JP7032722B2 - Reinforced concrete corrosion evaluation method - Google Patents

Reinforced concrete corrosion evaluation method Download PDF

Info

Publication number
JP7032722B2
JP7032722B2 JP2017138217A JP2017138217A JP7032722B2 JP 7032722 B2 JP7032722 B2 JP 7032722B2 JP 2017138217 A JP2017138217 A JP 2017138217A JP 2017138217 A JP2017138217 A JP 2017138217A JP 7032722 B2 JP7032722 B2 JP 7032722B2
Authority
JP
Japan
Prior art keywords
reinforced concrete
reinforcing bar
impedance
measured
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017138217A
Other languages
Japanese (ja)
Other versions
JP2019020226A (en
Inventor
明 笹本
君 于
祥久 原田
一彦 野口
成弘 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Denshijiki Industry Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Denshijiki Industry Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017138217A priority Critical patent/JP7032722B2/en
Publication of JP2019020226A publication Critical patent/JP2019020226A/en
Application granted granted Critical
Publication of JP7032722B2 publication Critical patent/JP7032722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄筋コンクリートの鉄筋の腐食を評価する方法に関する。 The present invention relates to a method for evaluating corrosion of reinforcing bars in reinforced concrete.

鉄筋コンクリートの鉄筋の腐食は、その進行を防ぐ防食技術を適用することで進行を食い止めることが可能である。したがって鉄筋コンクリートの鉄筋の腐食を早期に発見し、その程度を計測する技術は、鉄筋コンクリートの鉄筋の腐食を抑制する上で重要であり、いわゆる自然電位法と分極抵抗法が良く知られている。自然電位法は、鉄筋の腐食によって変化する鉄筋表面の電位から腐食を計測する方法である。分極抵抗法は、鉄筋の腐食速度と分極抵抗の逆数が比例関係にあることを利用して、分極抵抗から鉄筋の腐食速度を推定する方法である。 Corrosion of reinforcing bars in reinforced concrete can be stopped by applying anticorrosion technology to prevent its progress. Therefore, the technique of detecting the corrosion of the reinforcing bar of the reinforced concrete at an early stage and measuring the degree thereof is important for suppressing the corrosion of the reinforcing bar of the reinforced concrete, and the so-called natural potential method and the polarization resistance method are well known. The natural potential method is a method of measuring corrosion from the potential of the reinforcing bar surface that changes due to the corrosion of the reinforcing bar. The polarization resistance method is a method of estimating the corrosion rate of a reinforcing bar from the polarization resistance by utilizing the fact that the corrosion rate of the reinforcing bar and the reciprocal of the polarization resistance are in a proportional relationship.

しかしながら自然電位法及び分極抵抗法は、いずれも鉄筋コンクリート内の鉄筋に測定器を電気的に接続する必要があり、鉄筋コンクリートを部分的に壊して内部の鉄筋の一部を外部に露出させる必要がある。したがって自然電位法及び分極抵抗法は、作業性の面で課題があるとともに、鉄筋コンクリートの構造及び美観が損なわれるという課題がある。 However, both the natural potential method and the polarization resistance method require the measuring instrument to be electrically connected to the reinforcing bars in the reinforced concrete, and it is necessary to partially break the reinforced concrete to expose a part of the internal reinforcing bars to the outside. .. Therefore, the natural potential method and the polarization resistance method have a problem in terms of workability and a problem that the structure and aesthetics of the reinforced concrete are impaired.

このような課題を解決する従来技術の一例として、Wennerの四電極法と呼ばれる方法を用いて鉄筋コンクリートの鉄筋の腐食を計測する非接触電気パルス応答解析(CEPRA)と呼ばれる技術が公知である(例えば特許文献1、非特許文献1、2を参照)。当該従来技術によれば、鉄筋コンクリートを部分的に壊して内部の鉄筋の一部を外部に露出させる必要はなく、非破壊で鉄筋コンクリートの鉄筋の腐食を計測することができる。 As an example of the conventional technique for solving such a problem, a technique called non-contact electric pulse response analysis (CEPRA) for measuring corrosion of reinforcing bars of reinforced concrete using a method called Wenner's four-electrode method is known (for example,). See Patent Document 1, Non-Patent Documents 1 and 2). According to the prior art, it is not necessary to partially break the reinforced concrete to expose a part of the internal reinforcing bars to the outside, and it is possible to measure the corrosion of the reinforcing bars of the reinforced concrete in a non-destructive manner.

国際公開第2015/172231号International Publication No. 2015/172231

“Connection-less Electrical Pulse Response Analysis (CEPRA) test method for corrosion rate measurement”、[online]、[平成29年3月16日検索] インターネット〈URL:http://www.giatecscientific.com/wp-content/uploads/2015/12/CEPRA-Technology.pdf〉“Connection-less Electrical Pulse Response Analysis (CEPRA) test method for corrosion rate measurement”, [online], [Search on March 16, 2017] Internet <URL: http://www.giatecscientific.com/wp-content /uploads/2015/12/CEPRA-Technology.pdf> ”コンクリート内の鉄筋腐食を完全非破壊で知る技術”、 [online]、KEYTEC株式会社ホームページ、[平成29年4月4日検索] インターネット〈URL:http://www.key-t.co.jp/resources/icor/〉"Technology to know the corrosion of reinforcing bars in concrete completely non-destructively", [online], KEYTEC Co., Ltd. homepage, [Search on April 4, 2017] Internet <URL: http://www.key-t.co. jp / resources / icor />

しかしながら上記の従来技術は、鉄筋コンクリートの表面にステップ電圧を印加する方式であるため、鉄筋の深さ(鉄筋かぶり)が深くなるに従って、インピーダンス測定精度が低下し、鉄筋コンクリートの鉄筋の腐食を高精度に評価することが難しくなるという課題がある。また様々な自然環境下に置かれる屋外のコンクリートは、例えば塩の影響等を受けるため、そのインピーダンス-周波数特性は少しずつ異なっていて一様ではない場合が多い。そして上記の従来技術は、コンクリートのインピーダンス-周波数特性が個々に異なる点が考慮されておらず、コンクリートのインピーダンス-周波数特性の影響によって鉄筋コンクリートの鉄筋の腐食を高精度に評価できない虞がある。 However, since the above-mentioned conventional technique is a method of applying a step voltage to the surface of reinforced concrete, the impedance measurement accuracy decreases as the depth of the reinforcing bar (reinforcing bar cover) increases, and the corrosion of the reinforcing bar of the reinforced concrete becomes highly accurate. There is a problem that it becomes difficult to evaluate. In addition, since outdoor concrete placed in various natural environments is affected by, for example, salt, its impedance-frequency characteristics are often slightly different and not uniform. Further, the above-mentioned conventional technique does not consider that the impedance-frequency characteristics of concrete are different from each other, and there is a possibility that the corrosion of the reinforcing bars of reinforced concrete cannot be evaluated with high accuracy due to the influence of the impedance-frequency characteristics of concrete.

このような状況に鑑み本発明はなされたものであり、その目的は、鉄筋コンクリートの鉄筋の腐食を高精度に評価できる鉄筋コンクリートの鉄筋腐食評価方法を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a method for evaluating reinforced concrete reinforcing bar corrosion that can evaluate the corrosion of reinforced concrete reinforcing bars with high accuracy.

<本発明の第1の態様>
本発明の第1の態様は、測定対象の鉄筋コンクリートの表面に、前記測定対象の鉄筋コンクリート内の鉄筋に沿って平行に、2本の検出探針を所定間隔で配置し、前記2本の検出探針の両外側に2本の電流探針を1本ずつ前記所定間隔で配置し、前記2本の電流探針間に交流電流を流し、前記交流電流の周波数を変化させながら前記2本の検出探針間の電圧を測定して、前記交流電流の周波数とインピーダンスとの関係を第1測定データとして取得し、前記測定対象の鉄筋コンクリートの表面に、前記測定対象の鉄筋コンクリート内の鉄筋に直交する方向に、又は前記測定対象の鉄筋コンクリートの鉄筋がない部分の表面の同一線上に、前記2本の検出探針を前記所定間隔で配置し、前記2本の検出探針の両外側に前記2本の電流探針を1本ずつ前記所定間隔で配置し、前記2本の電流探針間に交流電流を流し、前記交流電流の周波数を変化させながら前記2本の検出探針間の電圧を測定して、前記交流電流の周波数とインピーダンスとの関係を第2測定データとして取得し、前記第1測定データのインピーダンスの前記第2測定データのインピーダンスでの減算値または除算値を周波数毎に求め、該減算値または該除算値の低周波域における最高値と高周波域における最低値との差に基づいて、前記測定対象の鉄筋コンクリート内の鉄筋の腐食を評価する、鉄筋コンクリートの鉄筋腐食評価方法である。
<First aspect of the present invention>
In the first aspect of the present invention, two detection probes are arranged at predetermined intervals on the surface of the reinforced concrete to be measured in parallel with the reinforcing bar in the reinforced concrete to be measured, and the two detection probes are arranged. Two current probes are arranged one by one on both outer sides of the needle at the predetermined intervals, an AC current is passed between the two current probes, and the two detections are detected while changing the frequency of the AC current. The voltage between the probes is measured, the relationship between the frequency of the AC current and the impedance is acquired as the first measurement data, and the direction perpendicular to the reinforcing bar in the reinforced concrete to be measured is on the surface of the reinforced concrete to be measured. The two detection probes are arranged at the predetermined intervals on the same line on the surface of the portion of the reinforced concrete to be measured where there is no reinforcing bar, and the two detection probes are placed on both outer sides of the two detection probes. The current probes are arranged one by one at the predetermined intervals, an AC current is passed between the two current probes, and the voltage between the two detection probes is measured while changing the frequency of the AC current. Then, the relationship between the frequency and the impedance of the AC current is acquired as the second measurement data, and the subtraction value or the division value of the impedance of the first measurement data at the impedance of the second measurement data is obtained for each frequency. Reinforcement corrosion evaluation of reinforced concrete, which evaluates the corrosion of the reinforcing bar in the reinforced concrete to be measured based on the difference between the maximum value in the low frequency region and the minimum value in the high frequency region of the subtracted value or the divided value. The method.

一般にコンクリートは絶縁体として知られているが、僅かなイオンによる導電性を有している。また健全な鉄筋表面とコンクリート表面間には電気2重層による容量成分が形成される。そしてこの電気2重層による容量成分は、電気2重層が腐食で破壊され失われるに従って減少していく。第1測定データの低周波域におけるインピーダンスの最高値と高周波域におけるインピーダンスの最低値との差は、この電気2重層による容量成分によって変化するため、鉄筋の腐食の程度によって変化することになる。したがって第1測定データの低周波域におけるインピーダンスの最高値と高周波域におけるインピーダンスの最低値との差から、測定対象の鉄筋コンクリートの鉄筋の腐食の程度を評価することができる。 Although concrete is generally known as an insulator, it has conductivity due to a small amount of ions. In addition, a volume component due to the electric double layer is formed between the sound reinforcing bar surface and the concrete surface. The capacitance component of this electric double layer decreases as the electric double layer is destroyed and lost due to corrosion. The difference between the maximum impedance in the low frequency region and the minimum impedance in the high frequency region of the first measurement data changes depending on the capacitance component of the electric double layer, and therefore changes depending on the degree of corrosion of the reinforcing bar. Therefore, the degree of corrosion of the reinforcing bar of the reinforced concrete to be measured can be evaluated from the difference between the highest impedance value in the low frequency range and the lowest impedance value in the high frequency range of the first measurement data.

他方、第2測定データは、測定対象の鉄筋コンクリートのコンクリート自体のインピーダンス-周波数特性であると言える。したがって第1測定データと第2測定データとを対比し、具体的には第1測定データと第2測定データとの差分や比、即ち第1測定データのインピーダンスの第2測定データのインピーダンスでの減算値または除算値を周波数毎に求め、該減算値または該除算値に基づいて評価することによって、測定対象の鉄筋コンクリートに固有のインピーダンス-周波数特性を除外して第1測定データにおける鉄筋の寄与分を正確に特定することができる。それによって鉄筋表面とコンクリート表面間に形成される電気2重層による容量成分の変化を高精度に計測することができるので、測定対象の鉄筋コンクリートの鉄筋の腐食の程度を高精度に評価することができる。 On the other hand, it can be said that the second measurement data is the impedance-frequency characteristics of the concrete itself of the reinforced concrete to be measured. Therefore, the first measurement data and the second measurement data are compared, specifically, the difference or ratio between the first measurement data and the second measurement data, that is, the impedance of the first measurement data and the impedance of the second measurement data. By obtaining the subtracted value or the divided value for each frequency and evaluating based on the subtracted value or the divided value, the contribution of the reinforcing bar in the first measurement data excluding the impedance-frequency characteristic peculiar to the reinforced concrete to be measured. Can be accurately identified. As a result, it is possible to measure the change in the capacitance component due to the electric double layer formed between the reinforcing bar surface and the concrete surface with high accuracy, so that the degree of corrosion of the reinforcing bar of the reinforced concrete to be measured can be evaluated with high accuracy. ..

これにより本発明の第の態様によれば、鉄筋コンクリートの鉄筋の腐食を高精度に評価できる鉄筋コンクリートの鉄筋腐食評価方法を提供できるという作用効果が得られる。 As a result, according to the first aspect of the present invention, it is possible to provide an effect of providing a method for evaluating reinforced concrete rebar corrosion that can evaluate the corrosion of reinforced concrete rebar with high accuracy.

<本発明の第の態様>
本発明の第の態様は、前述した本発明の第の態様において、前記第1測定データの高周波域におけるインピーダンスの最低値に基づいて、前記測定対象の鉄筋コンクリートの表面から鉄筋までの深さを推定する、鉄筋コンクリートの鉄筋腐食評価方法である。
< Second aspect of the present invention>
The second aspect of the present invention is the depth from the surface of the reinforced concrete to be measured to the reinforcing bar based on the lowest value of the impedance in the high frequency region of the first measurement data in the first aspect of the present invention described above. This is a method for evaluating reinforced concrete corrosion of reinforced concrete.

第1測定データの高周波域におけるインピーダンスの最低値は、鉄筋コンクリートの表面から鉄筋までの深さに応じて変化する。また第1測定データの高周波域におけるインピーダンスの最低値は、鉄筋の腐食の程度にほとんど依存しない。したがって第1測定データの高周波域におけるインピーダンスの最低値に基づいて、測定対象の鉄筋コンクリートの表面から鉄筋までの深さを高精度に推定することができる。これにより本発明の第2の態様によれば、例えば電磁波レーダ法による鉄筋探査装置等、測定対象の鉄筋コンクリートの表面から鉄筋までの深さを計測するための装置が不要になるという作用効果が得られる。 The lowest value of impedance in the high frequency region of the first measurement data changes depending on the depth from the surface of the reinforced concrete to the reinforcing bar. Further, the minimum value of impedance in the high frequency range of the first measurement data hardly depends on the degree of corrosion of the reinforcing bar. Therefore, the depth from the surface of the reinforced concrete to be measured to the reinforcing bar can be estimated with high accuracy based on the lowest value of the impedance in the high frequency region of the first measurement data. As a result, according to the second aspect of the present invention, there is no need for a device for measuring the depth from the surface of the reinforced concrete to be measured to the reinforcing bar, such as a reinforcing bar exploration device by an electromagnetic wave radar method. Be done.

本発明によれば、鉄筋コンクリートの鉄筋の腐食を高精度に評価できる鉄筋コンクリートの鉄筋腐食評価方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for evaluating reinforced concrete reinforcing bar corrosion that can evaluate the corrosion of reinforcing bars of reinforced concrete with high accuracy.

本発明の実施に用いられる測定装置の構成を図示した正面図。The front view which illustrated the structure of the measuring apparatus used for carrying out this invention. 検証実験に用いた試料番号1~6の試料の平面図。Top view of the samples of sample numbers 1 to 6 used in the verification experiment. 検証実験に用いた試料番号1~6の試料の正面図。Front view of the sample of sample numbers 1 to 6 used in the verification experiment. 検証実験に用いた試料番号7~12の試料の平面図。Top view of the sample of sample numbers 7 to 12 used in the verification experiment. 検証実験に用いた試料番号7~12の試料の正面図。Front view of the sample of sample numbers 7 to 12 used in the verification experiment. 検証実験に用いた試料の構成を示した一覧表。A list showing the composition of the sample used in the verification experiment. 試料番号1~6の試料の鉄筋のインピーダンス-周波数特性を図示したグラフ。The graph which illustrated the impedance-frequency characteristic of the reinforcing bar of the sample of sample numbers 1-6. 低周波域におけるインピーダンスの最高値と高周波域におけるインピーダンスの最低値との差を腐食率に対応付けて図示したグラフ。A graph showing the difference between the highest impedance value in the low frequency range and the lowest impedance value in the high frequency range in relation to the corrosion rate. 試料番号7~12の試料の鉄筋のインピーダンス-周波数特性を図示したグラフ。The graph which illustrated the impedance-frequency characteristic of the reinforcing bar of the sample of a sample number 7-12. 低周波域(周波数0.01Hz)におけるインピーダンスを鉄筋深さに対応付けて図示したグラフ。The graph which showed the impedance in the low frequency region (frequency 0.01Hz) corresponding to the rebar depth. 検証実験に用いた試料番号1~6の試料の平面図。Top view of the samples of sample numbers 1 to 6 used in the verification experiment. 試料番号1の鉄筋深さ54mmの試料におけるインピーダンス-周波数特性、及び位相-周波数特性を図示したグラフ。The graph which illustrated the impedance-frequency characteristic and the phase-frequency characteristic in the sample of the sample No. 1 having a reinforcing bar depth of 54 mm.

以下、本発明の実施の形態について図面を参照しながら説明する。
尚、本発明は、以下説明する実施例に特に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変形が可能であることは言うまでもない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
It is needless to say that the present invention is not particularly limited to the examples described below, and various modifications can be made within the scope of the invention described in the claims.

まず本発明の実施に用いられる測定装置の構成について、図1を参照しながら説明する。
図1は、本発明の実施に用いられる測定装置の構成を図示した正面図である。
ここで本願図面において符号Xで示す方向は、鉄筋コンクリート20の表面に平行な方向であり、かつ鉄筋コンクリート20の鉄筋21に平行な方向である。本願図面において符号Yで示す方向は、鉄筋コンクリート20の表面に平行な方向であり、かつ鉄筋コンクリート20の鉄筋21に直交する方向である。本願図面において符号Zで示す方向は、鉄筋コンクリート20の表面に直交する方向である。
First, the configuration of the measuring device used for carrying out the present invention will be described with reference to FIG.
FIG. 1 is a front view illustrating the configuration of a measuring device used in carrying out the present invention.
Here, the direction indicated by the reference numeral X in the drawings of the present application is a direction parallel to the surface of the reinforced concrete 20 and a direction parallel to the reinforcing bar 21 of the reinforced concrete 20. In the drawings of the present application, the direction indicated by reference numeral Y is a direction parallel to the surface of the reinforced concrete 20 and a direction orthogonal to the reinforcing bar 21 of the reinforced concrete 20. In the drawings of the present application, the direction indicated by reference numeral Z is a direction orthogonal to the surface of the reinforced concrete 20.

本発明の実施に用いられる測定装置は、いわゆるWennerの四電極法を用いて、測定対象の鉄筋コンクリート20のインピーダンス-周波数特性を計測する装置である。測定装置は、第1検出探針11、第2検出探針12、第1電流探針13、第2電流探針14、電位差計測装置15、交流電源装置16、電流計測装置17、制御部18を備える。 The measuring device used for carrying out the present invention is a device for measuring the impedance-frequency characteristics of the reinforced concrete 20 to be measured by using the so-called Wenner four-electrode method. The measuring devices include a first detection probe 11, a second detection probe 12, a first current probe 13, a second current probe 14, a potential difference measuring device 15, an AC power supply device 16, a current measuring device 17, and a control unit 18. To prepare for.

第1検出探針11及び第2検出探針12は、所定間隔aで、測定対象の鉄筋コンクリート20の表面に接して配置される。第1電流探針13及び第2電流探針14は、第1検出探針11及び第2検出探針12の両外側に、測定対象の鉄筋コンクリート20の表面に接して配置される。より具体的には第1電流探針13は、第1検出探針11の外側に所定間隔aだけ離間する位置に配置され、第2電流探針14は、第2検出探針12の外側に所定間隔aだけ離間する位置に配置される。つまり第1検出探針11、第2検出探針12、第1電流探針13及び第2電流探針14は、X方向の同一線上に所定間隔aで等間隔に、測定対象の鉄筋コンクリート20の表面に接して配置される。第1検出探針11、第2検出探針12、第1電流探針13及び第2電流探針14は、導電性が確保できれば様々なものが使え、例えば濡れたスポンジと金属針を組み合わせたもの、導電性を有するシートなどを用いることができる。 The first detection probe 11 and the second detection probe 12 are arranged in contact with the surface of the reinforced concrete 20 to be measured at predetermined intervals a. The first current probe 13 and the second current probe 14 are arranged on both outer sides of the first detection probe 11 and the second detection probe 12 in contact with the surface of the reinforced concrete 20 to be measured. More specifically, the first current probe 13 is arranged outside the first detection probe 11 at a position separated by a predetermined interval a, and the second current probe 14 is located outside the second detection probe 12. It is arranged at a position separated by a predetermined interval a. That is, the first detection probe 11, the second detection probe 12, the first current probe 13, and the second current probe 14 are on the same line in the X direction at regular intervals a at regular intervals a, and the reinforced concrete 20 to be measured. It is placed in contact with the surface. As the first detection probe 11, the second detection probe 12, the first current probe 13, and the second current probe 14, various ones can be used as long as the conductivity can be ensured. For example, a wet sponge and a metal needle are combined. A material, a sheet having conductivity, or the like can be used.

電位差計測装置15は、第1検出探針11及び第2検出探針12に接続されており、第1検出探針11と第2検出探針12との間の電位差及び位相を計測する。より具体的には電位差計測装置15は、測定対象の鉄筋コンクリート20の表面において第1検出探針11が接している点の電位と、測定対象の鉄筋コンクリート20の表面において第2検出探針12が接している点の電位との電位差V及び位相を計測する装置である。 The potential difference measuring device 15 is connected to the first detection probe 11 and the second detection probe 12, and measures the potential difference and the phase between the first detection probe 11 and the second detection probe 12. More specifically, in the potential difference measuring device 15, the potential at the point where the first detection probe 11 is in contact with the surface of the reinforced concrete 20 to be measured and the second detection probe 12 are in contact with the surface of the reinforced concrete 20 to be measured. It is a device for measuring the potential difference V and the phase with the potential of the point.

交流電源装置16は、第1電流探針13及び第2電流探針14に接続されている。交流電源装置16は、第1電流探針13と第2電流探針14との間に交流電流を流す装置であり、交流電流の周波数を可変設定可能な交流電源である。電流計測装置17は、第1電流探針13と第2電流探針14との間に流れる交流電流の電流値I及び周波数を計測する装置である。 The AC power supply device 16 is connected to the first current probe 13 and the second current probe 14. The AC power supply device 16 is a device for passing an AC current between the first current probe 13 and the second current probe 14, and is an AC power supply capable of variably setting the frequency of the AC current. The current measuring device 17 is a device that measures the current value I and the frequency of the alternating current flowing between the first current probe 13 and the second current probe 14.

制御部18は、交流電源装置16を制御して第1電流探針13と第2電流探針14との間に流れる交流電流の周波数を変化させながら第1検出探針11と第2検出探針12との間の電位差Vを測定して、交流電流の周波数とインピーダンスρとの関係を取得する。インピーダンスρは、例えば入力インピーダンスが十分高いインピーダンスメータで計測してもよい。またWennerの四電極法において、一様な媒質で無限半平面での試料のインピーダンスρは、下記の式(1)から算出することができる。
ρ=2πaV/I ・・・(1)
交流電流の周波数を変化させる範囲は、例えば0.001Hz~10KHz程度の範囲である。また例えば測定時間を短縮するために、少なくとも低周波域として1Hz以下の周波数域を含み、さらに高周波域として10~1000Hzの周波数域を含む範囲で、特定の周波数域に限定して測定を行ってもよい。
The control unit 18 controls the AC power supply device 16 to change the frequency of the AC current flowing between the first current probe 13 and the second current probe 14, while changing the frequency of the first detection probe 11 and the second detection probe 14. The potential difference V between the needle 12 and the needle 12 is measured to acquire the relationship between the frequency of the alternating current and the impedance ρ. The impedance ρ may be measured by, for example, an impedance meter having a sufficiently high input impedance. Further, in Wenner's four-electrode method, the impedance ρ of the sample in an infinite half-space with a uniform medium can be calculated from the following equation (1).
ρ = 2πaV / I ・ ・ ・ (1)
The range in which the frequency of the alternating current is changed is, for example, about 0.001 Hz to 10 KHz. Further, for example, in order to shorten the measurement time, the measurement is limited to a specific frequency range including at least a frequency range of 1 Hz or less as a low frequency range and a frequency range of 10 to 1000 Hz as a high frequency range. May be good.

次に本発明に係る鉄筋コンクリート20の鉄筋腐食評価方法について説明する。 Next, a method for evaluating reinforced concrete corrosion of the reinforced concrete 20 according to the present invention will be described.

まず測定対象の鉄筋コンクリート20の表面に、測定対象の鉄筋コンクリート20内の鉄筋21に沿って平行に(鉄筋21の直上にX方向の同一線上に)、第1検出探針11及び第2検出探針12を所定間隔aで配置し、第1検出探針11及び第2検出探針12の両外側に第1電流探針13及び第2電流探針14を1本ずつ所定間隔aで配置する。この状態で、第1電流探針13と第2電流探針14との間に交流電流を流し、交流電流の周波数を変化させながら第1検出探針11と第2検出探針12との間の電位差Vを測定して、交流電流の周波数とインピーダンスρとの関係を第1測定データとして取得する。 First, on the surface of the reinforced concrete 20 to be measured, parallel to the reinforcing bar 21 in the reinforced concrete 20 to be measured (on the same line in the X direction directly above the reinforcing bar 21), the first detection probe 11 and the second detection probe 12 are arranged at predetermined intervals a, and one first current probe 13 and one second current probe 14 are arranged at predetermined intervals a on both outer sides of the first detection probe 11 and the second detection probe 12. In this state, an alternating current is passed between the first current probe 13 and the second current probe 14, and the frequency of the alternating current is changed between the first detection probe 11 and the second detection probe 12. The potential difference V is measured, and the relationship between the frequency of the alternating current and the impedance ρ is acquired as the first measurement data.

つづいて測定対象の鉄筋コンクリート20の表面に、測定対象の鉄筋コンクリート20内の鉄筋21に直交する方向に(Y方向の同一線上に)、又は測定対象の鉄筋コンクリート20の鉄筋21がない部分の表面の同一線上に、第1検出探針11及び第2検出探針12を所定間隔aで配置し、第1検出探針11及び第2検出探針12の両外側に第1電流探針13及び第2電流探針14を1本ずつ所定間隔aで配置する。この状態で、第1電流探針13と第2電流探針14との間に交流電流を流し、交流電流の周波数を変化させながら第1検出探針11と第2検出探針12との間の電位差Vを測定して、交流電流の周波数とインピーダンスρとの関係を第2測定データとして取得する。 Next, on the surface of the reinforced concrete 20 to be measured, in the direction orthogonal to the reinforcing bar 21 in the reinforced concrete 20 to be measured (on the same line in the Y direction), or the same surface of the portion of the reinforced concrete 20 to be measured without the reinforcing bar 21. The first detection probe 11 and the second detection probe 12 are arranged on the line at predetermined intervals a, and the first current probe 13 and the second detection probe 13 and the second detection probe 12 are arranged on both outer sides of the first detection probe 11 and the second detection probe 12. The current probes 14 are arranged one by one at predetermined intervals a. In this state, an alternating current is passed between the first current probe 13 and the second current probe 14, and the frequency of the alternating current is changed between the first detection probe 11 and the second detection probe 12. The potential difference V is measured, and the relationship between the frequency of the alternating current and the impedance ρ is acquired as the second measurement data.

第1測定データの低周波域におけるインピーダンスρの最高値と高周波域におけるインピーダンスρの最低値との差は、鉄筋21の表面とコンクリート表面間に形成される電気2重層による容量成分によって変化するため、鉄筋21の腐食の程度によって変化することになる。したがって第1測定データの低周波域におけるインピーダンスρの最高値と高周波域におけるインピーダンスρの最低値との差から、測定対象の鉄筋コンクリート20の鉄筋21の腐食の程度を評価することができる。 The difference between the maximum value of the impedance ρ in the low frequency region and the minimum value of the impedance ρ in the high frequency region of the first measurement data changes depending on the capacitance component formed by the electric double layer formed between the surface of the reinforcing bar 21 and the concrete surface. , Will change depending on the degree of corrosion of the reinforcing bar 21. Therefore, the degree of corrosion of the reinforcing bar 21 of the reinforced concrete 20 to be measured can be evaluated from the difference between the maximum value of the impedance ρ in the low frequency region and the minimum value of the impedance ρ in the high frequency region of the first measurement data.

他方、第2測定データは、測定対象の鉄筋コンクリート20のコンクリート自体のインピーダンス-周波数特性であると言える。したがって第1測定データと第2測定データとを対比することによって、例えば第1測定データと第2測定データとの差分を評価することによって、測定対象の鉄筋コンクリート20に固有のインピーダンス-周波数特性を除外して第1測定データにおける鉄筋21の寄与分を正確に特定することができる。それによって鉄筋21の表面とコンクリート表面間に形成される電気2重層による容量成分の変化を高精度に計測することができるので、測定対象の鉄筋コンクリート20の鉄筋21の腐食の程度を高精度に評価することができる。 On the other hand, it can be said that the second measurement data is the impedance-frequency characteristic of the concrete itself of the reinforced concrete 20 to be measured. Therefore, by comparing the first measurement data and the second measurement data, for example, by evaluating the difference between the first measurement data and the second measurement data, the impedance-frequency characteristics peculiar to the reinforced concrete 20 to be measured are excluded. Therefore, the contribution of the reinforcing bar 21 in the first measurement data can be accurately specified. As a result, changes in the capacity component due to the electric double layer formed between the surface of the reinforcing bar 21 and the surface of the concrete can be measured with high accuracy, so the degree of corrosion of the reinforcing bar 21 of the reinforced concrete 20 to be measured can be evaluated with high accuracy. can do.

また第1測定データの高周波域におけるインピーダンスρの最低値は、鉄筋コンクリート20の表面から鉄筋21までの深さに応じて変化する。また第1測定データの高周波域におけるインピーダンスρの最低値は、鉄筋21の腐食の程度にほとんど依存しない。したがって第1測定データの高周波域におけるインピーダンスρの最低値に基づいて、測定対象の鉄筋コンクリート20の表面から鉄筋21までの深さを高精度に推定することができる。 Further, the minimum value of the impedance ρ in the high frequency region of the first measurement data changes according to the depth from the surface of the reinforced concrete 20 to the reinforcing bar 21. Further, the minimum value of the impedance ρ in the high frequency region of the first measurement data hardly depends on the degree of corrosion of the reinforcing bar 21. Therefore, the depth from the surface of the reinforced concrete 20 to be measured to the reinforcing bar 21 can be estimated with high accuracy based on the lowest value of the impedance ρ in the high frequency region of the first measurement data.

次に本発明の発明者が行った本発明の検証実験について、図2~図12を参照しながら説明する。 Next, the verification experiment of the present invention conducted by the inventor of the present invention will be described with reference to FIGS. 2 to 12.

図2は、検証実験に用いた試料番号1~6の試料の平面図であり、図3は、その正面図である。図4は、検証実験に用いた試料番号7~12の試料の平面図であり、図5は、その正面図である。図6は、検証実験に用いた試料の構成を示した一覧表である。 FIG. 2 is a plan view of the samples of sample numbers 1 to 6 used in the verification experiment, and FIG. 3 is a front view thereof. FIG. 4 is a plan view of the samples of sample numbers 7 to 12 used in the verification experiment, and FIG. 5 is a front view thereof. FIG. 6 is a list showing the composition of the sample used in the verification experiment.

試料番号1~6の試料(図2、図3)として、中央に1本の鉄筋21Mを深さD1で埋設した幅L1、長さL2、高さL3の鉄筋コンクリート20を複数作製した。幅L1は300mm、長さL2は300mm、高さL3は100mmとした。鉄筋コンクリート20の側端から鉄筋21Mまでの距離L4は150mmとした。鉄筋21Mの直径dは16mmとした。ここで、試料番号1~6の試料は、鉄筋コンクリート20の表面から鉄筋21Mまでの距離を30mmにすると、鉄筋コンクリート20の裏面から鉄筋21Mまでの距離が54mmとなるため、各試料の表面における測定は鉄筋21Mの深さD1を30mmとしたものの測定となり、各試料の裏面における測定は鉄筋21Mの深さD1を54mmとしたものの測定となる。すなわち、鉄筋21Mの深さD1を30mmの試料を裏返して測定することで、鉄筋21Mの深さD1を54mmの試料の測定も行われることになる。試料番号1~6の試料の鉄筋21Mにおいて、腐食率が0wt%のものは、腐食が生じていない鉄筋であり、腐食率が1~5wt%のものは、コンクリートキャスト後に通電して腐食を加速させることにより人為的に腐食を生じさせた鉄筋である。 As the samples of sample numbers 1 to 6 (FIGS. 2 and 3), a plurality of reinforced concrete 20 having a width L1, a length L2, and a height L3 in which one reinforcing bar 21M was embedded at a depth D1 were prepared. The width L1 was 300 mm, the length L2 was 300 mm, and the height L3 was 100 mm. The distance L4 from the side end of the reinforced concrete 20 to the reinforcing bar 21M was set to 150 mm. The diameter d of the reinforcing bar 21M is 16 mm. Here, in the samples of sample numbers 1 to 6, when the distance from the front surface of the reinforced concrete 20 to the reinforcing bar 21M is 30 mm, the distance from the back surface of the reinforced concrete 20 to the reinforcing bar 21M is 54 mm. The measurement is performed when the depth D1 of the reinforcing bar 21M is 30 mm, and the measurement on the back surface of each sample is measured when the depth D1 of the reinforcing bar 21M is 54 mm. That is, by measuring the depth D1 of the reinforcing bar 21M by turning over the sample of 30 mm, the measurement of the sample having the depth D1 of the reinforcing bar 21M of 54 mm is also performed. Of the reinforcing bars 21M of the samples of sample numbers 1 to 6, those having a corrosion rate of 0 wt% are reinforcing bars without corrosion, and those having a corrosion rate of 1 to 5 wt% are energized after concrete casting to accelerate corrosion. It is a reinforcing bar that is artificially corroded by making it.

試料番号7~9の試料(図4、図5において鉄筋21Mがないもの)として、2本の鉄筋21L、21Rを埋設した幅L1、長さL2、高さL3の鉄筋コンクリート20を複数作製した。幅L1は300mm、長さL2は300mm、高さL3は100mmとした。コンクリート20の一端から鉄筋21Lまでの間隔(距離)L5は、75mmとし、鉄筋21Lから鉄筋21Rまでの間隔(間隔L5+間隔L5)は、150mとした。2本の鉄筋21L、21Rの直径dは、いずれも16mmとした。鉄筋21Rの深さD2は10mm、鉄筋21Lの深さD4は50mmとした。試料番号7~9の試料の鉄筋21L、21Rにおいて、腐食率が0wt%のものは、腐食が生じていない鉄筋であり、腐食率が1~2wt%のものは、コンクリートキャスト後に通電して腐食を加速させることにより人為的に腐食を生じさせた鉄筋である。 As samples of sample numbers 7 to 9 (without reinforcing bars 21M in FIGS. 4 and 5), a plurality of reinforced concrete 20 having a width L1, a length L2, and a height L3 in which two reinforcing bars 21L and 21R were embedded were prepared. The width L1 was 300 mm, the length L2 was 300 mm, and the height L3 was 100 mm. The distance (distance) L5 from one end of the concrete 20 to the reinforcing bar 21L was 75 mm, and the distance (distance L5 + spacing L5) from the reinforcing bar 21L to the reinforcing bar 21R was 150 m. The diameter d of the two reinforcing bars 21L and 21R was set to 16 mm. The depth D2 of the reinforcing bar 21R was 10 mm, and the depth D4 of the reinforcing bar 21L was 50 mm. Of the reinforcing bars 21L and 21R of the samples of sample numbers 7 to 9, those having a corrosion rate of 0 wt% are reinforcing bars without corrosion, and those having a corrosion rate of 1 to 2 wt% are energized and corroded after concrete casting. It is a reinforcing bar that has been artificially corroded by accelerating.

試料番号10~11の試料(図4、図5における鉄筋の深さが同一のもの)として、3本の鉄筋21L、21M、21Rを等間隔で埋設した幅L1、長さL2、高さL3の鉄筋コンクリート20を複数作製した。幅L1は300mm、長さL2は300mm、高さL3は100mmとした。3本の鉄筋21L、21M、21Rの間隔L5は、75mmとした。3本の鉄筋21L、21M、21Rの直径dは、いずれも16mmとした。また、3本の鉄筋21L、21M、21Rの深さは、いずれも30mmとした。試料番号10~11の試料の鉄筋21L、21M、21Rにおいて、腐食率が0wt%のものは、腐食が生じていない鉄筋であり、腐食率が1~5wt%のものは、コンクリートキャスト後に通電して腐食を加速させることにより人為的に腐食を生じさせた鉄筋である。 As samples of sample numbers 10 to 11 (those having the same depth of reinforcing bars in FIGS. 4 and 5), three reinforcing bars 21L, 21M, and 21R are embedded at equal intervals, and the width L1, the length L2, and the height L3 are embedded. A plurality of reinforced concrete 20 of the above were prepared. The width L1 was 300 mm, the length L2 was 300 mm, and the height L3 was 100 mm. The distance L5 between the three reinforcing bars 21L, 21M, and 21R was set to 75 mm. The diameters d of the three reinforcing bars 21L, 21M, and 21R were all 16 mm. The depth of each of the three reinforcing bars 21L, 21M, and 21R was set to 30 mm. Among the reinforcing bars 21L, 21M, 21R of the samples of sample numbers 10 to 11, those having a corrosion rate of 0 wt% are reinforcing bars without corrosion, and those having a corrosion rate of 1 to 5 wt% are energized after concrete casting. It is a reinforcing bar that has been artificially corroded by accelerating the corrosion.

試料番号12の試料(図4、図5)として、3本の鉄筋21L、21M、21Rを等間隔で埋設した幅L1、長さL2、高さL3の鉄筋コンクリート20を複数作製した。幅L1は300mm、長さL2は300mm、高さL3は100mmとした。3本の鉄筋21L、21M、21Rの間隔L5は、75mmとした。3本の鉄筋21L、21M、21Rの直径dは、いずれも16mmとした。鉄筋21Rの深さD2は10mm、鉄筋21Mの深さD3は30mm、鉄筋21Lの深さD4は50mmとした。試料番号12の試料の鉄筋21L、21M、21Rにおける腐食率は1%であり、各鉄筋はコンクリートキャスト後に通電して腐食を加速させることにより人為的に腐食を生じさせた鉄筋である。 As a sample of sample number 12 (FIGS. 4 and 5), a plurality of reinforced concrete 20 having a width L1, a length L2, and a height L3 in which three reinforcing bars 21L, 21M, and 21R were embedded at equal intervals were prepared. The width L1 was 300 mm, the length L2 was 300 mm, and the height L3 was 100 mm. The distance L5 between the three reinforcing bars 21L, 21M, and 21R was set to 75 mm. The diameters d of the three reinforcing bars 21L, 21M, and 21R were all 16 mm. The depth D2 of the reinforcing bar 21R was 10 mm, the depth D3 of the reinforcing bar 21M was 30 mm, and the depth D4 of the reinforcing bar 21L was 50 mm. The corrosion rate of the reinforcing bars 21L, 21M, and 21R of the sample of sample No. 12 is 1%, and each reinforcing bar is a reinforcing bar that artificially causes corrosion by energizing after concrete casting and accelerating the corrosion.

本発明の発明者は、上記の試料番号1~12の試料を用いて「第1測定データ」を取得する検証実験を行った。より具体的には、試料番号1~12の鉄筋コンクリート20の表面に、測定対象の鉄筋コンクリート20内の鉄筋21L、21M、21Rに沿って平行に、第1検出探針11及び第2検出探針12を所定間隔aで配置し(符号P2、P3で図示した位置)、第1検出探針11及び第2検出探針12の両外側に第1電流探針13及び第2電流探針14を1本ずつ所定間隔aで配置した(符号P1、P4で図示した位置)。この状態で、第1電流探針13と第2電流探針14との間に交流電流を流し、交流電流の周波数を変化させながら第1検出探針11と第2検出探針12との間の電位差Vを測定して、試料番号1~12の鉄筋21L、21M、21Rのそれぞれについて交流電流の周波数とインピーダンスρとの関係を取得した。 The inventor of the present invention conducted a verification experiment to acquire "first measurement data" using the above-mentioned samples of sample numbers 1 to 12. More specifically, the first detection probe 11 and the second detection probe 12 are parallel to the surface of the reinforced concrete 20 of the sample numbers 1 to 12 along the reinforcing bars 21L, 21M, 21R in the reinforced concrete 20 to be measured. Are arranged at predetermined intervals a (positions shown by reference numerals P2 and P3), and the first current probe 13 and the second current probe 14 are placed on both outer sides of the first detection probe 11 and the second detection probe 12. The pieces were arranged at predetermined intervals a (positions shown by reference numerals P1 and P4). In this state, an alternating current is passed between the first current probe 13 and the second current probe 14, and the frequency of the alternating current is changed between the first detection probe 11 and the second detection probe 12. The potential difference V was measured to obtain the relationship between the frequency of the alternating current and the impedance ρ for each of the reinforcing bars 21L, 21M, and 21R of sample numbers 1 to 12.

図7及び図8は、試料番号1~6の試料を用いた検証実験の結果を図示したものである。図7は、試料番号1~6の試料の鉄筋21Mのインピーダンス-周波数特性を図示したグラフである。図8は、低周波域におけるインピーダンスρの最高値と高周波域におけるインピーダンスρの最低値との差を腐食率に対応付けて図示したグラフである。 7 and 8 show the results of verification experiments using the samples of sample numbers 1 to 6. FIG. 7 is a graph illustrating the impedance-frequency characteristics of the reinforcing bars 21M of the samples of sample numbers 1 to 6. FIG. 8 is a graph showing the difference between the highest value of impedance ρ in the low frequency range and the lowest value of impedance ρ in the high frequency range in association with the corrosion rate.

図9及び図10は、試料番号7~12の試料を用いた検証実験の結果を図示したものである。図9は、試料番号7~12の試料の鉄筋21L、21M、21Rのインピーダンス-周波数特性を図示したグラフである。図10は、低周波域(周波数0.01Hz)におけるインピーダンスρを鉄筋深さに対応付けて図示したグラフである。 9 and 10 show the results of verification experiments using the samples of sample numbers 7 to 12. FIG. 9 is a graph illustrating the impedance-frequency characteristics of the reinforcing bars 21L, 21M, and 21R of the samples of sample numbers 7 to 12. FIG. 10 is a graph showing the impedance ρ in the low frequency region (frequency 0.01 Hz) in association with the reinforcing bar depth.

図7及び図8のグラフからは、鉄筋21Mの鉄筋深さが30mmの場合、54mmの場合、いずれにおいても鉄筋21Mの腐食率が増加するに従って、低周波域におけるインピーダンスρの最高値と高周波域におけるインピーダンスρの最低値との差が減少していくことが見て取れる。したがって低周波域におけるインピーダンスρの最高値と高周波域におけるインピーダンスρの最低値との差から、鉄筋コンクリート20の鉄筋21Mの腐食の程度を評価できることが分かる。 From the graphs of FIGS. 7 and 8, when the reinforcing bar depth of the reinforcing bar 21M is 30 mm and 54 mm, the maximum value of the impedance ρ in the low frequency range and the high frequency range are increased as the corrosion rate of the reinforcing bar 21M increases. It can be seen that the difference from the lowest value of the impedance ρ in is decreasing. Therefore, it can be seen that the degree of corrosion of the reinforcing bar 21M of the reinforced concrete 20 can be evaluated from the difference between the maximum value of the impedance ρ in the low frequency range and the minimum value of the impedance ρ in the high frequency range.

一方、図9において、試料番号7の深さD2が10mmの鉄筋21R(図9においてL7R)と、試料番号8の深さD2が10mmの鉄筋21R(図9においてL8R)とは、周波数が10Hzでのインピーダンスρの値は、鉄筋の深さに対応してほぼ一致しているが、低周波(0.01Hz)に向うにつれて両鉄筋のインピーダンスρの値は大きく異なっている。当該両鉄筋の相違点は腐食の有無だけであるため、図9のグラフからは、低周波領域におけるインピーダンスρの値のずれは当該腐食に起因することが分かる。また、0.01Hzのインピーダンスρの値を縦軸としている図10のグラフからは、腐食がない場合では鉄筋の深さが変わってもインピーダンスρの値の差は小さいことが分かる。更に、図10のグラフからは、鉄筋に腐食が1%でも存在すると、周波数が0.01Hzでのインピーダンスρの値が鉄筋の深さと相関を持つことが分かる。すなわち、周波数が0.01Hz付近におけるインピーダンスρの値は、まず腐食の有無で大別され、腐食があれば鉄筋の深さに依存する。このような関係も考慮して、鉄筋コンクリート20の鉄筋の腐食を総合的に判断することが可能になる。 On the other hand, in FIG. 9, the frequency of the reinforcing bar 21R having a depth D2 of sample number 7 of 10 mm (L7R in FIG. 9) and the reinforcing bar 21R having a depth D2 of sample number 8 of 10 mm (L8R in FIG. 9) are 10 Hz. The values of impedance ρ in are almost the same corresponding to the depth of the reinforcing bar, but the values of impedance ρ of both reinforcing bars differ greatly toward lower frequencies (0.01 Hz). Since the only difference between the two reinforcing bars is the presence or absence of corrosion, it can be seen from the graph of FIG. 9 that the deviation in the value of the impedance ρ in the low frequency region is caused by the corrosion. Further, from the graph of FIG. 10 in which the value of the impedance ρ of 0.01 Hz is the vertical axis, it can be seen that the difference in the value of the impedance ρ is small even if the depth of the reinforcing bar changes when there is no corrosion. Further, from the graph of FIG. 10, it can be seen that the value of the impedance ρ at a frequency of 0.01 Hz correlates with the depth of the reinforcing bar when corrosion is present even at 1% in the reinforcing bar. That is, the value of the impedance ρ when the frequency is around 0.01 Hz is roughly classified according to the presence or absence of corrosion, and if there is corrosion, it depends on the depth of the reinforcing bar. In consideration of such a relationship, it becomes possible to comprehensively judge the corrosion of the reinforcing bar of the reinforced concrete 20.

また図7のグラフからは、高周波域におけるインピーダンスρの最低値が鉄筋21Mの鉄筋深さに応じて変化すること、及び高周波域におけるインピーダンスρの最低値が鉄筋21Mの腐食の程度にほとんど依存しないことが見て取れる。同様に、図9のグラフからは、高周波域におけるインピーダンスρの最低値が鉄筋21L、21M、21Rの鉄筋深さに応じて変化すること、及び高周波域におけるインピーダンスρの最低値が鉄筋21L、21M、21Rの腐食の程度にあまり依存しないことが見て取れる。したがって高周波域におけるインピーダンスρの最低値に基づいて、測定対象の鉄筋コンクリート20の表面から鉄筋21までの深さを推定できることが分かる。 Further, from the graph of FIG. 7, the minimum value of the impedance ρ in the high frequency region changes according to the reinforcement depth of the reinforcing bar 21M, and the minimum value of the impedance ρ in the high frequency region hardly depends on the degree of corrosion of the reinforcing bar 21M. You can see that. Similarly, from the graph of FIG. 9, the minimum value of the impedance ρ in the high frequency region changes according to the reinforcing bar depth of the reinforcing bars 21L, 21M, 21R, and the minimum value of the impedance ρ in the high frequency region is the reinforcing bars 21L, 21M. It can be seen that it does not depend much on the degree of corrosion of 21R. Therefore, it can be seen that the depth from the surface of the reinforced concrete 20 to be measured to the reinforcing bar 21 can be estimated based on the lowest value of the impedance ρ in the high frequency region.

図11は、検証実験に用いた試料番号1~6の試料の平面図であり、鉄筋21に直交する方向に、第1検出探針11、第2検出探針12、第1電流探針13及び第2電流探針14を配置した状態を図示したものである。 FIG. 11 is a plan view of the samples of sample numbers 1 to 6 used in the verification experiment, and is a first detection probe 11, a second detection probe 12, and a first current probe 13 in a direction orthogonal to the reinforcing bar 21. The state in which the second current probe 14 is arranged is illustrated.

本発明の発明者は、上記の試料番号1の鉄筋深さ54mmの試料(腐食率0wt%)を用いて、さらに「第2測定データ」を取得する検証実験を行った。より具体的には、試料番号1の鉄筋深さ54mmの試料の鉄筋コンクリート20の表面に、その鉄筋コンクリート20内の鉄筋21Mに直交する方向に、第1検出探針11及び第2検出探針12を所定間隔aで配置し(符号P2V、P3Vで図示した位置)、第1検出探針11及び第2検出探針12の両外側に第1電流探針13及び第2電流探針14を1本ずつ所定間隔aで配置した(符号P1V、P4Vで図示した位置)。この状態で、第1電流探針13と第2電流探針14との間に交流電流を流し、交流電流の周波数を変化させながら第1検出探針11と第2検出探針12との間の電位差V及び位相を測定して、試料番号1~12の鉄筋21L、21M、21Rのそれぞれについて交流電流の周波数とインピーダンスρとの関係、並びに交流電流の周波数と位相変化(電流Iの位相に対する電位差Vの位相差)の関係を取得した。 The inventor of the present invention conducted a verification experiment to further acquire "second measurement data" using the above-mentioned sample (corrosion rate 0 wt%) having a reinforcing bar depth of 54 mm of sample number 1. More specifically, the first detection probe 11 and the second detection probe 12 are placed on the surface of the reinforced concrete 20 of the sample having a reinforcing bar depth of 54 mm of sample number 1 in a direction orthogonal to the reinforcing bar 21M in the reinforced concrete 20. Arranged at predetermined intervals a (positions shown by the symbols P2V and P3V), one first current probe 13 and one second current probe 14 are provided on both outer sides of the first detection probe 11 and the second detection probe 12. They were arranged at predetermined intervals a (positions shown by reference numerals P1V and P4V). In this state, an alternating current is passed between the first current probe 13 and the second current probe 14, and the frequency of the alternating current is changed between the first detection probe 11 and the second detection probe 12. The relationship between the frequency and impedance ρ of the alternating current, and the frequency and phase change of the alternating current (relative to the phase of the current I) for each of the reinforcing bars 21L, 21M, and 21R of sample numbers 1 to 12 by measuring the potential difference V and the phase of The relationship of the phase difference of the potential difference V) was acquired.

図12は、試料番号1の鉄筋深さ54mmの試料におけるインピーダンス-周波数特性、及び位相-周波数特性を図示したグラフである。ここで図12において実線で図示したグラフは、インピーダンス-周波数特性のグラフであり、破線で図示したグラフは、位相-周波数特性のグラフである。また図12において「L1-54mm 平行」の文字が付されたグラフは、試料番号1の鉄筋深さ54mmの試料において、第1検出探針11、第2検出探針12、第1電流探針13及び第2電流探針14を鉄筋コンクリート20内の鉄筋21Mに沿って平行に配置した場合(図2)のグラフである(第1測定データ)。他方、図12において「L1-54mm 直交」の文字が付されたグラフは、試料番号1の鉄筋深さ54mmの試料において、第1検出探針11、第2検出探針12、第1電流探針13及び第2電流探針14を鉄筋コンクリート20内の鉄筋21Mに直交する方向に配置した場合(図11)のグラフである(第2測定データ)。 FIG. 12 is a graph illustrating impedance-frequency characteristics and phase-frequency characteristics in a sample having a reinforcing bar depth of 54 mm of sample number 1. Here, the graph shown by the solid line in FIG. 12 is a graph of impedance-frequency characteristics, and the graph shown by a broken line is a graph of phase-frequency characteristics. Further, in FIG. 12, the graph with the characters “L1-54 mm parallel” shows the first detection probe 11, the second detection probe 12, and the first current probe in the sample with the reinforcing bar depth of 54 mm of sample number 1. 13 is a graph of the case where the 13 and the second current probe 14 are arranged in parallel along the reinforcing bar 21M in the reinforced concrete 20 (FIG. 2) (first measurement data). On the other hand, in FIG. 12, the graph with the letters "L1-54 mm orthogonal" shows the first detection probe 11, the second detection probe 12, and the first current probe in the sample with the reinforcing bar depth of 54 mm of sample number 1. It is a graph of the case where the needle 13 and the second current probe 14 are arranged in the direction orthogonal to the reinforcing bar 21M in the reinforced concrete 20 (FIG. 11) (second measurement data).

図12の位相-周波数特性(破線のグラフ)から、4本の探針を鉄筋21Mに沿って平行に配置した場合では、0.5Hz付近に位相の最大値があり、他方、4本の探針を鉄筋21Mに直交する方向に配置した場合では、位相の変化がほとんど生じていないことが見て取れる。この2つの位相のグラフの差が鉄筋21Mの影響であると考えられる。試料番号1の鉄筋深さ54mmの試料の鉄筋21Mは、腐食率が0wt%であり、腐食が生じていない健全な鉄筋である。そして鉄筋21Mの腐食が進行するに従って、鉄筋表面とコンクリート表面間の電気2重層による容量成分が徐々に失われ、インピーダンス-周波数特性の差(第1測定データと第2測定データとの差)は小さくなっていくと考えられる。したがって図12のグラフからは、第1測定データと第2測定データとを対比することによって、例えば第1測定データと第2測定データとの比や差分を評価することによって、測定対象の鉄筋コンクリート20に固有のインピーダンス-周波数特性を除外して第1測定データにおける鉄筋21の寄与分を正確に特定できることが分かる。 From the phase-frequency characteristics (broken line graph) in FIG. 12, when four probes are arranged in parallel along the reinforcing bar 21M, the maximum phase value is around 0.5 Hz, while the four probes are located. It can be seen that when the needle is arranged in the direction orthogonal to the reinforcing bar 21M, the phase change hardly occurs. The difference between these two phase graphs is considered to be the effect of the reinforcing bar 21M. The reinforcing bar 21M of the sample with the reinforcing bar depth of 54 mm of sample No. 1 is a healthy reinforcing bar having a corrosion rate of 0 wt% and no corrosion. Then, as the corrosion of the reinforcing bar 21M progresses, the capacitance component due to the electric double layer between the reinforcing bar surface and the concrete surface is gradually lost, and the difference in impedance-frequency characteristics (difference between the first measurement data and the second measurement data) becomes. It is thought that it will become smaller. Therefore, from the graph of FIG. 12, the reinforced concrete 20 to be measured is measured by comparing the first measurement data and the second measurement data, for example, by evaluating the ratio or difference between the first measurement data and the second measurement data. It can be seen that the contribution of the reinforcing bar 21 in the first measurement data can be accurately specified by excluding the impedance-frequency characteristics peculiar to.

11 第1検出探針
12 第2検出探針
13 第1電流探針
14 第2電流探針
15 電位差計測装置
16 交流電源装置
17 電流計測装置
18 制御部
20 鉄筋コンクリート
21、21L、21M、21R 鉄筋
11 1st detection probe 12 2nd detection probe 13 1st current probe 14 2nd current probe 15 Potential difference measuring device 16 AC power supply device 17 Current measuring device 18 Control unit 20 Reinforced concrete 21, 21L, 21M, 21R Reinforcing bar

Claims (2)

測定対象の鉄筋コンクリートの表面に、前記測定対象の鉄筋コンクリート内の鉄筋に沿って平行に、2本の検出探針を所定間隔で配置し、前記2本の検出探針の両外側に2本の電流探針を1本ずつ前記所定間隔で配置し、
前記2本の電流探針間に交流電流を流し、前記交流電流の周波数を変化させながら前記2本の検出探針間の電圧を測定して、前記交流電流の周波数とインピーダンスとの関係を第1測定データとして取得し、
前記測定対象の鉄筋コンクリートの表面に、前記測定対象の鉄筋コンクリート内の鉄筋に直交する方向に、又は前記測定対象の鉄筋コンクリートの鉄筋がない部分の表面の同一線上に、前記2本の検出探針を前記所定間隔で配置し、前記2本の検出探針の両外側に前記2本の電流探針を1本ずつ前記所定間隔で配置し、
前記2本の電流探針間に交流電流を流し、前記交流電流の周波数を変化させながら前記2本の検出探針間の電圧を測定して、前記交流電流の周波数とインピーダンスとの関係を第2測定データとして取得し、
前記第1測定データのインピーダンスの前記第2測定データのインピーダンスでの減算値または除算値を周波数毎に求め、該減算値または該除算値の低周波域における最高値と高周波域における最低値との差に基づいて、前記測定対象の鉄筋コンクリート内の鉄筋の腐食を評価する、鉄筋コンクリートの鉄筋腐食評価方法。
Two detection probes are arranged at predetermined intervals on the surface of the reinforced concrete to be measured in parallel with the reinforcing bars in the reinforced concrete to be measured, and two currents are applied to both outer sides of the two detection probes. Place the probes one by one at the predetermined intervals,
An alternating current is passed between the two current probes, the voltage between the two detection probes is measured while changing the frequency of the alternating current, and the relationship between the frequency of the alternating current and the impedance is determined. Acquired as 1 measurement data,
The two detection probes are placed on the surface of the reinforced concrete to be measured in a direction orthogonal to the reinforcing bar in the reinforced concrete to be measured, or on the same line on the surface of the portion of the reinforced concrete to be measured where there is no reinforcing bar. The two current probes are arranged at predetermined intervals, and the two current probes are arranged one by one on both outer sides of the two detection probes at the predetermined intervals.
An alternating current is passed between the two current probes, the voltage between the two detection probes is measured while changing the frequency of the alternating current, and the relationship between the frequency of the alternating current and the impedance is determined. 2 Acquired as measurement data,
The subtraction value or the division value of the impedance of the first measurement data at the impedance of the second measurement data is obtained for each frequency, and the subtraction value or the division value is the highest value in the low frequency region and the high frequency region . A method for evaluating reinforcing bar corrosion in reinforced concrete, which evaluates corrosion of reinforcing bars in the reinforced concrete to be measured based on the difference from the minimum value.
請求項に記載の鉄筋コンクリートの鉄筋腐食評価方法において、前記第1測定データの高周波域におけるインピーダンスの最低値に基づいて、前記測定対象の鉄筋コンクリートの表面から鉄筋までの深さを推定する、鉄筋コンクリートの鉄筋腐食評価方法。 In the method for evaluating reinforced concrete corrosion of reinforced concrete according to claim 1 , the depth from the surface of the reinforced concrete to be measured to the reinforcing bar is estimated based on the lowest value of the impedance in the high frequency region of the first measurement data. Reinforcement corrosion evaluation method.
JP2017138217A 2017-07-14 2017-07-14 Reinforced concrete corrosion evaluation method Active JP7032722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017138217A JP7032722B2 (en) 2017-07-14 2017-07-14 Reinforced concrete corrosion evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017138217A JP7032722B2 (en) 2017-07-14 2017-07-14 Reinforced concrete corrosion evaluation method

Publications (2)

Publication Number Publication Date
JP2019020226A JP2019020226A (en) 2019-02-07
JP7032722B2 true JP7032722B2 (en) 2022-03-09

Family

ID=65354126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017138217A Active JP7032722B2 (en) 2017-07-14 2017-07-14 Reinforced concrete corrosion evaluation method

Country Status (1)

Country Link
JP (1) JP7032722B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153782A (en) * 2019-03-19 2020-09-24 一般財団法人電力中央研究所 Corrosion detection device, corrosion detection method, and corrosion detection program
JP7113419B2 (en) * 2020-05-12 2022-08-05 学校法人東京理科大学 Apparatus for detecting corroded portions of reinforcing bars in concrete and method for detecting the same
CN112630270A (en) * 2020-12-28 2021-04-09 青岛理工大学 Method for detecting state of reinforcing steel bar in concrete structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177124A (en) 2002-11-22 2004-06-24 Kansai Electric Power Co Inc:The Method for measuring corrosion of reinforcing bar inside concrete
JP2007017405A (en) 2005-07-11 2007-01-25 Kansai Electric Power Co Inc:The Method for evaluating reinforcement corrosion rate
WO2015172231A1 (en) 2014-05-13 2015-11-19 Giatec Scientific Ltd. Electrical methods and systems for concrete testing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287473A (en) * 1988-05-14 1989-11-20 Nippon Boshoku Kogyo Kk Resistivity measuring method for concrete
JP2685358B2 (en) * 1990-12-14 1997-12-03 株式会社四国総合研究所 Corrosion diagnosis method for reinforcing bars in concrete
JP3326587B2 (en) * 1996-01-16 2002-09-24 電気化学工業株式会社 Method for detecting corrosion points of steel in concrete
US5855721A (en) * 1997-03-11 1999-01-05 The Regents Of The University Of California Non-destructive method of determining the position and condition of reinforcing steel in concrete
DE102009059036B4 (en) * 2009-12-12 2011-11-10 Tsg Technische Service Gesellschaft Mbh Improved corrosion protection test of earth-covered test specimens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177124A (en) 2002-11-22 2004-06-24 Kansai Electric Power Co Inc:The Method for measuring corrosion of reinforcing bar inside concrete
JP2007017405A (en) 2005-07-11 2007-01-25 Kansai Electric Power Co Inc:The Method for evaluating reinforcement corrosion rate
WO2015172231A1 (en) 2014-05-13 2015-11-19 Giatec Scientific Ltd. Electrical methods and systems for concrete testing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
横田 優,二周波交流インピーダンス法によるコンクリート中鋼材腐食の非破壊検査手法,非破壊検査,2017年03月01日,第66巻第3号,pp.148-152

Also Published As

Publication number Publication date
JP2019020226A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
Lu et al. Conductivity Lift-off Invariance and measurement of permeability for ferrite metallic plates
JP7032722B2 (en) Reinforced concrete corrosion evaluation method
CA2603903C (en) Method and device for measuring the condition of steel structures
Wilson et al. Pulsed electromagnetic methods for defect detection and characterisation
RU2299399C2 (en) Method for determining object surface profile
JP4710061B2 (en) Concrete component measuring apparatus and measuring method
Lim et al. A quantitative analysis of the geometric effects of reinforcement in concrete resistivity measurement above reinforcement
Angani et al. Transient eddy current oscillations method for the inspection of thickness change in stainless steel
JP2010048723A (en) Reinforcing bar corrosion inspection method and reinforcing bar corrosion inspection apparatus
US11360051B2 (en) Construction structure corrosion measurement sensor assembly and method for measuring corrosion by using same
JP2007017405A (en) Method for evaluating reinforcement corrosion rate
RU2584726C1 (en) Method of measuring parameters of cracks in non-magnetic electroconductive objects
JP7024553B2 (en) Probe of corrosion environment measuring device and corrosion environment measuring device
JP4831298B2 (en) Hardening depth measuring device
Zheng et al. Numerical simulation of a U-shaped ACFM inducer
RU2610350C1 (en) Eddy current testing method
RU2586261C2 (en) Device for magnetic flaw detector and method of reducing error in determining size of defects of pipeline magnetic flaw detectors
JP2018048830A5 (en)
JP6007923B2 (en) Thinning detection device
RU2641794C1 (en) Method for determination of technical state of underground pipeline insulating coating
WO2016017507A1 (en) Water content detection device, water content detection method, and water content detection program
JP2020153782A (en) Corrosion detection device, corrosion detection method, and corrosion detection program
JP6792859B2 (en) Analysis method, analysis program, and analysis device
Lu Conductivity Lift-off Invariance and measurement of permeability for magnetic plates
RU2746668C1 (en) Method for measuring the depth of surface crack by electrical potential method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220215

R150 Certificate of patent or registration of utility model

Ref document number: 7032722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150