peripheral surface of the insulating support 6, and may be provided on the opening end surface side of the insulating support 6.

【0031】次に、図8及び図9は、本発明の電気伝導
度測定装置の第5の実施の形態を示し、図8はセンサ4
及び測定回路5、図9は図8に示すセンサ4のIX−IX線
断面を示している。即ち、この実施形態では、被測定物
である土壌2を内部に収容する絶縁支持体6が角筒状の
直方体に形成され、その長手方向の内壁面に板状の給電
側電極8、10を対向させて配置するとともに、幅方向
の内壁面の一方に幅の狭い検出側電極12、14を設置
している。そして、給電側電極8、10には参照抵抗2
6を介して電源28が接続されており、この電源28は
交流電源又は直流電源の何れでもよい。また、参照抵抗
26の端子間には参照電圧V1 を測定する手段として第
1の電圧計30が接続されており、また、検出側電極1
2、14には電圧V2 の電圧測定手段として第2の電圧
計32が接続されている。
Next, FIGS. 8 and 9 show a fifth embodiment of the electric conductivity measuring device of the present invention, and FIG.
FIG. 9 shows a cross section taken along line IX-IX of the sensor 4 shown in FIG. That is, in this embodiment, the insulating support 6 for accommodating the soil 2 as the object to be measured is formed in a rectangular parallelepiped, and the plate-shaped power supply side electrodes 8 and 10 are provided on the inner wall surface in the longitudinal direction. The electrodes are arranged to face each other, and the narrow detection-side electrodes 12 and 14 are provided on one of the inner wall surfaces in the width direction. The reference electrodes 2 are connected to the power supply side electrodes 8 and 10.
The power supply 28 is connected via the power supply 6 and may be either an AC power supply or a DC power supply. Further, between the reference resistor 26 terminals are first voltmeter 30 is connected as a means of measuring the reference voltage V 1, also detecting side electrode 1
Second voltmeter 32 is connected as a voltage measuring means of the voltage V 2 to 2,14.

【0032】このように、被測定物である土壌2を直方
体状の絶縁支持体6の内部に収容し、絶縁支持体6内の
給電側電極8、10の対向面内に電流経路53を閉じ込
め、この電流経路53の側部に検出側電極12、14を
設置したので、周辺の異物の影響を全く受けることな
く、側面側の絶縁支持体6の内部の土壌2について、電
圧V1 、V2 を測定でき、土壌2の電気伝導度を測定す
ることができる。しかも、被測定物である土壌2は絶縁
支持体6、即ち、容器内に充填するだけで、土壌2の電
気伝導度が測定できるとともに、その測定精度を向上さ
せることができる。
As described above, the soil 2 to be measured is accommodated in the rectangular parallelepiped insulating support member 6, and the current path 53 is confined in the insulating support member 6 on the surface facing the power supply electrodes 8 and 10. Since the detection electrodes 12 and 14 are provided on the side of the current path 53, the voltages V 1 and V are applied to the soil 2 inside the insulating support 6 on the side surface without being affected by foreign substances at the periphery. 2 can be measured, and the electric conductivity of the soil 2 can be measured. In addition, the electric conductivity of the soil 2 can be measured and the measurement accuracy can be improved only by filling the soil 2 as the object to be measured into the insulating support 6, that is, the container.

【0033】次に、図10は、本発明の電気伝導度測定
装置の第6の実施の形態を示している。即ち、角筒状又
は円筒状に形成された絶縁支持体6に被測定物である土
壌2が収容されるとともに、その内周面に一対の給電側
電極8、10が一定の間隔を設けて設置され、これら給
電側電極8、10の間隔内に一対の検出側電極12、1
4が設置され、図1に示す同様の測定回路5が形成され
ている。このように筒状のそれぞれ一対の給電側電極
8、10及び検出側電極12、14を設置すれば、被測
定物である土壌2を絶縁支持体6の内部に収容し、電流
経路をその中に閉じ込めることで、周辺の異物の影響を
全く受けることなく、絶縁支持体6の内部の土壌2につ
いて、電圧V1 、V2 を測定でき、式(2)を用いて土
壌2の電気伝導度を算出でき、その測定精度を向上させ
ることができる。
Next, FIG. 10 shows a sixth embodiment of the electric conductivity measuring apparatus of the present invention. That is, while the soil 2, which is an object to be measured, is accommodated in an insulating support 6 formed in a rectangular cylindrical shape or a cylindrical shape, a pair of power-supply-side electrodes 8, 10 are provided on the inner peripheral surface thereof at a predetermined interval. The pair of detection electrodes 12, 1 are provided within the space between the power supply electrodes 8, 10.
4 are provided, and a similar measuring circuit 5 shown in FIG. 1 is formed. When the pair of feeding electrodes 8 and 10 and the detection electrodes 12 and 14 are respectively installed in a cylindrical shape in this manner, the soil 2 that is the object to be measured is accommodated inside the insulating support 6 and the current path is formed through the inside. The voltage V 1 , V 2 can be measured for the soil 2 inside the insulating support 6 without being affected by foreign substances at the periphery, and the electric conductivity of the soil 2 can be obtained by using the equation (2). Can be calculated, and the measurement accuracy can be improved.

