JP5042166B2 - Conductivity measuring device and conductivity measuring method using conductivity measuring device - Google Patents
Conductivity measuring device and conductivity measuring method using conductivity measuring device Download PDFInfo
- Publication number
- JP5042166B2 JP5042166B2 JP2008218186A JP2008218186A JP5042166B2 JP 5042166 B2 JP5042166 B2 JP 5042166B2 JP 2008218186 A JP2008218186 A JP 2008218186A JP 2008218186 A JP2008218186 A JP 2008218186A JP 5042166 B2 JP5042166 B2 JP 5042166B2
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- conductivity
- length
- fluid
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
本発明は、例えばシリコンウェハなどの半導体製造時に、シリコンウェハを洗浄するために用いられる薬液などの被測定流体の導電率を測定するための導電率測定装置およびこの導電率測定装置を用いた導電率測定方法に関する。 The present invention relates to a conductivity measuring device for measuring the conductivity of a fluid to be measured such as a chemical solution used for cleaning a silicon wafer, for example, during the manufacture of a semiconductor such as a silicon wafer, and a conductivity using the conductivity measuring device. It relates to a rate measuring method.
従来、例えば半導体製造工程では、シリコンウェハの表面に付着した不純物や酸化物などを取り除くために洗浄工程が行われている。この洗浄工程において、十分に不純物や酸化物などを取り除くことにより、パターニング工程において電子回路のパターニングを正確に行えるようになる。 Conventionally, for example, in a semiconductor manufacturing process, a cleaning process is performed to remove impurities, oxides, and the like attached to the surface of a silicon wafer. By sufficiently removing impurities, oxides and the like in this cleaning process, the electronic circuit can be accurately patterned in the patterning process.
このため洗浄工程では、薬液として例えばフッ酸,硝酸,塩酸,リン酸,フッ硝酸,硫酸,アンモニアなどを用いて、シリコンウェハの表面に付着した不純物や酸化物などが取り除かれている。 For this reason, in the cleaning process, for example, hydrofluoric acid, nitric acid, hydrochloric acid, phosphoric acid, hydrofluoric nitric acid, sulfuric acid, ammonia, etc. are used as chemicals to remove impurities and oxides attached to the surface of the silicon wafer.
なお洗浄工程で使用される薬液は、酸化物などを取り除く除去能力が薬液の濃度によって大きく変化することから、薬液の濃度の管理が必要である。
このように薬液の濃度を管理するに際し、薬液の濃度を測定する測定装置が用いられている。
It should be noted that the chemical solution used in the cleaning process requires management of the concentration of the chemical solution because the ability to remove oxides and the like greatly varies depending on the concentration of the chemical solution.
Thus, when managing the density | concentration of a chemical | medical solution, the measuring apparatus which measures the density | concentration of a chemical | medical solution is used.
このような測定装置は、配管経路内にこの配管経路内を流れる被測定流体と接触するように2対の電極を配置し、この電極間に電圧を印加して電流値を得て、電圧と電流値の関係から被測定流体の導電率を算出し、この導電率から被測定流体の濃度を算出するようになっている(例えば特許文献1)。 In such a measuring apparatus, two pairs of electrodes are arranged in a piping path so as to be in contact with a fluid to be measured flowing in the piping path, and a voltage is applied between the electrodes to obtain a current value. The conductivity of the fluid to be measured is calculated from the relationship between the current values, and the concentration of the fluid to be measured is calculated from this conductivity (for example, Patent Document 1).
なお、2対の電極を配置した測定装置は、外側に位置する1対の電極に定電流交流電源より交流定電流を流し、内側に位置するもう1対の電極間の電圧を、高入力インピーダンス交流電圧計により測定するようにしているため、分極の影響を受け難く測定精度が良好であるという利点を有している。 In addition, in the measuring apparatus having two pairs of electrodes, an AC constant current is passed from a constant current AC power source to a pair of electrodes located outside, and the voltage between the other pair of electrodes located inside is set to a high input impedance. Since the measurement is performed with an AC voltmeter, there is an advantage that the measurement accuracy is low because of being hardly influenced by polarization.
しかしながら、このような測定装置は、配管経路内に設置された場合、配管経路全体のうち、電極間以外の箇所の配管の影響を受けて、電極間のインピーダンス値に誤差を生じ、実際の値よりも小さな値が出力される場合がある。 However, when such a measuring device is installed in the piping path, it is affected by the piping other than between the electrodes in the entire piping path, resulting in an error in the impedance value between the electrodes. A smaller value may be output.
このため従来は、図8に示したように測定装置100の電極102が、被測定流体で満たされた配管経路に対して垂直方向に設置され、これにより外部配管104に電流がほとんど流れないようにした構造の物や、図9に示したように測定装置200の電極202全体を、カバー(絶縁物)206で覆ってガードすることにより、外部配管204に電流が流れないようにした構造の物などが用いられていた。 For this reason, conventionally, as shown in FIG. 8, the electrode 102 of the measuring device 100 is installed in a direction perpendicular to the piping path filled with the fluid to be measured, so that almost no current flows through the external piping 104. As shown in FIG. 9, the entire electrode 202 of the measuring apparatus 200 is covered with a cover (insulator) 206 and guarded so that no current flows through the external pipe 204. Things were used.
このように、外部配管に電流が流れない構造であれば、電極間のインピーダンス値に誤差を生じることがないため、このインピーダンス値に補正をかけずに済むことになる。
ところで、特にこの電極間のインピーダンス値に生ずる誤差は、電極間以外の箇所の配
管長さが短ければ短いほど大きくなってしまうものであるため、配管経路全体の長さが電極間長さに比べて遥かに長い場合には、電極間のインピーダンス値に生ずる誤差は僅かであるものの、配管経路全体の長さが比較的短い場合には、電極間のインピーダンス値に生ずる誤差も大きくなるという問題が生じていた。
By the way, in particular, the error that occurs in the impedance value between the electrodes becomes larger as the piping length of the portion other than between the electrodes is shorter. Therefore, the total length of the piping path is longer than the length between the electrodes. However, if the length of the entire piping path is relatively short, the error that occurs in the impedance value between the electrodes becomes large. It was happening.
さらに、電極全体をカバー(絶縁物)で覆うと、配管経路の内径によって設置できないという問題が生ずる場合もあった。
本発明はこのような現状に鑑み、測定環境によって配管経路の長さや材質が異なっても、配管経路内を流れる被測定流体の導電率を精度良く算出することができ、どのような配管経路においても確実に設置可能な導電率測定装置およびこの導電率測定装置を用いた導電率測定方法を提供することを目的とする。
Furthermore, if the entire electrode is covered with a cover (insulator), there may be a problem that it cannot be installed due to the inner diameter of the piping path.
In view of such a current situation, the present invention can accurately calculate the conductivity of the fluid to be measured flowing in the piping path even if the length and material of the piping path differ depending on the measurement environment. It is another object of the present invention to provide a conductivity measuring device that can be reliably installed and a conductivity measuring method using the conductivity measuring device.
本発明は、前述したような従来技術における課題および目的を達成するために発明されたものであって、
本発明の導電率測定装置は、
配管経路を流れる被測定流体と接触するように前記配管経路の主流路の所定位置に電極を配置し、この電極間に電圧を印加して流れる電流と電極間の電圧から電極間のインピーダンス値を測定し、このインピーダンス値を基に被測定流体の導電率を算出する導電率測定装置であって、
前記導電率測定装置は、
前記配管経路の主流路の測定部に配置された少なくとも一対の電極と、
前記電極間に交流電圧を印加して前記電極間に流れる電流値を測定する導電率センサと、
前記導電率センサによって測定された電極間に流れる電流値に基づいて配管経路全体のうちで不導体の配管からなる経路部分のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより前記被測定流体の導電率を算出する算出部と、
を少なくとも有し、
前記算出部において、
前記測定部に配置された電極間長さ(l)に対する前記配管経路全体のうちで不導体の配管からなる経路部分の長さから前記電極間長さを引いた長さ(L)の比率を算出し、
前記配管経路全体のインピーダンス値と、
前記測定部に配置された電極間長さ(l)に対する前記配管経路全体のうちで不導体の配管からなる経路部分の長さから前記電極間長さを引いた長さ(L)の比率から、前記電極間のインピーダンス値のみを算出し、
このインピーダンス値を基に前記被測定流体の導電率を算出するよう構成されていることを特徴とする。
The present invention was invented in order to achieve the problems and objects in the prior art as described above,
The conductivity measuring device of the present invention is
An electrode is arranged at a predetermined position of the main flow path of the piping path so as to be in contact with the fluid to be measured flowing through the piping path, and the impedance value between the electrodes is calculated from the current flowing between the electrodes and the voltage between the electrodes. A conductivity measuring device that measures and calculates the conductivity of a fluid to be measured based on this impedance value,
The conductivity measuring device is:
At least a pair of electrodes arranged in a measurement part of the main flow path of the piping path;
A conductivity sensor that applies an alternating voltage between the electrodes and measures a current value flowing between the electrodes;
By obtaining an impedance value of a path portion made of non-conductive piping out of the entire piping path based on a current value flowing between the electrodes measured by the conductivity sensor, and performing predetermined arithmetic processing on this impedance value A calculation unit for calculating conductivity of the fluid to be measured;
Having at least
In the calculation unit,
The ratio of the length (L) obtained by subtracting the length between the electrodes from the length of the path portion made of a non-conductive pipe in the entire pipe path with respect to the length (l) between the electrodes arranged in the measurement unit. Calculate
Impedance value of the entire piping path;
From the ratio of the length (L) obtained by subtracting the length between the electrodes from the length of the path portion made of a non-conductive pipe in the entire pipe path with respect to the length (l) between the electrodes arranged in the measurement unit. , Calculating only the impedance value between the electrodes,
The electrical conductivity of the fluid to be measured is calculated based on the impedance value.
また、本発明の導電率測定方法は、
配管経路を流れる被測定流体と接触するように前記配管経路の主流路の所定位置に電極を配置し、この電極間に電圧を印加して流れる電流と電極間の電圧から電極間のインピーダンス値を測定し、このインピーダンス値を基に被測定流体の導電率を算出する導電率測定方法であって、
前記導電率測定方法は、
前記配管経路の主流路の測定部に少なくとも一対の電極を配置する工程と、
前記配置された電極間に導電率センサを介して交流電圧を印加して前記電極間に流れる電流値を測定する工程と、
前記導電率センサによって測定された電極間に流れる電流値に基づいて、算出部で配管経路全体のうちで不導体の配管からなる経路部分のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより前記被測定流体の導電率を算出する工程と
、
を少なくとも有し、
前記被測定流体の導電率を算出する工程において、
前記測定部に配置された電極間長さ(l)に対する前記配管経路全体のうちで不導体の配管からなる経路部分の長さから前記電極間長さを引いた長さ(L)の比率を算出し、
前記配管経路全体のインピーダンス値と、
前記測定部に配置された電極間長さ(l)に対する前記配管経路全体のうちで不導体の配管からなる経路部分の長さから前記電極間長さを引いた長さ(L)の比率から、前記電極間のインピーダンス値のみを算出し、
このインピーダンス値を基に前記被測定流体の導電率を算出することを特徴とする。
In addition, the conductivity measuring method of the present invention is
An electrode is arranged at a predetermined position of the main flow path of the piping path so as to be in contact with the fluid to be measured flowing through the piping path, and the impedance value between the electrodes is calculated from the current flowing between the electrodes and the voltage between the electrodes. A conductivity measurement method for measuring and calculating the conductivity of a fluid to be measured based on this impedance value,
The conductivity measuring method is:
Disposing at least a pair of electrodes in the measurement part of the main flow path of the piping path;
Applying an alternating voltage between the arranged electrodes through a conductivity sensor to measure a current value flowing between the electrodes;
Based on the value of the current flowing between the electrodes measured by the conductivity sensor, the calculation unit obtains an impedance value of a path portion made of a non-conductive pipe in the entire pipe path, and performs a predetermined calculation process on this impedance value. Calculating the conductivity of the fluid to be measured by applying
Having at least
In the step of calculating the conductivity of the fluid to be measured,
The ratio of the length (L) obtained by subtracting the length between the electrodes from the length of the path portion made of a non-conductive pipe in the entire pipe path with respect to the length (l) between the electrodes arranged in the measurement unit. Calculate
Impedance value of the entire piping path;
From the ratio of the length (L) obtained by subtracting the length between the electrodes from the length of the path portion made of a non-conductive pipe in the entire pipe path with respect to the length (l) between the electrodes arranged in the measurement unit. , Calculating only the impedance value between the electrodes,
The conductivity of the fluid to be measured is calculated based on this impedance value.
このように算出部において、測定部に配置された電極間長さ(l)と、これに対する配管経路全体のうちで不導体の配管からなる経路部分の長さから電極間長さを引いた長さ(L)との比率と、配管経路全体のインピーダンス値と、から電極間のインピーダンス値のみを算出し、このインピーダンス値を基に被測定流体の導電率を算出するようにすれば、特に配管経路の主流路に電極を配置した際において、被測定流体の導電率を精度良く算出することができる。 Thus, in the calculation unit, a length obtained by subtracting the length between the electrodes from the length (l) between the electrodes arranged in the measurement unit and the length of the path portion made of the nonconductive pipe in the entire piping path corresponding thereto. If only the impedance value between the electrodes is calculated from the ratio with the length (L) and the impedance value of the entire piping route, and the conductivity of the fluid to be measured is calculated based on this impedance value, the piping When the electrodes are arranged in the main flow path of the path, the conductivity of the fluid to be measured can be calculated with high accuracy.
また、本発明の導電率測定装置は、
配管経路を流れる被測定流体と接触するように前記配管経路の主流路とは別に一部分岐して形成された副流路の所定位置に電極を配置し、この電極間に電圧を印加して流れる電流と電極間の電圧から電極間のインピーダンス値を測定し、このインピーダンス値を基に被測定流体の導電率を算出する導電率測定装置であって、
前記導電率測定装置は、
前記配管経路の副流路の測定部に配置された少なくとも一対の電極と、
前記電極に交流電圧を印加して前記電極間に流れる電流値を測定する導電率センサと、
前記導電率センサによって測定された電極間に流れる電流値に基づいて配管経路全体のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより前記被測定流体の導電率を算出する算出部と、
を少なくとも有し、
前記算出部において、
前記副流路の電極間長さ(t)に対する前記副流路全体の長さから電極間長さを引いた長さおよび主流路全体の長さとを足した長さ(T)の比率を算出し、
前記副流路および主流路において副流路の両端部が接続された接続間管路のインピーダンス値と、
前記副流路の電極間長さ(t)に対する前記副流路全体の長さから電極間長さを引いた長さおよび主流路全体の長さとを足した長さ(T)の比率から、前記電極間のインピーダンス値のみを算出し、
このインピーダンス値を基に前記被測定流体の導電率を算出するよう構成されていることを特徴とする。
The conductivity measuring device of the present invention is
An electrode is arranged at a predetermined position of a sub-flow path formed by branching separately from the main flow path of the piping path so as to come into contact with the fluid to be measured flowing through the piping path, and a voltage is applied between the electrodes to flow. A conductivity measuring device that measures an impedance value between electrodes from a current and a voltage between electrodes, and calculates the conductivity of a fluid to be measured based on the impedance value,
The conductivity measuring device is:
At least a pair of electrodes arranged in a measurement part of a sub-flow path of the piping path;
A conductivity sensor for applying an alternating voltage to the electrodes and measuring a current value flowing between the electrodes;
Calculation that obtains the impedance value of the entire piping path based on the current value flowing between the electrodes measured by the conductivity sensor, and calculates the conductivity of the fluid to be measured by applying a predetermined arithmetic process to the impedance value And
Having at least
In the calculation unit,
A ratio of a length (T) obtained by adding a length obtained by subtracting the inter-electrode length from the entire length of the sub-channel to the inter-electrode length (t) of the sub-channel and the length of the entire main channel is calculated. And
The impedance value of the connecting pipe line to which both ends of the sub-flow path are connected in the sub-flow path and the main flow path,
From the ratio of the length obtained by subtracting the length between the electrodes from the total length of the sub-channel to the length between the electrodes of the sub-channel (t) and the length of the entire main channel (T), Calculate only the impedance value between the electrodes,
The electrical conductivity of the fluid to be measured is calculated based on the impedance value.
また、本発明の導電率測定方法は、
配管経路を流れる被測定流体と接触するように前記配管経路の主流路とは別に一部分岐して形成された副流路の所定位置に電極を配置し、この電極間に電圧を印加して流れる電流と電極間の電圧から電極間のインピーダンス値を測定し、このインピーダンス値を基に被測定流体の導電率を算出する導電率測定方法であって、
前記導電率測定方法は、
前記配管経路の副流路の測定部に少なくとも一対の電極を配置する工程と、
前記配置された電極間に導電率センサを介して交流電圧を印加して前記電極間に流れる電流値を測定する工程と、
前記導電率センサによって測定された電極間に流れる電流値に基づいて、算出部で配管経路全体のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより前記被測定流体の導電率を算出する工程と、
を少なくとも有し、
前記被測定流体の導電率を算出する工程において、
前記副流路の電極間長さ(t)に対する前記副流路全体の長さから電極間長さを引いた長さおよび主流路全体の長さとを足した長さ(T)の比率を算出し、
前記配管経路全体のインピーダンス値と、
前記副流路の電極間長さ(t)に対する前記副流路全体の長さから電極間長さを引いた長さおよび主流路全体の長さとを足した長さ(T)の比率から、前記電極間のインピーダンス値のみを算出し、
このインピーダンス値を基に前記被測定流体の導電率を算出することを特徴とする。
In addition, the conductivity measuring method of the present invention is
An electrode is arranged at a predetermined position of a sub-flow path formed by branching separately from the main flow path of the piping path so as to come into contact with the fluid to be measured flowing through the piping path, and a voltage is applied between the electrodes to flow. An electrical conductivity measurement method for measuring an impedance value between electrodes from a voltage between an electric current and an electrode, and calculating an electrical conductivity of a fluid to be measured based on the impedance value,
The conductivity measuring method is:
Arranging at least a pair of electrodes in the measurement part of the sub-flow path of the piping path;
Applying an alternating voltage between the arranged electrodes through a conductivity sensor to measure a current value flowing between the electrodes;
Based on the value of the current flowing between the electrodes measured by the conductivity sensor, the calculation unit obtains the impedance value of the entire piping path, and performs a predetermined calculation process on the impedance value to thereby determine the conductivity of the fluid to be measured. Calculating
Having at least
In the step of calculating the conductivity of the fluid to be measured,
A ratio of a length (T) obtained by adding a length obtained by subtracting the inter-electrode length from the entire length of the sub-channel to the inter-electrode length (t) of the sub-channel and the length of the entire main channel is calculated. And
Impedance value of the entire piping path;
From the ratio of the length obtained by subtracting the length between the electrodes from the total length of the sub-channel to the length between the electrodes of the sub-channel (t) and the length of the entire main channel (T), Calculate only the impedance value between the electrodes,
The conductivity of the fluid to be measured is calculated based on this impedance value.
このように算出部において、副流路の電極間長さ(t)に対する前記副流路全体の長さから電極間長さを引いた長さおよび主流路全体の長さとを足した長さ(T)の比率と、配管経路全体のインピーダンス値から、電極間のインピーダンス値のみを算出し、このインピーダンス値を基に被測定流体の導電率を算出するようにすれば、特に配管経路の主流路とは別に一部分岐して形成された副流路に電極を配置した際において、被測定流体の導電率を精度良く算出することができる。 Thus, in the calculation unit, a length obtained by adding a length obtained by subtracting the inter-electrode length from the entire length of the sub-channel to the inter-electrode length (t) of the sub-channel and the length of the entire main channel ( If only the impedance value between the electrodes is calculated from the ratio of T) and the impedance value of the entire piping path, and the conductivity of the fluid to be measured is calculated based on this impedance value, in particular, the main flow path of the piping path In addition, when the electrode is arranged in a sub-flow channel formed by partially branching, the conductivity of the fluid to be measured can be calculated with high accuracy.
また、本発明の導電率測定装置および導電率測定方法は、
前記算出部で算出された導電率を出力する出力部を有することを特徴とする。
また、本発明の導電率測定方法は、
前記導電率を算出する工程で算出された導電率を出力部で出力する工程を有することを特徴とする。
Further, the conductivity measuring device and the conductivity measuring method of the present invention are:
An output unit that outputs the conductivity calculated by the calculation unit is provided.
In addition, the conductivity measuring method of the present invention is
The method includes a step of outputting the conductivity calculated in the step of calculating the conductivity at an output unit.
このように算出された導電率を出力部で出力するようにすれば、測定者が実際に視認することができるため、被測定流体の管理を良好に行うことができる。
また、本発明の導電率測定装置および導電率測定方法は、
前記電極が、前記配管経路の流れ方向に沿うよう水平に併設されていることを特徴とする。
When the conductivity calculated in this way is output by the output unit, the measurer can actually visually recognize the fluid, so that the fluid to be measured can be managed well.
Further, the conductivity measuring device and the conductivity measuring method of the present invention are:
The electrode is horizontally provided along the flow direction of the piping path.
このように電極が配管経路の流れ方向に沿うよう水平に併設されていれば、流れ方向に垂直に配置した場合と比べて電極を広い範囲で設置できるため、電極が小さくなり所望の測定値を得にくいといった不具合を防止することができる。 In this way, if the electrodes are installed horizontally so as to follow the flow direction of the piping path, the electrodes can be installed in a wider range compared to the case where the electrodes are arranged perpendicular to the flow direction. It is possible to prevent problems that are difficult to obtain.
さらに、電極を配管経路の流れ方向に沿うように水平に併設すれば、流れ方向に垂直に配置した場合のように電極が被測定流体の流れを遮断して乱流を生ずることがないため、常に精度良く測定を行うことができる。 Furthermore, if the electrodes are arranged horizontally so as to be along the flow direction of the piping path, the electrodes will not block the flow of the fluid to be measured as in the case where the electrodes are arranged perpendicular to the flow direction, and turbulent flow will not occur. Measurement can always be performed with high accuracy.
また、本発明の導電率測定装置および導電率測定方法は、
前記電極の数が、1対または2対のいずれかであることを特徴とする。
特に2対になった電極を用いれば、電極界面において被測定流体内に気泡が生じたとしても測定に影響を生じてインピーダンス値が上下してしまうことがなく、被測定流体の導電率を精度良く算出することができる。
Further, the conductivity measuring device and the conductivity measuring method of the present invention are:
The number of the electrodes is either one pair or two pairs.
In particular, if two pairs of electrodes are used, even if bubbles occur in the measured fluid at the electrode interface, the measurement is not affected and the impedance value does not fluctuate, and the conductivity of the measured fluid is accurately measured. It can be calculated well.
また、本発明の導電率測定装置および導電率測定方法は、
前記被測定流体が、シリコンウェハの表面に付着した不純物や酸化物などを取り除くための薬液で且つ導電性を有する流体であることを特徴とする。
Further, the conductivity measuring device and the conductivity measuring method of the present invention are:
The fluid to be measured is a chemical solution for removing impurities and oxides adhering to the surface of the silicon wafer and is a fluid having conductivity.
このように被測定流体が薬液で且つ導電性を有する流体であれば、特にシリコンウェハの製造工程において、本導電率測定装置および導電率測定方法を用いることができる。
このため、シリコンウェハを製造するに際し、本導電率測定装置および導電率測定方法を用いれば、高品質なシリコンウェハを得るのに役立てることができる。
As described above, when the fluid to be measured is a chemical solution and a fluid having conductivity, the present conductivity measuring device and the conductivity measuring method can be used particularly in the manufacturing process of the silicon wafer.
For this reason, when manufacturing a silicon wafer, if this conductivity measuring apparatus and conductivity measuring method are used, it can be used for obtaining a high quality silicon wafer.
また、本発明の導電率測定装置および導電率測定方法は、
前記算出部が、
算出した前記被測定流体の導電率を基に、被測定流体の濃度を算出する機能を有することを特徴とする。
Further, the conductivity measuring device and the conductivity measuring method of the present invention are:
The calculation unit
It has a function of calculating the concentration of the fluid to be measured based on the calculated conductivity of the fluid to be measured.
このように算出部が被測定流体の導電率を基に、濃度を算出する機能を有していれば、特にシリコンウェハの製造時において、重要な被測定流体である薬液の濃度を常に管理することができるため、シリコンウェハ製造時に本導電率測定装置および導電率測定方法を好適に適用することができる。 As described above, if the calculation unit has a function of calculating the concentration based on the conductivity of the fluid to be measured, the concentration of the chemical solution that is an important fluid to be measured is always managed, particularly when manufacturing a silicon wafer. Therefore, the conductivity measuring device and the conductivity measuring method can be suitably applied when manufacturing a silicon wafer.
本発明によれば、測定環境によって配管経路の長さや材質が異なっても、配管経路内を流れる被測定流体の導電率を精度良く算出することができ、どのような配管経路においても確実に設置可能な導電率測定装置およびこの導電率測定装置を用いた導電率測定方法を提供することができる。 According to the present invention, the conductivity of the fluid to be measured flowing in the piping path can be accurately calculated even if the length and material of the piping path differ depending on the measurement environment, and the piping path can be reliably installed in any piping path. A possible conductivity measuring device and a conductivity measuring method using the conductivity measuring device can be provided.
以下、本発明の実施の形態について、図面に基づいてより詳細に説明する。
図1は本発明の導電率測定装置の実施例1における使用状態を説明するための説明図、図2は図1に示した導電率測定装置の拡大図、図3は、本発明の導電率測定装置に用いられるコントローラ、図4は、図1に示した導電率測定装置の算出部によって、被測定流体の導電率を算出する際に用いられる数値箇所を説明するための概略図である。
Hereinafter, embodiments of the present invention will be described in more detail based on the drawings.
FIG. 1 is an explanatory diagram for explaining a use state of a conductivity measuring device according to a first embodiment of the present invention, FIG. 2 is an enlarged view of the conductivity measuring device shown in FIG. 1, and FIG. 3 is a conductivity of the present invention. FIG. 4 is a schematic diagram for explaining numerical positions used when calculating the conductivity of the fluid to be measured by the calculation unit of the conductivity measuring device shown in FIG.
本発明の導電率測定装置および導電率測定方法は、例えばシリコンウェハなどの半導体製造時に、シリコンウェハを洗浄するために用いられる薬液などの被測定流体の導電率を測定するためのものである。 The conductivity measuring apparatus and the conductivity measuring method of the present invention are for measuring the conductivity of a fluid to be measured such as a chemical solution used for cleaning a silicon wafer, for example, when manufacturing a semiconductor such as a silicon wafer.
以下、本発明の実施例における導電率測定装置および導電率測定方法について説明する。
図1および図2に示したように、本発明の導電率測定装置10は、配管経路12を流れる被測定流体14と接触するように配管経路12の主流路18の測定部20に電極22a〜22dを配置し、この電極22a〜22dのうち、電極22aと電極22b間に交流電圧を印加して流れる電流と電極22cと電極22d間の電圧から、電極22cと電極22d間のインピーダンス値を測定し、このインピーダンス値を基に、配管経路12を流れる被測定流体14の導電率を算出するように構成されている。
Hereinafter, the conductivity measuring device and the conductivity measuring method in the examples of the present invention will be described.
As shown in FIG. 1 and FIG. 2, the conductivity measuring device 10 of the present invention has electrodes 22 a to 22 on the measuring section 20 of the main flow path 18 of the piping path 12 so as to come into contact with the fluid 14 to be measured flowing through the piping path 12. The impedance value between the electrode 22c and the electrode 22d is measured from the current flowing by applying an alternating voltage between the electrode 22a and the electrode 22b and the voltage between the electrode 22c and the electrode 22d. Based on this impedance value, the conductivity of the fluid 14 to be measured flowing through the piping path 12 is calculated.
なお被測定流体14は、導電性を有する流体(混合液を含む)であれば如何なるものでも測定可能であるが、本導電率測定装置をシリコンウェハの洗浄時に用いる際には、フッ酸,硝酸,塩酸,リン酸,フッ硝酸,硫酸,アンモニアなどの薬液がその測定対象である。 Any fluid can be used as the fluid 14 to be measured as long as it is a fluid having conductivity (including a mixed solution). However, when the conductivity measuring device is used for cleaning a silicon wafer, hydrofluoric acid, nitric acid is used. Chemicals such as hydrochloric acid, phosphoric acid, hydrofluoric acid, sulfuric acid, and ammonia are the measurement targets.
また、本願発明の電極22a〜22dを用いた導電率測定装置10および導電率測定方法では、電極を対で用いるいわゆる2電極法や4電極法を用いることができるが、特に図1および図2に示した本実施例においては、2対の電極を用いた4電極法が用いられてい
る。
In addition, in the conductivity measuring apparatus 10 and the conductivity measuring method using the electrodes 22a to 22d of the present invention, a so-called two-electrode method or four-electrode method using electrodes in pairs can be used. In the present embodiment shown in FIG. 4, a four-electrode method using two pairs of electrodes is used.
この4電極法は、従来より公知の技術であり、例えば特許文献1にもその技術内容について説明がなされているが、簡単に説明すると被測定流体に接触するように4つの電極を並べて配設し、これらの電極のうち外側に位置する電極22aと電極22b間に交流電圧を印加し、流れる電流と内側の電極22cと電極22d間の電圧から、被測定流体のインピーダンス値を得るようにしたものである。 This four-electrode method is a conventionally known technique. For example, Patent Document 1 also describes the technical contents, but in brief, four electrodes are arranged side by side so as to contact the fluid to be measured. Of these electrodes, an AC voltage is applied between the electrodes 22a and 22b located on the outer side, and the impedance value of the fluid to be measured is obtained from the flowing current and the voltage between the inner electrode 22c and the electrode 22d. Is.
このような導電率測定装置10は、具体的には、配管経路12の主流路18の測定部20に配置された2対の電極と、電極22aと電極22b間に交流電圧を印加して電極22aと電極22b間の電流値と電極22cと電極22d間の電圧値を測定する導電率センサ24と、導電率センサ24によって測定された電極22cと電極22d間の電圧値に基づいて配管経路12全体のうちで不導体からなる配管経路12部分のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより被測定流体14の導電率を算出する算出部26と、を少なくとも有している。 Specifically, such a conductivity measuring device 10 is configured to apply an alternating voltage between two pairs of electrodes arranged in the measurement unit 20 of the main flow path 18 of the piping path 12 and the electrodes 22a and 22b. Conductivity sensor 24 that measures the current value between 22a and electrode 22b and the voltage value between electrode 22c and electrode 22d, and piping path 12 based on the voltage value between electrode 22c and electrode 22d measured by conductivity sensor 24. A calculation unit 26 that obtains the impedance value of the pipe path 12 portion made of a nonconductor among the whole and calculates the conductivity of the fluid 14 to be measured by performing a predetermined calculation process on the impedance value, at least. ing.
なお、「配管経路12全体のうちで不導体からなる配管経路12部分」とは、配管経路12の材質が、測定部20以外、全て導体(例えばSUS)である場合、全て不導体(例えばPTFE)である場合、導体と不導体とが混在している場合、の3つの場合における配管経路部分のことである。 The “pipe path 12 portion made of a non-conductor in the entire pipe path 12” means that when the material of the pipe path 12 is all a conductor (for example, SUS) except for the measurement unit 20, all the non-conductors (for example, PTFE) are used. ) Is a piping path portion in the three cases where conductors and non-conductors are mixed.
図1および図2に示した本実施例においては、配管経路12の材質は全て不導体を想定している。
また、配管経路の途中に設けられた導電率測定装置が位置する測定部20の配管材質は不導体(例えばPTFE)である。
In the present embodiment shown in FIGS. 1 and 2, the material of the piping path 12 is assumed to be non-conductive.
Moreover, the piping material of the measurement part 20 in which the electrical conductivity measuring apparatus provided in the middle of the piping path | route is a nonconductor (for example, PTFE).
さらに、本実施例における導電率測定装置10は、図1および図3に示したように出力部28と算出部26がコントローラ30に配設されており、このコントローラ30が装置本体21とは別に設けられている。 Further, in the conductivity measuring apparatus 10 in the present embodiment, the output unit 28 and the calculating unit 26 are disposed in the controller 30 as shown in FIGS. 1 and 3, and the controller 30 is separated from the apparatus main body 21. Is provided.
このようなコントローラ30には、被測定流体14の導電率を出力する出力部28の他にも、温度を表示する温度表示部31が設けられていても良く、機能は適宜追加可能なものである。 In addition to the output unit 28 that outputs the conductivity of the fluid 14 to be measured, such a controller 30 may be provided with a temperature display unit 31 that displays the temperature, and functions can be added as appropriate. is there.
このような導電率測定装置10が設置されている本実施例における配管経路12では、被測定流体14が予めタンク16内に貯留され、タンク16内の被測定流体14はポンプ34を介して矢印の方向である導電率測定装置10の方向に流されるようになっている。 In the piping path 12 in the present embodiment in which such a conductivity measuring device 10 is installed, the fluid 14 to be measured is stored in the tank 16 in advance, and the fluid 14 to be measured in the tank 16 is arrowed via the pump 34. It is made to flow in the direction of the conductivity measuring device 10 which is the direction of
そして、ポンプ34によって流された被測定流体14は、導電率測定装置10内を通過した後に熱交換器32へと送られ、再びタンク16内へ戻され、一連のサイクルが形成されている。 Then, the fluid 14 to be measured flowed by the pump 34 is sent to the heat exchanger 32 after passing through the conductivity measuring device 10 and is returned to the tank 16 again, forming a series of cycles.
ところで、このような本発明の導電率測定装置10は、特に上記した算出部26において、以下のような演算処理が行われており、演算処理に用いられる各種の数値については、図4に示した配管経路の模式図を用いて説明する。 By the way, in the conductivity measuring apparatus 10 of the present invention as described above, the following calculation processing is performed particularly in the calculation unit 26 described above, and various numerical values used in the calculation processing are shown in FIG. This will be described with reference to the schematic diagram of the piping route.
本発明における算出部26では、図4に示したように、まず測定部20に配置された電極22aと電極22b間の長さ(l)と、配管経路12全体のうち不導体の配管からなる経路部分の長さから電極22a〜22b間長さを引いた長さ(L)が入力される。 In the calculation unit 26 according to the present invention, as shown in FIG. 4, first, the length (l) between the electrodes 22 a and 22 b arranged in the measurement unit 20 and non-conductive piping in the entire piping path 12 are formed. A length (L) obtained by subtracting the length between the electrodes 22a to 22b from the length of the path portion is input.
なお、本実施例では上記したように配管経路12の材質を全て不導体として想定しているため、長さ(L)は、配管経路12全体の長さから電極22aと電極22b間の長さ(l)を引いた距離である。 In the present embodiment, as described above, all the materials of the piping path 12 are assumed to be non-conductors, so the length (L) is the length between the electrodes 22a and 22b from the entire length of the piping path 12. The distance obtained by subtracting (l).
仮に、配管経路12の材質が測定部20以外において全て導体である場合には、長さ(L)は、測定部20の電極22aと電極22b間以外の箇所である不導体部N1,N2の
みとなる。
If the material of the piping path 12 is all a conductor other than the measurement unit 20, the length (L) is only the non-conductor portions N1 and N2 which are portions other than between the electrodes 22a and 22b of the measurement unit 20. It becomes.
つまりこの場合における長さ(L)は、配管経路12全体の長さから、電極22aと電極22b間の長さ(l)と、測定部20以外の配管経路の長さ(M)を引いた距離、すなわち不導体部(N1)と不導体部(N2)だけを足した距離である。 In other words, the length (L) in this case is obtained by subtracting the length (l) between the electrodes 22a and 22b and the length (M) of the piping path other than the measurement unit 20 from the entire length of the piping path 12. The distance, that is, the distance obtained by adding only the non-conductor portion (N1) and the non-conductor portion (N2).
さらに、配管経路12が導体と不導体の混在となっている場合には、配管経路12全体の長さから、電極22aと電極22b間の長さ(l)と、導体部分の長さを引いた残りの距離が長さ(L)となる。 Furthermore, when the piping path 12 is a mixture of conductors and non-conductors, the length (l) between the electrodes 22a and 22b and the length of the conductor portion are subtracted from the entire length of the piping path 12. The remaining distance is the length (L).
次いで、測定部20に配置された電極22aから電極22b間の長さ(l)に対する配管経路12全体の長さ(L)の比率を算出する。
ここでlとLの比をl:L=1:aと仮定すれば、下記数式(1)が得られる。
Next, the ratio of the length (L) of the entire piping path 12 to the length (l) between the electrodes 22a and 22b arranged in the measurement unit 20 is calculated.
Assuming that the ratio of l to L is l: L = 1: a, the following formula (1) is obtained.
l:L=Z:Z1=1:aの関係となり、これより下記数式(2)が得られる。
The relationship of l: L = Z: Z1 = 1: a is obtained, and the following mathematical formula (2) is obtained.
なお、配管経路12の内径(r)と、測定部20の内径(R)の大きさが異なる場合には、それぞれの内径の断面積比を考慮し、配管経路12の内径(r)が測定部20の内径(R)と同じとなるように換算した後、上記した数式(1)のように測定部20に配置された電極22a〜22b間の長さ(l)に対する配管経路12全体から電極22aと電極22b間長さ(l)を引いた長さ(L)の比率を求めれば良い。 When the inner diameter (r) of the piping path 12 and the inner diameter (R) of the measuring unit 20 are different, the inner diameter (r) of the piping path 12 is measured in consideration of the cross-sectional area ratio of each inner diameter. After conversion to be the same as the inner diameter (R) of the part 20, from the entire piping path 12 with respect to the length (l) between the electrodes 22a to 22b arranged in the measurement part 20 as shown in the above formula (1). What is necessary is just to obtain | require the ratio of the length (L) which pulled the length (l) between the electrode 22a and the electrode 22b.
ここで、配管経路12の内径(r)が測定部20の内径(R)と異なる場合、配管経路12の内径(r)が測定部20の内径(R)と同じ大きさであると換算した仮想の配管経
路12の長さは下記の数式(3)により算出される。
Here, when the inner diameter (r) of the piping path 12 is different from the inner diameter (R) of the measuring section 20, the inner diameter (r) of the piping path 12 is converted to be the same size as the inner diameter (R) of the measuring section 20. The length of the virtual piping path 12 is calculated by the following mathematical formula (3).
Z0,Z,Z1の関係は、合成抵抗の公式である下記数式(4)のとおりである。 The relationship between Z0, Z, and Z1 is as shown in the following formula (4), which is the formula for the combined resistance.
このインピーダンス値に To this impedance value
したがって、例えば測定部20に配置された電極22aと電極22b間長さ(l)が100mm、配管経路12全体の長さ(L)が2000mm、配管経路12全体が不導体からなれば、lおよびLを数式(1)に当てはめると、
Therefore, for example, if the length (l) between the electrodes 22a and 22b arranged in the measuring unit 20 is 100 mm, the entire length (L) of the piping path 12 is 2000 mm, and the entire piping path 12 is made of a non-conductor, l and Applying L to equation (1)
そして、この定数a=20を上記した数式(5)に代入すれば、
And if this constant a = 20 is substituted into the above equation (5),
このため、電極22aと電極22b間のインピーダンス値(Z)は、電極間に係る交流電圧と電極間に流れる電流から求められた電極間の被測定流体のインピーダンス値(Z0)を1.05倍することで得られる。電極22cと電極22d間のインピーダンス値を求めるときも1.05倍すれば良い。
Therefore, the impedance value (Z) between the electrodes 22a and 22b is 1.05 times the impedance value (Z0) of the fluid to be measured between the electrodes, which is obtained from the AC voltage between the electrodes and the current flowing between the electrodes. It is obtained by doing. When obtaining the impedance value between the electrode 22c and the electrode 22d, it may be multiplied by 1.05.
つまり、ここで電極22cと電極22d間に係る交流電圧と、電極22aと電極22b間に流れる電流から求められた電極間の被測定流体のインピーダンス値が、例えば100Ωであれば、電極22cと電極22d間のインピーダンス値(Zcd)は、数式(5)により、 That is, if the impedance value of the fluid to be measured between the electrodes obtained from the AC voltage between the electrodes 22c and 22d and the current flowing between the electrodes 22a and 22b is, for example, 100Ω, the electrodes 22c and the electrodes The impedance value (Zcd) between 22d is expressed by the following equation (5).
そして、電極22cと電極22d間のインピーダンス値(Zcd)に予め決められた係数を掛け合わせることで、被測定流体の導電率が算出され、この被測定流体の導電率が、コントローラ30の出力部28に出力されることにより測定者が視認できるようになっている。
Then, the electrical conductivity of the fluid to be measured is calculated by multiplying the impedance value (Zcd) between the electrode 22c and the electrode 22d by a predetermined coefficient, and the electrical conductivity of the fluid to be measured is output to the output unit of the controller 30. By being output to 28, the measurer can visually recognize it.
なお、上記した算出部26に、既知の被測定流体14の導電率と濃度との関係式を予め記憶させておけば、算出された被測定流体14の導電率から被測定流体14の濃度を算出することができる。 If the above-described calculation unit 26 stores in advance a relational expression between the conductivity and concentration of a known fluid 14 to be measured, the concentration of the fluid 14 to be measured is calculated from the calculated conductivity of the fluid 14 to be measured. Can be calculated.
また、出力部28においても、被測定流体14の導電率だけでなく、導電率の逆数である抵抗率や濃度を表示するようにしたりするなど、状況に応じて適宜表示内容を選択できることは勿論のことである。 In addition, in the output unit 28, not only the conductivity of the fluid 14 to be measured but also the resistivity and the concentration that are the reciprocal of the conductivity can be displayed. That is.
さらにコントローラ30は、被測定流体14の導電率や濃度の他にも被測定流体14の温度を表示する温度表示部31を設けても良く、この場合には温度センサを別途設けるなどすることで機能を果たすことができる。このように被測定流体14の導電率や濃度の他に追加される機能については、使用環境などに応じて適宜追加が可能である。 Further, the controller 30 may be provided with a temperature display unit 31 for displaying the temperature of the fluid 14 to be measured in addition to the conductivity and concentration of the fluid 14 to be measured. In this case, a temperature sensor is separately provided. Can fulfill the function. As described above, functions to be added in addition to the conductivity and concentration of the fluid 14 to be measured can be appropriately added depending on the use environment.
このように上記した実施例1における導電率測定装置および導電率測定方法は、算出部において上記したような演算処理を行うことにより、被測定流体の導電率および濃度を精度良く測定することができるものである。 As described above, the conductivity measuring device and the conductivity measuring method according to the first embodiment can accurately measure the conductivity and concentration of the fluid to be measured by performing the arithmetic processing as described above in the calculation unit. Is.
次に本発明の実施例2による導電率測定装置および導電率測定方法について説明する。
図5は本発明の導電率測定装置の実施例2における使用状態を説明するための説明図、図6は図5に示した導電率測定装置の拡大図、図7は図5に示した導電率測定装置の算出部によって、被測定流体の導電率を算出する際に用いられる数値箇所を説明するための概略図である。
Next, a conductivity measuring device and a conductivity measuring method according to Example 2 of the present invention will be described.
FIG. 5 is an explanatory diagram for explaining a use state of the conductivity measuring device according to the second embodiment of the present invention, FIG. 6 is an enlarged view of the conductivity measuring device shown in FIG. 5, and FIG. 7 is a diagram showing the conductivity shown in FIG. It is the schematic for demonstrating the numerical location used when calculating the electrical conductivity of the fluid to be measured by the calculation part of a rate measuring device.
なお、実施例2と実施例1との違いは、実施例2において、電極を主流路とは別途設けられた副流路に配設している点である。
図5および図6に示したように、本発明の実施例2における導電率測定装置10は、配管経路12を流れる被測定流体14と接触するように配管経路12の主流路18とは別に一部分岐して形成された副流路36の所定位置に電極22a〜22dを配置し、この電極のうち、電極22aと電極22b間に交流電圧を印加して流れる電流と電極間の電圧から電極22aと電極22b間のインピーダンス値を測定し、このインピーダンス値を基に、配管経路12を流れる被測定流体14の導電率を算出するように構成されている。
Note that the difference between the second embodiment and the first embodiment is that, in the second embodiment, the electrodes are arranged in a sub-flow channel provided separately from the main flow channel.
As shown in FIGS. 5 and 6, the conductivity measuring device 10 according to the second embodiment of the present invention is partly separate from the main flow path 18 of the piping path 12 so as to be in contact with the fluid 14 to be measured flowing through the piping path 12. The electrodes 22a to 22d are arranged at predetermined positions of the sub-flow path 36 formed in a branched manner, and among these electrodes, an AC voltage is applied between the electrodes 22a and 22b, and an electrode 22a is determined from a current flowing between the electrodes 22a and 22b. And the electrode 22b are measured, and the conductivity of the fluid 14 to be measured flowing through the piping path 12 is calculated based on the impedance value.
なお、本実施例2においても、上記した実施例1と同様に2電極法や4電極法を用いることができるが、本実施例2では4電極法が用いられている。
このような導電率測定装置10は、具体的には、配管経路12の副流路36の測定部20に配置された2対の電極と、電極22aと電極22b間に交流電圧を印加して電極22aと電極22b間の電流値と電極22cと電極22d間の電圧値を測定する導電率センサ24と、導電率センサ24によって測定された電極22cと電極22d間の電圧値に基づいて、副流路36および主流路18全体のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより被測定流体14の導電率を算出する算出部26と、を少なくとも有している。
In the second embodiment, the two-electrode method or the four-electrode method can be used as in the first embodiment. However, in the second embodiment, the four-electrode method is used.
Specifically, such a conductivity measuring device 10 applies an AC voltage between two pairs of electrodes arranged in the measurement unit 20 of the sub-flow path 36 of the piping path 12 and between the electrodes 22a and 22b. A conductivity sensor 24 that measures a current value between the electrodes 22a and 22b and a voltage value between the electrodes 22c and 22d, and a voltage value between the electrodes 22c and 22d measured by the conductivity sensor 24, It has at least a calculation unit 26 that obtains the impedance values of the entire flow path 36 and the main flow path 18 and calculates the conductivity of the fluid 14 to be measured by applying a predetermined calculation process to the impedance values.
そして、測定部20においては、被測定流体14が主流路18と副流路36の2経路を通過するようになっている。
なお、配管経路12の測定部20以外の構成は実施例1と同様であるため説明を省略する。
In the measurement unit 20, the fluid 14 to be measured passes through the two paths of the main flow path 18 and the sub flow path 36.
In addition, since structures other than the measurement part 20 of the piping path | route 12 are the same as that of Example 1, description is abbreviate | omitted.
また、導電率測定装置10は実施例1と同様、図3に示したようなコントローラ30が装置本体21とは別に設けられており、コントローラ30には被測定流体14の導電率を算出する算出部26およびこの算出部26により算出された被測定流体14の導電率を出力する出力部28とが少なくとも備えられている。 As in the first embodiment, the conductivity measuring apparatus 10 is provided with a controller 30 as shown in FIG. 3 separately from the apparatus main body 21, and the controller 30 calculates the conductivity of the fluid 14 to be measured. And an output unit 28 that outputs the conductivity of the fluid 14 to be measured calculated by the calculation unit 26.
ところで、このような本発明の実施例2における導電率測定装置10は、特に上記した算出部26において、以下のような演算処理が行われており、演算処理に用いられる各種の数値については、図7に示した配管経路の模式図を用いて説明する。 By the way, in the conductivity measuring apparatus 10 according to the second embodiment of the present invention, the following calculation process is performed particularly in the calculation unit 26 described above, and various numerical values used in the calculation process are as follows. This will be described with reference to the schematic diagram of the piping path shown in FIG.
本発明における算出部26では、図7に示したように、まず副流路36の電極22aと電極22b間の長さ(t)と、副流路36全体の長さから電極22aと電極22b間長さを引いた長さおよび主流路18全体の長さとを足した長さ(T)が入力される。 In the calculation unit 26 according to the present invention, as shown in FIG. 7, first, the electrode 22a and the electrode 22b are calculated from the length (t) between the electrodes 22a and 22b of the sub-flow channel 36 and the entire length of the sub-flow channel 36. A length (T) obtained by adding the length obtained by subtracting the length between the channels and the overall length of the main flow path 18 is input.
次いで、副流路36の電極22aと電極22b間の長さ(t)に対する副流路36全体の長さから電極22aと電極22b間長さを引いた長さおよび主流路18全体の長さとを
足した長さ(T)の比率を算出する。
Next, a length obtained by subtracting a length between the electrode 22a and the electrode 22b from a length of the entire sub-channel 36 with respect to a length (t) between the electrode 22a and the electrode 22b of the sub-channel 36, and a length of the entire main channel 18 The ratio of the length (T) obtained by adding is calculated.
ここでtとTの比をt:T=1:aと仮定すれば、下記数式(6)が得られる。 Assuming that the ratio of t to T is t: T = 1: a, the following formula (6) is obtained.
t:T=X:X1=1:aの関係となり、これより下記数式(7)が得られる。
The relationship of t: T = X: X1 = 1: a is established, and from this, the following formula (7) is obtained.
このため、それぞれの内径の断面積比を考慮し、主流路18の内径(h)が副流路36の内径(H)と同じとなるように換算した後、上記した数式(6)のように副流路36の電極22aと電極22b間の長さ(t)に対する副流路36全体の長さから電極22aと電極22b間長さを引いた長さおよび主流路18全体の長さとを足した長さ(T)の比率を求めれば良い。 For this reason, taking into account the cross-sectional area ratio of each inner diameter, after converting the inner diameter (h) of the main flow path 18 to be the same as the inner diameter (H) of the sub-flow path 36, the above formula (6) is obtained. The length obtained by subtracting the length between the electrodes 22a and 22b from the total length of the sub-channel 36 with respect to the length (t) between the electrodes 22a and 22b of the sub-channel 36 and the length of the main channel 18 as a whole. What is necessary is just to obtain | require the ratio of the length (T) which added.
ここで、主流路18の内径(h)が副流路36の内径(H)と同じ大きさであると換算した仮想の副流路36全体の長さから電極22aと電極22b間長さを引いた長さおよび主流路18全体の長さとを足した長さは、下記の数式(8)により算出される。 Here, the length between the electrode 22a and the electrode 22b is calculated from the entire length of the hypothetical sub-channel 36, which is calculated that the inner diameter (h) of the main channel 18 is the same as the inner diameter (H) of the sub-channel 36. The length obtained by adding the drawn length and the entire length of the main flow path 18 is calculated by the following mathematical formula (8).
X0,X,X1の関係は、合成抵抗の公式である下記数式(9)のとおりである。 The relationship of X0, X, and X1 is as the following formula (9) which is the formula of the combined resistance.
このTの値と、tの値とを数式(6)に代入すれば、
Substituting the value of T and the value of t into equation (6),
そして、この定数a=2.360を上記した数式(10)に代入すれば、
And if this constant a = 2.360 is substituted into the above equation (10),
このため、電極22aと電極22b間のインピーダンス値(X)は、電極間に係る交流電圧と電極間に流れる電流から求められた電極間の被測定流体のインピーダンス値(X0)を1.424倍することで得られる。電極22cと電極22d間のインピーダンスを求めるときも1.424倍すれば良い。
For this reason, the impedance value (X) between the electrodes 22a and 22b is 1.424 times the impedance value (X0) of the fluid to be measured between the electrodes obtained from the AC voltage between the electrodes and the current flowing between the electrodes. It is obtained by doing. What is necessary is just to multiply 1.424 times also when calculating | requiring the impedance between the electrode 22c and the electrode 22d.
つまり、ここで電極22cと電極22d間に係る交流電圧と電極22aと電極22b間に流れる電流から求められた電極間の被測定流体のインピーダンス値が例えば100Ωであれば、電極22aと電極22b間のインピーダンス値(Xcd)は、数式(10)により、 That is, if the impedance value of the fluid to be measured between the electrodes obtained from the AC voltage between the electrodes 22c and 22d and the current flowing between the electrodes 22a and 22b is, for example, 100Ω, between the electrodes 22a and 22b The impedance value (Xcd) of
そして、電極22cと電極22d間のインピーダンス値(Xcd)に予め決められた係数を掛け合わせることで、被測定流体の導電率が算出され、この被測定流体の導電率がコントローラ30の出力部28に出力されることにより測定者が視認できるようになっている。
Then, the electrical conductivity of the fluid to be measured is calculated by multiplying the impedance value (Xcd) between the electrode 22c and the electrode 22d by a predetermined coefficient, and the electrical conductivity of the fluid to be measured is calculated as the output unit 28 of the controller 30. It is possible for the measurer to visually recognize the information.
なお、上記した算出部26に、既知の被測定流体14の導電率と濃度との関係式を予め記憶させておけば、算出された被測定流体14の導電率から被測定流体14の濃度を算出することができる。 If the above-described calculation unit 26 stores in advance a relational expression between the conductivity and concentration of a known fluid 14 to be measured, the concentration of the fluid 14 to be measured is calculated from the calculated conductivity of the fluid 14 to be measured. Can be calculated.
また、出力部28においても、被測定流体14の導電率だけでなく、導電率の逆数である抵抗率や濃度を表示するようにしたりするなど、状況に応じて適宜表示内容を選択できることは勿論のことである。 In addition, in the output unit 28, not only the conductivity of the fluid 14 to be measured but also the resistivity and the concentration that are the reciprocal of the conductivity can be displayed. That is.
さらにコントローラ30は、被測定流体14の導電率や濃度の他にも被測定流体14の温度を表示する温度表示部31を設けても良く、この場合には温度センサを別途設けるなどすることで機能を果たすことができる。このように被測定流体14の導電率や濃度の他に追加される機能については、使用環境などに応じて適宜追加が可能である。 Further, the controller 30 may be provided with a temperature display unit 31 for displaying the temperature of the fluid 14 to be measured in addition to the conductivity and concentration of the fluid 14 to be measured. In this case, a temperature sensor is separately provided. Can fulfill the function. As described above, functions to be added in addition to the conductivity and concentration of the fluid 14 to be measured can be appropriately added depending on the use environment.
このように上記した実施例2における導電率測定装置および導電率測定方法は、算出部において上記したような演算処理を行うことにより、被測定流体の導電率および濃度を精度良く測定することができるものである。 As described above, the conductivity measuring device and the conductivity measuring method in the second embodiment described above can accurately measure the conductivity and concentration of the fluid to be measured by performing the above-described arithmetic processing in the calculation unit. Is.
以上、本発明の好ましい形態である実施例1および実施例2について説明したが、本発明は上記の形態に限定されるものではなく、例えば実施例1,2においてはコントローラ
30は装置本体とは別に設けているが、装置本体とコントローラとが一体的に構成されていても良いなど、本発明の目的を逸脱しない範囲での種々の変更が可能なものである。
The first embodiment and the second embodiment, which are preferred embodiments of the present invention, have been described above. However, the present invention is not limited to the above-described embodiment. For example, in the first and second embodiments, the controller 30 is a device main body. Although separately provided, various modifications can be made without departing from the object of the present invention, for example, the apparatus main body and the controller may be integrally configured.
10・・・導電率測定装置
12・・・配管経路
14・・・被測定流体
16・・・タンク
18・・・主流路
20・・・測定部
21・・・装置本体
22a・・電極
22b・・電極
22c・・電極
22d・・電極
24・・・導電率センサ
26・・・算出部
28・・・出力部
30・・・コントローラ
31・・・温度表示部
32・・・熱交換器
34・・・ポンプ
36・・・副流路
39・・・接続間管路
N1・・不導体部
N2・・不導体部
100・・・測定装置
102・・・電極
104・・・外部配管
200・・・測定装置
202・・・電極
204・・・外部配管
206・・・カバー(絶縁物)
DESCRIPTION OF SYMBOLS 10 ... Conductivity measuring device 12 ... Piping path 14 ... Fluid to be measured 16 ... Tank 18 ... Main flow path 20 ... Measuring part 21 ... Main body 22a ... Electrode 22b -Electrode 22c-Electrode 22d-Electrode 24 ... Conductivity sensor 26 ... Calculation part 28 ... Output part 30 ... Controller 31 ... Temperature display part 32 ... Heat exchanger 34- ··· Pump 36 ··· Sub flow channel 39 ··· Connection pipe N1 ··· Non-conductive portion N2 ··· Non-conductive portion 100 ··· Measuring device 102 · · · Electrode 104 · · · External piping 200 ·· Measuring device 202 ... electrode 204 ... external piping 206 ... cover (insulator)
Claims (14)
前記導電率測定装置は、
前記配管経路の主流路の測定部に配置された少なくとも一対の電極と、
前記電極間に交流電圧を印加して前記電極間に流れる電流値を測定する導電率センサと、
前記導電率センサによって測定された電極間に流れる電流値に基づいて配管経路全体のうちで不導体の配管からなる経路部分のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより前記被測定流体の導電率を算出する算出部と、
を少なくとも有し、
前記算出部において、
前記測定部に配置された電極間長さ(l)に対する前記配管経路全体のうちで不導体の配管からなる経路部分の長さから前記電極間長さを引いた長さ(L)の比率を算出し、
前記配管経路全体のインピーダンス値と、
前記測定部に配置された電極間長さ(l)に対する前記配管経路全体のうちで不導体の配管からなる経路部分の長さから前記電極間長さを引いた長さ(L)の比率から、前記電極間のインピーダンス値のみを算出し、
このインピーダンス値を基に前記被測定流体の導電率を算出するよう構成されていることを特徴とする導電率測定装置。 An electrode is arranged at a predetermined position of the main flow path of the piping path so as to be in contact with the fluid to be measured flowing through the piping path, and the impedance value between the electrodes is calculated from the current flowing between the electrodes and the voltage between the electrodes. A conductivity measuring device that measures and calculates the conductivity of a fluid to be measured based on this impedance value,
The conductivity measuring device is:
At least a pair of electrodes arranged in a measurement part of the main flow path of the piping path;
A conductivity sensor that applies an alternating voltage between the electrodes and measures a current value flowing between the electrodes;
By obtaining an impedance value of a path portion made of non-conductive piping out of the entire piping path based on a current value flowing between the electrodes measured by the conductivity sensor, and performing predetermined arithmetic processing on this impedance value A calculation unit for calculating conductivity of the fluid to be measured;
Having at least
In the calculation unit,
The ratio of the length (L) obtained by subtracting the length between the electrodes from the length of the path portion made of a non-conductive pipe in the entire pipe path with respect to the length (l) between the electrodes arranged in the measurement unit. Calculate
Impedance value of the entire piping path;
From the ratio of the length (L) obtained by subtracting the length between the electrodes from the length of the path portion made of a non-conductive pipe in the entire pipe path with respect to the length (l) between the electrodes arranged in the measurement unit. , Calculating only the impedance value between the electrodes,
A conductivity measuring apparatus configured to calculate the conductivity of the fluid to be measured based on the impedance value.
前記導電率測定装置は、
前記配管経路の副流路の測定部に配置された少なくとも一対の電極と、
前記電極に交流電圧を印加して前記電極間に流れる電流値を測定する導電率センサと、
前記導電率センサによって測定された電極間に流れる電流値に基づいて配管経路全体のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより前記被測定流体の導電率を算出する算出部と、
を少なくとも有し、
前記算出部において、
前記副流路の電極間長さ(t)に対する前記副流路全体の長さから電極間長さを引いた長さおよび主流路全体の長さとを足した長さ(T)の比率を算出し、
前記配管経路全体のインピーダンス値と、
前記副流路の電極間長さ(t)に対する前記副流路全体の長さから電極間長さを引いた長さおよび主流路全体の長さとを足した長さ(T)の比率から、前記電極間のインピーダンス値のみを算出し、
このインピーダンス値を基に前記被測定流体の導電率を算出するよう構成されていることを特徴とする導電率測定装置。 An electrode is arranged at a predetermined position of a sub-flow path formed by branching separately from the main flow path of the piping path so as to come into contact with the fluid to be measured flowing through the piping path, and a voltage is applied between the electrodes to flow. A conductivity measuring device that measures an impedance value between electrodes from a current and a voltage between electrodes, and calculates the conductivity of a fluid to be measured based on the impedance value,
The conductivity measuring device is:
At least a pair of electrodes arranged in a measurement part of a sub-flow path of the piping path;
A conductivity sensor for applying an alternating voltage to the electrodes and measuring a current value flowing between the electrodes;
Calculation that obtains the impedance value of the entire piping path based on the current value flowing between the electrodes measured by the conductivity sensor, and calculates the conductivity of the fluid to be measured by applying a predetermined arithmetic process to the impedance value And
Having at least
In the calculation unit,
A ratio of a length (T) obtained by adding a length obtained by subtracting the inter-electrode length from the entire length of the sub-channel to the inter-electrode length (t) of the sub-channel and the length of the entire main channel is calculated. And
Impedance value of the entire piping path;
From the ratio of the length obtained by subtracting the length between the electrodes from the total length of the sub-channel to the length between the electrodes of the sub-channel (t) and the length of the entire main channel (T), Calculate only the impedance value between the electrodes,
A conductivity measuring apparatus configured to calculate the conductivity of the fluid to be measured based on the impedance value.
算出した前記被測定流体の導電率を基に、被測定流体の濃度を算出する機能を有することを特徴とする請求項1から6のいずれかに記載の導電率測定装置。 The calculation unit
The conductivity measuring device according to claim 1, which has a function of calculating a concentration of the fluid to be measured based on the calculated conductivity of the fluid to be measured.
前記導電率測定方法は、
前記配管経路の主流路の測定部に少なくとも一対の電極を配置する工程と、
前記配置された電極間に導電率センサを介して交流電圧を印加して前記電極間に流れる電流値を測定する工程と、
前記導電率センサによって測定された電極間に流れる電流値に基づいて、算出部で配管経路全体のうちで不導体の配管からなる経路部分のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより前記被測定流体の導電率を算出する工程と、
を少なくとも有し、
前記被測定流体の導電率を算出する工程において、
前記測定部に配置された電極間長さ(l)に対する前記配管経路全体のうちで不導体の配管からなる経路部分の長さから前記電極間長さを引いた長さ(L)の比率を算出し、
前記配管経路全体のインピーダンス値と、
前記測定部に配置された電極間長さ(l)に対する前記配管経路全体のうちで不導体の配管からなる経路部分の長さから前記電極間長さを引いた長さ(L)の比率から、前記電極間のインピーダンス値のみを算出し、
このインピーダンス値を基に前記被測定流体の導電率を算出することを特徴とする導電率測定方法。 An electrode is arranged at a predetermined position of the main flow path of the piping path so as to be in contact with the fluid to be measured flowing through the piping path, and the impedance value between the electrodes is calculated from the current flowing between the electrodes and the voltage between the electrodes. A conductivity measurement method for measuring and calculating the conductivity of a fluid to be measured based on this impedance value,
The conductivity measuring method is:
Disposing at least a pair of electrodes in the measurement part of the main flow path of the piping path;
Applying an alternating voltage between the arranged electrodes through a conductivity sensor to measure a current value flowing between the electrodes;
Based on the value of the current flowing between the electrodes measured by the conductivity sensor, the calculation unit obtains an impedance value of a path portion made of a non-conductive pipe in the entire pipe path, and performs a predetermined calculation process on this impedance value. Calculating the conductivity of the fluid to be measured by applying
Having at least
In the step of calculating the conductivity of the fluid to be measured,
The ratio of the length (L) obtained by subtracting the length between the electrodes from the length of the path portion made of a non-conductive pipe in the entire pipe path with respect to the length (l) between the electrodes arranged in the measurement unit. Calculate
Impedance value of the entire piping path;
From the ratio of the length (L) obtained by subtracting the length between the electrodes from the length of the path portion made of a non-conductive pipe in the entire pipe path with respect to the length (l) between the electrodes arranged in the measurement unit. , Calculating only the impedance value between the electrodes,
A conductivity measuring method, wherein the conductivity of the fluid to be measured is calculated based on the impedance value.
前記導電率測定方法は、
前記配管経路の副流路の測定部に少なくとも一対の電極を配置する工程と、
前記配置された電極間に導電率センサを介して交流電圧を印加して前記電極間に流れる電流値を測定する工程と、
前記導電率センサによって測定された電極間に流れる電流値に基づいて、算出部で配管経路全体のインピーダンス値を得て、このインピーダンス値に所定の演算処理を施すことにより前記被測定流体の導電率を算出する工程と、
を少なくとも有し、
前記被測定流体の導電率を算出する工程において、
前記副流路の電極間長さ(t)に対する前記副流路全体の長さから電極間長さを引いた長さおよび主流路全体の長さとを足した長さ(T)の比率を算出し、
前記配管経路全体のインピーダンス値と、
前記副流路の電極間長さ(t)に対する前記副流路全体の長さから電極間長さを引いた長さおよび主流路全体の長さとを足した長さ(T)の比率から、前記電極間のインピーダンス値のみを算出し、
このインピーダンス値を基に前記被測定流体の導電率を算出することを特徴とする導電率測定方法。 An electrode is arranged at a predetermined position of a sub-flow path formed by branching separately from the main flow path of the piping path so as to come into contact with the fluid to be measured flowing through the piping path, and a voltage is applied between the electrodes to flow. An electrical conductivity measurement method for measuring an impedance value between electrodes from a voltage between an electric current and an electrode, and calculating an electrical conductivity of a fluid to be measured based on the impedance value,
The conductivity measuring method is:
Arranging at least a pair of electrodes in the measurement part of the sub-flow path of the piping path;
Applying an alternating voltage between the arranged electrodes through a conductivity sensor to measure a current value flowing between the electrodes;
Based on the value of the current flowing between the electrodes measured by the conductivity sensor, the calculation unit obtains the impedance value of the entire piping path, and performs a predetermined calculation process on the impedance value to thereby determine the conductivity of the fluid to be measured. Calculating
Having at least
In the step of calculating the conductivity of the fluid to be measured,
A ratio of a length (T) obtained by adding a length obtained by subtracting the inter-electrode length from the entire length of the sub-channel to the inter-electrode length (t) of the sub-channel and the length of the entire main channel is calculated. And
Impedance value of the entire piping path;
From the ratio of the length obtained by subtracting the length between the electrodes from the total length of the sub-channel to the length between the electrodes of the sub-channel (t) and the length of the entire main channel (T), Calculate only the impedance value between the electrodes,
A conductivity measuring method, wherein the conductivity of the fluid to be measured is calculated based on the impedance value.
算出した前記被測定流体の導電率を基に、被測定流体の濃度を算出する機能を有することを特徴とする請求項8から13のいずれかに記載の導電率測定方法。 The calculation unit
The conductivity measuring method according to claim 8, further comprising a function of calculating a concentration of the fluid to be measured based on the calculated conductivity of the fluid to be measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008218186A JP5042166B2 (en) | 2008-08-27 | 2008-08-27 | Conductivity measuring device and conductivity measuring method using conductivity measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008218186A JP5042166B2 (en) | 2008-08-27 | 2008-08-27 | Conductivity measuring device and conductivity measuring method using conductivity measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010054278A JP2010054278A (en) | 2010-03-11 |
JP5042166B2 true JP5042166B2 (en) | 2012-10-03 |
Family
ID=42070377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008218186A Expired - Fee Related JP5042166B2 (en) | 2008-08-27 | 2008-08-27 | Conductivity measuring device and conductivity measuring method using conductivity measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5042166B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103869174A (en) * | 2012-12-17 | 2014-06-18 | 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 | Inductive, Conductivity Sensor and Method for its Manufacture |
US9717556B2 (en) | 2012-12-21 | 2017-08-01 | Cook Medical Technologies Llc | Collet for an endoscopic needle knife |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01254853A (en) * | 1988-04-05 | 1989-10-11 | Nikoku Kikai Kogyo Kk | Electrode for measuring conductivity |
JP4203432B2 (en) * | 2004-02-27 | 2009-01-07 | 株式会社 堀場アドバンスドテクノ | Chemical concentration measuring device |
JP5142587B2 (en) * | 2006-05-11 | 2013-02-13 | 株式会社鷺宮製作所 | Chemical concentration meter |
-
2008
- 2008-08-27 JP JP2008218186A patent/JP5042166B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103869174A (en) * | 2012-12-17 | 2014-06-18 | 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 | Inductive, Conductivity Sensor and Method for its Manufacture |
US9717556B2 (en) | 2012-12-21 | 2017-08-01 | Cook Medical Technologies Llc | Collet for an endoscopic needle knife |
Also Published As
Publication number | Publication date |
---|---|
JP2010054278A (en) | 2010-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5701961B2 (en) | Electrical conductivity measurement method and electrical conductivity measurement system using the same | |
JP7210916B2 (en) | electromagnetic flow meter | |
US8111059B1 (en) | Electric current locator | |
RU2017109736A (en) | METHODS AND ANALYTES DETECTION SYSTEMS | |
JP2023515125A (en) | Method and measurement set-up for determining internal corrosion rate of steel structures | |
JP5042166B2 (en) | Conductivity measuring device and conductivity measuring method using conductivity measuring device | |
US6498492B1 (en) | Process of measuring conductivity using a pH analyzer | |
JP5156867B1 (en) | Method and apparatus for measuring electrical resistivity of concrete | |
EP3499224B1 (en) | Electrode assembly for conductivity meter or resistivity meter, conductivity meter and resistivity meter using the same electrode assembly | |
JP6692077B2 (en) | Body fluid viscosity measurement device | |
JP2010107487A (en) | Device and method for measuring multiphase flow | |
JP5142806B2 (en) | Conductivity meter, conductivity measuring method, electrode abnormality monitoring apparatus and electrode abnormality monitoring method using the same | |
CN104425303B (en) | The method for measuring conductive layer thickness | |
JP2007003235A (en) | Non-destructive inspection method of change in wall thickness of measuring target | |
RU2491538C1 (en) | Contact sensor of specific electric conductivity of liquid | |
JPH10282035A (en) | Mixture volume ratio measurement sensor | |
JP2001147218A (en) | Electrodeless sensor | |
JP4707893B2 (en) | Conductivity meter | |
Deng et al. | AC impedance model of array electrodes in multisensor fusion system for two-phase flow measurement | |
JP2008267838A (en) | Apparatus for analyzing liquid quality | |
JP2002296209A (en) | Concentration measuring system for composite solution | |
RU2559117C2 (en) | Conductometric method to measure liquid level | |
JP6332163B2 (en) | Current measurement method | |
RU135142U1 (en) | CONDUCT METER INDUSTRIAL ATLANT 1101 | |
JP2021032582A (en) | Corrosion sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120301 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120703 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120710 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150720 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |