WO2016017507A1 - Water content detection device, water content detection method, and water content detection program - Google Patents

Water content detection device, water content detection method, and water content detection program Download PDF

Info

Publication number
WO2016017507A1
WO2016017507A1 PCT/JP2015/070871 JP2015070871W WO2016017507A1 WO 2016017507 A1 WO2016017507 A1 WO 2016017507A1 JP 2015070871 W JP2015070871 W JP 2015070871W WO 2016017507 A1 WO2016017507 A1 WO 2016017507A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
specific resistance
value
moisture
current
Prior art date
Application number
PCT/JP2015/070871
Other languages
French (fr)
Japanese (ja)
Inventor
友章 房前
Original Assignee
株式会社いちごホールディングス
房前 日出子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社いちごホールディングス, 房前 日出子 filed Critical 株式会社いちごホールディングス
Priority to CN201580026805.6A priority Critical patent/CN106461808B/en
Priority to MYPI2016002078A priority patent/MY182898A/en
Priority to US15/313,326 priority patent/US10386317B2/en
Priority to JP2016538294A priority patent/JP6235146B2/en
Publication of WO2016017507A1 publication Critical patent/WO2016017507A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/048Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • G01V3/06Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current using ac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present invention relates to a moisture detection device, a moisture detection method, and a moisture detection program for detecting moisture contained in a predetermined area in the ground.
  • Patent Document 1 discloses a water vein detection device including a plurality of current electrode pairs, a plurality of potential electrode pairs, a first calculation means, a second calculation means, and an estimation means.
  • the plurality of current electrode pairs measure a current value of an alternating current input to a predetermined region of the ground.
  • the plurality of potential electrode pairs measure a voltage value corresponding to an alternating current.
  • the first calculation means calculates a first specific resistance value indicating a specific resistance in a predetermined region of the ground using a current value and a voltage value based on an alternating current having a first frequency.
  • the second calculation means uses a current value and a voltage value based on an alternating current having a second frequency that is higher than the first frequency, and a second specific resistance value indicating a specific resistance in a predetermined region of the ground. Is calculated.
  • the estimation means estimates that the predetermined region of the ground includes a water vein when the second specific resistance value is greater than the first specific resistance value and the difference is equal to or greater than the predetermined value.
  • the water vein is detected based on two types of specific resistance values obtained by an alternating current having two types of frequencies in the same region in the ground, so that the water vein can be detected with high accuracy. Has been.
  • the moisture detection device, the moisture detection method, and the moisture detection program according to the present invention are made in view of the above problems, and detect moisture in the ground with high accuracy even if not a skilled engineer. It is an object.
  • the moisture detection device is a moisture detection device that detects moisture contained in a predetermined region in the ground.
  • the moisture detection device includes a plurality of current electrode pairs, a plurality of potential electrode pairs, a frequency setting unit, a specific resistance calculation unit, and an estimation unit.
  • the plurality of current electrode pairs measure a current value of an alternating current input to the predetermined region.
  • the plurality of potential electrode pairs measure voltage values corresponding to the alternating current.
  • the frequency setting means sets the frequency of the alternating current at a predetermined frequency interval between a preset first frequency and a second frequency higher than the first frequency.
  • the specific resistance calculation means obtains a specific resistance value of the predetermined region using the current value and the voltage value every time the frequency is set by the frequency setting means.
  • the estimation means obtains the maximum value and the minimum value of the specific resistance value, and estimates that the smaller the quotient obtained by dividing the maximum value by the minimum value, the more water is contained in the predetermined region. .
  • the moisture detection device is a moisture detection device that detects moisture contained in a predetermined region in the ground.
  • the moisture detection device includes a plurality of current electrode pairs, a plurality of potential electrode pairs, a frequency setting unit, a specific resistance calculation unit, a deviation calculation unit, and a frequency band selection unit.
  • the plurality of current electrode pairs measure a current value of an alternating current input to the predetermined region.
  • the plurality of potential electrode pairs measure voltage values corresponding to the alternating current.
  • the frequency setting means sets the frequency of the alternating current at a predetermined frequency interval between a preset third frequency and a fourth frequency higher than the third frequency.
  • the specific resistance calculation means obtains a specific resistance value of the predetermined region using the current value and the voltage value every time the frequency is set by the frequency setting means.
  • the deviation calculating means divides the interval from the third frequency to the fourth frequency into two or more sections, and obtains a standard deviation of the specific resistance value obtained by the specific resistance calculating means for each of the sections. .
  • the frequency band selecting means selects a frequency band corresponding to a section having the largest standard deviation obtained by the deviation calculating means as a frequency band used for detecting moisture contained in the ground.
  • the moisture detection method includes a plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, and a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current.
  • the moisture detection method includes a frequency setting step, a specific resistance calculation step, and an estimation step. In the frequency setting step, the frequency of the alternating current is set at a predetermined frequency interval between a preset first frequency and a second frequency higher than the first frequency.
  • the specific resistance calculation step every time a frequency is set in the frequency setting step, a specific resistance value indicating a specific resistance in the predetermined region is obtained using the current value and the voltage value.
  • the estimation step the maximum value and the minimum value of the specific resistance value are obtained, and it is estimated that the smaller the quotient obtained by dividing the maximum value by the minimum value, the more moisture is contained in the ground of the predetermined region. To do.
  • the moisture detection method includes a plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, and a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current.
  • the moisture detection method includes a frequency setting step, a specific resistance calculation step, a deviation calculation step, and a frequency band selection step.
  • a plurality of frequencies are set at predetermined frequency intervals between a preset third frequency and a fourth frequency higher than the third frequency.
  • the specific resistance calculation step the specific resistance value in the predetermined region is obtained using the current value and the voltage value every time the frequency is set in the frequency setting step.
  • the interval from the third frequency to the fourth frequency is divided into two or more sections, and a standard deviation of the specific resistance value obtained in the specific resistance calculating step is obtained for each section. .
  • the frequency band selecting step a frequency band corresponding to a section having the largest standard deviation obtained in the deviation calculating step is selected as a frequency band used for detecting moisture contained in the ground.
  • the water detection program includes a plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current, A moisture detection program of a moisture detection device that includes a computer and detects moisture contained in the predetermined area.
  • the moisture detection program causes the computer to function as frequency setting means, specific resistance calculation means, and estimation means.
  • the frequency setting means sets the frequency of the alternating current at a predetermined frequency interval between a preset first frequency and a second frequency higher than the first frequency.
  • the specific resistance calculation means obtains a specific resistance value indicating a specific resistance in the predetermined region by using the current value and the voltage value every time a frequency is set by the frequency setting means.
  • the estimation means obtains the maximum value and the minimum value of the specific resistance value, and estimates that the smaller the quotient obtained by dividing the maximum value by the minimum value is, the more moisture is contained in the ground of the predetermined region. To do.
  • the water detection program includes a plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current,
  • a moisture detection program of a moisture detection device that includes a computer and detects moisture contained in the predetermined area.
  • the moisture detection program causes the computer to function as frequency setting means, specific resistance calculation means, deviation calculation means, and frequency band selection means.
  • the frequency setting means sets the frequency of the alternating current at a predetermined frequency interval between a preset third frequency and a fourth frequency higher than the third frequency.
  • the specific resistance calculation means obtains a specific resistance value of the predetermined region using the current value and the voltage value every time the frequency is set by the frequency setting means.
  • the deviation calculating means divides the interval from the third frequency to the fourth frequency into two or more sections, and obtains a standard deviation of the specific resistance value obtained by the specific resistance calculating means for each of the sections. .
  • the frequency band selecting means selects a frequency band corresponding to a section having the largest standard deviation obtained by the deviation calculating means as a frequency band used for detecting moisture contained in the ground.
  • the moisture detection apparatus According to the moisture detection apparatus, the moisture detection method, and the moisture detection program according to the present invention, it is possible to detect that the moisture in the ground is high with high accuracy even without being an expert engineer.
  • FIG. 1 It is a figure which shows the measurement principle of the moisture detection apparatus which concerns on embodiment of this invention.
  • A is a figure which shows the principle of a dipole dipole method
  • (b) is a figure which shows a measurable area
  • A is a block diagram which shows the structure of the moisture detection apparatus which concerns on embodiment of this invention.
  • A) is a block diagram which shows the whole structure of a moisture detection apparatus
  • (b) is a functional block diagram of the computer shown to (a).
  • FIG. (A) is a perspective view which shows the shape and size of a water tank
  • (b) is sectional drawing which shows the state with which the water tank shown to (a) was buried in the ground, and the measuring point of a moisture detection apparatus.
  • (A) is a graph showing the relationship between frequency and specific resistance when the water content ratio is 60%
  • (b) is a graph showing the relationship between frequency and specific resistance when the water content ratio is 70%.
  • (c) is a graph showing the relationship between the frequency and the specific resistance when the water content ratio is 80%. It is a figure which shows distribution of the standard deviation for every frequency band at the time of putting water in the water tank shown in FIG.
  • (A) shows the distribution of the standard deviation of the frequency band from 1 Hz to 20 Hz
  • (b) shows the distribution of the standard deviation of the frequency band from 21 Hz to 40 Hz
  • (c) shows the distribution of the frequency band from 41 Hz to 60 Hz.
  • the distribution of standard deviation is shown
  • (d) shows the distribution of standard deviation in the frequency band from 61 Hz to 80 Hz
  • (e) shows the distribution of standard deviation in the frequency band of 81 Hz to 100 Hz.
  • (F) is the standard deviation range.
  • FIG. 1A is a diagram showing the principle of the dipole-dipole method used in the moisture detection device 100 according to the embodiment of the present invention
  • FIG. 1B is an overall configuration of the moisture detection device 100, and It is a figure which shows a measurable area
  • the moisture detection device 100 includes current electrode pairs 21 and 22 and potential electrode pairs 23 and 24.
  • the current electrode pairs 21 and 22 are partially embedded in the ground SF at a distance L.
  • the potential electrode pairs 23 and 24 are partially buried in the ground SF at a distance L.
  • the distance between the current electrode 22 and the potential electrode 23 is set to an integral multiple of the distance L (here, n times).
  • the specific resistance value ⁇ at the point Q at a depth (L ⁇ (n + 1) / 2) from the ground at the midpoint P between the current electrode 22 and the potential electrode 23 is expressed by the following equation (1). As shown in FIG.
  • V is a voltage value detected by the potential electrode pair 23, 24, and the current value A is a current value detected by the current electrode pair 21, 22.
  • the moisture detection device 100 includes a moisture detection device main body 1, an electrode 2, and a lead wire 3.
  • the electrode 2 is partially buried in the ground SF at a distance L, and functions as the current electrode pair 21, 22 or the potential electrode pair 23, 24.
  • a plurality of electrodes 2 (31 in this case) are provided.
  • the lead wire 3 connects the electrode 2 and the moisture detection device main body 1 so that energization is possible.
  • the lead wire 3 connects the electrode 2 and an electrode switching circuit 14 to be described later with reference to FIG.
  • the moisture detection device main body 1 sets two of the 31 electrodes 2 as current electrode pairs 21 and 22 and the other two as potential electrode pairs 23 and 24 via the lead wire 3. Further, as shown in FIG.
  • a broken trapezoidal region R shown below the ground SF is a detectable region indicating a range that can be detected by the moisture detection device 100. Note that one base (upper base) of the trapezoidal region R is located on the ground SF and is a line segment connecting the midpoint of the two leftmost electrodes and the midpoint of the two rightmost electrodes. .
  • FIG. 2A is a block diagram showing the overall configuration of the moisture detection device main body 1
  • FIG. 2B is a functional block diagram of the computer 16 shown in FIG.
  • the moisture detection device main body 1 includes a DC stabilized power supply 11, an oscillator 12, a rectangular wave drive circuit 13, an electrode switching circuit 14, a data logger 15, and a computer 16.
  • DC stabilized power supply 11 generates and outputs a direct current (in this case, for example, 1.3 amperes) from an AC 100V commercial power supply.
  • the oscillator 12 outputs an AC signal having a frequency of 1 Hz to 100 Hz based on an instruction from the computer 16.
  • the rectangular wave drive circuit 13 outputs a rectangular wave current of F ⁇ Hz by using a direct current input from the direct current stabilized power supply 11 and an alternating current signal (here, F ⁇ Hz for convenience) input from the oscillator 12. To do.
  • the electrode switching circuit 14 sets two of the 31 electrodes 2 shown in FIG. 1B as current electrode pairs 21 and 22 and sets the other two as potential electrode pairs 23 and 24. Further, the electrode switching circuit 14 applies the F ⁇ Hz rectangular wave current (current value A) input from the rectangular wave drive circuit 13 to the set current electrode pair 21 and 22. Further, the electrode switching circuit 14 detects the voltage value V from the set potential-voltage pair 23, 24.
  • the data logger 15 includes identification information for identifying the current electrode pair 21 and 22, current value A of the rectangular wave current applied to the current electrode pair 21 and 22, identification information for identifying the potential electrode pair 23 and 24, and the potential The voltage value V detected from the electrode pair 23, 24 is stored.
  • the current electrode pair 21 and 22 and the potential electrode pair 23 and 24 are set by the electrode switching circuit 14. Further, the data logger 15 stores the above four pieces of information every predetermined time (for example, 10 msec).
  • the computer 16 acquires the frequency F of the rectangular wave current applied from the oscillator 12 to the current electrode pairs 21 and 22.
  • the computer 16 also identifies identification information for identifying the current electrode pair 21, 22 from the data logger 15, identification information for identifying the potential electrode pair 23, 24, and the current value of the rectangular wave current applied to the current electrode pair 21, 22. A and the voltage value V detected from the potential electrode pair 23, 24 are acquired. Further, the computer 16 instructs the oscillation frequency to the oscillator 12.
  • the computer 16 has a functional unit shown in FIG.
  • the computer 16 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive).
  • the ROM (or the HDD) stores a control program including a moisture detection program according to the present invention.
  • the CPU reads and executes the moisture detection program stored in the ROM (or the HDD), thereby executing a frequency setting unit 161, a specific resistance calculation unit 162, an estimation unit 163, a deviation calculation unit 164, and And function as various functional units including the frequency band selecting unit 165.
  • the RAM is used as a work area when the CPU executes the moisture detection program.
  • the frequency setting unit 161 sets the frequency F ⁇ of the alternating current (here, rectangular wave current) applied to the current electrode pairs 21 and 22 to a preset first frequency F ⁇ . Between the first frequency F1 and the second frequency F2 higher than the first frequency F1, a plurality of frequencies are set at the same frequency interval ⁇ F.
  • the frequency setting unit 161 corresponds to an example of “frequency setting means”.
  • the frequency interval ⁇ F corresponds to an example of “predetermined frequency interval”. In the present embodiment, a case where the first frequency F1 is 21 Hz, the second frequency F2 is 40 Hz, and the frequency interval ⁇ F is 1 Hz will be described.
  • the frequency setting unit 161 sets a frequency for every 1 Hz in the range of 21 Hz to 40 Hz.
  • the frequency setting unit 161 sets a plurality of frequencies at the same frequency interval ⁇ F.
  • the frequency setting unit 161 may set a plurality of frequencies by other methods. .
  • the frequency setting unit 161 has a third frequency F3 lower than the first frequency F1 to a fourth frequency F4 higher than the second frequency F2.
  • a plurality of frequencies are set at the same frequency interval ⁇ F.
  • the third frequency F3 is 1 Hz
  • the fourth frequency F4 is 100 Hz
  • the frequency interval ⁇ F is 1 Hz
  • the specific resistance calculation unit 162 is detected from the current value A of the rectangular wave current applied to the current electrode pair 21 and 22 and the potential electrode pair 23 and 24 each time the frequency F ⁇ is set by the frequency setting unit 161. Using the voltage value V, a specific resistance value ⁇ indicating the specific resistance of a predetermined region in the ground is obtained.
  • the specific resistance calculation unit 162 corresponds to an example of “specific resistance calculation means”.
  • a case where a rectangular wave current is applied to the current electrode pairs 21 and 22 will be described, but any form in which an alternating current is applied to the current electrode pairs 21 and 22 may be used.
  • a form in which a sinusoidal alternating current is applied to the current electrode pair 21, 22 or a form in which a triangular wave alternating current is applied to the current electrode pair 21, 22 may be used.
  • the estimation unit 163 obtains the maximum value ⁇ 1 and the minimum value ⁇ 2 of the specific resistance value ⁇ , and the smaller the quotient ( ⁇ 1 / ⁇ 2) obtained by dividing the maximum value ⁇ 1 by the minimum value ⁇ 2, the moisture contained in the predetermined region It is estimated that there are many.
  • the estimation unit 163 corresponds to an example of “estimating means”.
  • the specific resistance value of the predetermined region can be obtained even if the frequency F ⁇ is changed between 1 Hz and 100 Hz. ⁇ hardly changes.
  • the more the moisture contained in the predetermined region the more the frequency F ⁇ is changed between 1 Hz and 100 Hz (particularly, the frequency F ⁇ is changed between 21 Hz and 40 Hz). Change in the specific resistance value ⁇ (in this case, the variation corresponding to the deviation) is reduced.
  • the frequency setting unit 161 sets the frequency F ⁇ of the alternating current applied to the current electrode pairs 21 and 22 for each 1 Hz in the range of 21 Hz to 40 Hz, so 20 frequencies are set. Twenty specific resistance values ⁇ corresponding to the set 20 frequencies are obtained. Therefore, the estimation unit 163 can appropriately obtain the maximum value ⁇ 1 and the minimum value ⁇ 2.
  • the frequency interval ⁇ F is preferably 1 Hz or less, and the frequency setting unit 161 preferably sets 10 or more frequencies.
  • the estimation unit 163 estimates that the smaller the quotient ( ⁇ 1 / ⁇ 2) obtained by dividing the maximum value ⁇ 1 by the minimum value ⁇ 2 is, the more moisture is contained in the predetermined region. It is necessary to determine the value ⁇ 2. Accordingly, it is preferable that the frequency setting unit 161 sets a large number (at least 10 or more) frequencies by reducing the frequency interval ⁇ F.
  • the deviation calculation unit 164 divides the interval from the third frequency F3 to the fourth frequency F4 into two or more sections ARk, and the standard deviation of the specific resistance value ⁇ obtained by the specific resistance calculation unit 162 for each section ARk. Find ⁇ .
  • the deviation calculating unit 164 corresponds to an example of “deviation calculating means”.
  • the frequency band selecting unit 165 selects the frequency band FRh corresponding to the section ARh having the largest standard deviation ⁇ obtained by the deviation calculating unit 164 as the frequency band FRh used for detecting moisture contained in the ground. To do.
  • the frequency band selection unit 165 corresponds to an example of “frequency band selection means”.
  • the frequency band FR2 (21 Hz to 40 Hz) corresponding to the section AR2 having the largest standard deviation ⁇ is contained in the moisture contained in the ground.
  • the frequency band FR2 used for detection is selected.
  • the first frequency F1 set by the frequency setting unit 161 is the lower limit frequency (21 Hz) of the frequency band FRh (frequency band FR2 in the example shown in FIG. 7) selected by the frequency band selection unit 165.
  • the second frequency F2 is the upper limit frequency (40 Hz) of the frequency band FRh (in the example shown in FIG. 7, the frequency band FR2) selected by the frequency band selection unit 165.
  • FIG. 3 is a flowchart showing a frequency selection process performed by the moisture detection apparatus 100 shown in FIG.
  • step S103 corresponds to an example of a “frequency setting step”.
  • step S105 corresponds to an example of a “specific resistance calculation step”.
  • step S107 corresponds to an example of a “deviation calculation step”. Then, it is determined whether or not the measurement of all sections ARk is completed (step S109).
  • step S109 If it is determined that the measurement of all sections ARk has not been completed (NO in step S109), the process returns to step S103, and the processes after step S103 are executed.
  • the frequency band FRh corresponding to the section ARh having the largest standard deviation ⁇ obtained in step S107 by the frequency band selecting unit 165 is determined.
  • the frequency band FRh used for detecting moisture contained in the ground is selected (step S111), and the process is terminated.
  • step S111 corresponds to an example of a “frequency selection step”.
  • the appropriate frequency band FRh is selected. can do.
  • the change in the specific resistance value ⁇ when the frequency changes is large. Therefore, when there is not a lot of moisture contained in the ground, the quotient ( ⁇ 1 / ⁇ 2) obtained by dividing the maximum value ⁇ 1 of the specific resistance value ⁇ obtained by the estimation unit 163 by the minimum value ⁇ 2 becomes large. The estimation by 163 becomes easy.
  • the frequency band selecting unit 165 selects the frequency band FRh corresponding to the section ARh having the largest standard deviation ⁇ as the frequency band FRh used for detecting moisture contained in the ground.
  • the frequency band FRh may be selected by other methods.
  • the frequency band selection unit 165 may select a frequency band FRk having a large variation in specific resistance value ⁇ . Specifically, the maximum value and the minimum value of the specific resistance value ⁇ for each frequency band FRk may be obtained, and the frequency band FRk that maximizes the difference between the two may be selected. Alternatively, the maximum value and the minimum value of the specific resistance value ⁇ for each frequency band FRk may be obtained, and the frequency band FRk having the maximum quotient obtained by dividing the maximum value by the minimum value may be selected.
  • FIG. 4 is a flowchart showing a process of moisture detection processing by the moisture detection apparatus 100 shown in FIG.
  • the frequency setting unit 161 sets the frequency at the same frequency interval ⁇ F (here 1 Hz) from the first frequency F1 (here 21 Hz) to the second frequency F2 (here 40 Hz).
  • Step S201 corresponds to an example of a “frequency setting step”.
  • step S203 corresponds to an example of a “specific resistance calculation step”.
  • step S205 it is determined whether or not the measurement of the specific resistance value ⁇ has been completed for all frequencies. If it is determined that the measurement of the specific resistance value ⁇ has not been completed for all frequencies (NO in step S205), the process returns to step S201, and the processes after step S201 are executed.
  • the estimation unit 163 obtains the maximum value ⁇ 1 and the minimum value ⁇ 2 of the specific resistance value ⁇ (step S205). S207).
  • the estimation unit 163 determines whether or not a quotient ( ⁇ 1 / ⁇ 2) obtained by dividing the maximum value ⁇ 1 by the minimum value ⁇ 2 is equal to or less than a preset threshold value S (step S209). When it is determined that the quotient ( ⁇ 1 / ⁇ 2) is equal to or less than the threshold value S (YES in step S209), the estimation unit 163 estimates that the moisture contained in the predetermined area is large (step S211). Processing is terminated. When it is determined that the quotient ( ⁇ 1 / ⁇ 2) is greater than the threshold value S (NO in step S209), the estimation unit 163 estimates that the moisture contained in the predetermined area is small (step S213). The process is terminated.
  • step S207 to step S213 correspond to an example of an “estimation process”.
  • the estimation unit 163 estimates that a large amount of water is contained in a predetermined region in the ground, so Even if it is not an engineer, it can detect that there is much moisture in the ground with high accuracy.
  • the estimation unit 163 has described the case where it is estimated that the smaller the quotient ( ⁇ 1 / ⁇ 2) obtained by dividing the maximum value ⁇ 1 by the minimum value ⁇ 2, the more moisture is contained in the predetermined region. Any configuration may be used as long as the estimation unit 163 estimates that the moisture content included in the predetermined region is larger as the variation in the specific resistance value ⁇ is smaller. For example, the estimation unit 163 may estimate that the smaller the standard deviation ⁇ of the specific resistance value ⁇ is, the more moisture is contained in the predetermined region.
  • the moisture contained in the predetermined region It may be a form that is estimated to be large.
  • FIG. 5 is a diagram showing an experimental method for verifying the effect of the moisture detection apparatus shown in FIG.
  • FIG. 5A is a perspective view showing the shape and size of the water tank 4, and
  • FIG. 5B shows the state in which the water tank 4 shown in FIG. It is sectional drawing which shows a measurement point.
  • the water tank 4 has an internal size and is formed in a rectangular parallelepiped shape having a width of 30 cm, a length of 22 cm, and a height of 18 cm.
  • the water tank 4 is filled with water or a mixture of water and volcanic ash sandy soil.
  • the water tank 4 has water (or a mixture of water and volcanic ash sandy soil) in the water tank 4 within a range of 7 cm to 25 cm in depth from the ground SF. Buried in position.
  • the water tank 4 is buried at the center position of the 150 cm wide region where the electrode 2 of the moisture detecting device 100 is buried.
  • the water tank 4 is embedded directly below the electrode 2 so that the width direction of the water tank 4 is positioned along the direction in which the electrode 2 is embedded. That is, the water tank 4 is embedded so that the vertical plane including the electrode 2 passes through the center position in the length direction of the water tank 4.
  • the measurement point MP in FIG. 5B is a point where the specific resistance value ⁇ is detected by the moisture detection device 100.
  • FIG. 6 is a graph G1 showing experimental results when water is put into the water tank 4 shown in FIG.
  • the horizontal axis indicates the frequency F (Hz) of the current to be applied
  • the vertical axis indicates the specific resistance value ⁇ ( ⁇ ⁇ m) at the measurement point MP closest to the center position of the water put in the water tank 4.
  • the specific resistance value ⁇ hardly changes even when the frequency F is changed from 1 Hz to 100 Hz.
  • FIG. 7 is a graph showing experimental results when a mixture of volcanic ash sandy soil and water is put in the water tank 4 shown in FIG.
  • FIG. 7A shows the case where the water content of the mixture is 60% (40% volcanic ash sandy soil and 60% water)
  • FIG. 7B shows that the water content of the mixture is 70%
  • FIG. 7 (c) shows the case where the water content of the mixture is 80% (20% volcanic ash sandy soil and 80% water). is there.
  • the horizontal axis represents the frequency F (Hz) of the applied current
  • the vertical axis represents the mixture placed in the water tank 4.
  • the specific resistance value ⁇ ( ⁇ ⁇ m) at the measurement point MP closest to the center position is shown.
  • standard deviation ⁇ 1 0.4431
  • standard deviation ⁇ 2 0.6479
  • standard deviation ⁇ 3 0.5990
  • standard deviation ⁇ 4 0.5966
  • standard deviation ⁇ 5 0.3470
  • standard deviation ⁇ 2 of section AR2 Is the maximum.
  • the frequency band selection unit 165 shown in FIG. 2B uses the frequency band FR2 (21 Hz to 40 Hz) corresponding to the section AR2 having the largest standard deviation ⁇ to detect moisture contained in the ground. It is selected as the frequency band FR2 to be used.
  • FIG. 7A shows a maximum value ⁇ 11 of the specific resistance value ⁇ and a minimum value ⁇ 21 of the specific resistance value ⁇ in the section AR2.
  • FIG. 7B shows a maximum value ⁇ 12 and a minimum value ⁇ 22 of the specific resistance value ⁇ in the section AR2
  • FIG. 7C shows a specific resistance value ⁇ in the section AR2. The maximum value ⁇ 13 and the minimum value ⁇ 23 of the specific resistance value ⁇ are shown.
  • the quotient ( ⁇ 1 / ⁇ 2) obtained by dividing the maximum value ⁇ 1 of the specific resistance value ⁇ in the section AR2 by the minimum value ⁇ 2 is 1.045 when the water content ratio shown in FIG.
  • the water content ratio shown in (b) is 70%, it becomes 1.012, and when the water content ratio shown in FIG. 7 (c) is 80%, it becomes 1.009. Therefore, it can be estimated that the smaller the quotient ( ⁇ 1 / ⁇ 2) obtained by dividing the maximum value ⁇ 1 of the resistivity ⁇ by the minimum value ⁇ 2, the more moisture in the ground.
  • FIG. 8 is a diagram showing a standard deviation distribution for each frequency band when gravel and water are put into the water tank 4 shown in FIG. 8A shows a case where the frequency band is 1 Hz to 20 Hz, FIG. 8B shows a case where the frequency band is 21 Hz to 40 Hz, and FIG. 8C shows that the frequency band is 41 Hz to 60 Hz.
  • FIG. 8D shows a case where the frequency band is 61 Hz to 80 Hz, and
  • FIG. 8E shows a case where the frequency band is 81 Hz to 100 Hz.
  • FIG. 8F shows the range of the standard deviation ⁇ .
  • the horizontal axis indicates the distance (cm) in the width direction from the measurement point MP at the left end by the moisture detection device 100, and the vertical axis indicates by the moisture detection device 100.
  • the depth (cm) of the measurement point MP is shown.
  • 8 (a) to 8 (e) as standard deviation distributions, contour lines (lines connecting measurement points MP having the same standard deviation ⁇ ) and shaded areas indicating the size of the standard deviation ⁇ are shown. Is described. Here, the darker the shading, the larger the standard deviation ⁇ .
  • each rectangle W represents the position of water in the water tank 4 shown in FIG. 8 (a) to 8 (e) are compared, and FIG. 8 (b) shows that the standard deviation ⁇ in the region inside the rectangle W is particularly large and the frequency band is 21 Hz to 40 Hz. It turns out that the position of water is easy to detect.
  • the frequency band selection part 165 shown in FIG.2 (b) has selected appropriately the frequency band FR2 used in order to detect the water
  • the frequency band selecting unit 165 appropriately detects the moisture contained in the ground by selecting the frequency band FR2 (21 Hz to 40 Hz) corresponding to the section AR2 having the largest standard deviation ⁇ . It shows that you can.
  • FIG. 9 is a graph showing the main side line G5 and the borehole investigation result at the place where the effect of the moisture detection apparatus 100 is verified.
  • the horizontal axis indicates the distance L
  • the vertical axis indicates the altitude H. Boring was performed at three positions P1 to P3 along the main side line G5.
  • the maximum strain amount and strain depth ST1 to ST3 and the water levels WL1 to WL3 were investigated. Specifically, at position P1, drilling was performed at a depth of 30 m. In FIG. 9, the distortion depths ST1 to ST3 at the boring positions P1 to P3 are indicated by circles ( ⁇ ), and the depth of the water level is indicated by triangles ( ⁇ ). The distortion depth ST1 at the boring position P1 was 6 m, the maximum distortion amount was 200 ⁇ ST, and the depth of the water level was 24.4 m. At the position P2, boring with a depth of 17 m was performed. The distortion depth ST2 at the boring position P2 was 6 m, the maximum distortion amount was 600 ⁇ ST, and the depth of the water level was 16.9 m. At position P3, drilling was performed at a depth of 15 m. Further, the strain depth ST3 at the boring position P3 was 8 m, the maximum strain amount was 150 ⁇ ST, and the depth of the water level was 5.5 m.
  • FIG. 10 is a graph showing the positions of the electrodes arranged along the main side line G5.
  • the horizontal axis indicates the distance L, and the vertical axis indicates the altitude H.
  • 51 electrodes 2a were arranged along the main side line G5 at intervals of 3 m.
  • FIG. 11 is a diagram showing the detection result (distribution of standard deviation ⁇ ) of the moisture detection device 100 along the main side line G5.
  • the horizontal axis indicates the distance L
  • the vertical axis indicates the altitude H.
  • the darker the shading the larger the standard deviation ⁇ .
  • FIG. 11 it was found that a water layer exists in the range of 5 to 10 m from the ground surface along the main side line G5. This result was in good agreement with the distortion depths ST1 to ST3.
  • FIGS. 9 to 11 it was found that the moisture detection device 100 can properly detect the moisture contained in the ground.
  • the frequency setting unit 161 sets the frequency with the frequency interval ⁇ F set to 1 Hz
  • the frequency setting unit 161 preferably sets the frequency interval ⁇ F to 1 Hz or less.
  • the deviation calculating unit 164 can obtain an appropriate standard deviation ⁇ , and thus the frequency band selecting unit 165 can select an appropriate frequency band.
  • the processing time of the specific resistance calculation unit 162, the deviation calculation unit 164, and the frequency band selection unit 165 becomes longer as the frequency interval ⁇ F is smaller.
  • the estimation unit 163 can obtain appropriate values as the maximum value ⁇ 1 and the minimum value ⁇ 2 of the specific resistance value ⁇ . Therefore, the estimation unit 163 appropriately determines whether or not there is much moisture. Can be estimated.
  • the frequency setting unit 161 sets the frequency in the range of 1 Hz to 100 Hz
  • the range in which the frequency setting unit 161 sets the frequency is not limited to the above range.
  • the frequency may be 1 Hz to 50 Hz, or 1 Hz to 200 Hz.
  • the frequency band selection unit 165 easily obtains an appropriate frequency band.
  • the deviation calculation unit 164 divides the range from the third frequency F3 to the fourth frequency F4 into five sections ARk.
  • the deviation calculation unit 164 divides the section into a plurality of sections. I just need it.
  • the processing time of the deviation calculation unit 164 and the frequency band selection unit 165 becomes longer as the number of divisions is larger. If the number of divisions is too large, the number of frequencies included in one division among the frequencies set by the frequency setting unit 161 decreases, and the standard deviation ⁇ cannot be obtained appropriately. It is necessary to determine the number of sections to be divided so that the number of frequencies included in one section is, for example, 10 or more.
  • the present invention can be applied to a moisture detection device, a moisture detection method, and a moisture detection program for detecting moisture in the ground.

Abstract

[Problem] To detect water content underground with a high degree of accuracy even without being a skilled technician. [Solution] A water content detection device 100 equipped with a current electrode pair 21, 22, a potential electrode pair 23, 24, a frequency setting unit 161, a specific resistance calculation unit 162, and an estimation unit 163. The frequency setting unit 161 sets the frequency for an AC current frequency at identical frequency intervals ΔF during a period from a first frequency F1 to a second frequency F2 (>F1). The specific resistance calculation unit 162 obtains a specific resistance value ρ for a prescribed region underground by using a current value A detected by the current electrode pair 21, 22, and a voltage value V detected by the potential electrode pair 23, 24, for each frequency setting. The estimation unit 163 obtains a maximum value ρ1 and a minimum value ρ2 for the specific resistance value ρ, and estimates the water content contained in the prescribed region to be increasing as the quotient obtained by dividing the maximum value ρ1 by the minimum value ρ2 decreases.

Description

水分検出装置、水分検出方法、及び、水分検出プログラムMoisture detection device, moisture detection method, and moisture detection program
 本発明は、地中の所定領域に含まれている水分を検出する水分検出装置、水分検出方法、及び、水分検出プログラムに関する。 The present invention relates to a moisture detection device, a moisture detection method, and a moisture detection program for detecting moisture contained in a predetermined area in the ground.
 従来、地中の所定領域に含まれている水分を検出する技術が知られている。例えば、ダイポール・ダイポール配置とする4電極を切換スイッチで選択して間隔と位置を切換えて、地下水脈を検出する装置が開示されている(特許文献1参照)。 Conventionally, a technique for detecting moisture contained in a predetermined area in the ground is known. For example, an apparatus for detecting groundwater veins by selecting four electrodes in a dipole / dipole arrangement with a changeover switch and switching the interval and position is disclosed (see Patent Document 1).
 特許文献1には、複数の電流電極対、複数の電位電極対、第1算出手段、第2算出手段、及び、推定手段を備える水脈検出装置が開示されている。上記複数の電流電極対は、地盤の所定領域に入力した交流電流の電流値を測定する。上記複数の電位電極対は、交流電流に対応する電圧値を測定する。上記第1算出手段は、第1周波数を有する交流電流に基づく電流値と電圧値とを用いて、地盤の所定領域の比抵抗を示す第1比抵抗値を算出する。上記第2算出手段は、上記第1周波数より高い周波数である第2周波数を有する交流電流に基づく電流値と電圧値とを用いて、上記地盤の所定領域の比抵抗を示す第2比抵抗値を算出する。上記推定手段は、第2比抵抗値が第1比抵抗値より大きいと共にその差分が所定値以上である場合に、地盤の所定領域が水脈を含んでいると推定する。 Patent Document 1 discloses a water vein detection device including a plurality of current electrode pairs, a plurality of potential electrode pairs, a first calculation means, a second calculation means, and an estimation means. The plurality of current electrode pairs measure a current value of an alternating current input to a predetermined region of the ground. The plurality of potential electrode pairs measure a voltage value corresponding to an alternating current. The first calculation means calculates a first specific resistance value indicating a specific resistance in a predetermined region of the ground using a current value and a voltage value based on an alternating current having a first frequency. The second calculation means uses a current value and a voltage value based on an alternating current having a second frequency that is higher than the first frequency, and a second specific resistance value indicating a specific resistance in a predetermined region of the ground. Is calculated. The estimation means estimates that the predetermined region of the ground includes a water vein when the second specific resistance value is greater than the first specific resistance value and the difference is equal to or greater than the predetermined value.
 上記水脈検出装置によれば、地盤中における同一領域について、2種類の周波数を有する交流電流によって得られる2種類の比抵抗値に基づいて水脈を検出するので、高い精度で水脈を検出できると記載されている。 According to the water vein detection device, the water vein is detected based on two types of specific resistance values obtained by an alternating current having two types of frequencies in the same region in the ground, so that the water vein can be detected with high accuracy. Has been.
特開2011-112357号公報JP 2011-112357 A
 しかしながら、特許文献1に記載の水脈検出装置では、上記第1周波数及び上記第2周波数を適正に設定することが困難である場合があった。換言すれば、上記第1周波数及び上記第2周波数の設定は、熟練技術者の経験に基づいて設定されていた。 However, in the water vein detection device described in Patent Document 1, it may be difficult to appropriately set the first frequency and the second frequency. In other words, the setting of the first frequency and the second frequency has been set based on the experience of a skilled engineer.
 本発明に係る水分検出装置、水分検出方法、及び、水分検出プログラムは、上記課題に鑑みてなされたものであって、熟練技術者でなくても、高い精度で地中の水分を検出することを目的としている。 The moisture detection device, the moisture detection method, and the moisture detection program according to the present invention are made in view of the above problems, and detect moisture in the ground with high accuracy even if not a skilled engineer. It is an object.
 本発明に係る水分検出装置は、地中の所定領域に含まれている水分を検出する水分検出装置である。前記水分検出装置は、複数の電流電極対、複数の電位電極対、周波数設定手段、比抵抗算出手段、及び、推定手段を備える。前記複数の電流電極対は、前記所定領域に入力した交流電流の電流値を測定する。前記複数の電位電極対は、前記交流電流に対応する電圧値を測定する。前記周波数設定手段は、前記交流電流の周波数を、予め設定された第1周波数から前記第1周波数より高い第2周波数までの間において、所定の周波数間隔で複数の周波数を設定する。前記比抵抗算出手段は、前記周波数設定手段によって周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗値を求める。更に、前記推定手段は、前記比抵抗値の最大値と最小値とを求め、前記最大値を前記最小値で除した商が小さい程、前記所定領域に含まれている水分が多いと推定する。 The moisture detection device according to the present invention is a moisture detection device that detects moisture contained in a predetermined region in the ground. The moisture detection device includes a plurality of current electrode pairs, a plurality of potential electrode pairs, a frequency setting unit, a specific resistance calculation unit, and an estimation unit. The plurality of current electrode pairs measure a current value of an alternating current input to the predetermined region. The plurality of potential electrode pairs measure voltage values corresponding to the alternating current. The frequency setting means sets the frequency of the alternating current at a predetermined frequency interval between a preset first frequency and a second frequency higher than the first frequency. The specific resistance calculation means obtains a specific resistance value of the predetermined region using the current value and the voltage value every time the frequency is set by the frequency setting means. Further, the estimation means obtains the maximum value and the minimum value of the specific resistance value, and estimates that the smaller the quotient obtained by dividing the maximum value by the minimum value, the more water is contained in the predetermined region. .
 本発明に係る水分検出装置は、地中の所定領域に含まれている水分を検出する水分検出装置である。前記水分検出装置は、複数の電流電極対、複数の電位電極対、周波数設定手段、比抵抗算出手段、偏差算出手段、及び、周波数帯選定手段を備える。前記複数の電流電極対は、前記所定領域に入力した交流電流の電流値を測定する。前記複数の電位電極対は、前記交流電流に対応する電圧値を測定する。前記周波数設定手段は、前記交流電流の周波数を、予め設定された第3周波数から前記第3周波数より高い第4周波数までの間において、所定の周波数間隔で複数の周波数を設定する。前記比抵抗算出手段は、前記周波数設定手段によって周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗値を求める。前記偏差算出手段は、前記第3周波数から前記第4周波数までの間を2個以上の区間に分割し、前記区間毎に、前記比抵抗算出手段によって求められた比抵抗値の標準偏差を求める。前記周波数帯選定手段は、前記偏差算出手段によって求められた標準偏差が最も大きい区間に対応する周波数帯を、地中に含まれている水分を検出するために用いる周波数帯として選定する。 The moisture detection device according to the present invention is a moisture detection device that detects moisture contained in a predetermined region in the ground. The moisture detection device includes a plurality of current electrode pairs, a plurality of potential electrode pairs, a frequency setting unit, a specific resistance calculation unit, a deviation calculation unit, and a frequency band selection unit. The plurality of current electrode pairs measure a current value of an alternating current input to the predetermined region. The plurality of potential electrode pairs measure voltage values corresponding to the alternating current. The frequency setting means sets the frequency of the alternating current at a predetermined frequency interval between a preset third frequency and a fourth frequency higher than the third frequency. The specific resistance calculation means obtains a specific resistance value of the predetermined region using the current value and the voltage value every time the frequency is set by the frequency setting means. The deviation calculating means divides the interval from the third frequency to the fourth frequency into two or more sections, and obtains a standard deviation of the specific resistance value obtained by the specific resistance calculating means for each of the sections. . The frequency band selecting means selects a frequency band corresponding to a section having the largest standard deviation obtained by the deviation calculating means as a frequency band used for detecting moisture contained in the ground.
 本発明に係る水分検出方法は、地中の所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、前記交流電流に対応する電圧値を測定する複数の電位電極対とを備え、前記所定領域に含まれている水分を検出する水分検出装置を用いた水分検出方法である。前記水分検出方法は、周波数設定工程、比抵抗算出工程、及び、推定工程を有する。前記周波数設定工程において、前記交流電流の周波数を、予め設定された第1周波数から前記第1周波数より高い第2周波数までの間において、所定の周波数間隔で複数の周波数を設定する。前記比抵抗算出工程において、前記周波数設定工程において周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗を示す比抵抗値を求める。前記推定工程において、前記比抵抗値の最大値と最小値とを求め、前記最大値を前記最小値で除した商が小さい程、前記所定領域の地中に含まれている水分が多いと推定する。 The moisture detection method according to the present invention includes a plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, and a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current. A moisture detection method using a moisture detection device that detects moisture contained in the predetermined area. The moisture detection method includes a frequency setting step, a specific resistance calculation step, and an estimation step. In the frequency setting step, the frequency of the alternating current is set at a predetermined frequency interval between a preset first frequency and a second frequency higher than the first frequency. In the specific resistance calculation step, every time a frequency is set in the frequency setting step, a specific resistance value indicating a specific resistance in the predetermined region is obtained using the current value and the voltage value. In the estimation step, the maximum value and the minimum value of the specific resistance value are obtained, and it is estimated that the smaller the quotient obtained by dividing the maximum value by the minimum value, the more moisture is contained in the ground of the predetermined region. To do.
 本発明に係る水分検出方法は、地中の所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、前記交流電流に対応する電圧値を測定する複数の電位電極対とを備え、前記所定領域に含まれている水分を検出する水分検出装置を用いた水分検出方法である。前記水分検出方法は、周波数設定工程、比抵抗算出工程、偏差算出工程、及び、周波数帯選定工程を有する。前記周波数設定工程において、前記交流電流の周波数を、予め設定された第3周波数から前記第3周波数より高い第4周波数までの間において、所定の周波数間隔で複数の周波数を設定する。前記比抵抗算出工程において、前記周波数設定工程において周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗値を求める。前記偏差算出工程において、前記第3周波数から前記第4周波数までの間を2個以上の区間に分割し、前記区間毎に、前記比抵抗算出工程において求められた比抵抗値の標準偏差を求める。前記周波数帯選定工程において、前記偏差算出工程において求められた標準偏差が最も大きい区間に対応する周波数帯を、地中に含まれている水分を検出するために用いる周波数帯として選定する。 The moisture detection method according to the present invention includes a plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, and a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current. A moisture detection method using a moisture detection device that detects moisture contained in the predetermined area. The moisture detection method includes a frequency setting step, a specific resistance calculation step, a deviation calculation step, and a frequency band selection step. In the frequency setting step, a plurality of frequencies are set at predetermined frequency intervals between a preset third frequency and a fourth frequency higher than the third frequency. In the specific resistance calculation step, the specific resistance value in the predetermined region is obtained using the current value and the voltage value every time the frequency is set in the frequency setting step. In the deviation calculating step, the interval from the third frequency to the fourth frequency is divided into two or more sections, and a standard deviation of the specific resistance value obtained in the specific resistance calculating step is obtained for each section. . In the frequency band selecting step, a frequency band corresponding to a section having the largest standard deviation obtained in the deviation calculating step is selected as a frequency band used for detecting moisture contained in the ground.
 本発明に係る水分検出プログラムは、地中の所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、前記交流電流に対応する電圧値を測定する複数の電位電極対と、コンピュータとを備え、前記所定領域に含まれている水分を検出する水分検出装置の水分検出プログラムである。前記水分検出プログラムは、前記コンピュータを、周波数設定手段、比抵抗算出手段、及び、推定手段として機能させる。前記周波数設定手段は、前記交流電流の周波数を、予め設定された第1周波数から前記第1周波数より高い第2周波数までの間において、所定の周波数間隔で複数の周波数を設定する。前記比抵抗算出手段は、前記周波数設定手段によって周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗を示す比抵抗値を求める。前記推定手段は、前記比抵抗値の最大値と最小値とを求め、前記最大値を前記最小値で除した商が小さい程、前記所定領域の地中に含まれている水分が多いと推定する。 The water detection program according to the present invention includes a plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current, A moisture detection program of a moisture detection device that includes a computer and detects moisture contained in the predetermined area. The moisture detection program causes the computer to function as frequency setting means, specific resistance calculation means, and estimation means. The frequency setting means sets the frequency of the alternating current at a predetermined frequency interval between a preset first frequency and a second frequency higher than the first frequency. The specific resistance calculation means obtains a specific resistance value indicating a specific resistance in the predetermined region by using the current value and the voltage value every time a frequency is set by the frequency setting means. The estimation means obtains the maximum value and the minimum value of the specific resistance value, and estimates that the smaller the quotient obtained by dividing the maximum value by the minimum value is, the more moisture is contained in the ground of the predetermined region. To do.
 本発明に係る水分検出プログラムは、地中の所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、前記交流電流に対応する電圧値を測定する複数の電位電極対と、コンピュータとを備え、前記所定領域に含まれている水分を検出する水分検出装置の水分検出プログラムである。前記水分検出プログラムは、前記コンピュータを、周波数設定手段、比抵抗算出手段、偏差算出手段、及び、周波数帯選定手段として機能させる。前記周波数設定手段は、前記交流電流の周波数を、予め設定された第3周波数から前記第3周波数より高い第4周波数までの間において、所定の周波数間隔で複数の周波数を設定する。前記比抵抗算出手段は、前記周波数設定手段によって周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗値を求める。前記偏差算出手段は、前記第3周波数から前記第4周波数までの間を2個以上の区間に分割し、前記区間毎に、前記比抵抗算出手段によって求められた比抵抗値の標準偏差を求める。前記周波数帯選定手段は、前記偏差算出手段によって求められた標準偏差が最も大きい区間に対応する周波数帯を、地中に含まれている水分を検出するために用いる周波数帯として選定する。 The water detection program according to the present invention includes a plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current, A moisture detection program of a moisture detection device that includes a computer and detects moisture contained in the predetermined area. The moisture detection program causes the computer to function as frequency setting means, specific resistance calculation means, deviation calculation means, and frequency band selection means. The frequency setting means sets the frequency of the alternating current at a predetermined frequency interval between a preset third frequency and a fourth frequency higher than the third frequency. The specific resistance calculation means obtains a specific resistance value of the predetermined region using the current value and the voltage value every time the frequency is set by the frequency setting means. The deviation calculating means divides the interval from the third frequency to the fourth frequency into two or more sections, and obtains a standard deviation of the specific resistance value obtained by the specific resistance calculating means for each of the sections. . The frequency band selecting means selects a frequency band corresponding to a section having the largest standard deviation obtained by the deviation calculating means as a frequency band used for detecting moisture contained in the ground.
 本発明に係る水分検出装置、水分検出方法、及び、水分検出プログラムによれば、熟練技術者でなくても、高い精度で地中の水分が高いことを検出することができる。 According to the moisture detection apparatus, the moisture detection method, and the moisture detection program according to the present invention, it is possible to detect that the moisture in the ground is high with high accuracy even without being an expert engineer.
本発明の実施形態に係る水分検出装置の測定原理を示す図である。(a)は、ダイポール・ダイポール法の原理を示す図であり、(b)は、測定可能領域を示す図である。It is a figure which shows the measurement principle of the moisture detection apparatus which concerns on embodiment of this invention. (A) is a figure which shows the principle of a dipole dipole method, (b) is a figure which shows a measurable area | region. 本発明の実施形態に係る水分検出装置の構成を示すブロック図である。(a)は、水分検出装置の全体構成を示すブロック図であり、(b)は、(a)に示すコンピュータの機能ブロック図である。It is a block diagram which shows the structure of the moisture detection apparatus which concerns on embodiment of this invention. (A) is a block diagram which shows the whole structure of a moisture detection apparatus, (b) is a functional block diagram of the computer shown to (a). 図2に示す水分検出装置による周波数選定処理の工程を示すフローチャートである。It is a flowchart which shows the process of the frequency selection process by the moisture detection apparatus shown in FIG. 図2に示す水分検出装置による水分検出処理の工程を示すフローチャートである。It is a flowchart which shows the process of the moisture detection process by the moisture detection apparatus shown in FIG. 図2に示す水分検出装置の効果を検証するための実験方法を示す図である。(a)は、水槽の形状及びサイズを示す斜視図であり、(b)は、(a)に示す水槽が地中に埋められた状態と水分検出装置の測定点とを示す断面図である。It is a figure which shows the experimental method for verifying the effect of the moisture detection apparatus shown in FIG. (A) is a perspective view which shows the shape and size of a water tank, (b) is sectional drawing which shows the state with which the water tank shown to (a) was buried in the ground, and the measuring point of a moisture detection apparatus. . 図5に示す水槽に水を入れた場合の実験結果を示すグラフである。It is a graph which shows the experimental result at the time of putting water into the water tank shown in FIG. 図5に示す水槽に火山灰質砂質土と水とを入れた場合の実験結果を示すグラフである。(a)は、含水比が60%の場合の周波数と比抵抗との関係を示すグラフであり、(b)は、含水比が70%の場合の周波数と比抵抗との関係を示すグラフであり、(c)は、含水比が80%の場合の周波数と比抵抗との関係を示すグラフである。It is a graph which shows the experimental result at the time of putting volcanic ash sandy soil and water in the water tank shown in FIG. (A) is a graph showing the relationship between frequency and specific resistance when the water content ratio is 60%, and (b) is a graph showing the relationship between frequency and specific resistance when the water content ratio is 70%. Yes, (c) is a graph showing the relationship between the frequency and the specific resistance when the water content ratio is 80%. 図5に示す水槽に水を入れた場合の周波数帯毎の標準偏差の分布を示す図である。(a)は、周波数帯が1Hzから20Hzの標準偏差の分布を示し、(b)は、周波数帯が21Hzから40Hzの標準偏差の分布を示し、(c)は、周波数帯が41Hzから60Hzの標準偏差の分布を示し、(d)は、周波数帯が61Hzから80Hzの標準偏差の分布を示し、(e)は、周波数帯が81Hzから100Hzの標準偏差の分布を示す。(f)は、標準偏差のレンジである。It is a figure which shows distribution of the standard deviation for every frequency band at the time of putting water in the water tank shown in FIG. (A) shows the distribution of the standard deviation of the frequency band from 1 Hz to 20 Hz, (b) shows the distribution of the standard deviation of the frequency band from 21 Hz to 40 Hz, and (c) shows the distribution of the frequency band from 41 Hz to 60 Hz. The distribution of standard deviation is shown, (d) shows the distribution of standard deviation in the frequency band from 61 Hz to 80 Hz, and (e) shows the distribution of standard deviation in the frequency band of 81 Hz to 100 Hz. (F) is the standard deviation range. 図1に示す水分検出装置の効果を検証した場所における主側線及びボーリング結果を示すグラフである。It is a graph which shows the main side line and the boring result in the place which verified the effect of the moisture detection apparatus shown in FIG. 図9に示す主側線に沿って配置された電極の位置を示すグラフである。It is a graph which shows the position of the electrode arrange | positioned along the main side line shown in FIG. 図9に示す主側線に沿った水分検出装置の検出結果(標準偏差の分布)を示す図である。It is a figure which shows the detection result (distribution of a standard deviation) of the moisture detection apparatus along the main side line shown in FIG.
 以下、図面を参照して本発明の実施形態に係る水分検出装置を説明する。ただし、本発明は、以下の実施形態に限定されない。 Hereinafter, a moisture detection apparatus according to an embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.
<地中の比抵抗値ρの検出原理>
 まず、図1を参照して、本発明の実施形態に係る水分検出装置100について説明する。図1(a)は、本発明の実施形態に係る水分検出装置100で用いられるダイポール・ダイポール法の原理を示す図であり、図1(b)は、水分検出装置100の全体構成、及び、測定可能領域及び測定点MPを示す図である。
<Detection principle of resistivity ρ in the ground>
First, a moisture detection apparatus 100 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1A is a diagram showing the principle of the dipole-dipole method used in the moisture detection device 100 according to the embodiment of the present invention, and FIG. 1B is an overall configuration of the moisture detection device 100, and It is a figure which shows a measurable area | region and measurement point MP.
 図1(a)に示すように、水分検出装置100は、電流電極対21、22、電位電極対23、24を備えている。電流電極対21、22は、距離Lの間隔で地面SFに一部埋没されている。同様に、電位電極対23、24も、距離Lの間隔で地面SFに一部埋没されている。ここで、電流電極22と、電位電極23との間の距離は、距離Lの整数倍(ここでは、n倍)に設定されている。この場合には、電流電極22と、電位電極23との間の中点Pの地面から距離(L×(n+1)/2)の深さの点Qにおける比抵抗値ρを下記(1)式で示すように検出することができる。
ρ=n×(n+1)×(n+2)×π×L×(V/A)  (1)
 ここで、電圧値Vは、電位電極対23、24によって検出される電圧値であり、電流値Aは、電流電極対21、22によって検出される電流値である。
As shown in FIG. 1A, the moisture detection device 100 includes current electrode pairs 21 and 22 and potential electrode pairs 23 and 24. The current electrode pairs 21 and 22 are partially embedded in the ground SF at a distance L. Similarly, the potential electrode pairs 23 and 24 are partially buried in the ground SF at a distance L. Here, the distance between the current electrode 22 and the potential electrode 23 is set to an integral multiple of the distance L (here, n times). In this case, the specific resistance value ρ at the point Q at a depth (L × (n + 1) / 2) from the ground at the midpoint P between the current electrode 22 and the potential electrode 23 is expressed by the following equation (1). As shown in FIG.
ρ = n × (n + 1) × (n + 2) × π × L × (V / A) (1)
Here, the voltage value V is a voltage value detected by the potential electrode pair 23, 24, and the current value A is a current value detected by the current electrode pair 21, 22.
 図1(b)に示すように、水分検出装置100は、水分検出装置本体1、電極2、及び、リード線3を備えている。電極2は、距離Lの間隔で地面SFに一部埋没されており、電流電極対21、22、又は、電位電極対23、24として機能する。ここでは、電極2は、複数本(ここでは、31本)設けられている。リード線3は、電極2と水分検出装置本体1とを通電可能に接続する。具体的には、リード線3は、電極2と、図2(a)を参照して後述する電極切換回路14とを通電可能に接続する。水分検出装置本体1は、リード線3を介して、31本の電極2のうち、2本を電流電極対21、22として設定し、他の2本を電位電極対23、24として設定する。また、図1(b)に示すように、地面SFの下方に示す破線の台形領域Rは、水分検出装置100によって検出可能な範囲を示す検出可能領域である。なお、台形領域Rの一方の底辺(上側の底辺)は、地面SF上に位置し、左端の2本の電極の中点と、右端の2本の電極の中点とを結ぶ線分である。 As shown in FIG. 1B, the moisture detection device 100 includes a moisture detection device main body 1, an electrode 2, and a lead wire 3. The electrode 2 is partially buried in the ground SF at a distance L, and functions as the current electrode pair 21, 22 or the potential electrode pair 23, 24. Here, a plurality of electrodes 2 (31 in this case) are provided. The lead wire 3 connects the electrode 2 and the moisture detection device main body 1 so that energization is possible. Specifically, the lead wire 3 connects the electrode 2 and an electrode switching circuit 14 to be described later with reference to FIG. The moisture detection device main body 1 sets two of the 31 electrodes 2 as current electrode pairs 21 and 22 and the other two as potential electrode pairs 23 and 24 via the lead wire 3. Further, as shown in FIG. 1B, a broken trapezoidal region R shown below the ground SF is a detectable region indicating a range that can be detected by the moisture detection device 100. Note that one base (upper base) of the trapezoidal region R is located on the ground SF and is a line segment connecting the midpoint of the two leftmost electrodes and the midpoint of the two rightmost electrodes. .
<水分検出装置本体1のハードウェア構成>
 次に、図2を参照して、水分検出装置本体1の構成について説明する。図2(a)は、水分検出装置本体1の全体構成を示すブロック図であり、図2(b)は、図2(a)に示すコンピュータ16の機能ブロック図である。図2(a)に示すように、水分検出装置本体1は、直流安定化電源11、発振器12、矩形波ドライブ回路13、電極切換回路14、データロガー15、及び、コンピュータ16を備えている。
<Hardware configuration of moisture detection device main body 1>
Next, the configuration of the moisture detection device main body 1 will be described with reference to FIG. FIG. 2A is a block diagram showing the overall configuration of the moisture detection device main body 1, and FIG. 2B is a functional block diagram of the computer 16 shown in FIG. As shown in FIG. 2A, the moisture detection device main body 1 includes a DC stabilized power supply 11, an oscillator 12, a rectangular wave drive circuit 13, an electrode switching circuit 14, a data logger 15, and a computer 16.
 直流安定化電源11は、交流100Vの商用電源から直流電流(ここでは、例えば、1.3アンペア)を生成して、出力する。発振器12は、コンピュータ16からの指示に基づいて、1Hz~100Hzの周波数の交流信号を出力する。矩形波ドライブ回路13は、直流安定化電源11から入力された直流電流と、発振器12から入力された交流信号(ここでは、便宜上、FαHzとする)とを用いて、FαHzの矩形波電流を出力する。電極切換回路14は、図1(b)に示す31本の電極2のうち、2本を電流電極対21,22として設定し、他の2本を電位電極対23、24として設定する。また、電極切換回路14は、設定した電流電極対21、22に、矩形波ドライブ回路13から入力されたFαHzの矩形波電流(電流値A)を印加する。更に、電極切換回路14は、設定した電位電圧対23、24から、電圧値Vを検出する。 DC stabilized power supply 11 generates and outputs a direct current (in this case, for example, 1.3 amperes) from an AC 100V commercial power supply. The oscillator 12 outputs an AC signal having a frequency of 1 Hz to 100 Hz based on an instruction from the computer 16. The rectangular wave drive circuit 13 outputs a rectangular wave current of FαHz by using a direct current input from the direct current stabilized power supply 11 and an alternating current signal (here, FαHz for convenience) input from the oscillator 12. To do. The electrode switching circuit 14 sets two of the 31 electrodes 2 shown in FIG. 1B as current electrode pairs 21 and 22 and sets the other two as potential electrode pairs 23 and 24. Further, the electrode switching circuit 14 applies the FαHz rectangular wave current (current value A) input from the rectangular wave drive circuit 13 to the set current electrode pair 21 and 22. Further, the electrode switching circuit 14 detects the voltage value V from the set potential-voltage pair 23, 24.
 データロガー15は、電流電極対21、22を識別する識別情報、電流電極対21、22に印加された矩形波電流の電流値A、電位電極対23、24を識別する識別情報、及び、電位電極対23、24から検出された電圧値Vを記憶する。ここで、電流電極対21、22、及び、電位電極対23、24は、電極切換回路14によって設定される。また、データロガー15は、上記の4つの情報を予め設定された所定時間(例えば、10msec)毎に記憶する。 The data logger 15 includes identification information for identifying the current electrode pair 21 and 22, current value A of the rectangular wave current applied to the current electrode pair 21 and 22, identification information for identifying the potential electrode pair 23 and 24, and the potential The voltage value V detected from the electrode pair 23, 24 is stored. Here, the current electrode pair 21 and 22 and the potential electrode pair 23 and 24 are set by the electrode switching circuit 14. Further, the data logger 15 stores the above four pieces of information every predetermined time (for example, 10 msec).
 コンピュータ16は、発振器12から電流電極対21、22に印加された矩形波電流の周波数Fを取得する。また、コンピュータ16は、データロガー15から電流電極対21、22を識別する識別情報、電位電極対23、24を識別する識別情報、電流電極対21、22に印加された矩形波電流の電流値A、及び、電位電極対23、24から検出された電圧値Vを取得する。更に、コンピュータ16は、発振器12に対して、発振周波数を指示する。加えて、コンピュータ16は、図2(b)に示す機能部を有する。 The computer 16 acquires the frequency F of the rectangular wave current applied from the oscillator 12 to the current electrode pairs 21 and 22. The computer 16 also identifies identification information for identifying the current electrode pair 21, 22 from the data logger 15, identification information for identifying the potential electrode pair 23, 24, and the current value of the rectangular wave current applied to the current electrode pair 21, 22. A and the voltage value V detected from the potential electrode pair 23, 24 are acquired. Further, the computer 16 instructs the oscillation frequency to the oscillator 12. In addition, the computer 16 has a functional unit shown in FIG.
<水分検出装置本体1の機能構成>
 コンピュータ16は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び、HDD(Hard Disk Drive)を備える。上記ROM(又は上記HDD)には、本発明に係る水分検出プログラムを含む制御プログラムが格納されている。そして、上記CPUは、上記ROM(又は上記HDD)に格納された水分検出プログラムを読みだして実行することによって、周波数設定部161、比抵抗算出部162、推定部163、偏差算出部164、及び、周波数帯選定部165を含む各種機能部として機能する。上記RAMは、上記CPUが、上記水分検出プログラムを実行する際の作業領域として用いられる。
<Functional configuration of moisture detection device main body 1>
The computer 16 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive). The ROM (or the HDD) stores a control program including a moisture detection program according to the present invention. The CPU reads and executes the moisture detection program stored in the ROM (or the HDD), thereby executing a frequency setting unit 161, a specific resistance calculation unit 162, an estimation unit 163, a deviation calculation unit 164, and And function as various functional units including the frequency band selecting unit 165. The RAM is used as a work area when the CPU executes the moisture detection program.
 周波数設定部161は、図4に示す「水分検出処理」を行う場合には、電流電極対21,22に印加する交流電流(ここでは、矩形波電流)の周波数Fαを、予め設定された第1周波数F1から第1周波数F1より高い第2周波数F2までの間において、同一の周波数間隔ΔFで複数の周波数を設定する。ここで、周波数設定部161は、「周波数設定手段」の一例に相当する。また、周波数間隔ΔFは、「所定の周波数間隔」の一例に相当する。本実施形態では、第1周波数F1が21Hzで、第2周波数F2が40Hzで、周波数間隔ΔFが1Hzである場合について説明する。つまり、本実施形態では、周波数設定部161は、21Hz~40Hzの範囲で1Hz毎に周波数を設定する。なお、本実施形態では、周波数設定部161が、同一の周波数間隔ΔFで複数の周波数を設定する場合について説明するが、周波数設定部161が、その他の方法で複数の周波数を設定する形態でもよい。 When the “moisture detection process” shown in FIG. 4 is performed, the frequency setting unit 161 sets the frequency Fα of the alternating current (here, rectangular wave current) applied to the current electrode pairs 21 and 22 to a preset first frequency Fα. Between the first frequency F1 and the second frequency F2 higher than the first frequency F1, a plurality of frequencies are set at the same frequency interval ΔF. Here, the frequency setting unit 161 corresponds to an example of “frequency setting means”. The frequency interval ΔF corresponds to an example of “predetermined frequency interval”. In the present embodiment, a case where the first frequency F1 is 21 Hz, the second frequency F2 is 40 Hz, and the frequency interval ΔF is 1 Hz will be described. That is, in the present embodiment, the frequency setting unit 161 sets a frequency for every 1 Hz in the range of 21 Hz to 40 Hz. In the present embodiment, the case where the frequency setting unit 161 sets a plurality of frequencies at the same frequency interval ΔF will be described. However, the frequency setting unit 161 may set a plurality of frequencies by other methods. .
 また、周波数設定部161は、図3に示す「周波数選定処理」を行う場合には、第1周波数F1より低い第3周波数F3から、第2周波数F2より高い第4周波数F4までの間において、同一の周波数間隔ΔFで複数の周波数を設定する。本実施形態では、第3周波数F3が1Hzで、第4周波数F4が100Hzで、周波数間隔ΔFが1Hzである場合について説明する。つまり、本実施形態では、周波数設定部161は、1Hz~100Hzの範囲で1Hz毎に周波数を設定する。 Further, when performing the “frequency selection process” shown in FIG. 3, the frequency setting unit 161 has a third frequency F3 lower than the first frequency F1 to a fourth frequency F4 higher than the second frequency F2. A plurality of frequencies are set at the same frequency interval ΔF. In the present embodiment, a case where the third frequency F3 is 1 Hz, the fourth frequency F4 is 100 Hz, and the frequency interval ΔF is 1 Hz will be described. That is, in the present embodiment, the frequency setting unit 161 sets a frequency every 1 Hz in a range of 1 Hz to 100 Hz.
 比抵抗算出部162は、周波数設定部161によって周波数Fαが設定される度に、電流電極対21、22に印加された矩形波電流の電流値Aと、電位電極対23、24から検出された電圧値Vとを用いて、地中の所定領域の比抵抗を示す比抵抗値ρを求める。ここで、比抵抗算出部162は、「比抵抗算出手段」の一例に相当する。 The specific resistance calculation unit 162 is detected from the current value A of the rectangular wave current applied to the current electrode pair 21 and 22 and the potential electrode pair 23 and 24 each time the frequency Fα is set by the frequency setting unit 161. Using the voltage value V, a specific resistance value ρ indicating the specific resistance of a predetermined region in the ground is obtained. Here, the specific resistance calculation unit 162 corresponds to an example of “specific resistance calculation means”.
 本実施形態では、電流電極対21、22に矩形波電流を印加するため、最大電流値の流れる時間が長い。また、電流値が大きい程、S/N比を増大することができるため、比抵抗値ρの検出精度が高い。したがって、電流電極対21、22に矩形波電流を印加することによって正確な比抵抗値ρを求めることができる。 In this embodiment, since the rectangular wave current is applied to the current electrode pairs 21 and 22, the time for which the maximum current value flows is long. Moreover, since the S / N ratio can be increased as the current value increases, the detection accuracy of the specific resistance value ρ is high. Therefore, an accurate specific resistance value ρ can be obtained by applying a rectangular wave current to the current electrode pair 21, 22.
 本実施形態では、電流電極対21、22に矩形波電流を印加する場合について説明するが、電流電極対21、22に交流電流を印加する形態であればよい。例えば、電流電極対21、22に正弦波の交流電流を印加する形態でもよいし、電流電極対21、22に三角波の交流電流を印加する形態でもよい。 In the present embodiment, a case where a rectangular wave current is applied to the current electrode pairs 21 and 22 will be described, but any form in which an alternating current is applied to the current electrode pairs 21 and 22 may be used. For example, a form in which a sinusoidal alternating current is applied to the current electrode pair 21, 22 or a form in which a triangular wave alternating current is applied to the current electrode pair 21, 22 may be used.
 推定部163は、比抵抗値ρの最大値ρ1と最小値ρ2とを求め、最大値ρ1を最小値ρ2で除した商(ρ1/ρ2)が小さい程、上記所定領域に含まれている水分が多いと推定する。ここで、推定部163は、「推定手段」の一例に相当する。 The estimation unit 163 obtains the maximum value ρ1 and the minimum value ρ2 of the specific resistance value ρ, and the smaller the quotient (ρ1 / ρ2) obtained by dividing the maximum value ρ1 by the minimum value ρ2, the moisture contained in the predetermined region It is estimated that there are many. Here, the estimation unit 163 corresponds to an example of “estimating means”.
 図6を参照して後述するように、上記所定領域に水がある(水分100%である)場合には、周波数Fαを1Hz~100Hzの間で変化させても、上記所定領域の比抵抗値ρは殆ど変化しない。また、図7を参照して後述するように、上記所定領域に含まれる水分が多い程、周波数Fαを1Hz~100Hzの間で変化させた場合(特に、周波数Fαを21Hz~40Hzの間で変化させた場合)の比抵抗値ρの変化(ここでは、偏差に対応するバラツキを意味している)が小さくなる。よって、周波数Fαを21~40Hzの間で変化させた場合において、比抵抗値ρの最大値ρ1を最小値ρ2で除した商(ρ1/ρ2)が小さい程、上記所定領域に含まれている水分が多いと推定することができる。 As will be described later with reference to FIG. 6, when there is water in the predetermined region (the water content is 100%), the specific resistance value of the predetermined region can be obtained even if the frequency Fα is changed between 1 Hz and 100 Hz. ρ hardly changes. As will be described later with reference to FIG. 7, the more the moisture contained in the predetermined region, the more the frequency Fα is changed between 1 Hz and 100 Hz (particularly, the frequency Fα is changed between 21 Hz and 40 Hz). Change in the specific resistance value ρ (in this case, the variation corresponding to the deviation) is reduced. Therefore, when the frequency Fα is changed between 21 and 40 Hz, the smaller the quotient (ρ1 / ρ2) obtained by dividing the maximum value ρ1 of the specific resistance value ρ by the minimum value ρ2, the more included in the predetermined region. It can be estimated that there is much moisture.
 本実施形態では、周波数設定部161は、電流電極対21,22に印加する交流電流の周波数Fαを、21Hz~40Hzの範囲で1Hz毎に周波数を設定するため、20個の周波数が設定され、設定された20個の周波数に、それぞれ、対応する20個の比抵抗値ρが求められる。したがって、推定部163が、最大値ρ1及び最小値ρ2を適正に求めることができる。 In the present embodiment, the frequency setting unit 161 sets the frequency Fα of the alternating current applied to the current electrode pairs 21 and 22 for each 1 Hz in the range of 21 Hz to 40 Hz, so 20 frequencies are set. Twenty specific resistance values ρ corresponding to the set 20 frequencies are obtained. Therefore, the estimation unit 163 can appropriately obtain the maximum value ρ1 and the minimum value ρ2.
 換言すれば、周波数間隔ΔFは、1Hz以下であって、且つ、周波数設定部161が、10個以上の周波数を設定することが好ましい。なぜなら、推定部163が、最大値ρ1を最小値ρ2で除した商(ρ1/ρ2)が小さい程、上記所定領域に含まれている水分が多いと推定するため、適切に最大値ρ1及び最小値ρ2を求める必要がある。よって、周波数間隔ΔFを小さくして、周波数設定部161が、多数の(少なくとも10個以上の)周波数を設定することが好ましい。 In other words, the frequency interval ΔF is preferably 1 Hz or less, and the frequency setting unit 161 preferably sets 10 or more frequencies. This is because the estimation unit 163 estimates that the smaller the quotient (ρ1 / ρ2) obtained by dividing the maximum value ρ1 by the minimum value ρ2 is, the more moisture is contained in the predetermined region. It is necessary to determine the value ρ2. Accordingly, it is preferable that the frequency setting unit 161 sets a large number (at least 10 or more) frequencies by reducing the frequency interval ΔF.
 偏差算出部164は、第3周波数F3から第4周波数F4までの間を2個以上の区間ARkに分割し、区間ARk毎に、比抵抗算出部162によって求められた比抵抗値ρの標準偏差σを求める。ここで、偏差算出部164は、「偏差算出手段」の一例に相当する。本実施形態においては、図7(a)を参照して後述するように、第3周波数F3である1Hzから第4周波数F4である100Hzまでの間を5個の区間ARk(ここでは、k=1~5)に均等に分割する場合について説明する。なお、ここでは、区間ARkに対応する標準偏差σを標準偏差σk(k=1~5)と表記する。 The deviation calculation unit 164 divides the interval from the third frequency F3 to the fourth frequency F4 into two or more sections ARk, and the standard deviation of the specific resistance value ρ obtained by the specific resistance calculation unit 162 for each section ARk. Find σ. Here, the deviation calculating unit 164 corresponds to an example of “deviation calculating means”. In the present embodiment, as will be described later with reference to FIG. 7A, there are five sections ARk (here, k = b) from 1 Hz that is the third frequency F3 to 100 Hz that is the fourth frequency F4. A case of dividing equally into 1 to 5) will be described. Here, the standard deviation σ corresponding to the section ARk is expressed as standard deviation σk (k = 1 to 5).
 周波数帯選定部165は、偏差算出部164によって求められた標準偏差σが最も大きい区間ARhに対応する周波数帯FRhを、地中に含まれている水分を検出するために用いる周波数帯FRhとして選定する。ここで、周波数帯選定部165は、「周波数帯選定手段」の一例に相当する。本実施形態においては、図7(a)を参照して後述するように、標準偏差σが最も大きい区間AR2に対応する周波数帯FR2(21Hz~40Hz)を、地中に含まれている水分を検出するために用いる周波数帯FR2として選定する。 The frequency band selecting unit 165 selects the frequency band FRh corresponding to the section ARh having the largest standard deviation σ obtained by the deviation calculating unit 164 as the frequency band FRh used for detecting moisture contained in the ground. To do. Here, the frequency band selection unit 165 corresponds to an example of “frequency band selection means”. In the present embodiment, as will be described later with reference to FIG. 7A, the frequency band FR2 (21 Hz to 40 Hz) corresponding to the section AR2 having the largest standard deviation σ is contained in the moisture contained in the ground. The frequency band FR2 used for detection is selected.
 換言すれば、周波数設定部161によって設定される第1周波数F1は、周波数帯選定部165によって選定された周波数帯FRh(図7に示す例では、周波数帯FR2)の下限周波数(21Hz)であり、第2周波数F2は、周波数帯選定部165によって選定された周波数帯FRh(図7に示す例では、周波数帯FR2)の上限周波数(40Hz)である。 In other words, the first frequency F1 set by the frequency setting unit 161 is the lower limit frequency (21 Hz) of the frequency band FRh (frequency band FR2 in the example shown in FIG. 7) selected by the frequency band selection unit 165. The second frequency F2 is the upper limit frequency (40 Hz) of the frequency band FRh (in the example shown in FIG. 7, the frequency band FR2) selected by the frequency band selection unit 165.
 第1周波数F1及び第2周波数F2を上述のように設定することによって、図4に示す水分検出処理を行う際の周波数の範囲を適正に設定することができる。したがって、水分検出処理において正確に水分が多いか否かを判定することができる。 By setting the first frequency F1 and the second frequency F2 as described above, it is possible to appropriately set the frequency range when performing the moisture detection process shown in FIG. Therefore, it is possible to accurately determine whether or not there is much moisture in the moisture detection process.
<水分検出装置本体1の動作>
 次に、図3を参照して、周波数選定処理の工程について説明する。ここで、周波数選定処理とは、地中に含まれている水分を検出するために用いる周波数帯FRhを選定する処理である。図3は、図2に示す水分検出装置100による周波数選定処理の工程を示すフローチャートである。まず、偏差算出部164によって、第3周波数F3(ここでは、1Hz)から第4周波数F4(ここでは、100Hz)までの間が2個以上(ここでは、5個)の区間ARk(ここでは、k=1~5)に分割される(ステップS101)。次に、周波数設定部161によって、区間ARk(ここでは、k=1~5)毎に、周波数間隔ΔF(ここでは、1Hz)で周波数が設定される(ステップS103)。ここで、ステップS103が、「周波数設定工程」の一例に相当する。
<Operation of Moisture Detection Device Main Body 1>
Next, the frequency selection process will be described with reference to FIG. Here, the frequency selection process is a process of selecting a frequency band FRh used for detecting moisture contained in the ground. FIG. 3 is a flowchart showing a frequency selection process performed by the moisture detection apparatus 100 shown in FIG. First, the deviation calculation unit 164 performs two or more (here, five) sections ARk (here, five) from the third frequency F3 (here, 1 Hz) to the fourth frequency F4 (here, 100 Hz). k = 1 to 5) (step S101). Next, the frequency setting unit 161 sets the frequency at a frequency interval ΔF (here, 1 Hz) for each section ARk (here, k = 1 to 5) (step S103). Here, step S103 corresponds to an example of a “frequency setting step”.
 そして、ステップS103において周波数が設定される度に、比抵抗算出部162によって、比抵抗値ρが求められる(ステップS105)。ここで、ステップS105が、「比抵抗算出工程」の一例に相当する。次いで、偏差算出部164によって、区間ARk毎に、ステップS105で求められた比抵抗値ρの標準偏差σが求められる(ステップS107)。ここで、ステップS107が、「偏差算出工程」の一例に相当する。そして、全区間ARkの測定が完了したか否かの判定が行われる(ステップS109)。 Then, every time the frequency is set in step S103, the specific resistance calculation unit 162 calculates the specific resistance value ρ (step S105). Here, step S105 corresponds to an example of a “specific resistance calculation step”. Next, the standard deviation σ of the specific resistance value ρ obtained in step S105 is obtained by the deviation calculating unit 164 for each section ARk (step S107). Here, step S107 corresponds to an example of a “deviation calculation step”. Then, it is determined whether or not the measurement of all sections ARk is completed (step S109).
 全区間ARkの測定は完了していないと判定された場合(ステップS109でNO)には、処理がステップS103に戻され、ステップS103以降の処理が実行される。全区間ARkの測定が完了したと判定された場合(ステップS109でYES)には、周波数帯選定部165によって、ステップS107において求められた標準偏差σが最も大きい区間ARhに対応する周波数帯FRhが、地中に含まれている水分を検出するために用いる周波数帯FRhとして選定され(ステップS111)、処理が終了される。ここで、ステップS111が、「周波数選定工程」の一例に相当する。 If it is determined that the measurement of all sections ARk has not been completed (NO in step S109), the process returns to step S103, and the processes after step S103 are executed. When it is determined that measurement of all sections ARk is completed (YES in step S109), the frequency band FRh corresponding to the section ARh having the largest standard deviation σ obtained in step S107 by the frequency band selecting unit 165 is determined. The frequency band FRh used for detecting moisture contained in the ground is selected (step S111), and the process is terminated. Here, step S111 corresponds to an example of a “frequency selection step”.
 このようにして、標準偏差σが最も大きい区間ARhに対応する周波数帯FRhを、地中に含まれている水分を検出するために用いる周波数帯FRhとして選定するため、適正な周波数帯FRhを選定することができる。換言すれば、標準偏差σが最も大きい区間ARhに対応する周波数帯FRhでは、周波数が変化した場合の比抵抗値ρの変化が大きい。したがって、地中に含まれている水分が多くない場合に、推定部163によって求められる比抵抗値ρの最大値ρ1を最小値ρ2で除した商(ρ1/ρ2)が大きくなるため、推定部163による推定が容易となる。 In this way, in order to select the frequency band FRh corresponding to the section ARh having the largest standard deviation σ as the frequency band FRh used for detecting moisture contained in the ground, the appropriate frequency band FRh is selected. can do. In other words, in the frequency band FRh corresponding to the section ARh having the largest standard deviation σ, the change in the specific resistance value ρ when the frequency changes is large. Therefore, when there is not a lot of moisture contained in the ground, the quotient (ρ1 / ρ2) obtained by dividing the maximum value ρ1 of the specific resistance value ρ obtained by the estimation unit 163 by the minimum value ρ2 becomes large. The estimation by 163 becomes easy.
 本実施形態では、周波数帯選定部165が、標準偏差σが最も大きい区間ARhに対応する周波数帯FRhを、地中に含まれている水分を検出するために用いる周波数帯FRhとして選定する場合について説明するが、その他の方法で周波数帯FRhを選定する形態でもよい。例えば、周波数帯選定部165が、比抵抗値ρのバラツキの大きい周波数帯FRkを選定する形態でもよい。具体的には、周波数帯FRk毎の比抵抗値ρの最大値と最小値とを求め、両者の差が最大となる周波数帯FRkを選定する形態でもよい。また、周波数帯FRk毎の比抵抗値ρの最大値と最小値とを求め、上記最大値を上記最小値で除した商が最大となる周波数帯FRkを選定する形態でもよい。 In the present embodiment, the frequency band selecting unit 165 selects the frequency band FRh corresponding to the section ARh having the largest standard deviation σ as the frequency band FRh used for detecting moisture contained in the ground. As will be described, the frequency band FRh may be selected by other methods. For example, the frequency band selection unit 165 may select a frequency band FRk having a large variation in specific resistance value ρ. Specifically, the maximum value and the minimum value of the specific resistance value ρ for each frequency band FRk may be obtained, and the frequency band FRk that maximizes the difference between the two may be selected. Alternatively, the maximum value and the minimum value of the specific resistance value ρ for each frequency band FRk may be obtained, and the frequency band FRk having the maximum quotient obtained by dividing the maximum value by the minimum value may be selected.
 次に、図4を参照して、水分検出処理の工程について説明する。ここで、水分検出処理とは、地中の所定領域に含まれている水分が多いか否かを検出する処理である。図4は、図2に示す水分検出装置100による水分検出処理の工程を示すフローチャートである。まず、周波数設定部161によって、第1周波数F1(ここでは、21Hz)から第2周波数F2(ここでは、40Hz)までの間において、同一の周波数間隔ΔF(ここでは、1Hz)で周波数が設定される(ステップS201)。ここで、ステップS201が、「周波数設定工程」の一例に相当する。 Next, the process of moisture detection processing will be described with reference to FIG. Here, the moisture detection process is a process for detecting whether or not there is a lot of moisture contained in a predetermined area in the ground. FIG. 4 is a flowchart showing a process of moisture detection processing by the moisture detection apparatus 100 shown in FIG. First, the frequency setting unit 161 sets the frequency at the same frequency interval ΔF (here 1 Hz) from the first frequency F1 (here 21 Hz) to the second frequency F2 (here 40 Hz). (Step S201). Here, step S201 corresponds to an example of a “frequency setting step”.
 そして、ステップS201において周波数が設定される度に、比抵抗算出部162によって比抵抗値ρが測定される(ステップS203)。ここで、ステップS203が、「比抵抗算出工程」の一例に相当する。次に、全ての周波数について比抵抗値ρの測定が完了したか否かの判定が行われる(ステップS205)。全ての周波数について比抵抗値ρの測定が完了してはいないと判定された場合(ステップS205でNO)には、処理がステップS201に戻され、ステップS201以降の処理が実行される。全ての周波数について比抵抗値ρの測定が完了したと判定された場合(ステップS205でYES)には、推定部163によって、比抵抗値ρの最大値ρ1と最小値ρ2とが求められる(ステップS207)。 Then, every time the frequency is set in step S201, the specific resistance calculation unit 162 measures the specific resistance value ρ (step S203). Here, step S203 corresponds to an example of a “specific resistance calculation step”. Next, it is determined whether or not the measurement of the specific resistance value ρ has been completed for all frequencies (step S205). If it is determined that the measurement of the specific resistance value ρ has not been completed for all frequencies (NO in step S205), the process returns to step S201, and the processes after step S201 are executed. When it is determined that the measurement of the specific resistance value ρ has been completed for all frequencies (YES in step S205), the estimation unit 163 obtains the maximum value ρ1 and the minimum value ρ2 of the specific resistance value ρ (step S205). S207).
 次に、推定部163によって、最大値ρ1を最小値ρ2で除した商(ρ1/ρ2)が予め設定された閾値S以下であるか否かの判定が行われる(ステップS209)。商(ρ1/ρ2)が閾値S以下であると判定された場合(ステップS209でYES)には、推定部163によって、上記所定領域に含まれている水分が多いと推定され(ステップS211)、処理が終了される。商(ρ1/ρ2)が閾値Sより大であると判定された場合(ステップS209でNO)には、推定部163によって、上記所定領域に含まれている水分が少ないと推定され(ステップS213)、処理が終了される。ここで、ステップS207~ステップS213は、「推定工程」の一例に相当する。 Next, the estimation unit 163 determines whether or not a quotient (ρ1 / ρ2) obtained by dividing the maximum value ρ1 by the minimum value ρ2 is equal to or less than a preset threshold value S (step S209). When it is determined that the quotient (ρ1 / ρ2) is equal to or less than the threshold value S (YES in step S209), the estimation unit 163 estimates that the moisture contained in the predetermined area is large (step S211). Processing is terminated. When it is determined that the quotient (ρ1 / ρ2) is greater than the threshold value S (NO in step S209), the estimation unit 163 estimates that the moisture contained in the predetermined area is small (step S213). The process is terminated. Here, step S207 to step S213 correspond to an example of an “estimation process”.
 このようにして、商(ρ1/ρ2)が閾値S以下であると判定された場合には、推定部163によって、地中の所定領域に含まれている水分が多いと推定されるため、熟練技術者でなくても、高い精度で地中の水分が多いことを検出することができる。 In this way, when it is determined that the quotient (ρ1 / ρ2) is equal to or less than the threshold value S, the estimation unit 163 estimates that a large amount of water is contained in a predetermined region in the ground, so Even if it is not an engineer, it can detect that there is much moisture in the ground with high accuracy.
 本実施形態では、推定部163が、最大値ρ1を最小値ρ2で除した商(ρ1/ρ2)が小さい程、上記所定領域に含まれている水分が多いと推定する場合について説明したが、推定部163が、比抵抗値ρのバラツキが小さい程、上記所定領域に含まれている水分が多いと推定する形態であればよい。例えば、推定部163が、比抵抗値ρの標準偏差σが小さい程、上記所定領域に含まれている水分が多いと推定する形態でもよい。また、例えば、最大値ρ1から最小値ρ2を引いた差を比抵抗値ρの平均値ρAで除した値((ρ1-ρ2)/ρA)が小さい程、上記所定領域に含まれている水分が多いと推定する形態でもよい。 In the present embodiment, the estimation unit 163 has described the case where it is estimated that the smaller the quotient (ρ1 / ρ2) obtained by dividing the maximum value ρ1 by the minimum value ρ2, the more moisture is contained in the predetermined region. Any configuration may be used as long as the estimation unit 163 estimates that the moisture content included in the predetermined region is larger as the variation in the specific resistance value ρ is smaller. For example, the estimation unit 163 may estimate that the smaller the standard deviation σ of the specific resistance value ρ is, the more moisture is contained in the predetermined region. Further, for example, the smaller the value ((ρ1−ρ2) / ρA) obtained by dividing the difference obtained by subtracting the minimum value ρ2 from the maximum value ρ1 by the average value ρA of the specific resistance value ρ, the moisture contained in the predetermined region It may be a form that is estimated to be large.
<効果を検証する実験について>
 次に、図5~図8を参照して、本発明に係る水分検出装置100の効果を検証する実験方法、及び、実験結果について説明する。図5は、図2に示す水分検出装置の効果を検証するための実験方法を示す図である。図5(a)は、水槽4の形状及びサイズを示す斜視図であり、図5(b)は、図5(a)に示す水槽4が地中に埋められた状態と水分検出装置100の測定点とを示す断面図である。
<Experiment to verify the effect>
Next, an experimental method for verifying the effect of the moisture detection apparatus 100 according to the present invention and experimental results will be described with reference to FIGS. FIG. 5 is a diagram showing an experimental method for verifying the effect of the moisture detection apparatus shown in FIG. FIG. 5A is a perspective view showing the shape and size of the water tank 4, and FIG. 5B shows the state in which the water tank 4 shown in FIG. It is sectional drawing which shows a measurement point.
 図5(a)に示すように、水槽4は、内寸で、幅30cm、長さ22cm、高さ18cmの直方体状に形成されている。この水槽4には、水、又は、水と火山灰質砂質土との混合物が入れられる。 As shown in FIG. 5 (a), the water tank 4 has an internal size and is formed in a rectangular parallelepiped shape having a width of 30 cm, a length of 22 cm, and a height of 18 cm. The water tank 4 is filled with water or a mixture of water and volcanic ash sandy soil.
 図5(b)に示すように、水槽4は、地面SFから深さ7cm~25cmの範囲に水槽4内に入れられた水(又は、水と火山灰質砂質土との混合物)が存在する位置に埋められる。また、水槽4は、水分検出装置100の電極2の埋設されている幅150cmの領域の中央位置に埋められる。また、水槽4は、電極2が埋設されている方向に沿って、水槽4の幅方向が位置するように電極2の直下に埋設される。すなわち、電極2を含む鉛直面が、水槽4の長さ方向の中央位置を通るように水槽4は埋設される。また、図5(b)の測定点MPは、水分検出装置100によって、比抵抗値ρが検出される点である。 As shown in FIG. 5B, the water tank 4 has water (or a mixture of water and volcanic ash sandy soil) in the water tank 4 within a range of 7 cm to 25 cm in depth from the ground SF. Buried in position. In addition, the water tank 4 is buried at the center position of the 150 cm wide region where the electrode 2 of the moisture detecting device 100 is buried. The water tank 4 is embedded directly below the electrode 2 so that the width direction of the water tank 4 is positioned along the direction in which the electrode 2 is embedded. That is, the water tank 4 is embedded so that the vertical plane including the electrode 2 passes through the center position in the length direction of the water tank 4. In addition, the measurement point MP in FIG. 5B is a point where the specific resistance value ρ is detected by the moisture detection device 100.
 図6は、図5に示す水槽4に水を入れた場合の実験結果を示すグラフG1である。横軸は、印加する電流の周波数F(Hz)を示す、縦軸は、水槽4に入れられた水の中央位置に最も近い測定点MPにおける比抵抗値ρ(Ω・m)を示す。グラフG1に示すように、周波数Fを1Hzから100Hzまで変化させても、比抵抗値ρは殆ど変化しない。 FIG. 6 is a graph G1 showing experimental results when water is put into the water tank 4 shown in FIG. The horizontal axis indicates the frequency F (Hz) of the current to be applied, and the vertical axis indicates the specific resistance value ρ (Ω · m) at the measurement point MP closest to the center position of the water put in the water tank 4. As shown in the graph G1, the specific resistance value ρ hardly changes even when the frequency F is changed from 1 Hz to 100 Hz.
 図7は、図5に示す水槽4に火山灰質砂質土と水との混合物を入れた場合の実験結果を示すグラフである。図7(a)は、混合物の含水比が60%の場合(火山灰質砂質土40%、水60%の場合)であり、図7(b)は、混合物の含水比が70%(火山灰質砂質土30%、水70%の場合)の場合であり、図7(c)は、混合物の含水比が80%(火山灰質砂質土20%、水80%の場合)の場合である。なお、図6と同様に、図7(a)、(b)、(c)において、横軸は、印加する電流の周波数F(Hz)を示す、縦軸は、水槽4に入れられた混合物の中央位置に最も近い測定点MPにおける比抵抗値ρ(Ω・m)を示す。 FIG. 7 is a graph showing experimental results when a mixture of volcanic ash sandy soil and water is put in the water tank 4 shown in FIG. FIG. 7A shows the case where the water content of the mixture is 60% (40% volcanic ash sandy soil and 60% water), and FIG. 7B shows that the water content of the mixture is 70% (volcanic ash Fig. 7 (c) shows the case where the water content of the mixture is 80% (20% volcanic ash sandy soil and 80% water). is there. As in FIG. 6, in FIGS. 7A, 7 </ b> B, and 7 </ b> C, the horizontal axis represents the frequency F (Hz) of the applied current, and the vertical axis represents the mixture placed in the water tank 4. The specific resistance value ρ (Ω · m) at the measurement point MP closest to the center position is shown.
 図6に示すグラフG1、図7(a)に示すグラフG2、図7(b)に示すグラフG3、及び、図7(c)に示すグラフG4を比較すると、含水比が増加する程、グラフの上下方向の変化(バラツキ)が小さくなることが判る。 When comparing the graph G1 shown in FIG. 6, the graph G2 shown in FIG. 7A, the graph G3 shown in FIG. 7B, and the graph G4 shown in FIG. It can be seen that the change (variation) in the vertical direction is small.
 また、例えば、図7(a)に示すように、1Hz~100Hzの周波数は、区間AR1~区間AR5の5つの区間に分割されている。そして、区間ARk(k=1~5)毎の標準偏差σk(k=1~5)が図2(b)に示す偏差算出部164によって求められる。ここでは、標準偏差σ1=0.4431、標準偏差σ2=0.6479、標準偏差σ3=0.5990、標準偏差σ4=0.5966、標準偏差σ5=0.3470となり、区間AR2の標準偏差σ2が最大となる。したがって、図2(b)に示す周波数帯選定部165によって、標準偏差σが最も大きい区間AR2に対応する周波数帯FR2(21Hz~40Hz)が、地中に含まれている水分を検出するために用いる周波数帯FR2として選定される。 Further, for example, as shown in FIG. 7A, the frequency of 1 Hz to 100 Hz is divided into five sections AR1 to AR5. Then, the standard deviation σk (k = 1 to 5) for each section ARk (k = 1 to 5) is obtained by the deviation calculator 164 shown in FIG. Here, standard deviation σ1 = 0.4431, standard deviation σ2 = 0.6479, standard deviation σ3 = 0.5990, standard deviation σ4 = 0.5966, standard deviation σ5 = 0.3470, and standard deviation σ2 of section AR2 Is the maximum. Accordingly, the frequency band selection unit 165 shown in FIG. 2B uses the frequency band FR2 (21 Hz to 40 Hz) corresponding to the section AR2 having the largest standard deviation σ to detect moisture contained in the ground. It is selected as the frequency band FR2 to be used.
 更に、図7(a)には、区間AR2における比抵抗値ρの最大値ρ11と比抵抗値ρの最小値ρ21とを示している。同様に、図7(b)には、区間AR2における比抵抗値ρの最大値ρ12と比抵抗値ρの最小値ρ22とを示し、図7(c)には、区間AR2における比抵抗値ρの最大値ρ13と比抵抗値ρの最小値ρ23とを示している。 Further, FIG. 7A shows a maximum value ρ11 of the specific resistance value ρ and a minimum value ρ21 of the specific resistance value ρ in the section AR2. Similarly, FIG. 7B shows a maximum value ρ12 and a minimum value ρ22 of the specific resistance value ρ in the section AR2, and FIG. 7C shows a specific resistance value ρ in the section AR2. The maximum value ρ13 and the minimum value ρ23 of the specific resistance value ρ are shown.
 区間AR2における比抵抗値ρの最大値ρ1を最小値ρ2で除した商(ρ1/ρ2)は、図7(a)に示す含水比が60%の場合には、1.045となり、図7(b)に示す含水比が70%の場合には、1.012となり、図7(c)に示す含水比が80%の場合には、1.009となる。よって、比抵抗値ρの最大値ρ1を最小値ρ2で除した商(ρ1/ρ2)が小さい程、地中の水分が多いと推定することができる。 The quotient (ρ1 / ρ2) obtained by dividing the maximum value ρ1 of the specific resistance value ρ in the section AR2 by the minimum value ρ2 is 1.045 when the water content ratio shown in FIG. When the water content ratio shown in (b) is 70%, it becomes 1.012, and when the water content ratio shown in FIG. 7 (c) is 80%, it becomes 1.009. Therefore, it can be estimated that the smaller the quotient (ρ1 / ρ2) obtained by dividing the maximum value ρ1 of the resistivity ρ by the minimum value ρ2, the more moisture in the ground.
 図8は、図5に示す水槽4に砂礫と水とを入れた場合の周波数帯毎の標準偏差の分布を示す図である。図8(a)は、周波数帯が1Hzから20Hzの場合であり、図8(b)は、周波数帯が21Hzから40Hzの場合であり、図8(c)は、周波数帯が41Hzから60Hzの場合であり、図8(d)は、周波数帯が61Hzから80Hzの場合であり、図8(e)は、周波数帯が81Hzから100Hzの場合である。図8(f)は、標準偏差σのレンジである。 FIG. 8 is a diagram showing a standard deviation distribution for each frequency band when gravel and water are put into the water tank 4 shown in FIG. 8A shows a case where the frequency band is 1 Hz to 20 Hz, FIG. 8B shows a case where the frequency band is 21 Hz to 40 Hz, and FIG. 8C shows that the frequency band is 41 Hz to 60 Hz. FIG. 8D shows a case where the frequency band is 61 Hz to 80 Hz, and FIG. 8E shows a case where the frequency band is 81 Hz to 100 Hz. FIG. 8F shows the range of the standard deviation σ.
 図8(a)~図8(e)において、それぞれ、横軸は、水分検出装置100による左端の測定点MPからの幅方向の距離(cm)を示し、縦軸は、水分検出装置100による測定点MPの深さ(cm)を示す。図8(a)~図8(e)において、それぞれ、標準偏差分布として、等高線(標準偏差σが同じ値である測定点MPを結んだ線)と、標準偏差σの大きさを示す網掛けが記載されている。なお、ここでは、網掛けが濃い程、標準偏差σが大きいことを示している。 8 (a) to 8 (e), the horizontal axis indicates the distance (cm) in the width direction from the measurement point MP at the left end by the moisture detection device 100, and the vertical axis indicates by the moisture detection device 100. The depth (cm) of the measurement point MP is shown. 8 (a) to 8 (e), as standard deviation distributions, contour lines (lines connecting measurement points MP having the same standard deviation σ) and shaded areas indicating the size of the standard deviation σ are shown. Is described. Here, the darker the shading, the larger the standard deviation σ.
 また、図8(a)~図8(e)において、それぞれ、矩形Wは、図5に示す水槽4中の水の位置を示している。図8(a)~図8(e)を比較して、図8(b)が、特に、矩形Wの内部の領域の標準偏差σが大きくなっており、周波数帯が21Hzから40Hzの場合に、水の位置を検出し易いことが判る。なお、この結果は、図2(b)に示す周波数帯選定部165が、地中に含まれている水分を検出するために用いる周波数帯FR2を適正に選定していることを示している。換言すれば、周波数帯選定部165が、標準偏差σが最も大きい区間AR2に対応する周波数帯FR2(21Hz~40Hz)を選定することによって、地中に含まれている水分を適正に検出することができることを示している。 8A to 8E, each rectangle W represents the position of water in the water tank 4 shown in FIG. 8 (a) to 8 (e) are compared, and FIG. 8 (b) shows that the standard deviation σ in the region inside the rectangle W is particularly large and the frequency band is 21 Hz to 40 Hz. It turns out that the position of water is easy to detect. In addition, this result has shown that the frequency band selection part 165 shown in FIG.2 (b) has selected appropriately the frequency band FR2 used in order to detect the water | moisture content contained in the ground. In other words, the frequency band selecting unit 165 appropriately detects the moisture contained in the ground by selecting the frequency band FR2 (21 Hz to 40 Hz) corresponding to the section AR2 having the largest standard deviation σ. It shows that you can.
<水分検出装置の効果の検証結果>
 次に、図9~図11を参照して、図1に示す水分検出装置100の効果を検証した結果について説明する。図9は、水分検出装置100の効果を検証した場所における主側線G5及びボーリング調査結果を示すグラフである。横軸は、距離Lを示し、縦軸は標高Hを示す。主側線G5に沿って、位置P1~P3の3箇所においてボーリングを行った。
<Results of verification of effect of moisture detector>
Next, the results of verifying the effect of the moisture detection apparatus 100 shown in FIG. 1 will be described with reference to FIGS. FIG. 9 is a graph showing the main side line G5 and the borehole investigation result at the place where the effect of the moisture detection apparatus 100 is verified. The horizontal axis indicates the distance L, and the vertical axis indicates the altitude H. Boring was performed at three positions P1 to P3 along the main side line G5.
 ボーリング調査では、最大歪み量及び歪み深度ST1~ST3と、水位WL1~WL3とが調査された。具体的には、位置P1では、深さ30mのボーリングを行った。図9では、各ボーリング位置P1~P3における歪み深度ST1~ST3を丸印(○)で示し、水位の深さを三角印(△)で示す。ボーリング位置P1における歪み深度ST1は6mであり、最大歪み量は、200μSTであり、水位の深さは、24.4mであった。位置P2では、深さ17mのボーリングを行った。また、ボーリング位置P2における歪み深度ST2は6mであり、最大歪み量は、600μSTであり、水位の深さは、16.9mであった。位置P3では、深さ15mのボーリングを行った。また、ボーリング位置P3における歪み深度ST3は8mであり、最大歪み量は、150μSTであり、水位の深さは、5.5mであった。 In the boring survey, the maximum strain amount and strain depth ST1 to ST3 and the water levels WL1 to WL3 were investigated. Specifically, at position P1, drilling was performed at a depth of 30 m. In FIG. 9, the distortion depths ST1 to ST3 at the boring positions P1 to P3 are indicated by circles (◯), and the depth of the water level is indicated by triangles (Δ). The distortion depth ST1 at the boring position P1 was 6 m, the maximum distortion amount was 200 μST, and the depth of the water level was 24.4 m. At the position P2, boring with a depth of 17 m was performed. The distortion depth ST2 at the boring position P2 was 6 m, the maximum distortion amount was 600 μST, and the depth of the water level was 16.9 m. At position P3, drilling was performed at a depth of 15 m. Further, the strain depth ST3 at the boring position P3 was 8 m, the maximum strain amount was 150 μST, and the depth of the water level was 5.5 m.
 なお、歪み深度ST1~ST3の位置において、地滑りが発生することが知られている。一方、図9を参照して説明したように、歪み深度ST1~ST3の位置と、水位WL1~WL3とが大きく相違していた。すなわち、ボーリング調査によって得られた水位WL1~WL3の位置以外に、水の層が存在するか否かを調査する必要があった。そこで、発明者らは、水分検出装置100を用いて、水の存在する位置の調査を行った。 It is known that landslides occur at the positions of the distortion depths ST1 to ST3. On the other hand, as described with reference to FIG. 9, the positions of the distortion depths ST1 to ST3 and the water levels WL1 to WL3 are greatly different. That is, it is necessary to investigate whether or not there is a water layer other than the positions of the water levels WL1 to WL3 obtained by the boring survey. Therefore, the inventors investigated the position where water exists using the moisture detection device 100.
 次に、図10を参照して、電極2aの配置について説明する。図10は、主側線G5に沿って配置された電極の位置を示すグラフである。横軸は、距離Lを示し、縦軸は標高Hを示す。主側線G5に沿って、3m間隔で51本の電極2aを配置した。 Next, the arrangement of the electrodes 2a will be described with reference to FIG. FIG. 10 is a graph showing the positions of the electrodes arranged along the main side line G5. The horizontal axis indicates the distance L, and the vertical axis indicates the altitude H. 51 electrodes 2a were arranged along the main side line G5 at intervals of 3 m.
 次に、図11を参照して、水分検出装置100の検出結果について説明する。図11は、主側線G5に沿った水分検出装置100の検出結果(標準偏差σの分布)を示す図である。横軸は、距離Lを示し、縦軸は標高Hを示す。ここでは、網掛けが濃い程、標準偏差σが大きいことを示している。図11に示すように、主側線G5に沿った地表から5~10mの範囲に水の層が存在することが判明した。この結果は、歪み深度ST1~ST3と良く一致していた。換言すれば、図9~図11に示す検証の結果、水分検出装置100が地中に含まれている水分を適正に検出できることが判った。 Next, the detection result of the moisture detection apparatus 100 will be described with reference to FIG. FIG. 11 is a diagram showing the detection result (distribution of standard deviation σ) of the moisture detection device 100 along the main side line G5. The horizontal axis indicates the distance L, and the vertical axis indicates the altitude H. Here, the darker the shading, the larger the standard deviation σ. As shown in FIG. 11, it was found that a water layer exists in the range of 5 to 10 m from the ground surface along the main side line G5. This result was in good agreement with the distortion depths ST1 to ST3. In other words, as a result of the verification shown in FIGS. 9 to 11, it was found that the moisture detection device 100 can properly detect the moisture contained in the ground.
 本実施形態では、周波数設定部161が、周波数間隔ΔFを1Hzとして周波数を設定する場合について説明したが、周波数設定部161は、周波数間隔ΔFを1Hz以下に設定することが好ましい。周波数間隔ΔFが小さい程、偏差算出部164が適正な標準偏差σを求めることができるため、周波数帯選定部165が適正な周波数帯を選定することができる。ただし、周波数間隔ΔFが小さい程、比抵抗算出部162、偏差算出部164、及び、周波数帯選定部165の処理時間が長くなる。 In the present embodiment, the case where the frequency setting unit 161 sets the frequency with the frequency interval ΔF set to 1 Hz has been described, but the frequency setting unit 161 preferably sets the frequency interval ΔF to 1 Hz or less. As the frequency interval ΔF is smaller, the deviation calculating unit 164 can obtain an appropriate standard deviation σ, and thus the frequency band selecting unit 165 can select an appropriate frequency band. However, the processing time of the specific resistance calculation unit 162, the deviation calculation unit 164, and the frequency band selection unit 165 becomes longer as the frequency interval ΔF is smaller.
 同様に、周波数間隔ΔFが小さい程、推定部163が比抵抗値ρの最大値ρ1及び最小値ρ2として適正な値を求めることができるため、推定部163は水分が多いか否かを適正に推定することができる。 Similarly, as the frequency interval ΔF is smaller, the estimation unit 163 can obtain appropriate values as the maximum value ρ1 and the minimum value ρ2 of the specific resistance value ρ. Therefore, the estimation unit 163 appropriately determines whether or not there is much moisture. Can be estimated.
 本実施形態では、周波数設定部161が、1Hz~100Hzの範囲で周波数を設定する場合について説明したが、周波数設定部161が、周波数を設定する範囲は上記範囲に限定されない。例えば、1Hz~50Hzであってもよいし、1Hz~200Hzであってもよい。周波数設定部161が、広範囲に周波数を設定する程、周波数帯選定部165は、適正な周波数帯を求め易い。 In the present embodiment, the case where the frequency setting unit 161 sets the frequency in the range of 1 Hz to 100 Hz has been described, but the range in which the frequency setting unit 161 sets the frequency is not limited to the above range. For example, the frequency may be 1 Hz to 50 Hz, or 1 Hz to 200 Hz. As the frequency setting unit 161 sets the frequency over a wide range, the frequency band selection unit 165 easily obtains an appropriate frequency band.
 本実施形態では、偏差算出部164が第3周波数F3から第4周波数F4までの間を5個の区間ARkに分割する場合について説明したが、偏差算出部164が複数の区間に分割する形態であればよい。分割する区分の個数が多い程、適正な周波数帯を求め易い。ただし、分割する区分の個数が多い程、偏差算出部164、及び、周波数帯選定部165の処理時間が長くなる。また、分割する区分の個数が多過ぎると、周波数設定部161によって設定される周波数のうち、1つの区分に含まれる周波数の個数が少なくなり、標準偏差σを適正に求めることができなくなる。1つの区分に含まれる周波数の個数が、例えば、10個以上となるように分割する区分の個数を決定する必要がある。 In the present embodiment, the case where the deviation calculation unit 164 divides the range from the third frequency F3 to the fourth frequency F4 into five sections ARk has been described. However, the deviation calculation unit 164 divides the section into a plurality of sections. I just need it. As the number of divisions is increased, an appropriate frequency band is easily obtained. However, the processing time of the deviation calculation unit 164 and the frequency band selection unit 165 becomes longer as the number of divisions is larger. If the number of divisions is too large, the number of frequencies included in one division among the frequencies set by the frequency setting unit 161 decreases, and the standard deviation σ cannot be obtained appropriately. It is necessary to determine the number of sections to be divided so that the number of frequencies included in one section is, for example, 10 or more.
 以上、本発明の実施形態について、図面(図1~図11)を参照しながら説明した。ただし、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。 The embodiment of the present invention has been described above with reference to the drawings (FIGS. 1 to 11). However, the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist thereof.
 なお、図面は、理解し易くするために、それぞれの構成要素を主体に模式的に示している。したがって、図示された各構成要素の厚み、長さ等は、図面作成の都合上から実際とは異なる場合がある。 In addition, in order to make it easy to understand, the drawings schematically show each component mainly. Accordingly, the thickness, length, and the like of each illustrated component may differ from the actual one for the convenience of drawing.
 本発明は、地中の水分を検出する水分検出装置、水分検出方法、及び、水分検出プログラムに適用することができる。 The present invention can be applied to a moisture detection device, a moisture detection method, and a moisture detection program for detecting moisture in the ground.
 100  水分検出装置
 1  水分検出装置本体
 11  直流安定化電源
 12  発振器
 13  矩形波ドライブ回路
 14  電極切換回路
 15  データロガー
 16  コンピュータ
 161  周波数設定部(周波数設定手段)
 162  比抵抗算出部(比抵抗算出手段)
 163  推定部(推定手段)
 164  偏差算出部(偏差算出手段)
 165  周波数帯選定部(周波数帯選定手段)
 2  電極
 21、22 電流電極対
 23、24 電位電極対
 3  リード線
 4  水槽
DESCRIPTION OF SYMBOLS 100 Moisture detection apparatus 1 Moisture detection apparatus main body 11 DC stabilized power supply 12 Oscillator 13 Rectangular wave drive circuit 14 Electrode switching circuit 15 Data logger 16 Computer 161 Frequency setting part (frequency setting means)
162 Specific resistance calculation unit (specific resistance calculation means)
163 Estimating unit (estimating means)
164 Deviation calculation unit (deviation calculation means)
165 Frequency band selection section (frequency band selection means)
2 Electrodes 21 and 22 Current electrode pair 23 and 24 Potential electrode pair 3 Lead wire 4 Water tank

Claims (13)

  1.  地中の所定領域に含まれている水分を検出する水分検出装置であって、
     前記所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、
     前記交流電流に対応する電圧値を測定する複数の電位電極対と、
     前記交流電流の周波数を、予め設定された第1周波数から前記第1周波数より高い第2周波数までの間において、所定の周波数間隔で複数の周波数を設定する周波数設定手段と、
     前記周波数設定手段によって周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗値を求める比抵抗算出手段と、
     前記比抵抗値の最大値と最小値とを求め、前記最大値を前記最小値で除した商が小さい程、前記所定領域に含まれている水分が多いと推定する推定手段と
     を備える、水分検出装置。
    A moisture detection device for detecting moisture contained in a predetermined area in the ground,
    A plurality of current electrode pairs for measuring the current value of the alternating current input to the predetermined region;
    A plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current;
    A frequency setting means for setting a plurality of frequencies at predetermined frequency intervals between a first frequency set in advance and a second frequency higher than the first frequency, the frequency of the alternating current;
    Resistivity calculating means for obtaining a specific resistance value in the predetermined region using the current value and the voltage value each time a frequency is set by the frequency setting means;
    An estimation means for obtaining a maximum value and a minimum value of the specific resistance value, and estimating that the smaller the quotient obtained by dividing the maximum value by the minimum value is, the more moisture is contained in the predetermined area; Detection device.
  2.  前記周波数間隔は、1Hz以下であって、前記周波数設定手段は、10個以上の周波数を設定する、請求項1に記載の水分検出装置。 The moisture detection apparatus according to claim 1, wherein the frequency interval is 1 Hz or less, and the frequency setting means sets 10 or more frequencies.
  3.  前記周波数設定手段は、前記第1周波数より低い第3周波数から、前記第2周波数より高い第4周波数までの間において、前記所定の周波数間隔で複数の周波数を設定し、
     前記第3周波数から前記第4周波数までの間を2個以上の区間に分割し、前記区間毎に、前記比抵抗算出手段によって求められた比抵抗値の標準偏差を求める偏差算出手段と、
     前記偏差算出手段によって求められた標準偏差が最も大きい区間に対応する周波数帯を、地中に含まれている水分を検出するために用いる周波数帯として選定する周波数帯選定手段と
     を備える、請求項1又は請求項2に記載の水分検出装置。
    The frequency setting means sets a plurality of frequencies at the predetermined frequency interval between a third frequency lower than the first frequency and a fourth frequency higher than the second frequency,
    Deviation calculation means for dividing the interval from the third frequency to the fourth frequency into two or more sections, and obtaining a standard deviation of the specific resistance value obtained by the specific resistance calculation means for each section;
    The frequency band selecting means for selecting a frequency band corresponding to a section having the largest standard deviation obtained by the deviation calculating means as a frequency band used for detecting moisture contained in the ground. The moisture detection apparatus according to claim 1 or 2.
  4.  前記第1周波数は、前記周波数帯選定手段によって選定された周波数帯の下限周波数であり、
     前記第2周波数は、前記周波数帯選定手段によって選定された周波数帯の上限周波数である、請求項3に記載の水分検出装置。
    The first frequency is a lower limit frequency of the frequency band selected by the frequency band selecting means,
    The moisture detection apparatus according to claim 3, wherein the second frequency is an upper limit frequency of a frequency band selected by the frequency band selecting unit.
  5.  前記第1周波数は、略20Hzであり、前記第2周波数は、略40Hzである、請求項1から請求項4のいずれか1項に記載の水分検出装置。 The moisture detection device according to any one of claims 1 to 4, wherein the first frequency is approximately 20 Hz, and the second frequency is approximately 40 Hz.
  6.  前記交流電流は、矩形波の交流電流である、請求項1から請求項5のいずれか1項に記載の水分検出装置。 The moisture detection device according to any one of claims 1 to 5, wherein the alternating current is a rectangular wave alternating current.
  7.  地中の所定領域に含まれている水分を検出する水分検出装置であって、
     前記所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、
     前記交流電流に対応する電圧値を測定する複数の電位電極対と、
     前記交流電流の周波数を、予め設定された第3周波数から前記第3周波数より高い第4周波数までの間において、所定の周波数間隔で複数の周波数を設定する周波数設定手段と、
     前記周波数設定手段によって周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗値を求める比抵抗算出手段と、
     前記第3周波数から前記第4周波数までの間を2個以上の区間に分割し、前記区間毎に、前記比抵抗算出手段によって求められた比抵抗値の標準偏差を求める偏差算出手段と、
     前記偏差算出手段によって求められた標準偏差が最も大きい区間に対応する周波数帯を、地中に含まれている水分を検出するために用いる周波数帯として選定する周波数帯選定手段と
     を備える、水分検出装置。
    A moisture detection device for detecting moisture contained in a predetermined area in the ground,
    A plurality of current electrode pairs for measuring the current value of the alternating current input to the predetermined region;
    A plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current;
    A frequency setting means for setting a plurality of frequencies at predetermined frequency intervals between a preset third frequency and a fourth frequency higher than the third frequency, the frequency of the alternating current;
    Resistivity calculating means for obtaining a specific resistance value in the predetermined region using the current value and the voltage value each time a frequency is set by the frequency setting means;
    Deviation calculation means for dividing the interval from the third frequency to the fourth frequency into two or more sections, and obtaining a standard deviation of the specific resistance value obtained by the specific resistance calculation means for each section;
    A frequency band selecting means for selecting a frequency band corresponding to a section having the largest standard deviation obtained by the deviation calculating means as a frequency band used for detecting moisture contained in the ground, apparatus.
  8.  地中の所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、前記交流電流に対応する電圧値を測定する複数の電位電極対とを備え、前記所定領域に含まれている水分を検出する水分検出装置を用いた水分検出方法であって、
     前記交流電流の周波数を、予め設定された第1周波数から前記第1周波数より高い第2周波数までの間において、所定の周波数間隔で複数の周波数を設定する周波数設定工程と、
     前記周波数設定工程において周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗を示す比抵抗値を求める比抵抗算出工程と、
     前記比抵抗値の最大値と最小値とを求め、前記最大値を前記最小値で除した商が小さい程、前記所定領域の地中に含まれている水分が多いと推定する推定工程と
     を有する、水分検出方法。
    A plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, and a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current, and included in the predetermined region A moisture detection method using a moisture detection device that detects moisture,
    A frequency setting step of setting a plurality of frequencies at a predetermined frequency interval between a first frequency set in advance and a second frequency higher than the first frequency, the frequency of the alternating current;
    A specific resistance calculation step for obtaining a specific resistance value indicating a specific resistance of the predetermined region using the current value and the voltage value each time a frequency is set in the frequency setting step;
    An estimation step of obtaining a maximum value and a minimum value of the specific resistance value, and estimating that the smaller the quotient obtained by dividing the maximum value by the minimum value is, the more moisture is contained in the ground of the predetermined region. A moisture detection method.
  9.  前記周波数設定工程において、前記第1周波数より低い第3周波数から、前記第2周波数より高い第4周波数までの間において、前記所定の周波数間隔で複数の周波数を設定し、
     前記第3周波数から前記第4周波数までの間を2個以上の区間に分割し、前記区間毎に、前記比抵抗算出工程において求められた比抵抗値の標準偏差を求める偏差算出工程と、
     前記偏差算出工程において求められた標準偏差が最も大きい区間に対応する周波数帯を、地中に含まれている水分を検出するために用いる周波数帯として選定する周波数帯選定工程と
     を有する、請求項8に記載の水分検出方法。
    In the frequency setting step, between a third frequency lower than the first frequency and a fourth frequency higher than the second frequency, a plurality of frequencies are set at the predetermined frequency interval,
    A deviation calculating step of dividing the interval from the third frequency to the fourth frequency into two or more sections, and obtaining a standard deviation of the specific resistance value obtained in the specific resistance calculating step for each of the sections;
    A frequency band selecting step of selecting a frequency band corresponding to a section having the largest standard deviation obtained in the deviation calculating step as a frequency band used for detecting moisture contained in the ground. The moisture detection method according to 8.
  10.  地中の所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、前記交流電流に対応する電圧値を測定する複数の電位電極対とを備え、前記所定領域に含まれている水分を検出する水分検出装置を用いた水分検出方法であって、
     前記交流電流の周波数を、予め設定された第3周波数から前記第3周波数より高い第4周波数までの間において、所定の周波数間隔で複数の周波数を設定する周波数設定工程と、
     前記周波数設定工程において周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗値を求める比抵抗算出工程と、
     前記第3周波数から前記第4周波数までの間を2個以上の区間に分割し、前記区間毎に、前記比抵抗算出工程において求められた比抵抗値の標準偏差を求める偏差算出工程と、
     前記偏差算出工程において求められた標準偏差が最も大きい区間に対応する周波数帯を、地中に含まれている水分を検出するために用いる周波数帯として選定する周波数帯選定工程と
     を有する、水分検出方法。
    A plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, and a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current, and included in the predetermined region A moisture detection method using a moisture detection device that detects moisture,
    A frequency setting step of setting a plurality of frequencies at a predetermined frequency interval between a preset third frequency and a fourth frequency higher than the third frequency, the frequency of the alternating current;
    A specific resistance calculation step for obtaining a specific resistance value in the predetermined region using the current value and the voltage value each time a frequency is set in the frequency setting step;
    A deviation calculating step of dividing the interval from the third frequency to the fourth frequency into two or more sections, and obtaining a standard deviation of the specific resistance value obtained in the specific resistance calculating step for each of the sections;
    A frequency band selecting step of selecting a frequency band corresponding to a section having the largest standard deviation obtained in the deviation calculating step as a frequency band used for detecting moisture contained in the ground. Method.
  11.  地中の所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、前記交流電流に対応する電圧値を測定する複数の電位電極対と、コンピュータとを備え、前記所定領域に含まれている水分を検出する水分検出装置の水分検出プログラムであって、
     前記コンピュータを
     前記交流電流の周波数を、予め設定された第1周波数から前記第1周波数より高い第2周波数までの間において、所定の周波数間隔で複数の周波数を設定する周波数設定手段と、
     前記周波数設定手段によって周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗を示す比抵抗値を求める比抵抗算出手段と、
     前記比抵抗値の最大値と最小値とを求め、前記最大値を前記最小値で除した商が小さい程、前記所定領域の地中に含まれている水分が多いと推定する推定手段と
     して機能させる、水分検出プログラム。
    A plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current, and a computer; A moisture detection program for a moisture detection device for detecting contained moisture,
    A frequency setting means for setting the frequency of the alternating current between a first frequency set in advance to a second frequency higher than the first frequency at a predetermined frequency interval;
    Resistivity calculation means for obtaining a specific resistance value indicating a specific resistance of the predetermined region using the current value and the voltage value each time the frequency is set by the frequency setting means;
    An estimation means for obtaining a maximum value and a minimum value of the specific resistance value, and estimating that the smaller the quotient obtained by dividing the maximum value by the minimum value, the more water is contained in the ground of the predetermined region. Moisture detection program.
  12.  前記周波数設定手段は、前記第1周波数より低い第3周波数から、前記第2周波数より高い第4周波数までの間において、前記所定の周波数間隔で複数の周波数を設定し、
     前記コンピュータを、更に、
     前記第3周波数から前記第4周波数までの間を2個以上の区間に分割し、前記区間毎に、前記比抵抗算出手段によって求められた比抵抗値の標準偏差を求める偏差算出手段と、
     前記偏差算出手段によって求められた標準偏差が最も大きい区間に対応する周波数帯を、地中に含まれている水分を検出するために用いる周波数帯として選定する周波数帯選定手段と
     して機能させる、請求項11に記載の水分検出プログラム。
    The frequency setting means sets a plurality of frequencies at the predetermined frequency interval between a third frequency lower than the first frequency and a fourth frequency higher than the second frequency,
    Said computer further
    Deviation calculation means for dividing the interval from the third frequency to the fourth frequency into two or more sections, and obtaining a standard deviation of the specific resistance value obtained by the specific resistance calculation means for each section;
    Function as a frequency band selecting means for selecting a frequency band corresponding to a section having the largest standard deviation obtained by the deviation calculating means as a frequency band used for detecting moisture contained in the ground, The moisture detection program according to claim 11.
  13.  地中の所定領域に入力した交流電流の電流値を測定する複数の電流電極対と、前記交流電流に対応する電圧値を測定する複数の電位電極対と、コンピュータとを備え、前記所定領域に含まれている水分を検出する水分検出装置の水分検出プログラムであって、
     前記コンピュータを
     前記交流電流の周波数を、予め設定された第3周波数から前記第3周波数より高い第4周波数までの間において、所定の周波数間隔で複数の周波数を設定する周波数設定手段と、
     前記周波数設定手段によって周波数が設定される度に、前記電流値と前記電圧値とを用いて、前記所定領域の比抵抗値を求める比抵抗算出手段と、
     前記第3周波数から前記第4周波数までの間を2個以上の区間に分割し、前記区間毎に、前記比抵抗算出手段によって求められた比抵抗値の標準偏差を求める偏差算出手段と、
     前記偏差算出手段によって求められた標準偏差が最も大きい区間に対応する周波数帯を、地中に含まれている水分を検出するために用いる周波数帯として選定する周波数帯選定手段と
     して機能させる、水分検出プログラム。
    A plurality of current electrode pairs for measuring a current value of an alternating current input to a predetermined region in the ground, a plurality of potential electrode pairs for measuring a voltage value corresponding to the alternating current, and a computer; A moisture detection program for a moisture detection device for detecting contained moisture,
    A frequency setting means for setting the frequency of the alternating current between a preset third frequency and a fourth frequency higher than the third frequency at a predetermined frequency interval;
    Resistivity calculating means for obtaining a specific resistance value in the predetermined region using the current value and the voltage value each time a frequency is set by the frequency setting means;
    Deviation calculation means for dividing the interval from the third frequency to the fourth frequency into two or more sections, and obtaining a standard deviation of the specific resistance value obtained by the specific resistance calculation means for each section;
    Function as a frequency band selecting means for selecting a frequency band corresponding to a section having the largest standard deviation obtained by the deviation calculating means as a frequency band used for detecting moisture contained in the ground, Moisture detection program.
PCT/JP2015/070871 2014-07-29 2015-07-22 Water content detection device, water content detection method, and water content detection program WO2016017507A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580026805.6A CN106461808B (en) 2014-07-29 2015-07-22 Moisture content detection device, moisture detecting method and water content detection program
MYPI2016002078A MY182898A (en) 2014-07-29 2015-07-22 Moisture detecting apparatus, moisture detecting method, and moisture detection program
US15/313,326 US10386317B2 (en) 2014-07-29 2015-07-22 Moisture detecting apparatus, moisture detecting method, and non-transitory computer readable storage medium that stores therein moisture detection program
JP2016538294A JP6235146B2 (en) 2014-07-29 2015-07-22 Moisture detection device, moisture detection method, and moisture detection program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-154013 2014-07-29
JP2014154013 2014-07-29

Publications (1)

Publication Number Publication Date
WO2016017507A1 true WO2016017507A1 (en) 2016-02-04

Family

ID=55217408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070871 WO2016017507A1 (en) 2014-07-29 2015-07-22 Water content detection device, water content detection method, and water content detection program

Country Status (5)

Country Link
US (1) US10386317B2 (en)
JP (1) JP6235146B2 (en)
CN (1) CN106461808B (en)
MY (1) MY182898A (en)
WO (1) WO2016017507A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3960934A4 (en) * 2019-04-26 2022-11-23 The Water Inc. Detection and confirmation system for groundwater veins and for groundwater in groundwater veins
SE544625C2 (en) * 2020-04-14 2022-09-27 Epiroc Rock Drills Ab Arrangement, drill rig and method therein for detection of water in material flow

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227877A (en) * 2002-02-05 2003-08-15 Oyo Chiken:Kk Impedance-method electrical exploration by dipole-dipole arrangement
JP2011112357A (en) * 2009-11-24 2011-06-09 Sewtec:Kk Water vein detection device, system, and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537045A (en) * 1994-10-17 1996-07-16 Henderson; Michael E. Detection and location system for monitoring changes in resistivity in three dimensions
JP4169633B2 (en) * 2003-05-29 2008-10-22 東亜建設工業株式会社 Evaluation method of cavity and loosening area of sandy ground using resistivity
US8019547B2 (en) * 2006-06-22 2011-09-13 Bryant Consultants, Inc. Remotely reconfigurable system for mapping subsurface geological anomalies
CN101937105B (en) * 2010-04-28 2013-03-20 中国石油大学(北京) Method for detecting hydrocarbon reservoir by low-frequency signal and device thereof
CN102183792B (en) * 2011-03-01 2012-07-25 吉林大学 Artificial source frequency domain electromagnetic sounding device and measurement method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227877A (en) * 2002-02-05 2003-08-15 Oyo Chiken:Kk Impedance-method electrical exploration by dipole-dipole arrangement
JP2011112357A (en) * 2009-11-24 2011-06-09 Sewtec:Kk Water vein detection device, system, and method

Also Published As

Publication number Publication date
US20170199142A1 (en) 2017-07-13
CN106461808B (en) 2018-08-07
MY182898A (en) 2021-02-05
CN106461808A (en) 2017-02-22
JPWO2016017507A1 (en) 2017-04-27
US10386317B2 (en) 2019-08-20
JP6235146B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP2015212863A5 (en)
CN107587871B (en) Method and device for determining horizontal crack width
JP6235146B2 (en) Moisture detection device, moisture detection method, and moisture detection program
JP2015127701A (en) Electric survey method
US20160201447A1 (en) Hydraulic fracture permeability characterization from electromagnetic measurements
RU2016131935A (en) METHOD FOR DETECTING DISPLACEMENT OF THE MOBILE FLUID FRONT FRONT BY THE COMBINATION OF ELECTRIC AND GRAVIMETRIC MEASUREMENTS IN WELLS
MX2015017420A (en) Crosstalk suppression or removal for galvanic measurements.
JP2008191035A (en) Leakage position detection method, leakage position detection program, and leakage position detection device
US9482776B2 (en) Interferometric processing to detect subterranean geological boundaries
KR20170051971A (en) System For Supporting Urban Planning and Method For Urban Planning Information
JP5128912B2 (en) Groundwater exploration method in the ground in front of the tunnel
CN114966855B (en) Method, device, equipment and medium for detecting high stress area of coal rock mass
KR101659735B1 (en) Apparatus and method for detection of rainfall infiltration depth and slope failur
JP2007285729A (en) Method for measuring resistivity in stratum
JP2588370B2 (en) Estimation method of ground resistance corresponding to burial depth of rod-shaped ground electrode
US20170329030A1 (en) Method and device for processing well data
JP2011191288A (en) Method and device for estimating current density of damaged coating portion of underground pipe, and method and device for controlling electric protection
JP2015056043A5 (en)
JP2004177124A (en) Method for measuring corrosion of reinforcing bar inside concrete
JP2011112357A (en) Water vein detection device, system, and method
EA201891194A1 (en) METHODS AND DEVICES FOR THE DETERMINATION OF THE INTERRUPTION OF UNDERGROUND CRACKS
JP2011133301A (en) Method for surveying bottom depth of underground base structure
RU2557371C1 (en) Method determining size of depletion of saline domes during construction of underground gas storages
JP6007923B2 (en) Thinning detection device
CN113847015B (en) Real-time judging method for thermal reservoir position in high-temperature geothermal drilling process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15313326

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016538294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827808

Country of ref document: EP

Kind code of ref document: A1