【0034】次に、図11ないし図13は、本発明の電
気伝導度測定装置の第7の実施の形態を示し、図11は
そのセンサ4の平面図、図12はセンサ4の部分断面、
図13は図11に示すセンサ4のXIII−XIII線断面及び
測定回路5を示している。この実施形態は、被測定物で
ある土壌2の内部に埋設するセンサ4であって、絶縁物
24が充填された筒状の絶縁支持体6の周面部に一対の
給電側電極8、10が一定の間隔を設けて設置され、こ
れら給電側電極8、10の間隔内に一対の検出側電極1
2、14が設置され、図1に示す同様の測定回路5が形
成されている。そして、センサ4の周面部に土壌2を挟
んで筒状の遮蔽手段としての絶縁筒54を設置すること
により、センサ4の周囲に被測定物である土壌2を閉じ
込めることで、電流経路がセンサ4の周辺の異物の影響
を全く受けることなく、絶縁筒54で包囲された土壌2
について、電圧V1 、V2 を測定でき、式(2)を用い
て土壌2の電気伝導度を算出でき、その測定精度を向上
させることができる。
FIGS. 11 to 13 show a seventh embodiment of the electric conductivity measuring apparatus according to the present invention. FIG. 11 is a plan view of the sensor 4, FIG.
FIG. 13 shows a cross section taken along line XIII-XIII of the sensor 4 shown in FIG. This embodiment is a sensor 4 embedded in the soil 2 as an object to be measured, in which a pair of power supply side electrodes 8 and 10 are provided on a peripheral surface of a cylindrical insulating support 6 filled with an insulator 24. A pair of detection side electrodes 1 are provided at regular intervals, and within a space between the power supply side electrodes 8 and 10.
2 and 14 are provided, and the same measurement circuit 5 shown in FIG. 1 is formed. By installing an insulating tube 54 as a cylindrical shielding means on the peripheral surface of the sensor 4 with the soil 2 interposed therebetween, the current path is confined around the sensor 4 by confining the soil 2 as an object to be measured. The soil 2 surrounded by the insulating tube 54 without being affected by any foreign matter around the
, The voltages V 1 and V 2 can be measured, the electrical conductivity of the soil 2 can be calculated using the equation (2), and the measurement accuracy can be improved.

【0035】次に、本発明の電気伝導度測定装置を用い
た土壌導電率測定方法の実施の形態について説明する。
Next, an embodiment of a soil conductivity measuring method using the electric conductivity measuring device of the present invention will be described.

【0036】図1ないし図13に示す電気伝導度測定装
置によって測定された電気伝導度を用いて、土壌溶液導
電率を測定する場合には、第1段階として第1の相関式
を求める。即ち、導電率が既知である被測定物中にセン
サ4を埋没させ、被測定物の電気伝導度を測定する。次
に、センサ4の周辺にある被測定物の導電率を複数水準
に調整し、各々の電気伝導度を測定する。これら導電率
と電気伝導度の測定値をグラフにプロットし、図14に
示す検量線を作成する。この相関関係は、一次関数であ
り、この検量線からその関数を求め、次の相関式(3)
を得る。 y=ax+b ・・・・(3) この場合、被測定物として塩化カリウム又は塩化ナトリ
ウムの水溶液を使用し、この電気伝導度を測定するとと
もに、その導電率については濃度調節を行い、溶液導電
率計で測定し、その測定値を導電率とする。
When the conductivity of the soil solution is measured using the electric conductivity measured by the electric conductivity measuring device shown in FIGS. 1 to 13, a first correlation equation is obtained as a first step. That is, the sensor 4 is buried in an object whose conductivity is known, and the electric conductivity of the object is measured. Next, the conductivity of the device under test around the sensor 4 is adjusted to a plurality of levels, and the electrical conductivity of each is measured. The measured values of the electric conductivity and the electric conductivity are plotted on a graph, and a calibration curve shown in FIG. 14 is created. This correlation is a linear function, and the function is obtained from this calibration curve.
Get. y = ax + b (3) In this case, an aqueous solution of potassium chloride or sodium chloride is used as an object to be measured, the electric conductivity is measured, and the electric conductivity is adjusted by adjusting the concentration. The measured value is defined as the conductivity.

【0037】センサ4の周辺における被測定物が同じで
あってもセンサ4の各電極(8、10、12、14、3
8、40、42、48、50)の寸法や位置が異なる
と、電気伝導度の測定値に違いが出る場合があるが、こ
のような測定値のばらつきがある場合には、検量線はセ
ンサ4毎に作成する必要がある。
Even if the object to be measured around the sensor 4 is the same, each electrode (8, 10, 12, 14, 3
8, 40, 42, 48, and 50), the measured values of the electrical conductivity may differ when the measured values are different from each other. It is necessary to create every four.

【0038】そして、被測定物として土壌を測定する。
測定する土壌の中にセンサ4を埋設させ、電気伝導度を
測定する。その値を、相関式(3)に入れ、その土壌の
導電率を算出する。
Then, soil is measured as an object to be measured.
The sensor 4 is buried in the soil to be measured, and the electric conductivity is measured. The value is put into the correlation equation (3), and the conductivity of the soil is calculated.

【0039】第2段階として第2の相関式を作成する。
即ち、第1段階のある一種類の土壌を用いて各条件下の
導電率の測定を行う。具体的には、ある土壌の含水率
と、含んだ水の導電率(以下土壌溶液導電率という)の
二者をいくつかの水準に調節し、各々の時の導電率(以
下土壌導電率という)を測定し、土壌溶液導電率に対す
る土壌導電率、含水率に対する土壌導電率のそれぞれを
プロットし、図15及び図16を作成する。そして、土
壌導電率、土壌溶液導電率及び含水率の相関関係から、
相関式(4)、(5)を作成する。
As a second step, a second correlation equation is created.
That is, the conductivity is measured under each condition using one type of soil in the first stage. Specifically, the water content of a certain soil and the conductivity of the contained water (hereinafter referred to as soil solution conductivity) are adjusted to several levels, and the conductivity at each time (hereinafter referred to as soil conductivity) is adjusted. ) Is measured, and the soil conductivity with respect to the soil solution conductivity and the soil conductivity with respect to the water content are plotted, and FIG. 15 and FIG. 16 are created. And from the correlation of soil conductivity, soil solution conductivity and water content,
The correlation equations (4) and (5) are created.

【0040】 ECa=f(ECw,θ) ・・・・(4) ECw=g(ECa,θ) ・・・・(5)ECa = f (ECw, θ) (4) ECw = g (ECa, θ) (5)

【0041】この相関式(4)、(5)は、例えば、被
測定物として鳥取砂丘砂、土壌溶液として塩化ナトリウ
ム水溶液を用いると、含水率に対する土壌導電率では、
土壌溶液導電率が一定の場合には、両者の相関は二次関
数になる。また、土壌溶液導電率に対する土壌導電率で
は、一定の含水率の場合には、両者の相関は一次関数に
なる。これらの結果から次の相関式(6)を導くことが
できる。
The correlation equations (4) and (5) indicate that, for example, when the object to be measured is Tottori sand dune sand and the aqueous sodium chloride solution is used as the soil solution,
If the soil solution conductivity is constant, the correlation between them becomes a quadratic function. Also, in the case of the soil conductivity with respect to the soil solution conductivity, when the moisture content is constant, the correlation between the two becomes a linear function. From these results, the following correlation equation (6) can be derived.

【0042】 ECa=a・ECw・θ2 +b・θ ・・・(6)ECa = a · ECw · θ 2 + b · θ (6)

【0043】ここで、相関式(6)において、ECa:
土壌の導電率[dS/m]、ECw:土壌溶液導電率
[dS/m]、θ:土壌体積あたりに含まれる水の量
[cm3/cm3 ]、a及びb:実験結果から得られた
定数である。
Here, in the correlation equation (6), ECa:
Soil conductivity [dS / m], ECw: soil solution conductivity [dS / m], θ: amount of water contained per soil volume [cm 3 / cm 3 ], a and b: obtained from experimental results Is a constant.

【0044】そして、土壌溶液導電率の測定では、セン
サ4を実際に測定すべき土壌中に埋設させる。そのとき
の電気伝導度を測定し、その値から土壌導電率を算出
し、その測定値を別の方法で予め測定した含水率ととも
に、相関式(6)に入れることで、土壌溶液導電率σを
算出できる。
In the measurement of the conductivity of the soil solution, the sensor 4 is buried in the soil to be actually measured. The electric conductivity at that time is measured, the soil electric conductivity is calculated from the value, and the measured value is put into the correlation equation (6) together with the water content previously measured by another method, thereby obtaining the soil solution electric conductivity σ. Can be calculated.

【0045】そして、第3段階では、第2段階で求めた
土壌溶液導電率から図17に示す検量線を用いて土壌中
の肥料成分含有率を算出し、土壌中の肥料成分や塩分の
動態把握を行うことができる。図17に示す検量線は、
横軸に土壌溶液導電率ECw〔S/m〕、縦軸に土壌溶
液の成分の濃度として、例えば、無機態窒素又は食塩の
濃度〔g/m3 〕又は〔mol/m3 〕を取っており、
この検量線は、例えば、異なる多数の茶畑から採取され
た土を乾燥させた後、純水を加えて一定の含水率に調整
し、その土壌溶液を採取して導電率を測定し、これを横
軸とし、その土壌の肥料成分である例えば、無機態窒素
又は食塩の含有率を化学分析によって測定したものを縦
軸に設定したものである。即ち、この検量線によれば、
土壌溶液導電率により無機態窒素又は食塩の濃度〔g/
3 〕又は〔mol/m3 〕が判明する。
In the third stage, the fertilizer component content in the soil is calculated from the soil solution conductivity obtained in the second stage using the calibration curve shown in FIG. 17, and the dynamics of the fertilizer component and salt in the soil are calculated. Can grasp. The calibration curve shown in FIG.
The horizontal axis represents soil solution conductivity ECw [S / m], and the vertical axis represents the concentration [g / m 3 ] or [mol / m 3 ] of inorganic nitrogen or salt as the concentration of a component of the soil solution. Yes,
This calibration curve is, for example, after drying soil collected from many different tea fields, adjusting the water content to a certain level by adding pure water, collecting the soil solution, measuring the conductivity, and measuring the conductivity. The horizontal axis is set, and the vertical axis is set by measuring the content of fertilizer components of the soil, for example, inorganic nitrogen or salt by chemical analysis. That is, according to this calibration curve,
The concentration of inorganic nitrogen or salt [g / g
m 3 ] or [mol / m 3 ].

【0046】次に、本発明の土壌溶液導電率測定装置の
実施の形態を説明する。
Next, an embodiment of the soil solution conductivity measuring device of the present invention will be described.

【0047】図18ないし図22は、本発明の土壌溶液
導電率測定装置の実施の形態を示しており、センサ4及
び測定回路5の構成は、図5、図6、図7、図8及び図
10に示した電気伝導度測定装置と同様であり、異なる
のは、絶縁支持体6の内部に素焼き等の多孔質状を成す
吸水媒体60を設置するとともに、この吸水媒体60内
に被測定物である土壌溶液62を吸水させている点であ
る。
FIGS. 18 to 22 show an embodiment of the soil solution conductivity measuring apparatus according to the present invention. The constructions of the sensor 4 and the measuring circuit 5 are shown in FIGS. 5, 6, 7, 8 and The electric conductivity measuring device shown in FIG. 10 is the same as the electric conductivity measuring device shown in FIG. 10 except that a porous water-absorbing medium 60 such as unglazed is installed inside the insulating support body 6 and the measurement target The point is that the soil solution 62 as a substance is absorbed.

【0048】そして、センサ4に接続されている測定回
路5を通して測定された電圧V1 、V2 を用いた式
(2)から媒体の電気伝導度を測定し、図14に示す検
量線を用いて媒体の導電率を算出し、その導電率を式
(6)に入れて土壌溶液導電率σを算出できる。この場
合、吸水媒体60に保持された土壌溶液62には、図
5、図6、図7、図8及び図10について説明した電流
経路が絶縁支持体6内に閉じ込められて電流経路の拡が
りがなく、絶縁体や良導体等の異物の影響がなく、電流
経路が乱されることがないので、電圧V1 、V2 の測定
精度が向上し、土壌溶液導電率の測定精度を高めること
ができる。即ち、式(6)の定数が土壌の種類によって
異なることが予想されるが、測定値の土壌差をなくすた
め、土壌溶液だけを範囲を特定した吸水媒体60に吸水
させ、電気伝導度を測定し、その土壌溶液導電率σを算
出する。
Then, the electric conductivity of the medium is measured from the equation (2) using the voltages V 1 and V 2 measured through the measuring circuit 5 connected to the sensor 4, and the calibration curve shown in FIG. 14 is used. Then, the conductivity of the medium can be calculated, and the conductivity can be calculated by using the conductivity in equation (6). In this case, in the soil solution 62 held in the water absorbing medium 60, the current paths described with reference to FIGS. 5, 6, 7, 8, and 10 are confined in the insulating support 6, and the current paths spread. In addition, since there is no influence of foreign substances such as insulators and good conductors and the current path is not disturbed, the measurement accuracy of the voltages V 1 and V 2 is improved, and the measurement accuracy of the soil solution conductivity can be increased. . That is, although it is expected that the constant of the equation (6) differs depending on the type of soil, in order to eliminate the difference in the measured values, only the soil solution is absorbed by the water absorbing medium 60 having a specified range, and the electric conductivity is measured. Then, the soil solution conductivity σ is calculated.

【0049】算出された土壌溶液導電率σから、前述の
通り、図17に示す検量線を用いて土壌中の肥料成分含
有率を算出することができ、土壌中の肥料成分や塩分の
動態把握を高精度に行うことができる。
From the calculated soil solution conductivity σ, as described above, the fertilizer component content in the soil can be calculated using the calibration curve shown in FIG. 17, and the dynamics of the fertilizer component and salt in the soil can be grasped. Can be performed with high accuracy.

【0050】なお、各実施の形態では、被測定物として
土壌2又は土壌溶液62を例に取っているが、本発明
は、土壌以外の被測定物の電気伝導度や導電率の測定に
用いることができ、実施の形態に限定されるものではな
い。
In each of the embodiments, the soil 2 or the soil solution 62 is taken as an example of the object to be measured. However, the present invention is used for measuring the electric conductivity and the electric conductivity of the object to be measured other than the soil. The present invention is not limited to the embodiment.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
次の効果が得られる。 a 被測定物に含まれる絶縁体や良導体による異物によ
って電流経路が乱されることがなく、土壌等の被測定物
の電気伝導度及び導電率を高精度に測定することができ
る。 b 測定された電気伝導度を用いることにより、被測定
物として例えば、土壌溶液導電率の算出精度を高め、土
壌成分の動態把握をより正確に行うことができる等、測
定精度を向上させることができる。 c 絶縁支持体内の吸水媒体に吸水させた土壌溶液に電
流経路を形成するので、電流経路が絶縁支持体内に特定
されて不必要な拡がりがなく、絶縁体や良導体等の異物
で電流経路が乱されることがないので、土壌溶液導電率
の測定精度を向上させ、土壌中の肥料成分や塩分の動態
把握の信頼性向上に寄与することができる。
As described above, according to the present invention,
The following effects are obtained. a The current path is not disturbed by a foreign substance due to an insulator or a good conductor contained in the object to be measured, and the electric conductivity and the electric conductivity of the object to be measured such as soil can be measured with high accuracy. b By using the measured electric conductivity, it is possible to improve the measurement accuracy, for example, to improve the calculation accuracy of the soil solution conductivity as an object to be measured and to more accurately grasp the dynamics of the soil component. it can. c Since a current path is formed in the soil solution absorbed by the water absorbing medium in the insulating support, the current path is specified in the insulating support and does not spread unnecessarily, and the current path is disturbed by foreign substances such as an insulator or a good conductor. Therefore, it is possible to improve the measurement accuracy of the conductivity of the soil solution and contribute to the improvement of the reliability of grasping the dynamics of fertilizer components and salts in the soil.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気伝導度測定装置の第1の実施の形
態を示す図である。
FIG. 1 is a diagram showing a first embodiment of an electric conductivity measuring device of the present invention.

【図2】図1に示すセンサを示す平面図である。FIG. 2 is a plan view showing the sensor shown in FIG.

【図3】センサによって土壌中に形成される電流経路を
示す図2のIII −III 線断面図である。
FIG. 3 is a sectional view taken along the line III-III of FIG. 2, showing a current path formed in the soil by the sensor.

【図4】本発明の電気伝導度測定装置の第2の実施の形
態を示すセンサの平面図である。
FIG. 4 is a plan view of a sensor showing a second embodiment of the electric conductivity measuring device of the present invention.

【図5】図4に示すセンサのV−V線断面及び測定回路
を示す図である。
5 is a diagram showing a cross section taken along line VV of the sensor shown in FIG. 4 and a measurement circuit.

【図6】本発明の電気伝導度測定装置の第3の実施の形
態を示す図である。
FIG. 6 is a view showing a third embodiment of the electric conductivity measuring device of the present invention.

【図7】本発明の電気伝導度測定装置の第4の実施の形
態を示す図である。
FIG. 7 is a diagram showing a fourth embodiment of the electric conductivity measuring device of the present invention.

【図8】本発明の電気伝導度測定装置の第5の実施の形
態を示す図である。
FIG. 8 is a view showing a fifth embodiment of the electric conductivity measuring device of the present invention.

【図9】図8に示すセンサのIX−IX線断面図である。9 is a sectional view of the sensor shown in FIG. 8, taken along line IX-IX.

【図10】本発明の電気伝導度測定装置の第6の実施の
形態を示す図である。
FIG. 10 is a view showing a sixth embodiment of the electric conductivity measuring device of the present invention.

【図11】本発明の電気伝導度測定装置の第7の実施の
形態を示すセンサの平面図である。
FIG. 11 is a plan view of a sensor showing a seventh embodiment of the electric conductivity measuring device of the present invention.

【図12】図11に示すセンサの部分断面図である。FIG. 12 is a partial sectional view of the sensor shown in FIG. 11;

【図13】図11に示すセンサのXIII− XIII 線断面及
び測定回路を示す図である。
13 is a diagram showing a cross section taken along line XIII-XIII of the sensor shown in FIG. 11 and a measurement circuit.

【図14】センサ周囲の導電率と電気伝導度との相関を
表す検量線を示す図である。
FIG. 14 is a diagram showing a calibration curve representing a correlation between electric conductivity around a sensor and electric conductivity.

【図15】センサ周囲の導電率と土壌溶液導電率との相
関を表す図である。
FIG. 15 is a diagram showing a correlation between conductivity around a sensor and conductivity of a soil solution.

【図16】センサ周囲の導電率と土壌含水率との相関を
表す図である。
FIG. 16 is a diagram showing a correlation between conductivity around a sensor and soil moisture content.

【図17】土壌溶液の成分濃度と土壌溶液導電率との相
関を表す検量線を示す図である。
FIG. 17 is a diagram showing a calibration curve representing a correlation between the component concentration of a soil solution and the conductivity of the soil solution.

【図18】本発明の土壌溶液導電率測定装置の第1の実
施の形態を示す図である。
FIG. 18 is a view showing a first embodiment of the soil solution conductivity measuring device of the present invention.

【図19】本発明の土壌溶液導電率測定装置の第2の実
施の形態を示す図である。
FIG. 19 is a view showing a second embodiment of the soil solution conductivity measuring device of the present invention.

【図20】本発明の土壌溶液導電率測定装置の第3の実
施の形態を示す図である。
FIG. 20 is a view showing a third embodiment of the soil solution conductivity measuring device of the present invention.

【図21】本発明の土壌溶液導電率測定装置の第4の実
施の形態を示す図である。
FIG. 21 is a view showing a fourth embodiment of the soil solution conductivity measuring device of the present invention.

【図22】本発明の土壌溶液導電率測定装置の第5の実
施の形態を示す図である。
FIG. 22 is a diagram showing a fifth embodiment of the soil solution conductivity measuring device of the present invention.

【図23】従来の電気伝導度測定装置のセンサを示す平
面図である。
FIG. 23 is a plan view showing a sensor of a conventional electric conductivity measuring device.

【図24】従来の電気伝導度測定装置のセンサを示す側
面図である。
FIG. 24 is a side view showing a sensor of a conventional electric conductivity measuring device.

【図25】従来の電気伝導度測定装置のセンサ及び測定
回路を示す図である。
FIG. 25 is a diagram showing a sensor and a measurement circuit of a conventional electric conductivity measuring device.

【符号の説明】[Explanation of symbols]

2 土壌(被測定物) 4 センサ 5 測定回路 6 絶縁支持体 8、10 給電側電極 12、14 検出側電極 26 参照抵抗 28 電源 34 電流経路 38 第1の電極(給電側電極) 40 第2の電極(給電側電極) 42 第3の電極(給電側電極) 44 第1の電流経路 46 第2の電流経路 48、50 検出側電極 54 絶縁筒(遮蔽手段) 60 吸水媒体 62 土壌溶液 2 Soil (measured object) 4 Sensor 5 Measurement circuit 6 Insulating support 8, 10 Feeding electrode 12, 14 Detection side electrode 26 Reference resistance 28 Power supply 34 Current path 38 First electrode (Feeding electrode) 40 Second Electrode (feeding-side electrode) 42 Third electrode (feeding-side electrode) 44 First current path 46 Second current path 48, 50 Detection-side electrode 54 Insulating cylinder (shielding means) 60 Water-absorbing medium 62 Soil solution

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G028 AA01 BC06 CG02 DH03 DH05 DH14 FK01 HN02 HN11 HN13 LR01 2G060 AA14 AC02 AE17 AF02 AF03 AF08 AG04 AG11 CA03 HC06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G028 AA01 BC06 CG02 DH03 DH05 DH14 FK01 HN02 HN11 HN13 LR01 2G060 AA14 AC02 AE17 AF02 AF03 AF08 AG04 AG11 CA03 HC06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 絶縁支持体に支持されて対向し、その対
向面間に生じる電流経路を通して被測定物に電流を流す
給電側電極と、 前記電流経路から電圧を取り出す検出側電極と、 を備えたことを特徴とする電気伝導度測定装置。
1. A power supply side electrode which is supported by an insulating support member and faces and which flows a current to a device under test through a current path generated between the opposing surfaces, and a detection side electrode which extracts a voltage from the current path. An electrical conductivity measuring device, characterized in that:
【請求項2】 被測定物を収容する絶縁支持体に一定の
間隔を設けて配置され、前記被測定物に電流経路を形成
して電流を流す給電側電極と、 前記電流経路内に一定の間隔を以て設置され、前記電流
経路から電圧を取り出す検出側電極と、 を備えたことを特徴とする電気伝導度測定装置。
2. A power supply side electrode which is arranged at a predetermined interval on an insulating support for accommodating an object to be measured, forms a current path in the object to be measured, and allows a current to flow, and a fixed electrode in the current path. An electrical conductivity measuring device, comprising: a detection-side electrode that is installed at an interval and extracts a voltage from the current path.
【請求項3】 被測定物を収容する絶縁支持体に第1の
電極、この第1の電極を挟んで第2及び第3の電極を備
え、前記第1の電極と前記第2の電極との間に第1の電
流経路、前記第1の電極と前記第3の電極との間に第2
の電流経路を形成して前記被測定物に電流を流す給電側
電極と、 前記第1の電流経路又は前記第2の電流経路から電圧を
取り出す検出側電極と、 を備えたことを特徴とする電気伝導度測定装置。
3. An insulating support for accommodating an object to be measured, comprising a first electrode, and second and third electrodes sandwiching the first electrode, wherein the first electrode and the second electrode are connected to each other. A first current path between the first and third electrodes and a second current path between the first and third electrodes.
And a detection-side electrode for extracting a voltage from the first current path or the second current path. Electric conductivity measuring device.
【請求項4】 絶縁支持体内に収容された被測定物に対
して対向電極面間に電流経路を形成して電流を流す給電
側電極と、 前記電流経路の側部に設置され、前記電流経路内から電
圧を取り出す検出側電極と、 を備えたことを特徴とする電気伝導度測定装置。
4. A power supply-side electrode for forming a current path between opposing electrode surfaces with respect to an object to be measured housed in an insulating support and allowing a current to flow therethrough; An electrical conductivity measurement device comprising: a detection-side electrode for extracting a voltage from the inside;
【請求項5】 絶縁支持体の周面に一定の間隔で配置さ
れて電流経路を形成して被測定物に電流を流す給電側電
極と、 この給電側電極と前記被測定物を包囲して前記電流経路
を遮蔽する遮蔽手段と、 この遮蔽手段で遮蔽された前記電流経路から電圧を取り
出す検出側電極と、 を備えたことを特徴とする電気伝導度測定装置。
5. A power supply-side electrode which is arranged at a constant interval on a peripheral surface of an insulating support and forms a current path to flow a current to a device under test, and surrounds the power supply-side electrode and the device under test. An electric conductivity measurement device, comprising: a shielding unit that shields the current path; and a detection electrode that extracts a voltage from the current path that is shielded by the shielding unit.
【請求項6】 前記給電側電極に電源とともに参照抵抗
を接続し、この参照抵抗に生じる電圧を測定することを
特徴とする請求項1、2、3、4又は5記載の電気伝導
度測定装置。
6. The electric conductivity measuring apparatus according to claim 1, wherein a reference resistance is connected to the power supply side electrode together with a power supply, and a voltage generated at the reference resistance is measured. .
【請求項7】 請求項1、2、3、4、5又は6に記載
の電気伝導度測定装置を用いて測定した電気伝導度を用
いることにより、土壌の導電率を算出することを特徴と
する土壌導電率測定方法。
7. An electric conductivity of soil is calculated by using an electric conductivity measured by using the electric conductivity measuring device according to claim 1, 2, 3, 4, 5, or 6. Soil conductivity measurement method.
【請求項8】 土壌溶液を吸水する吸水媒体を収容する
絶縁支持体と、 この絶縁支持体に一定の間隔を設けて配置され、前記吸
水媒体中の前記土壌溶液に電流経路を形成して電流を流
す給電側電極と、 前記電流経路内に一定の間隔を以て設置され、前記電流
経路から電圧を取り出す検出側電極と、 を備えたことを特徴とする土壌溶液導電率測定装置。
8. An insulating support for accommodating a water-absorbing medium for absorbing a soil solution, and a current path formed in the insulating support at a predetermined interval to form a current path in the soil solution in the water-absorbing medium. A soil solution conductivity measuring device, comprising: a power supply side electrode through which a current flows, and a detection side electrode which is provided at a predetermined interval in the current path and takes out a voltage from the current path.
【請求項9】 土壌溶液を吸水する吸水媒体を収容する
絶縁支持体と、 この絶縁支持体に第1の電極、この第1の電極を挟んで
第2及び第3の電極を備え、前記第1の電極と前記第2
の電極との間に第1の電流経路、前記第1の電極と前記
第3の電極との間に第2の電流経路を形成して前記吸水
媒体中の前記土壌溶液に電流を流す給電側電極と、 前記第1の電流経路又は前記第2の電流経路から電圧を
取り出す検出側電極と、 を備えたことを特徴とする土壌溶液導電率測定装置。
9. An insulating support for containing a water-absorbing medium for absorbing a soil solution, a first electrode on the insulating support, and second and third electrodes with the first electrode interposed therebetween. The first electrode and the second electrode
A current path between the first electrode and the third electrode, and a second current path between the first electrode and the third electrode to supply a current to the soil solution in the water absorbing medium. An apparatus for measuring the conductivity of a soil solution, comprising: an electrode; and a detection electrode for extracting a voltage from the first current path or the second current path.
【請求項10】 土壌溶液を吸水する吸水媒体を収容す
る絶縁支持体と、 この絶縁支持体内の前記吸水媒体の前記土壌溶液に電流
経路を形成して電流を流す給電側電極と、 前記電流経路の側部に設置され、前記電流経路内から電
圧を取り出す検出側電極と、 を備えたことを特徴とする土壌溶液導電率測定装置。
10. An insulating support for accommodating a water-absorbing medium for absorbing a soil solution, a power-supply-side electrode for forming a current path in the soil solution of the water-absorbing medium in the insulating support and flowing a current, and the current path And a detection-side electrode that is installed on a side of the device and extracts a voltage from within the current path.
JP2000024246A 2000-02-01 2000-02-01 Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution Pending JP2001215203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024246A JP2001215203A (en) 2000-02-01 2000-02-01 Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024246A JP2001215203A (en) 2000-02-01 2000-02-01 Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution

Publications (1)

Publication Number Publication Date
JP2001215203A true JP2001215203A (en) 2001-08-10

Family

ID=18550270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024246A Pending JP2001215203A (en) 2000-02-01 2000-02-01 Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution

Country Status (1)

Country Link
JP (1) JP2001215203A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419439C (en) * 2005-08-26 2008-09-17 中国农业大学 Multi-purpose vehicle mounted soil specific conductivity real-time tester
JP2009264954A (en) * 2008-04-25 2009-11-12 Saginomiya Seisakusho Inc Conductivity meter, conductivity measuring method, abnormality monitor of electrode using them and abnormality monitoring method of electrode
JP2010166871A (en) * 2009-01-23 2010-08-05 Masanori Sakakibara Fertilizing management controller working with water supply controller and using soil ec sensor
JP2013057574A (en) * 2011-09-07 2013-03-28 Fujitsu Ltd Soil sensor
JP2013083606A (en) * 2011-10-12 2013-05-09 Fujitsu Ltd Dielectric constant sensor
JP2013253802A (en) * 2012-06-05 2013-12-19 Taisei Corp Control method for moisture content of fine aggregate
CN103513109A (en) * 2013-09-05 2014-01-15 南开大学 Device and method for measuring in-situ soil electric conductivity
CN103513111A (en) * 2013-09-06 2014-01-15 国家电网公司 System and method for testing electric conductivity of metal wire
CN103575768A (en) * 2012-07-20 2014-02-12 卡西欧计算机株式会社 Moisture measuring apparatus and moisture measuring method
JP2019190855A (en) * 2018-04-18 2019-10-31 国立研究開発法人農業・食品産業技術総合研究機構 Electric conductivity estimation device for solution in porous body, electric conductivity estimation model construction device, and electric conductivity estimation model construction method
JP2020176969A (en) * 2019-04-22 2020-10-29 東急建設株式会社 Sampling mold and non-destructive physical property measuring method for soil
CN113109623A (en) * 2021-03-25 2021-07-13 上海联适导航技术股份有限公司 Soil conductivity measurement system, method, device and medium
JP2022128607A (en) * 2017-07-11 2022-09-02 近江度量衡株式会社 Moisture measuring device and package receiving system
JP7449846B2 (en) 2020-12-02 2024-03-14 鹿島建設株式会社 Soil quality measurement device and soil quality measurement method
WO2024111086A1 (en) * 2022-11-24 2024-05-30 日本電信電話株式会社 Rhizosphere sensor and measurement system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419439C (en) * 2005-08-26 2008-09-17 中国农业大学 Multi-purpose vehicle mounted soil specific conductivity real-time tester
JP2009264954A (en) * 2008-04-25 2009-11-12 Saginomiya Seisakusho Inc Conductivity meter, conductivity measuring method, abnormality monitor of electrode using them and abnormality monitoring method of electrode
JP2010166871A (en) * 2009-01-23 2010-08-05 Masanori Sakakibara Fertilizing management controller working with water supply controller and using soil ec sensor
JP2013057574A (en) * 2011-09-07 2013-03-28 Fujitsu Ltd Soil sensor
JP2013083606A (en) * 2011-10-12 2013-05-09 Fujitsu Ltd Dielectric constant sensor
JP2013253802A (en) * 2012-06-05 2013-12-19 Taisei Corp Control method for moisture content of fine aggregate
CN103575768A (en) * 2012-07-20 2014-02-12 卡西欧计算机株式会社 Moisture measuring apparatus and moisture measuring method
CN103513109A (en) * 2013-09-05 2014-01-15 南开大学 Device and method for measuring in-situ soil electric conductivity
CN103513111A (en) * 2013-09-06 2014-01-15 国家电网公司 System and method for testing electric conductivity of metal wire
JP2022128607A (en) * 2017-07-11 2022-09-02 近江度量衡株式会社 Moisture measuring device and package receiving system
JP7361420B2 (en) 2017-07-11 2023-10-16 近江度量衡株式会社 Moisture measuring device and receiving system
JP2019190855A (en) * 2018-04-18 2019-10-31 国立研究開発法人農業・食品産業技術総合研究機構 Electric conductivity estimation device for solution in porous body, electric conductivity estimation model construction device, and electric conductivity estimation model construction method
JP7007587B2 (en) 2018-04-18 2022-01-24 国立研究開発法人農業・食品産業技術総合研究機構 Electrical conductivity estimation device, electrical conductivity estimation model construction device and electrical conductivity estimation model construction method for the solution in the porous body
JP2020176969A (en) * 2019-04-22 2020-10-29 東急建設株式会社 Sampling mold and non-destructive physical property measuring method for soil
JP7082955B2 (en) 2019-04-22 2022-06-09 東急建設株式会社 Sampling mold and non-destructive property measurement method for soil
JP7449846B2 (en) 2020-12-02 2024-03-14 鹿島建設株式会社 Soil quality measurement device and soil quality measurement method
CN113109623A (en) * 2021-03-25 2021-07-13 上海联适导航技术股份有限公司 Soil conductivity measurement system, method, device and medium
WO2024111086A1 (en) * 2022-11-24 2024-05-30 日本電信電話株式会社 Rhizosphere sensor and measurement system

Similar Documents

Publication Publication Date Title
US4861453A (en) Corrosion detecting probe for steel buried in concrete
US3924175A (en) D.C. system for conductivity measurements
JP2001215203A (en) Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution
Rhoades Instrumental field methods of salinity appraisal
JP4710061B2 (en) Concrete component measuring apparatus and measuring method
US10823722B2 (en) Probe for measuring the biomass content in a medium
US20160161446A1 (en) Low slope ph electrode with charge transfer component
KR102143685B1 (en) Apparatus for measuring electrical conductivity of soil
Dai et al. Long-term monitoring of timber moisture content below the fiber saturation point using wood resistance sensors
US3774104A (en) Liquid conductivity measuring apparatus
Wang et al. An ultralow-noise Ag/AgCl electric field sensor with good stability for marine EM applications
Zhang et al. An intelligent four-electrode conductivity sensor for aquaculture
Moron et al. The possibility of employing a calculable four-electrode conductance cell to substitute for the secondary standards of electrolytic conductivity
CA1118495A (en) Sea water conductivity cell
JP6833626B2 (en) Measuring device and measuring method
US20230142240A1 (en) Flow meter for measuring flow velocity in oil continuous flows
US3508148A (en) In-place soil water conductivity tester
CN104849594B (en) Ionic liquid Electric transport properties high precision measuring device and the method with its measurement magneto-resistance effect
RU2708682C1 (en) Contact sensor of specific electric conductivity of liquid
Lorimer et al. Optical and electrical methods of determining transference numbers of electrolytes in dilute solutions by the moving boundary technique
CN110940862A (en) Method for measuring liquid resistivity
Adel Design, Construction, and Implementation of Ionization Method Surface Potential Instrument for Studies of Charged Surfactants and Inorganic Electrolytes at the Air/Water Interface
WO2012074356A1 (en) Reference electrode
CN113740605B (en) Impedance frequency characteristic measuring device and method of capillary model under alternating current electric field
Szczepanik et al. Finite-element analysis of the electric field distribution in conductance cell