JP2015148596A - Method and device for measuring position of current-carrying part - Google Patents

Method and device for measuring position of current-carrying part Download PDF

Info

Publication number
JP2015148596A
JP2015148596A JP2014245535A JP2014245535A JP2015148596A JP 2015148596 A JP2015148596 A JP 2015148596A JP 2014245535 A JP2014245535 A JP 2014245535A JP 2014245535 A JP2014245535 A JP 2014245535A JP 2015148596 A JP2015148596 A JP 2015148596A
Authority
JP
Japan
Prior art keywords
metal plate
current
plate
measuring
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014245535A
Other languages
Japanese (ja)
Other versions
JP6142865B2 (en
Inventor
渡辺 裕一
Yuichi Watanabe
裕一 渡辺
勝 福村
Masaru Fukumura
勝 福村
木島 剛
Takeshi Kijima
剛 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014245535A priority Critical patent/JP6142865B2/en
Publication of JP2015148596A publication Critical patent/JP2015148596A/en
Application granted granted Critical
Publication of JP6142865B2 publication Critical patent/JP6142865B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for measuring a position of a current-carrying part, which is capable of accurately measuring a potential distribution even when a frequency of a flowing high frequency current becomes a high frequency exceeding 10 kHz.SOLUTION: In the method for measuring a position of a current-carrying part, a position of a current-carrying part which does not carry a DC current but carries a high frequency current is measured when an electromagnetic wave leaked from a space between metal plates is evaluated. In this method, a plurality of conductors are connected to a surface of one metal plate of the metal plates, and a surface position of the one metal plate is defined as a measurement point, and a high frequency voltage is applied to feeding points provided on respective surfaces of the metal plates to cause a high frequency current to flow between the metal plates, and the feeding point on the surface of the one metal plate to which the conductors are connected is taken as a reference of potential to measure a potential difference between the measurement point and the feeding points on the surface of the metal plates via a protective board installed so as to isolate the side in which the high frequency current flows and the side in which the potential difference is measured, from each other.

Description

本発明は、OA・電機製品などの内部に組み込まれた電子回路からの電磁波漏洩の評価に関し、特に電磁波漏洩の評価にあたって通電部の位置を正確に測定する通電部の位置測定方法および装置に関するものである。   The present invention relates to the evaluation of electromagnetic wave leakage from an electronic circuit incorporated in an OA / electrical product, and more particularly to a position measuring method and apparatus for a current-carrying part that accurately measures the position of the current-carrying part in the evaluation of electromagnetic wave leakage. It is.

OA・電機製品には、製品内部に組み込まれた電子回路からの漏洩電磁波をシールドすることが求められている。これは、漏洩電磁波が他のOA・電機製品を誤作動させる可能性があるだけでなく、心臓ペースメーカなどの電子機器を誤作動させて、使用している人へ影響を及ぼす可能性があるためである。   OA / electrical products are required to shield leakage electromagnetic waves from electronic circuits incorporated in the product. This is because leaked electromagnetic waves may not only cause other OA / electrical products to malfunction, but also may cause electronic devices such as cardiac pacemakers to malfunction and affect people using them. It is.

OA・電機製品の筐体は、鋼板やアルミ板等の金属で作製されている場合が多い。そして、金属製の筐体内部に電磁波の発信源がある場合に、金属板が重なった部分を溶接など連続的な接合を施さない限り、隙間ができてしまい、ここから電磁波が漏洩することが問題となる。そのため、筐体外部へ電磁波が漏洩する機構に基いて、その漏洩電磁波の強度を評価する手法は、電磁波漏洩を制御する上で重要な技術である。   The casing of OA / electrical products is often made of a metal such as a steel plate or an aluminum plate. If there is an electromagnetic wave source inside the metal housing, a gap will be created unless the metal plate overlaps the welded part, and electromagnetic waves may leak from here. It becomes a problem. Therefore, a technique for evaluating the strength of the leaked electromagnetic wave based on a mechanism for leaking the electromagnetic wave to the outside of the housing is an important technique for controlling the electromagnetic wave leakage.

このような漏洩電磁波の強度を評価する技術として、特許文献1に開示された技術がある。この技術は、通電部の位置と形状を測定し、通電部の間隔および長さを求めて電磁波の強度を評価するようにしたものであり、特に、金属板間に高周波電流を流し、金属板表面に生ずる電位分布を測定し、正確に通電部の位置を測定できるという特徴がある。   As a technique for evaluating the strength of such leakage electromagnetic waves, there is a technique disclosed in Patent Document 1. This technique measures the position and shape of the current-carrying parts, obtains the interval and length of the current-carrying parts, and evaluates the strength of the electromagnetic waves. In particular, a high-frequency current is passed between the metal plates, It has a feature that the potential distribution generated on the surface can be measured and the position of the energized portion can be measured accurately.

以下に、[発明を実施するための形態]で参照する非特許文献を含めた先行技術文献を示す。   Prior art documents including non-patent documents referred to in [Mode for Carrying Out the Invention] are shown below.

特開2009−58324号公報JP 2009-58324 A

電子情報通信学会編、内藤喜之、「マイクロ波・ミリ波工学」、コロナ社、1986年(初版)、P.65−71The Institute of Electronics, Information and Communication Engineers, Yoshiyuki Naito, “Microwave / Millimeter Wave Engineering”, Corona, 1986 (First Edition), P.65-71 日本金属学会編、「金属データブック(第3版)」、丸善(株)、1993年、P.14Edited by the Japan Institute of Metals, “Metal Data Book (3rd edition)”, Maruzen Co., Ltd., 1993, p.14 三輪進、「高周波電磁気学」、東京電機大学出版局、1992年(第1版)、付録(A.1)Susumu Miwa, “High Frequency Electromagnetism”, Tokyo Denki University Press, 1992 (first edition), Appendix (A.1)

特許文献1に開示された技術では、直流電流に対して通電部とならないが、高周波電流に対しては通電部となる部分である場合であっても、以下のようにして通電部を求めている。図1は、先行技術を説明する図である。図中、1は金属板A、2は金属板B、3は導線、4は高周波電源、5は電位差測定器、6はGround、および7は給電点をそれぞれ表す。   The technique disclosed in Patent Document 1 does not serve as a current-carrying part for direct current, but seeks a current-carrying part as follows even if it is a part that serves as a current-carrying part for high-frequency current. Yes. FIG. 1 is a diagram for explaining the prior art. In the figure, 1 is a metal plate A, 2 is a metal plate B, 3 is a conducting wire, 4 is a high-frequency power source, 5 is a potentiometer, 6 is Ground, and 7 is a feeding point.

すなわち、図1に示すように金属板A1の表面に複数の導線3を接続し、この金属板A1が金属板B2に重なるように配置し、板間に給電点7を経由して、高周波電源4からの高周波電圧を印加し、金属板間に高周波電流を流す。金属板A1と金属板B2との間には所定の隙間が設けられる。金属板A1の任意の位置の導線の電位を基準(以下、Groundまたはグランドとも称する)とする。金属板A1の表面の電位分布は、Ground6との電位差として測定する。導線間の電位差は、オシロスコープ等の電位差測定器5で測定するが、導線からの信号は必要があればアンプで増幅、あるいは、フィルターによって不要な信号を除去して電位差測定器5に入力される。そして、測定された電位分布に基づいて、通電部が求められる。   That is, as shown in FIG. 1, a plurality of conductive wires 3 are connected to the surface of the metal plate A1, and the metal plate A1 is disposed so as to overlap the metal plate B2, and the high frequency power source is connected between the plates via the feeding point 7. A high frequency voltage from 4 is applied, and a high frequency current flows between the metal plates. A predetermined gap is provided between the metal plate A1 and the metal plate B2. The potential of the conducting wire at an arbitrary position of the metal plate A1 is used as a reference (hereinafter also referred to as Ground or ground). The potential distribution on the surface of the metal plate A1 is measured as a potential difference from Ground6. The potential difference between the conductors is measured by a potential difference measuring device 5 such as an oscilloscope. The signal from the conductor is amplified by an amplifier if necessary, or input to the potential difference measuring device 5 by removing unnecessary signals with a filter. . Then, an energization unit is obtained based on the measured potential distribution.

しかしながら、特許文献1に開示された技術では、流れる高周波電流の周波数が10kHzを超えるような高い周波数になった場合には、測定系が受けるノイズが大きくなり、電位分布が測定できない場合があり、正確に通電部の位置を測定できないという問題がある。   However, in the technique disclosed in Patent Document 1, when the frequency of the flowing high-frequency current becomes a high frequency exceeding 10 kHz, the noise received by the measurement system increases, and the potential distribution may not be measured. There is a problem that the position of the current-carrying part cannot be measured accurately.

本発明では、これら従来技術の問題点に鑑みなされたものであり、流れる高周波電流の周波数が10kHzを超えるような高い周波数になった場合においても、電位分布を正確に測定できる、通電部の位置測定方法および装置を提供することを課題とする。   The present invention has been made in view of the problems of these prior arts, and even when the frequency of the flowing high-frequency current becomes a high frequency exceeding 10 kHz, the position of the energization unit can accurately measure the potential distribution. It is an object to provide a measurement method and apparatus.

なお、本明細書において、高周波とは、原則として10kHz以上の周波数を指すものとする。   In the present specification, high frequency means a frequency of 10 kHz or more in principle.

本発明者らは、高周波電流が流れる側と電位差測定する側を金属製の防護板で分離し、電位分布を測定する金属板の板厚を工夫することによって上述の課題が解決できることを見出し、以下に記載する本発明に想到した。   The present inventors have found that the above problem can be solved by separating the side where the high-frequency current flows and the side where the potential difference is measured with a metal protection plate, and devising the thickness of the metal plate which measures the potential distribution, The inventors have conceived the present invention described below.

[1] 金属板間の隙間から漏洩する電磁波の評価にあたって、直流電流に対して通電部とならないが、高周波電流に対して通電部となる場合における通電部の位置を測定する通電部の位置測定方法において、
前記金属板の一方の金属板の表面に複数の導線を接続し、接続した金属板の表面位置を測定点とし、
前記金属板それぞれの表面に設けた給電点に高周波電圧を印加し前記金属板間に高周波電流を流し、
前記導線を接続した一方の金属板表面の給電点を電位の基準として前記測定点と前記金属板表面の給電点との電位差測定を、高周波電流が流れる側と電位差を測定する側を分離するように設置した防護板を介して行い、
測定した電位差に基づいて、金属板表面に生ずる電位分布を求め、該電位分布から通電部を決定することを特徴とする通電部の位置測定方法。
[1] In the evaluation of electromagnetic waves leaking from the gaps between the metal plates, the position of the energized part is measured to measure the position of the energized part when it becomes an energized part with respect to a high-frequency current, although it does not become an energized part with respect to a direct current. In the method
A plurality of conductive wires are connected to the surface of one metal plate of the metal plate, the surface position of the connected metal plate as a measurement point,
Applying a high frequency voltage to a feeding point provided on the surface of each of the metal plates to flow a high frequency current between the metal plates,
The potential difference measurement between the measurement point and the feeding point on the metal plate surface is separated from the side where the high-frequency current flows from the side where the potential difference is measured, with the feeding point on the surface of the one metal plate connected to the conducting wire as a potential reference. Through the protective plate installed in
A method for measuring a position of a current-carrying part, wherein a potential distribution generated on a surface of a metal plate is obtained based on the measured potential difference, and a current-carrying part is determined from the potential distribution.

[2] 上記[1]に記載の通電部の位置測定方法において、
前記導線を接続した一方の金属板の板厚を1.0mm未満とし、
前記防護板の板厚は、以下の(1)式で規定される板厚であることを特徴とする通電部の位置測定方法。
[2] In the method for measuring the position of the energization unit according to [1] above,
The plate thickness of one metal plate connected to the conducting wire is less than 1.0 mm,
The thickness of the said protection board is a board thickness prescribed | regulated by the following (1) Formula, The position measuring method of the electricity supply part characterized by the above-mentioned.

Figure 2015148596
Figure 2015148596

[3] 金属板間の隙間から漏洩する電磁波の評価にあたって、直流電流に対して通電部とならないが、高周波電流に対して通電部となる場合における通電部の位置を測定する通電部の位置測定装置において、
前記金属板間に高周波電流を流すための、前記金属板それぞれの表面に設けた給電点に高周波電圧を印加する高周波電源と、
前記金属板の一方の金属板の表面に接続した複数の導線と、
該導線を接続した一方の金属板表面の給電点を電位の基準として、前記導線を接続した金属板の表面位置である測定点と前記金属板表面の給電点との電位差を測定する電位差測定器と、
高周波電流が流れる側と電位差を測定する側を分離するように設置した防護板と、
前記測定した電位差に基づいて、金属板表面に生ずる電位分布を求め、該電位分布から通電部を決定する手段と、を備えることを特徴とする通電部の位置測定装置。
[3] In the evaluation of electromagnetic waves leaking from the gaps between the metal plates, the position of the energized part is measured to measure the position of the energized part when it becomes an energized part for a high-frequency current, although it does not become an energized part for a direct current. In the device
A high frequency power source for applying a high frequency voltage to a feeding point provided on the surface of each of the metal plates for flowing a high frequency current between the metal plates;
A plurality of conductive wires connected to the surface of one of the metal plates;
A potential difference measuring device for measuring a potential difference between a measurement point which is a surface position of the metal plate to which the conducting wire is connected and a feeding point on the surface of the metal plate, with a feeding point on the surface of one metal plate to which the conducting wire is connected as a reference of potential. When,
A protective plate installed to separate the side where the high-frequency current flows and the side where the potential difference is measured,
An apparatus for measuring a position of a current-carrying part, comprising: means for obtaining a potential distribution generated on the surface of the metal plate based on the measured potential difference, and determining a current-carrying part from the potential distribution.

[4] 上記[3]に記載の通電部の位置測定方法装置において、
前記導線を接続した一方の金属板の板厚は1.0mm未満であり、
前記防護板の板厚は、以下の(1)式で規定される板厚であることを特徴とする通電部の位置測定装置。
[4] In the energization unit position measuring method device according to [3] above,
The thickness of one of the metal plates to which the conducting wire is connected is less than 1.0 mm,
The thickness of the said protection board is a board thickness prescribed | regulated by the following (1) Formula, The position measuring apparatus of the electricity supply part characterized by the above-mentioned.

Figure 2015148596
Figure 2015148596

本発明は、高周波電流が流れる側と電位差を測定する側を分離するように防護板を設置するようにしたので、流れる高周波電流の周波数が10kHzを超えるような高い周波数になった場合においても、電位分布が測定可能となった。   In the present invention, since the protective plate is installed so as to separate the side where the high-frequency current flows and the side where the potential difference is measured, even when the frequency of the flowing high-frequency current becomes a high frequency exceeding 10 kHz, Potential distribution can be measured.

先行技術を説明する図である。It is a figure explaining a prior art. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施例を示す図である。It is a figure which shows the Example of this invention. 本発明の実施例における結果を示す図である。It is a figure which shows the result in the Example of this invention. 比較例における結果を示す図である。It is a figure which shows the result in a comparative example. 防護板が鉄の場合における板厚とノイズの評価値NDの関係を示す図である。It is a figure which shows the relationship between board thickness and the evaluation value ND of noise in case a protection board is iron. 防護板が鉄の場合における測定が可能となる板厚と周波数の関係を示す図である。It is a figure which shows the relationship between the plate | board thickness and frequency which can be measured when a protection board is iron. 防護板がアルミの場合における板厚(0〜30mm)とノイズの評価値NDの関係を示す図である。It is a figure which shows the relationship between plate | board thickness (0-30 mm) and the evaluation value ND of noise in case a protective plate is aluminum. 防護板がアルミの場合における板厚(0〜10mm)とノイズの評価値NDの関係を示す図である。It is a figure which shows the relationship between board thickness (0-10 mm) in case a protective board is aluminum, and noise evaluation value ND. 防護板がアルミの場合における測定が可能となる板厚と周波数の関係を示す図である。It is a figure which shows the relationship between the plate | board thickness and frequency which can be measured in case a protective plate is aluminum.

本発明は、金属板間の隙間から漏洩する電磁波の評価にあたって、直流電流に対して通電部とならないが、高周波電流に対して通電部となる場合における通電部の位置を測定する通電部の位置測定方法において、金属板間に高周波電流を流し、金属板表面の給電点を電位の基準として電位差測定することによって金属板表面に生ずる電位分布を求め、この電位分布から通電部を決定するものである。   In the evaluation of electromagnetic waves leaking from the gaps between the metal plates, the present invention does not serve as a current-carrying part with respect to a direct current, but positions of the current-carrying part when it serves as a current-carrying part with respect to a high-frequency current In the measurement method, a high-frequency current is passed between metal plates, and a potential distribution generated on the surface of the metal plate is obtained by measuring a potential difference with the feeding point on the surface of the metal plate as a reference of potential, and an energized portion is determined from this potential distribution. is there.

以下に本発明を実施するための形態について添付図面を参照しながら説明する。図2は、本発明の実施形態を示す図である。図中、防護板8は、複数の穴9を有する金属板である。その他の符号は図1と同じであり説明を省略する。図2では、正面図を上に、上面図を下に示している。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated, referring an accompanying drawing. FIG. 2 is a diagram showing an embodiment of the present invention. In the figure, the protection plate 8 is a metal plate having a plurality of holes 9. Other reference numerals are the same as those in FIG. In FIG. 2, the front view is shown on the top and the top view is shown on the bottom.

重なるように配置された2枚の金属板(金属板A1と金属板B2)の間に、高周波電源4から給電点7を経て、給電用の配線によって高周波電圧を印加し、金属板間に高周波電流(周波数1kHz〜1000kHz)を流す。給電点7は、金属板A1と金属板B2それぞれの表面に設けられており、金属板A1の表面に設けられた給電点を7A、金属板B2の表面に設けられた給電点を7Bとする。   A high frequency voltage is applied between the two metal plates (metal plate A1 and metal plate B2) arranged so as to overlap from the high frequency power source 4 via the feeding point 7 and by the wiring for feeding, and the high frequency is generated between the metal plates. A current (frequency 1 kHz to 1000 kHz) is applied. The feeding point 7 is provided on the surface of each of the metal plate A1 and the metal plate B2. The feeding point provided on the surface of the metal plate A1 is 7A, and the feeding point provided on the surface of the metal plate B2 is 7B. .

金属板A1の表面には、複数の電位測定点1〜nが設けられ、各電位測定点にはそれぞれ導線3が1本ずつ接続される。そして、金属板A1の金属板表面の電位分布を、金属板A1の表面の電位測定点1〜nに接続された導線3を介して測定する。この際、図に示すように、高周波電源4から金属板A1の表面に設けられた給電点7Aを電位の基準であるGround6とし、電位測定点1〜nとGround6との電位差を電位差測定器5にて測定し、金属板A1表面の電位分布を求める。   A plurality of potential measurement points 1 to n are provided on the surface of the metal plate A1, and one conductive wire 3 is connected to each potential measurement point. And the electric potential distribution of the metal plate surface of the metal plate A1 is measured via the conducting wire 3 connected to the potential measurement points 1 to n on the surface of the metal plate A1. At this time, as shown in the figure, a feeding point 7A provided on the surface of the metal plate A1 from the high-frequency power source 4 is set as Ground 6, which is a reference for potential, and the potential difference between the potential measuring points 1 to n and Ground 6 is measured by the potential difference measuring device 5. To determine the potential distribution on the surface of the metal plate A1.

金属板A1は平坦な四角形とし、金属板B2の形状は任意とするものの、金属板A1は金属板B2の平坦な部分(以下、「フランジ部」とする)よりも大きく、金属板A1は金属板B2のフランジ部を完全に覆っているものとする。また、金属板A1と金属板B2のフランジ部は、略平行に配置され、また金属板A1と金属板B2との間には所定の隙間が設けられる。   Although the metal plate A1 is a flat square and the shape of the metal plate B2 is arbitrary, the metal plate A1 is larger than the flat portion of the metal plate B2 (hereinafter referred to as “flange”), and the metal plate A1 is a metal. It is assumed that the flange portion of the plate B2 is completely covered. Further, the flange portions of the metal plate A1 and the metal plate B2 are arranged substantially in parallel, and a predetermined gap is provided between the metal plate A1 and the metal plate B2.

金属板A1と金属板B2との間に流れる高周波電流の周波数が10kHzを超えるような高い周波数になった場合においても、電位分布を正確に測定できるようにするため、金属製の防護板8を高周波電流が流れる側と電位差測定する側を分離するように設置する。防護板8は、金属板A1と金属板B2それぞれの表面から垂直に(上下)Δz=20mm以上、金属板A1の端部から幅方向にΔx=10mm以上の大きさの鉄板とする。そして、防護板8を金属板A1および金属板B2が置かれたXY面に垂直な面(XZ面)に配置し、防護板8と金属板A1との最短の距離(Δy)は5mm以下となるようにする。なお、防護板8と金属板A1(あるいは防護板8と、金属板A1および金属板B2)は接触しても構わない。   In order to make it possible to accurately measure the potential distribution even when the frequency of the high-frequency current flowing between the metal plate A1 and the metal plate B2 exceeds 10 kHz, the metal protective plate 8 is provided. Install so that the side where the high-frequency current flows and the side where the potential difference is measured are separated. The protective plate 8 is an iron plate having a size of Δz = 20 mm or more perpendicularly (up and down) from the respective surfaces of the metal plate A1 and the metal plate B2 and Δx = 10 mm or more in the width direction from the end of the metal plate A1. The protective plate 8 is arranged on a plane (XZ plane) perpendicular to the XY plane on which the metal plate A1 and the metal plate B2 are placed, and the shortest distance (Δy) between the protective plate 8 and the metal plate A1 is 5 mm or less. To be. The protective plate 8 and the metal plate A1 (or the protective plate 8, the metal plate A1, and the metal plate B2) may be in contact with each other.

防護板8には複数の穴9(直径3mm以下)が空けられており、この穴9に電位分布を測定する導線3を通し、金属板A1表面の電位測定点1〜nとGround 6との電位差を測定する電位差測定器5とを接続する。導線3は、給電用の配線とは反対の方向から金属板A1表面に接続されるようにする。Ground6を電位の基準として測定することから、Ground6への配線は導線3と同じ方向からなされる。なお、金属板A1と防護板8との間の導線の長さは可能な範囲で短くした方がノイズの影響が小さくなる。   A plurality of holes 9 (diameter 3 mm or less) are formed in the protective plate 8, and the lead wire 3 for measuring the potential distribution is passed through the hole 9, and the potential measurement points 1 to n on the surface of the metal plate A 1 and Ground 6 are connected. A potential difference measuring device 5 for measuring the potential difference is connected. The conducting wire 3 is connected to the surface of the metal plate A1 from the opposite direction to the power supply wiring. Since measurement is performed using Ground 6 as a potential reference, wiring to Ground 6 is performed in the same direction as that of the conductive wire 3. Note that the influence of noise is reduced if the length of the conductive wire between the metal plate A1 and the protective plate 8 is shortened as much as possible.

金属板A1の板厚を薄くするほどノイズの影響が小さくなるため、金属板A1の板厚は1. 0mm未満とするが、望ましくは0.1〜0.5mmである。板厚を0.1mm未満とした場合、測定は可能であるが、剛性が低くなるため、0.1 mm以上とする。また、板厚が1. 0mm未満であればノイズの影響を受けずに測定することが可能であるが、ノイズの影響をさらに小さくするため、0.5mm以下の範囲とすることが望ましい。   Since the influence of noise is reduced as the plate thickness of the metal plate A1 is reduced, the plate thickness of the metal plate A1 is set to less than 1.0 mm, preferably 0.1 to 0.5 mm. If the plate thickness is less than 0.1 mm, measurement is possible, but the rigidity is low, so it should be 0.1 mm or more. In addition, if the plate thickness is less than 1.0 mm, it is possible to measure without being affected by noise, but in order to further reduce the influence of noise, it is desirable to set the thickness within a range of 0.5 mm or less.

防護板の板厚は、以下(1)式の条件を満足するように設定する。   The thickness of the protective plate is set so as to satisfy the condition of the following formula (1).

Figure 2015148596
Figure 2015148596

金属体の表面に電磁波が垂直に入射した場合、電磁波は金属板内で減衰する。金属板表面の電界(磁界)強度に対して、1/e(約0.37倍)の電界(磁界)強度となる厚さを表皮厚さという(例えば、非特許文献1参照)。   When electromagnetic waves are perpendicularly incident on the surface of the metal body, the electromagnetic waves are attenuated within the metal plate. The thickness at which the electric field (magnetic field) intensity is 1 / e (about 0.37 times) the electric field (magnetic field) intensity on the surface of the metal plate is referred to as the skin thickness (see Non-Patent Document 1, for example).

この(1)式は、上記表皮厚さを基準にその約7倍以上を防護板の板厚として規定するものであり、後述する実施例で示すように下限値として見出したものである。   This formula (1) defines about 7 times or more as the plate thickness of the protective plate based on the above-mentioned skin thickness, and is found as the lower limit as shown in the examples described later.

ただし、防護板の板厚を厚くしすぎると、防護板自身重くなり扱い難くなってしまうとともに、費用も嵩むため、板厚の上限は5.0mmとする。また、周波数fが300Hz以下の場合には、発生するノイズそのものが小さくなるので、防護板がなくても測定は可能である。   However, if the plate thickness of the protective plate is too thick, the protective plate itself becomes heavy and difficult to handle, and the cost increases, so the upper limit of the plate thickness is 5.0 mm. Further, when the frequency f is 300 Hz or less, the generated noise itself becomes small, so that measurement is possible without a protective plate.

以上、本発明者らは,電源が供給される側と測定する側を、図2に示すように鉄板の防護板で分離し、電位分布を測定する金属板の板厚を1. 0mm未満とし、防護板の板厚を上記(1)式の条件を満足するように設定すると、上述の課題が解決できることを見出した。   As described above, the present inventors separate the power supply side and the measurement side with an iron plate protection plate as shown in FIG. 2, and set the thickness of the metal plate for measuring the potential distribution to less than 1.0 mm. It has been found that the above-mentioned problem can be solved by setting the thickness of the protective plate so as to satisfy the condition of the formula (1).

図3は、本実施例を示す図である。図3では、電位差測定器を省略している。また、−Y方向から防護板を見た図を下図の左に加えている。   FIG. 3 is a diagram showing this embodiment. In FIG. 3, the potentiometer is omitted. In addition, a view of the protective plate from the -Y direction is added to the left of the figure below.

板厚0.15 mmの金属板Aと板厚1.2 mmの金属板Bとの間に、図3に示すように、幅20mmの抵抗と高誘電体(コンデンサー)を10mmの間隔を空けて挟んで、通電部とした。そして、板厚1.2mmの鉄板を防護板とした。この防護板には、直径3mmの穴を5mmの間隔を空けて23個、電位差測定導線用として設け、さらに中央の電位差測定導線用穴の上部5mmのところに、Ground導線用の穴を1個設けている。   As shown in FIG. 3, between a metal plate A having a thickness of 0.15 mm and a metal plate B having a thickness of 1.2 mm, a resistor having a width of 20 mm and a high dielectric (capacitor) are sandwiched by 10 mm, A current-carrying part was used. An iron plate having a thickness of 1.2 mm was used as a protective plate. This protective plate has 23 holes with a diameter of 3 mm, 5 mm apart, and is provided for the potentiometric lead, and one hole for the ground lead is located 5 mm above the central potentiometer lead. Provided.

金属板A、B間に0.3Hz〜300kHzの高周波電圧を印加し、金属板Aの表面に設けた給電点7AをGroundとして、防護板を通して金属板A表面の電位分布を測定した。金属板Aの通電部では、通電部の周囲から電流が流れ(集まり)、金属板Bへ電流が流れるため、周囲より電位が低くなる。つまり、通電部で電位が極小値を示す。   A high frequency voltage of 0.3 Hz to 300 kHz was applied between the metal plates A and B, and the potential distribution on the surface of the metal plate A was measured through the protective plate with the feeding point 7A provided on the surface of the metal plate A as Ground. In the current-carrying part of the metal plate A, current flows (collects) from the periphery of the current-carrying part, and current flows to the metal plate B, so that the potential is lower than the surroundings. That is, the electric potential has a minimum value at the energizing portion.

金属板A,Bに挟まれた抵抗は、印加される電圧が直流でも高い周波数でも通電部となる。しかしながら、高誘電体(コンデンサー)部は、印加される電圧の周波数が低い場合にはインピーダンスが高く通電部とならないが、周波数が高い場合インピーダンスが低くなり通電部となる。   The resistor sandwiched between the metal plates A and B becomes a current-carrying part regardless of whether the applied voltage is direct current or high frequency. However, the high dielectric (capacitor) portion has a high impedance when the frequency of the applied voltage is low and does not become a conducting portion, but when the frequency is high, the impedance becomes low and becomes a conducting portion.

図4は、本実施例における結果を示す図である。印加電圧の周波数が0.3Hzの場合、コンデンサー部は通電部となっていないが、抵抗部は通電部となっていることが分かる。そして、印加電圧の周波数が高くなり、10kHz以上となった場合には、抵抗部だけではなくコンデンサー部も通電部となっていることが測定された。   FIG. 4 is a diagram showing the results in this example. When the frequency of the applied voltage is 0.3 Hz, it can be seen that the capacitor portion is not an energization portion, but the resistance portion is an energization portion. And when the frequency of the applied voltage became high and became 10 kHz or more, it was measured that not only a resistance part but a capacitor | condenser part was an electricity supply part.

図5は、比較例における結果を示す図である。すなわち、防護板なしで、周波数30kHzと300kHzで電位分布測定を行った場合の結果である。周波数30kHzでは、図4で確認できていた高誘電体(コンデンサー)部が通電部となっていないことが分かる。また、周波数300kHzでは、分布のバラツキが大きくなっており、通電部の確認ができない状態である。さらに、金属板Aの板厚を1.0mmとして防護板を使用した場合について同じ測定を行ったが、ノイズのため電位分布は測定できなかった。   FIG. 5 is a diagram showing the results in the comparative example. That is, the results are obtained when the potential distribution is measured at frequencies of 30 kHz and 300 kHz without a protective plate. It can be seen that at a frequency of 30 kHz, the high dielectric (capacitor) portion that has been confirmed in FIG. In addition, at a frequency of 300 kHz, the dispersion of the distribution is large, and it is in a state where the energization part cannot be confirmed. Furthermore, the same measurement was performed when the protective plate was used with the metal plate A having a thickness of 1.0 mm, but the potential distribution could not be measured due to noise.

そこで、ノイズの評価方法として、以下に示すノイズの評価値NDを定義する。ノイズの評価値NDが10−5以上の場合には、測定が不安定となるため(測定値のばらつきが大きくなるため)、測定不可と判断する。 Therefore, a noise evaluation value ND shown below is defined as a noise evaluation method. When the noise evaluation value ND is 10 −5 or more, the measurement becomes unstable (because the variation of the measurement value becomes large), and it is determined that the measurement is impossible.

先ず、各電位分布から測定点i(i=1〜N)の基準電位を参照電位Vr(i)とする。次に、防護板の材質、板厚、印加する電圧の周波数を変化させて電位分布を測定し、同じ測定点(i)での測定値をV(i)とする。そして、以下の(2)式でノイズの評価値NDを定義する。参照電位は、妥当な条件で測定された測定値を用いるなど、適宜好適な方法で決定してよい。この場合,参照電位は板厚1.2mmの鉄板を防護板とした場合に測定された電位とする。   First, the reference potential Vr (i) is set to the reference potential at the measurement point i (i = 1 to N) from each potential distribution. Next, the potential distribution is measured by changing the material of the protective plate, the plate thickness, and the frequency of the applied voltage, and the measured value at the same measurement point (i) is defined as V (i). The noise evaluation value ND is defined by the following equation (2). The reference potential may be appropriately determined by a suitable method such as using a measured value measured under appropriate conditions. In this case, the reference potential is the potential measured when an iron plate with a thickness of 1.2 mm is used as the protective plate.

Figure 2015148596
Figure 2015148596

防護板の材質、板厚、印加する電圧の周波数を変えて電位を測定して、(2)式でノイズの評価値NDを求めた。そして、NDが10−5未満となる板厚を、各周波数での測定可能な板厚とした。 The potential was measured by changing the material of the protective plate, the thickness of the plate, and the frequency of the applied voltage, and the noise evaluation value ND was obtained using equation (2). And the plate | board thickness from which ND becomes less than 10 < -5 > was made into the plate | board thickness which can be measured in each frequency.

図6は、防護板が鉄の場合における板厚とノイズの評価値NDの関係を示す図である。周波数(100Hz〜300kHz)を変化させて、板厚とノイズの評価値NDの関係を調べた結果である。また、図7は、防護板が鉄の場合における測定が可能となる板厚と周波数の関係を示す図である。   FIG. 6 is a diagram showing the relationship between the plate thickness and the noise evaluation value ND when the protective plate is iron. This is the result of examining the relationship between the plate thickness and the noise evaluation value ND by changing the frequency (100 Hz to 300 kHz). FIG. 7 is a diagram showing the relationship between the plate thickness and the frequency at which measurement is possible when the protective plate is iron.

図7は、図6を元にして、ノイズの評価値NDが10−5未満となる板厚と周波数を黒丸でプロットしたもの(測定値)と、鉄のμとσを一般的な値、すなわちμ=5.03×10−3[H/m] (透磁率(真空)1.257×10−6(H/m)×比透磁率(鉄)4000)、σ=1.0×107[1/(Ω・m)](非特許文献3参照)として、前記(1)式で求めた板厚(計算値)とを合わせて示している。測定値は、板厚の下限を示す計算値と同じか上回っており、(1)式で求めた条件を満たす場合に測定が可能となることが分かる。 FIG. 7 is based on FIG. 6 and plots the thickness and frequency at which the noise evaluation value ND is less than 10 −5 (measured values), and the iron μ and σ are general values. That is, μ = 5.03 × 10 −3 [H / m] (permeability (vacuum) 1.257 × 10 −6 (H / m) × relative permeability (iron) 4000), σ = 1.0 × 10 7 [1 / (Ω M)] (see Non-Patent Document 3), the thickness (calculated value) obtained by the above equation (1) is also shown. The measured value is the same as or exceeds the calculated value indicating the lower limit of the plate thickness, and it can be seen that the measurement is possible when the condition obtained by the equation (1) is satisfied.

次に、防護板がアルミの場合における実施例を示す。図8は、防護板がアルミの場合における板厚(0〜30mm)とノイズの評価値NDの関係を示す図である。さらに、図9は、防護板がアルミの場合における板厚(0〜10mm)とノイズの評価値NDの関係を示す図であり、図8の板厚(0〜10mm)を拡大して示したものである。   Next, an example in which the protective plate is aluminum will be described. FIG. 8 is a diagram showing the relationship between the plate thickness (0 to 30 mm) and the noise evaluation value ND when the protective plate is aluminum. Further, FIG. 9 is a diagram showing the relationship between the plate thickness (0 to 10 mm) and the noise evaluation value ND when the protective plate is aluminum, and shows the plate thickness (0 to 10 mm) in FIG. 8 in an enlarged manner. Is.

そして、前記した材質が鉄の場合と同じように、図10は、防護板がアルミの場合における測定が可能となる板厚と周波数の関係を示す図である。図8を元にして、ノイズの評価値NDが10−5未満となる板厚と周波数を黒丸でプロットしたもの(測定値)と、アルミのμとσを一般的な値、すなわちμ=1.26×10−6[H/m] (透磁率(真空)1.257×10−6(H/m)×比透磁率(アルミ)1.00)(非特許文献3参照)、σ=3.75×107[1/(Ω・m)](非特許文献2参照)として、前記(1)式で求めた板厚(計算値)とを合わせて示している。 As in the case where the above-described material is iron, FIG. 10 is a diagram showing the relationship between the plate thickness and the frequency at which measurement is possible when the protective plate is aluminum. Based on FIG. 8, the plate thickness and frequency at which the noise evaluation value ND is less than 10 −5 are plotted (measured values), and μ and σ of aluminum are general values, that is, μ = 1.26. × 10 −6 [H / m] (permeability (vacuum) 1.257 × 10 −6 (H / m) × relative permeability (aluminum) 1.00) (see Non-Patent Document 3), σ = 3.75 × 10 7 [1 / (Ω · m)] (see Non-Patent Document 2), the thickness (calculated value) obtained by the above equation (1) is also shown.

測定値は、板厚の下限を示す計算値とほぼ一致しており、アルミの場合でも(1)式で求めた条件を満たす場合に測定が可能となることを確認した。   The measured value almost coincided with the calculated value indicating the lower limit of the plate thickness, and it was confirmed that even in the case of aluminum, the measurement can be performed when the condition obtained by the equation (1) is satisfied.

以上、印加する高周波電圧の周波数が10kHzを超えるような高い周波数になった場合においても、電位分布の測定が可能となり、本発明の有効性を確認することができた。   As described above, even when the frequency of the applied high-frequency voltage is a high frequency exceeding 10 kHz, the potential distribution can be measured, and the effectiveness of the present invention can be confirmed.

1 金属板A
2 金属板B
3 導線
4 高周波電源
5 電位差測定器
6 Ground
7 給電点
7A 金属板Aの表面に設けられた給電点
7B 金属板Bの表面に設けられた給電点
8 防護板
9 穴
1 Metal plate A
2 Metal plate B
3 Conductor 4 High frequency power supply 5 Potential difference measuring device 6 Ground
7 Feeding point 7A Feeding point provided on the surface of the metal plate A 7B Feeding point provided on the surface of the metal plate B 8 Guard plate 9 Hole

Claims (4)

金属板間の隙間から漏洩する電磁波の評価にあたって、直流電流に対して通電部とならないが、高周波電流に対して通電部となる場合における通電部の位置を測定する通電部の位置測定方法において、
前記金属板の一方の金属板の表面に複数の導線を接続し、接続した金属板の表面位置を測定点とし、
前記金属板それぞれの表面に設けた給電点に高周波電圧を印加し前記金属板間に高周波電流を流し、
前記導線を接続した一方の金属板表面の給電点を電位の基準として前記測定点と前記金属板表面の給電点との電位差測定を、高周波電流が流れる側と電位差を測定する側を分離するように設置した防護板を介して行い、
測定した電位差に基づいて、金属板表面に生ずる電位分布を求め、該電位分布から通電部を決定することを特徴とする通電部の位置測定方法。
In the evaluation of electromagnetic waves leaking from the gap between the metal plates, it does not become a current-carrying part for direct current, but in the method of measuring the position of the current-carrying part when it becomes a current-carrying part for high-frequency current,
A plurality of conductive wires are connected to the surface of one metal plate of the metal plate, the surface position of the connected metal plate as a measurement point,
Applying a high frequency voltage to a feeding point provided on the surface of each of the metal plates to flow a high frequency current between the metal plates,
The potential difference measurement between the measurement point and the feeding point on the metal plate surface is separated from the side where the high-frequency current flows from the side where the potential difference is measured, with the feeding point on the surface of the one metal plate connected to the conducting wire as a potential reference. Through the protective plate installed in
A method for measuring a position of a current-carrying part, wherein a potential distribution generated on a surface of a metal plate is obtained based on the measured potential difference, and a current-carrying part is determined from the potential distribution.
請求項1に記載の通電部の位置測定方法において、
前記導線を接続した一方の金属板の板厚を1.0mm未満とし、
前記防護板の板厚は、以下の(1)式で規定される板厚であることを特徴とする通電部の位置測定方法。
Figure 2015148596
In the method for measuring the position of the energization unit according to claim 1,
The plate thickness of one metal plate connected to the conducting wire is less than 1.0 mm,
The thickness of the said protection board is a board thickness prescribed | regulated by the following (1) Formula, The position measuring method of the electricity supply part characterized by the above-mentioned.
Figure 2015148596
金属板間の隙間から漏洩する電磁波の評価にあたって、直流電流に対して通電部とならないが、高周波電流に対して通電部となる場合における通電部の位置を測定する通電部の位置測定装置において、
前記金属板間に高周波電流を流すための、前記金属板それぞれの表面に設けた給電点に高周波電圧を印加する高周波電源と、
前記金属板の一方の金属板の表面に接続した複数の導線と、
該導線を接続した一方の金属板表面の給電点を電位の基準として、前記導線を接続した金属板の表面位置である測定点と前記金属板表面の給電点との電位差を測定する電位差測定器と、
高周波電流が流れる側と電位差を測定する側を分離するように設置した防護板と、
前記測定した電位差に基づいて、金属板表面に生ずる電位分布を求め、該電位分布から通電部を決定する手段と、を備えることを特徴とする通電部の位置測定装置。
In the evaluation of electromagnetic waves leaking from the gap between the metal plates, it does not become an energization part for direct current, but in the position measurement device of the energization part for measuring the position of the energization part when it becomes an energization part for a high-frequency current,
A high frequency power source for applying a high frequency voltage to a feeding point provided on the surface of each of the metal plates for flowing a high frequency current between the metal plates;
A plurality of conductive wires connected to the surface of one of the metal plates;
A potential difference measuring device for measuring a potential difference between a measurement point which is a surface position of the metal plate to which the conducting wire is connected and a feeding point on the surface of the metal plate, with a feeding point on the surface of one metal plate to which the conducting wire is connected as a reference of potential. When,
A protective plate installed to separate the side where the high-frequency current flows and the side where the potential difference is measured,
An apparatus for measuring a position of a current-carrying part, comprising: means for obtaining a potential distribution generated on the surface of the metal plate based on the measured potential difference, and determining a current-carrying part from the potential distribution.
請求項3に記載の通電部の位置測定装置において、
前記導線を接続した一方の金属板の板厚は1.0mm未満であり、
前記防護板の板厚は、以下の(1)式で規定される板厚であることを特徴とする通電部の位置測定装置。
Figure 2015148596
In the position measuring device of the energization part according to claim 3,
The thickness of one of the metal plates to which the conducting wire is connected is less than 1.0 mm,
The thickness of the said protection board is a board thickness prescribed | regulated by the following (1) Formula, The position measuring apparatus of the electricity supply part characterized by the above-mentioned.
Figure 2015148596
JP2014245535A 2014-01-10 2014-12-04 Method and apparatus for measuring position of energization unit Expired - Fee Related JP6142865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245535A JP6142865B2 (en) 2014-01-10 2014-12-04 Method and apparatus for measuring position of energization unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014002807 2014-01-10
JP2014002807 2014-01-10
JP2014245535A JP6142865B2 (en) 2014-01-10 2014-12-04 Method and apparatus for measuring position of energization unit

Publications (2)

Publication Number Publication Date
JP2015148596A true JP2015148596A (en) 2015-08-20
JP6142865B2 JP6142865B2 (en) 2017-06-07

Family

ID=53892038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245535A Expired - Fee Related JP6142865B2 (en) 2014-01-10 2014-12-04 Method and apparatus for measuring position of energization unit

Country Status (1)

Country Link
JP (1) JP6142865B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068616A (en) * 1988-08-05 1991-11-26 Merlin Gerin Monitoring process and device of a quasi-closed electromagnetic shield
JPH09180942A (en) * 1995-12-26 1997-07-11 Mitsubishi Denki Bill Techno Service Kk Electronic apparatus
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068616A (en) * 1988-08-05 1991-11-26 Merlin Gerin Monitoring process and device of a quasi-closed electromagnetic shield
JPH09180942A (en) * 1995-12-26 1997-07-11 Mitsubishi Denki Bill Techno Service Kk Electronic apparatus
JP2009058324A (en) * 2007-08-31 2009-03-19 Jfe Steel Kk Position measuring method and device for current-carrying part

Also Published As

Publication number Publication date
JP6142865B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
EP2975417B1 (en) Measurement device and mounting unit
JP5157323B2 (en) Method and apparatus for measuring position of current-carrying part
JP2018501757A5 (en)
JP2015518275A5 (en)
JP6305639B2 (en) Current detector
RU2019121920A (en) METHOD FOR MEASURING ELECTRICAL CABLE IMPEDANCE, CONNECTOR LAYOUT AND THEIR APPLICATION
JP6234858B2 (en) Piezoelectric sensor
JP6142865B2 (en) Method and apparatus for measuring position of energization unit
US20150042343A1 (en) Object finder
JP2014066589A (en) Current detection device
Fujii et al. Highly sensitive partial discharge detection by TEV method under severe noise conditions
US20150114220A1 (en) Piston-cylinder unit with evaluation unit for determining the piston position
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
JP4998682B2 (en) Electromagnetic leakage evaluation method and apparatus
JP2017022303A (en) Transistor
JP5456591B2 (en) Method and apparatus for measuring position of energization unit
JP2011252780A (en) Detection method of partial discharge of electrical device using magnetic field probe
Kühn et al. Analytical calculation of intrinsic shielding effectiveness for isotropic and anisotropic materials based on measured electrical parameters
JP5139136B2 (en) Induction heating device
JP2023030379A (en) partial discharge detector
JP2020064012A (en) Antenna for partial discharge detection
US11731285B2 (en) Apparatus provided with a capacitive detection and electric line(s) in the capacitive detection zone
JP7453718B1 (en) Surface potential measuring device
RU157849U1 (en) GAP CONTROL DEVICE
JP2011232063A (en) Method and device for measuring potential distribution of metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6142865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees