JP2009026400A - 差動磁気抵抗効果型磁気ヘッド - Google Patents

差動磁気抵抗効果型磁気ヘッド Download PDF

Info

Publication number
JP2009026400A
JP2009026400A JP2007189631A JP2007189631A JP2009026400A JP 2009026400 A JP2009026400 A JP 2009026400A JP 2007189631 A JP2007189631 A JP 2007189631A JP 2007189631 A JP2007189631 A JP 2007189631A JP 2009026400 A JP2009026400 A JP 2009026400A
Authority
JP
Japan
Prior art keywords
free layer
differential
magnetic
soft magnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007189631A
Other languages
English (en)
Inventor
Hiroyuki Hoshiya
裕之 星屋
Katsumi Hoshino
勝美 星野
Hiroyuki Katada
裕之 片田
Kenichi Meguro
賢一 目黒
Akira Sato
陽 佐藤
Kazuhiro Nakamoto
一広 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2007189631A priority Critical patent/JP2009026400A/ja
Priority to US12/218,860 priority patent/US8174799B2/en
Publication of JP2009026400A publication Critical patent/JP2009026400A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

【課題】高い分解能と高い製造安定性を実現することのできる1素子型の差動磁気抵抗効果型磁気ヘッドを提供する。
【解決手段】磁気抵抗効果積層膜10は、下地膜14、反強磁性膜11、強磁性固定層15、非磁性中間層12、軟磁性自由層13、長距離反平行結合積層膜17、差動軟磁性自由層16を積層してなる。長距離反平行結合積層膜17は、軟磁性自由層13と差動軟磁性自由層16を3ナノメートル〜20ナノメートル離して反平行状態に交換結合させる。この磁気抵抗効果積層膜10を用いた1素子型の差動磁気抵抗効果型磁気ヘッドを作製することによって、GMR効果を損なうことなく、高い分解能と高い製造安定性を実現することが可能になる。
【選択図】図1

Description

本発明は、磁気記録再生装置に搭載される磁気ヘッドに関し、特に、高記録密度磁気記録再生装置用の差動磁気抵抗効果型磁気ヘッドに関する。
磁気抵抗効果型磁気ヘッドは、ハードディスクを主体とする高記録密度磁気記録技術のなかで再生センサとして用いられ、磁気記録技術の性能を大きく左右する部分である。磁気記録再生装置の記録密度が急速に高まるなかで、従来の技術では、記録密度の充分に高い磁気記録再生装置、特にその再生部に外部磁界に対して十分な感度と出力で作用する磁気抵抗効果型磁気ヘッドを実現し、さらに十分に安定性の良い良好な特性を得ることができず、記憶装置としての機能を実現することが困難であった。
近年、強磁性金属層を、非磁性金属層を介して積層した多層膜の磁気抵抗効果、いわゆる巨大磁気抵抗効果が大きいことが知られている。従来、この磁気抵抗効果膜を磁気センサとして用いる際には、積層膜の面内で電流を通電する、いわゆるCIP-GMR膜が用いられている。さらに、電流を積層膜の膜厚方向に流す、垂直電流型巨大磁気抵抗効果膜、いわゆるCPP-GMR膜も最近研究されている。同様に電流を積層膜の膜厚方向に流すトンネル磁気抵抗効果を用いたTMR膜も研究、開発されている。
従来の磁気抵抗効果型磁気センサを用いた磁気ヘッドの欠点は、線密度方向の高い分解能が実現できない点である。従来の磁気ヘッドでは、線密度方向の分解能は、一対の磁気シールドの間隔で定義される再生ギャップで決定される。この磁気シールドの間隔を狭めれば線密度方向に対して高い分解能を実現できるわけだが、この磁気シールドの間隔の中に磁気抵抗効果型磁気センサを配置する必要があるから、当然、磁気シールドの間隔は磁気抵抗効果型磁気センサの厚さにより幾何学的な制限を受ける。
さらに詳細には、磁気抵抗効果型センサの磁界を感知する部分、ここでは軟磁性自由層と呼ぶ部分が、磁気シールド間隔の中心近傍に配置されることが望ましい。これは、上記軟磁性自由層が磁気シールドの片側に接触もしくは極端に近接するように配置すると、検出すべき記録媒体からの漏洩磁束が、感知すべき磁気抵抗効果型磁気センサの軟磁性自由層よりも、より厚くて透磁率の高い磁気シールドに多く流入してしまって磁気抵抗効果型磁気センサの出力を低下させてしまうからである。
ここで、磁気抵抗効果型磁気センサの厚さについて述べる。現在ハードディスク用磁気ヘッドに用いられている磁気抵抗効果型磁気センサは、上述のCIP-GMR膜、TMR膜、また開発研究が行われている磁気センサとしてCPP-GMR膜があるが、基本的構成として広く用いられている構成が積層フェリ型スピンバルブ構造である。すなわち、下地膜、反強磁性膜、第1の強磁性固定層、反平行結合層、第2の強磁性固定層、非磁性中間層、軟磁性自由層、保護層、を基本構成とする。この中で最も厚いのは反強磁性膜であって、その厚さは8nm程度であろう。代表的な厚さを列挙して合計厚さを試算すると、下地膜側から、4+8+2+1+2+2+4+2=25nmとなって、上記構成の合計膜厚はおよそ25nm近傍である。この構成のうち、軟磁性自由層は全合計のうちの片側の端に配置されているので、軟磁性自由層を上述した磁気シールドに近接しすぎないように配置するために、例えば5nm程度の導電膜を保護膜に追加する必要がある。
したがって、従来型の磁気抵抗効果型磁気センサを用いた磁気ヘッドでは、磁気シールド間隔は磁気抵抗効果型磁気センサの厚さに起因して、25+5=30nm程度が限界であって、処々の膜厚を削減する努力によって多少は詰めることができたとしても、30nmより狭く、特に20nm以下に狭く作製することはきわめて困難である。
一方、以前から提案されている技術として、差動型磁気ヘッドがある。広い意味の差動型磁気ヘッドには、磁気ギャップを有した磁気ヨークを用いて、磁気ギャップに流入した磁束を検知する磁気ヘッドが含まれるが、この磁気ヨーク型差動磁気ヘッドは、昨今の0.1μm以下のトラック幅を有する微小な磁気ヘッドでの実現が困難であるので、議論の範疇から除外することにする。ここで従来技術として述べるのは、線密度方向に離れた位置の信号を読み取る磁気抵抗効果型磁気センサであって、上記離れた位置の信号に対して差動動作する磁気ヘッドである。特許文献1には、異方性磁気抵抗効果センサを用いた2素子型磁気抵抗効果型ヘッドの記載がある。昨今の磁気ヘッド技術に近いものとしては、特許文献2および3に記述があるように、線密度方向に離れた位置に配置した2つの磁気抵抗効果センサを形成し、その信号が同相の磁界に対してはキャンセルし、異相すなわち差動の磁界に対しては信号が強めあうように作製することができる。これらの技術の求めるところは、線密度方向に離れた位置に配置した2つのセンサの信号を差動動作させることによって、従来の磁気ヘッドでは線密度方向の分解能が磁気シールド間隔で決まるのに対して、2つのセンサの離間距離で分解能を決めることであって、すなわち従来の磁気ヘッドよりも高い分解能を実現させることが目的である。
特開平7-85426号公報 特開2003-69109号公報 特開2004−227749号公報 特開2002−151758号公報 USP5,408,377
上記のような2素子型差動磁気ヘッドの問題点は、製品としての量産が困難なことにある。2つのセンサを差動動作させて一つの信号を得る性質上、1つのセンサからなる従来の磁気ヘッドに比べて2倍の不良・ばらつき率を発生させることになるからである。例えば、磁気ヘッドの製造上のばらつきとして、出力ばらつきと波形対称性のばらつきがある。従来の磁気ヘッドでは出力ばらつきを例えば±10%に抑えて製造できたと仮定しよう。同じ技術で2素子型の差動磁気ヘッドを作製すると、出力ばらつきは単純に2つの素子のばらつきの加算となって±20%になってしまう。また波形対称性ばらつきを±20%に抑えるために、磁気ヘッドの選別を行って波形対象性が良好なヘッドのみを選別するとしよう。従来型の磁気ヘッドが不良率5%でできたとしたら、2素子型は2つの素子がどちらも良好な波形対称性をもつものを選別しなければならず、不良率はおよそ10%に倍増になる。このように、2素子型差動磁気ヘッドは高い分解能を得られるはずであるが、製造上の問題が大きく、昨今の高い記録密度と高い信頼性の要求される市場に対して実現されることがなかったのである。
本発明は、高い分解能と高い製造安定性を実現することのできる1素子型の差動磁気抵抗効果型磁気ヘッドを提供することを目的とする。
本発明では、上記課題を解決する手段として、軟磁性自由層と、差動軟磁性自由層と、両者を3ナノメートル〜20ナノメートル離れて反平行状態に交換結合させる長距離反平行結合積層膜(以下、単に反平行結合積層膜とも称す)を有する磁気抵抗効果積層センサ膜を用いる。このセンサ膜を用いた1素子型の差動磁気抵抗効果型磁気ヘッドを作製することによってGMR効果、あるいはTMR効果、を損なうことなく、高い分解能と高い製造安定性を実現することが可能になる。
長距離反平行結合積層膜は、偶数であるnに対して、n層の反平行磁性層(以下、単に磁性層とも称す)とn+1層の反平行結合層とを交互に繰り返し積層して構成される。反平行磁性層と、反平行結合層を挟んで隣接する次の反平行磁性層は、反平行結合層を介して反強磁性的に結合される。この構成により、従来2ナノメートルが上限であった反強磁性的な交換結合作用の到達間隔を3ナノメートル以上、20ナノメートル程度まで拡張することができる。nを偶数とすることで、長距離反平行結合積層膜を介して軟磁性自由層と差動軟磁性自由層とを互いの磁化が反平行に配列するような結合状態にすることができる。
反平行結合層は、Ru、Ir、Os、Re、Rhの中から選ばれた1種、もしくはこれらを主成分とする合金からなり、厚さ0.3から0.5ナノメートルもしくは厚さ0.7から1ナノメートルとする。このような構成とすることで、反平行結合層を介して反強磁性的な交換結合を発生させることができ、長距離反平行結合を実現することができる。
反平行磁性層は、CoFeあるいはNiFeを主成分とする磁性金属から構成し、軟磁性自由層、差動軟磁性自由層の各々と同等か、よりも少ない磁化量(飽和磁化と厚さの積の合計)を有し、代表的には、4ナノメートル・テスラ以下とするとよい。これは軟磁性自由層の磁化量が典型的にこの程度と考えられるからである。一般的にここで使用される磁性膜としては飽和磁束密度が1テスラ以上と考えられるから、厚さの代表的な条件は4ナノメートル程度であろう。また厚さは、0.5ナノメートル以上とする。このように構成することで、互いに隣接する反平行磁性層と軟磁性自由層、反平行磁性層と差動軟磁性磁性層のペア同士の間で反強磁性的な結合状態を実現するとともに、反平行磁性層の磁化量の影響を軟磁性自由層及び差動軟磁性自由層に比べて少なく設定でき、感知すべき磁界に対して軟磁性自由層及び差動軟磁性自由層がより支配的な動作を有するように形成することができる。
上記のように構成した長距離反平行結合積層膜を有する磁気抵抗効果積層膜をセンサとして用い、この1素子からなる差動磁気抵抗効果型磁気ヘッドを構成することで、感知すべき磁界を高い線記録密度方向の分解能で差動的に検知でき、かつ、製造時のばらつきが小さく歩留まりの高い差動磁気抵抗効果型磁気ヘッドおよび磁気記録再生装置を実現できる。
本発明によると、長距離反平行結合積層膜を介して反強磁性的に結合した軟磁性自由層と差動軟磁性自由層を有する磁気抵抗効果積層膜からなるセンサ1素子を用いた差動磁気ヘッドを実現することができ、高い線密度方向の分解能と、高い製造安定性を実現することができる。
実施例による磁気抵抗効果積層膜を構成する薄膜は、dcマグネトロンスパッタリング装置により以下のように作製した。アルゴン0.2から3ミリトールの雰囲気中にて、セラミックス基板に以下の材料を順次積層して作製した。スパッタリングターゲットとしてタンタル、ニッケル−鉄合金、銅、CoFe、MnIr、ルテニウム、の各ターゲットを用いた。積層膜は、各ターゲットを配置したカソードに各々dc電力を印加して装置内にプラズマを発生させておき、各カソードに配置されたシャッターを一つずつ開閉して順次各層を形成した。
膜形成時には、永久磁石を用いて基板に平行におよそ80エルステッドの磁界を印加して、一軸異方性をもたせた。形成した膜を、真空中、磁場中で270°C、3時間の熱処理を行ってMnIr反強磁性膜の交換結合磁界を着磁した。基体上の素子の形成はフォトレジスト工程によってパターニングした。その後、基体はスライダー加工し、磁気記録装置に搭載した。
作製した積層膜の磁化状態の測定には、振動試料型磁力計を用い、また、磁化状態解析には一斉回転磁化モデルにおける磁化エネルギー計算によるモデル解析を用いた。
図1に、本発明の代表的な磁気抵抗効果積層膜の積層構造を示す。磁気抵抗効果積層膜10は、下地膜14、反強磁性膜11、強磁性固定層15、非磁性中間層12、軟磁性自由層13、長距離反平行結合積層膜17、差動軟磁性自由層16を積層してなる。下地膜14は、磁気抵抗効果積層膜10の必須の構成要素というものではないが、磁気抵抗効果積層膜の結晶性および磁気特性を良好にするために有効な材料で構成することができるので、用いるのが望ましい。同様に磁気抵抗効果積層膜10の必須の構成要素ではないが、磁気抵抗効果積層膜10の上部に保護膜(図示せず)を配置すると予期せぬ酸化や腐食を防ぐことができて望ましい。
非磁性中間層12は、強磁性固定層15と軟磁性自由層13との間を磁気的に分離するとともに、強磁性固定層15と軟磁性自由層13との間を通過する電子を強磁性固定層15と軟磁性自由層13の磁化状態に応じて散乱・透過・または反射する磁気抵抗効果を生じさせる構成を有する。すなわち、巨大磁気抵抗効果積層膜のCu層、トンネル磁気抵抗効果積層膜のアルミナまたは酸化マグネシウムの絶縁層、また、CPP-GMR積層膜においては電流絞込み層を備えたカレントスクリーン層である。
強磁性固定層15は第1の強磁性膜151、反平行結合層154、第2の強磁性膜152からなり、第1の強磁性膜151と第2の強磁性膜152は、反平行結合層154を介して反強磁性的に結合し、かつ、第1の強磁性膜151が反強磁性膜11と交換結合する。このことによって、強磁性固定層15は感知すべき磁界に対して実質的に磁化が固定されてなる。このような強磁性固定層15の構成は、本発明の目的である高分解能に関しては直接の寄与はしないものではあるが、磁気ヘッド技術において広く使われている構成であって本発明においても好ましい構成例である。
同様に、軟磁性自由層13は、図示していないが2種類あるいはそれ以上の薄膜の積層体であってもよく、非磁性中間層12の側から、CoFe合金薄膜とNiFe合金薄膜の積層膜で構成するのが代表的な構成例である。
長距離反平行結合積層膜17は、厚さ3ナノメートル以上、20ナノメートル以内の厚さであって、軟磁性自由層13と差動軟磁性自由層16をその厚さ分だけ乖離させると同時に互いの磁化が反平行になるような反強磁性的な交換結合力を発生させる。
図2に、長距離反平行結合積層膜17の詳細構造例を加えた実施例による磁気抵抗効果積層膜10の積層構造を示す。図1について述べたのと同様に、磁気抵抗効果積層膜10は、反強磁性膜11、強磁性固定層15、非磁性中間層12、軟磁性自由層13、長距離反平行結合積層膜17、差動軟磁性自由層16を積層してなる。軟磁性自由層13、長距離反平行結合積層膜17、差動軟磁性自由層16の部分を拡大した構成例を図右部に示した。軟磁性自由層13に接して反平行結合層171が積層され、さらに反平行磁性層172が積層される。反平行結合層171と反平行磁性層172の積層は複数回繰り返される。図2の構成例では、n=4としたときの構成を示した。長距離反平行結合積層膜17は、(n+1)層の反平行結合層171とn層の反平行磁性層172が軟磁性自由層13と差動軟磁性自由層16の間に交互に積層されてなる。個々の反平行結合層171を介してサンドイッチ状に形成された2枚の磁性層(軟磁性自由層13、差動自由層16、もしくは反平行磁性層172)の間に反強磁性的な結合力(図中矢印J)を発生させる。n回の反平行結合層171と反平行磁性層172の繰り返しによって、隣接する2つの磁性層の結合力は積層膜の厚さ方向に繰り返され、結果として3ナノメートル以上離れて積層された軟磁性自由層13と差動軟磁性自由層16の間に互いの磁化を反平行に並べようとする反強磁性的な結合力を機能させることができるのである。
次に、反強磁性的な結合力の機能を図3を用いて説明する。図3は軟磁性自由層13と差動軟磁性自由層16の同相磁界および差動磁界に対する挙動を示した図である。ここで同相磁界とは、軟磁性自由層13と差動軟磁性自由層16に正負の方向が同一の磁界が印加される状態をいい、同様に差動磁界とは、正負逆符号の磁界が印加される状態のことを述べている。感知すべき磁界が印加されていない状態で、軟磁性自由層13と差動軟磁性自由層16の磁化は互いに反平行になっている。これは両者の間に長距離反平行結合積層膜17を介して反強磁性的な交換結合力が働いているからである。図3では、軟磁性自由層13の磁化が右、差動軟磁性自由層16の磁化が左を向いた状態を初期状態とした。このような初期状態を生じる磁区制御構造については後に述べる。感知すべき磁界の印加方向は紙面の奥行側(正とした)もしくは紙面手前側(負とした)である。
まず同相磁界の場合について説明すると(図3左)、軟磁性自由層13および差動軟磁性自由層16に共に正(この図では紙面の奥行方向)の磁界が印加された場合、軟磁性自由層13の磁化は印加された磁界(+H)によって左回りに回転しようとする。同時に、差動軟磁性自由層16の磁化は印加された磁界(+H)によって右回りに回転しようとする。両者が長距離反平行結合積層膜17を介した反強磁性的な交換結合力で互いの磁化方向を反平行にするように結びついていることで、この左および右回りの動作は互いにキャンセルしあい、軟磁性自由層13および差動軟磁性自由層16の磁化回転は相殺される。
次に差動磁界の場合について説明する(図3右)。軟磁性自由層13に正、差動軟磁性自由層16に負の磁界が印加された場合、軟磁性自由層13の磁化は印加された磁界(+H)によって左回りに回転しようとする。同様に、差動軟磁性自由層16の磁化は印加された磁界(−H)によってやはり左回りに回転しようとする。両者が長距離反平行結合積層膜を介した反強磁性的な交換結合力で互いの磁化方向を反平行にするように結びついているが、ともに左回りの動作であるので軟磁性自由層13および差動自由層16の磁化回転が発生し、結果、差動磁界に対しては大きな磁気抵抗変化を発生させるのである。
以上のように、実施例による磁気抵抗効果積層膜は、反強磁性的に結合した軟磁性自由層と差動軟磁性自由層を有することで感知すべき磁界に対して差動動作するのである。
図4に上記磁気抵抗効果積層膜を内蔵する差動磁気ヘッドの、一斉回転モデル磁化過程計算による信号特性を示す。計算では軟磁性自由層13と差動軟磁性自由層16に同じ符号の感知すべき磁界を加えた同相磁界の場合と、両者に符号を逆にした感知すべき磁界を加えた差動磁界の場合の磁気抵抗変化を計算した。本計算はセンサ端部の反磁界を考慮していないが、磁化状態の初期状態を安定に保つため軟磁性自由層13と差動軟磁性自由層16にそれぞれ磁区制御バイアス磁界を図中矢印19および18の方向に800エルステッド加えた計算を行った。ここではJ=-1 erg/cm2、センサの最大の抵抗変化率を10%とした。図中◇は同相磁界の場合の磁気抵抗変化で、同相磁界に対する出力は完全にゼロではない。これは軟磁性自由層13と差動軟磁性自由層16の間の反強磁性結合磁界が無限大に大きいとゼロになり、高い反強磁性結合磁界が得られるほど同相磁界における出力をゼロに近づけることができる。一方、◆は差動磁界の磁気抵抗変化で、同相磁界に対する出力に比べて数倍大きい。これは図3で説明したように、軟磁性自由層13と差動軟磁性自由層16の磁化が差動磁界に対して回転するよう構成されているからである。
続いて、磁気抵抗効果積層膜10の軟磁性自由層13と差動軟磁性自由層16の間隔、および長距離反平行結合積層膜17について述べる。従来技術では、互いの磁化が反強磁性的に結合した磁性膜の応用技術が知られている。例えば、特許文献4には、類似の従来構造として、反強磁性的に結合した2つの磁性層からなる軟磁性自由層、いわゆる積層フェリ自由層を用いた磁気記録システムの記述がある。本発明の構成が、上記従来技術と異なる点の一つは、その層間の結合の間隔である。従来技術では、反強磁性的に結合した2つの磁性層は一枚の反平行結合膜を介して交換結合している。特許文献5の図7にはこの反平行結合膜としてRuを用いた場合のRu厚さ依存性が記載されており、これによると、2層の自由層の間の間隔は1ナノメートル(10オングストローム)以下で1キロエルステッド以上の強い反強磁性的結合磁界が観測されている。一方、Ruの厚さが2ナノメートル(20オングストローム)では、500エルステッドより小さい、弱い反強磁性的結合磁界が観測されている。同様に3ナノメートル(30オングストローム)以上の厚さの場合にも特許文献5の図7にはAFと記された反強磁性結合磁界が観察された結果が記載されているが、その反強磁性的結合磁界の大きさは図から50エルステッド以下と読み取ることができる。
したがって、例えば1キロエルステッドよりも大きな強い交換結合が必要な場合、反強磁性的に結合させる2つの磁性層の間隔は、特許文献5の従来技術では3ナノメートルより狭くなるのである。磁性層の厚さ、反平行結合膜の材料や作製方法を工夫することで、この反強磁性的な交換結合の大きさは多少の改良を計ることができるにしても、反平行結合膜の厚さが3ナノメートル以上となった場合に1キロエルステッドより強い反強磁性的な交換結合磁界を得られる実際的な方法は、従来技術では得られていない。また、本発明では、軟磁性自由層と差動軟磁性自由層の間の3ナノメートルから20ナノメートルの間隔において反強磁性的交換結合を実現するために、図2に示すような多層構造を有する長距離反平行結合積層膜を有する点も特許文献5との構造的な違いである。これらの構造的な違いは、磁気ヘッドの機能に重大な違いをもたらす。
図5は実施例による磁気抵抗効果積層膜における、軟磁性自由層と差動軟磁性自由層の間隔を説明した図である。以下、軟磁性自由層13と差動軟磁性自由層16の間隔をGDと称する。GDは長距離反平行結合積層膜17の厚さに対応する。したがってGDは長距離反平行結合積層膜17の反平行磁性層172の厚さtMと積層回数n(nは2以上の偶数)、反平行結合層171の厚さtAFから次の式で表される。
GD=tM×n+tAF×(n+1)
典型的な値として、n = 6、tM=0.5 nm、tAF=0.8 nmとすると、GD=8.6nmとなる。昨今のハードディスク磁気記録装置における記録密度が100 G/in2からさらに300 Gb/in2のデモンストレーションに及ぶことから鑑みるに、本発明の説明を行うにあたって単一の磁気ビットの長さを20 nmかそれ以上として述べるのは妥当であると考えられる。
図5(a)中、磁気ヘッドが感知すべき媒体から漏洩する磁界の空間分布を概念的に波線状に示した。上記磁界の分布は磁気ビットの長さに対応して変化する。図5(a)のように軟磁性自由層13と差動軟磁性自由層16の間隔GDを8.6 nmとした場合、軟磁性自由層13の感じる磁界と差動軟磁性自由層16の感じる磁界は大きく異なる。すなわち、軟磁性自由層13と差動軟磁性自由層16の差動動作出力が大きくとれることがわかる。これはGDが磁気ビットの長さ20 nmに対して適度に大きいからである。ここで適度に大きいと述べた理由は、GDが仮に磁気ビットの長さ(20 nm)より長い場合には各磁性層が感じる磁界のポジションは波状の磁界分布の一周期を越えてしまい、結果、感知できる磁界分布から1ビット分の波長成分を正しく再現できないからである。逆に、GDが短い場合の例を図5(b)に示した。長距離反平行結合積層膜を用いない場合、反平行結合した2つの磁性層(ここでは実施例と同じ指標で軟磁性自由層13および差動軟磁性自由層16と称することにする)が、一枚の反平行結合膜(厚さ0.8 nm)の間隔で配置されている場合とした。両者の間隔が極めて狭いため、軟磁性自由層13の感知する磁界と差動軟磁性自由層16の感知する磁界はほぼ同一であり、したがって極めて小さな差動出力しか得られないことがわかる。以上のように、実施例の構成において差動動作させる軟磁性自由層と差動軟磁性自由層の間の間隔を適切に、記録密度による上限を超えない範囲で、かつ、反強磁性的な結合力が十分大きく得られる範囲内において、長く設定することが重要である。
図6は、作製した本発明の実施例による磁気抵抗効果積層膜の磁化曲線の一部を示した図である。印加磁界が−2キロエルステッドから2キロエルステッドのマイナーループを測定しており、強磁性固定層の磁化曲線ではなく、軟磁性自由層・差動軟磁性自由層・および長距離反平行結合積層膜の磁化曲線に相当する部分と考えてよい。磁気抵抗効果積層膜の積層構成は以下のようにした。基体/下地膜/MnIr (7.5 nm)/CoFe (4 nm)/Ru (0.8 nm)/CoFe (4 nm)/Cu (2 nm)あるいは電流絞込み層 (〜2 nm)/CoFe (0.5)/NiFe (2 nm)/CoFe (0.5 nm)/Ru (0.8 nm)/[CoFe (1 nm)/Ru (0.8 nm)]n/CoFe (0.5 nm)/NiFe (2 nm)/CoFe (0.5 nm)/保護膜。図中には、n=4,6および8の磁化曲線を示した。n=4,6および8の磁化曲線すべてにおいて、印加磁界に対してゆるやかに磁化する挙動が見られ、これらの積層膜において軟磁性自由層・差動軟磁性自由層・および長距離反平行結合積層膜の部分が反強磁性的に交換結合していることがわかる。各磁化曲線について、ゼロ磁界近傍の磁化曲線を外挿して、飽和磁束密度から決まる最大の磁化量まで飽和するのに対応する磁界、反強磁性結合磁界を見ると、n=4、6、8についてそれぞれ、およそ2.3 キロエルステッド、1.6キロエルステッドおよび1.3キロエルステッドとなった。このときの長距離反平行結合膜の厚さ(GD)は、それぞれ8、11.6および15.2ナノメートルである。
図7に長距離反平行結合積層膜の厚さGDに対する反強磁性結合磁界の依存性を示した。従来技術との比較のため、特許文献5の図7の数値を同図に示した。従来技術では、GDに対応するのは2つの磁性層の間の間隔はRuなどの反平行結合膜の厚さであるのが、この厚さが増加すると反強磁性的な結合力は極めて急速に低下していくことがわかる。したがって、たとえば2つの磁性層間の間隔を3ナノメートル以上にして、かつ、反強磁性交換結合磁界を1キロエルステッド以上にすることは従来技術ではできないことがわかる。同様に、2つの磁性層間の間隔を5ナノメートル以上にして、かつ、反強磁性交換結合磁界を1キロエルステッド以上にすることもできない。これに対して上記実施例に代表される本発明の長距離反平行結合積層膜の結合特性は、図から明らかなように、GDが8ナノメートルと広くても2キロエルステッドより大きな反強磁性的な結合磁界を保つことができるのである。
次に、実施例による長距離反平行結合積層膜17の反平行磁性層172の厚さについて述べる。図8は、反平行磁性層172の厚さを変えた場合の積層構成の磁化量を示した図である。ここで磁化量は、積層構成全体の磁化量から強磁性固定層・差動軟磁性自由層の磁化量を差し引いた、反平行磁性層172の部分のみ磁化量を表示した。実験した構成はn=6とした。反平行磁性層172の厚さを増大させると、磁化量は単調に増大している。これは単純に、反平行磁性層172の磁化量が厚さに応じて増大するからである。しかしながら、この増加曲線を反平行磁性層172の薄い側に延長すると、磁化量は反平行磁性層172の厚さがゼロになるより早くゼロになる。これは反平行磁性層172のごく薄い部分が、隣接する反平行結合層172と接するために磁化が低減するためで、いわゆるデッドレイヤーができるからである。このデッドレイヤーの厚さは、図からおよそ0.45 nmであり、したがって、各反平行磁性層172の各界面は(一界面あたりなので1/2の)およそ0.23nm程度(原子一層程度)のデッドレイヤーをもっていることがわかる。長距離反平行結合積層膜17に、反強磁性結合力を持たせるためには、各反平行磁性層172が強磁性状態を保っている必要がある。したがって、反平行磁性層172の厚さは0.5 nm以上が望ましい。
図9は従来技術および実施例の長距離反平行結合積層膜17の磁化曲線の計算結果の比較である。計算構成はn=2および4、反平行磁性層の厚さ1 nm(ただし、デッドレイヤー0.45 nm分、磁化量を低減)、各反平行結合層の交換結合エネルギー-1.4 erg/cm2(-0.14 J/m2)、とした。従来技術はn=0に相当するが、反強磁性結合磁界は9.2キロエルステッドと大きいが、GDは0.8 nmときわめて短い。n=2、4とGDを広げていくと反強磁性結合磁界は3.7キロエルステッド、2.3キロエルステッドと徐々に低下していくが大きな値を保っている。図10に、n=2から10としたときの反強磁性結合磁界をGDに対して示した。モデル計算による結果は、図7にも示したn=4、6および8の積層膜の測定結果とよく一致し、実施例の積層膜の反強磁性結合磁界が磁気エネルギー計算の観点から、積層数と厚さを適切に設定することで所望の反強磁性結合磁界を適切な間隔で実現可能であることがわかる。積層数を増やすことは、軟磁性自由層と差動軟磁性自由層の間隔を広くすることと同時に、交換結合力を積層数の増加に応じて低下させることになる。また、積層膜厚の増加とともに、反強磁性結合力を得るための極平坦な積層構造を作製することが困難になるので、長距離反平行結合積層膜17の厚さGDは20ナノメートルより薄いことが望ましい。
図11に、n=4、印加磁界1.2キロエルステッドの時の磁化状態を示した。図11の左の図のXマークに相当する場合である。図11の右図中、1から6の番号は、軟磁性自由層、反平行磁性層および差動軟磁性自由層の合計6層の磁性層を順に番号を振ったもので、矢印は各磁性層の磁化の方向を示している(矢印の長さは磁化の量に比例させた)。また、−1から−5の番号を振った点線は、M番目の磁性層の磁化の方向に対して180度の方向を−Mで示した点線で示した。点線と矢印の方向をそれぞれ比較すると、6層の磁性層の磁化の向きは、点線、すなわち隣接するひとつ前の磁性層の磁化の方向の180度方向から10°程度ずれていることがわかる。一方で軟磁性自由層の磁化と差動軟磁性自由層の磁化、すなわち図11右図中の1および6の矢印の方向は180°反対から60°程度傾いている。つまり、近似的には、軟磁性自由層の磁化と差動軟磁性自由層の磁化との傾き(60°)は、n=4層の反平行磁性層との間のn+1個の界面でおよそ均等に(60°/5=12°、約10°)分配されるのである。2層の磁性層の間に働く交換結合エネルギーは、コサインで作用するので軟磁性自由層と差動軟磁性自由層の間の角度を、n+1個の界面で分割して消化することで、反強磁性交換結合による磁気エネルギーを低減されるからである。結果的に、n層の積層構成を有した長距離反平行結合積層膜を介することによって、軟磁性自由層と差動軟磁性自由層の間の間隔を広くして、かつ、反強磁性結合磁界の2者間の距離の増大による低減を最小限に抑えることができるのである。
ひとつ特記すべき事項として、磁化の量の配分がある。上記実施例の構成では図4でも示したが差動動作で出力を発生し、同相磁界では出力を発生しない構成が目的である。これを実現するための構成として、軟磁性自由層と差動軟磁性磁性層の磁化量(飽和磁化と厚さの積)は、およそ同一として、大きな差を有さないように構成する。これは特許文献5の構成と比較するとわかりやすいが、特許文献5では反強磁性的に結合した磁化量に差のある2つの磁性層を、差分の磁化量を持った一つの自由層として用いている。上記実施例では逆に、軟磁性自由層と差動軟磁性自由層の磁化量の差はゼロ近傍とすることで、同相磁界に対する出力を低減し、差動出力のみを得られるようにする。反平行磁性層についても同様で、各反平行磁性層がおのおの隣接と反平行配列して総計の磁化量がおよそゼロであるように構成する。単純にはn層の反平行磁性層が同じ磁化量を持つようにしておけばnは偶数であるので反平行配列の結果、総計の磁化量をゼロにすることができる。
次に、反平行磁性層の厚さおよび磁化の量の上限について述べる。図12は上記実施例による磁気抵抗効果積層膜を内蔵する差動磁気ヘッドの動作概念図である。簡単のために、n=2の場合を示した。軟磁性自由層13に近い側の反平行磁性層1721と差動軟磁性自由層16に近い反平行磁性層1722には、それぞれ、感知すべき磁界の一部が印加される。反平行磁性層1721、1722は軟磁性自由層13、差動軟磁性自由層16と反強磁性的に結合しており、結果、反平行磁性層1721および1722に印加される磁界は、磁気ヘッドの出力に寄与をもつことになる。図のような場合、軟磁性自由層13には上向きの磁界が印加され、隣接する反平行磁性層1721にも量は減るが上向きの磁界が印加される。軟磁性自由層13と反平行磁性層1721は反強磁性的に結合しているので、同方向の磁界の印加に対して差動的に動作することになり、結果、軟磁性自由層13と反平行磁性層1721の磁化の動作は部分的にキャンセルされてしまう。同様の減少は差動自由層16と反平行磁性層1722でも生じる。したがって、効率的に差動動作を行うためには反平行磁性層1721および1722の静磁気的な寄与を低下させるとよい。すなわち、軟磁性自由層13および差動軟磁性自由層16の磁化量すなわち飽和磁化と厚さの積(積層された磁性層の場合にはその総計)に対し、反平行磁性層の磁化量を低く設定するとよい。これは、磁界に対する磁化の静磁気エネルギーが、磁化量と磁界の積である事から、磁化量を減らすことで反平行磁性層の感知すべき磁界に対する寄与を減らすことができるからである。図8において説明したように、反平行磁性層の厚さの下限は、デッドレイヤーの発生により0.5ナノメートルであり、上記の理由による上限は、軟磁性自由層および差動軟磁性自由層の磁化量と同じかそれ以下となる厚さ(4ナノメートル)となる。反平行磁性層の磁化量が、軟磁性自由層と差動軟磁性自由層と同じである場合は、少々複雑である。反平行磁性層は、必ず隣接した厚さ方向の両側に反平行に結合した磁性層(反平行磁性層、軟磁性自由層または差動軟磁性自由層)があり、磁気ヘッドの記録媒体に近接する端部において、必ず隣接する磁性層の磁荷とキャンセルしあう。一方、軟磁性自由層と差動軟磁性自由層は、厚さ方向の片側にのみ反平行磁性層を有するから、それぞれ隣接する反平行磁性層との端部での磁化のキャンセルは、半分の効果しかない。したがって軟磁性自由層、差動軟磁性自由層の磁化の量と、反平行磁性層の磁化の量が同一である場合には、反平行磁性層よりも軟磁性自由層と差動軟磁性自由層の磁化の感度が高くなる効果が生じており、反平行磁性層の磁化量が軟磁性自由層と差動軟磁性自由層と同じ場合は差動ヘッドとして機能する上限と考えられる。
図13は本発明の実施例による差動磁気抵抗効果型磁気ヘッドの構造例である。磁気記録媒体に対向する面から見た図となっている。スライダーを兼ねる基体50上に下部磁気シールド兼電極35、下部導電性ギャップ711、磁気抵抗効果積層膜10、上部導電性ギャップ721、上部磁気シールド兼電極36を形成してなる。磁区制御バイアス膜(第1バイアス膜)46は磁気抵抗効果積層膜10の両脇に配置して軟磁性自由層13に対して単磁区化効果をもたせる。他の構造例については後述するが、単磁区化効果を実現するために、本図等に記載の構造以外の構造を用いたとしても本発明の主旨を損なうものではない。図13では、差動自由層16に対して磁区制御バイアス膜46は直接の磁区制御効果をもたず、軟磁性自由層13の磁区制御と、長距離反平行結合積層膜17を介して差動自由層16は磁区制御効果を印加される。このため、磁区制御バイアス膜46は軟磁性自由層13に対して図13紙面の上下方向についておのおのの端部での中心位置がおよそ一致する(図中AとBが一致する)ように構成するのが望ましい。また磁区制御バイアス膜46の端部が差動軟磁性自由層16に対して図13紙面の上下方向について近接しない(図中CとDが一致しない、特に差動軟磁性自由層の膜厚の1/2程度はずれる)ことが望ましい。反強磁性膜11、強磁性固定層15、中間層12は磁気抵抗効果積層膜10の構成要素であり、適切なサイズにパターニングされてなる。絶縁層731、732は磁気抵抗効果積層膜10を適切に絶縁し、磁気抵抗効果積層膜10の膜厚方向に電流が正常に流れるように配置される。
図14は差動磁気抵抗効果型磁気ヘッドの別の構造例である。磁気記録媒体に対向する面から見た図となっている。スライダーを兼ねる基体50上に下部磁気シールド兼電極35、下部導電性ギャップ711、磁気抵抗効果積層膜10、上部導電性ギャップ721、上部磁気シールド兼電極36を形成してなる。磁区制御バイアス膜(第1バイアス膜)46は磁気抵抗効果積層膜10の両脇に配置して軟磁性自由層13に対して単磁区化効果をもたせる。また、積層バイアス膜(第2バイアス膜)47は、磁気分離層48を介して差動軟磁性自由層16と積層かつ、およそ同一幅に形成されてなる。積層バイアス膜47は端部から漏洩する静磁場で差動軟磁性自由層16を磁区制御する機能を有する。このため、磁区制御バイアス膜46は軟磁性自由層13に対して図14紙面の上下方向についておのおのの端部での中心位置がおよそ一致する(図中AとBが一致する)ように構成するのが望ましい。また磁区制御バイアス膜46の端部が差動軟磁性自由層16に対して図14紙面の上下方向について近接しない(図中CとDが一致しない、特に差動軟磁性自由層の膜厚の1/2程度はずれる)ことが望ましい。磁区制御バイアス膜46と、積層バイアス膜47は同一の方向、例えば図14で紙面右方向に残留磁化をもつよう着磁されてなり、磁区制御バイアス膜46は軟磁性自由層13を右方向に、積層バイアス膜47は差動軟磁性自由層16を左方向に、単磁区化させる効果を発揮する。本図では磁気抵抗効果積層膜10の構成に、上記積層バイアス膜47および磁気分離膜48を含めて図示したが、上記積層バイアス膜47および磁気分離膜48を磁気抵抗効果積層膜10に含めずに定義しても実質的に本発明の主旨を損なうものではない。反強磁性膜11、強磁性固定層15、中間層12は磁気抵抗効果積層膜10の構成要素であり、適切なサイズにパターニングされてなる。絶縁層731、732は磁気抵抗効果積層膜10を適切に絶縁し、磁気抵抗効果積層膜10の膜厚方向に電流が正常に流れるように配置される。
図15は差動磁気抵抗効果型磁気ヘッドのさらに別の構造例である。磁気記録媒体に対向する面から見た図となっている。スライダーを兼ねる基体50上に下部磁気シールド兼電極35、下部導電性ギャップ711、磁気抵抗効果積層膜10、上部導電性ギャップ721、上部磁気シールド兼電極36を形成してなる。磁気抵抗効果積層膜10は図14に示した例に対して、基体50に対する積層構成が逆転した構成である。磁区制御バイアス膜(第1バイアス膜)46は磁気抵抗効果積層膜10の両脇に配置して軟磁性自由層13に対して単磁区化効果をもたせる。また、積層バイアス膜(第2バイアス膜)47は、磁気分離層48を介して差動軟磁性自由層16と積層かつ、およそ同一幅に形成されてなる。積層バイアス膜47は端部から漏洩する静磁場で差動軟磁性自由層16を磁区制御する機能を有する。このため、磁区制御バイアス膜46は軟磁性自由層13に対して図15紙面の上下方向についておのおのの端部での中心位置がおよそ一致する(図中AとBが一致する)ように構成するのが望ましい。また磁区制御バイアス膜46の端部が差動軟磁性自由層16に対して図15紙面の上下方向について近接しない(図中CとDが一致しない、特に差動軟磁性自由層の膜厚の1/2程度はずれる)ことが望ましい。磁区制御バイアス膜46と、積層バイアス膜47は同一の方向、例えば図15で紙面右方向に残留磁化をもつよう着磁されてなり、磁区制御バイアス膜46は軟磁性自由層13を右方向に、積層バイアス膜47は差動軟磁性自由層16を左方向に、単磁区化させる効果を発揮する。本図では磁気抵抗効果積層膜10の構成に、積層バイアス膜47および磁気分離膜48を含めて図示したが、積層バイアス膜47および磁気分離膜48を磁気抵抗効果積層膜10に含めずに定義しても実質的に本発明の主旨を損なうものではない。反強磁性膜11、強磁性固定層15、中間層12は磁気抵抗効果積層膜10の構成要素であり、適切なサイズにパターニングされてなる。絶縁層731、732は磁気抵抗効果積層膜10を適切に絶縁し、磁気抵抗効果積層膜10の膜厚方向に電流が正常に流れるように配置される。図15の構成は図14の構成に比べて磁区制御バイアス膜46の位置が紙面上側であり、作製プロセスが比較的容易になる。
図16に、計算により求めた上記実施例で代表される本発明の差動ヘッドの再生波形と従来ヘッドの再生波形の比較を示す。垂直記録の再生の場合、従来の磁気シールドによって分解能を決める磁気ヘッドでは図のように矩形波状の再生波形が得られる。一方、本発明の差動ヘッドでは、図のように従来の再生波形で遷移部分となる箇所にピークが再生される。一見、旧来の面内記録の再生波形に類似している。これは本発明の差動ヘッドでは、適切な距離はなれた2つの磁性層による差動出力となるから、微分的な波形が得られるためである。また、ピーク以外の部分ではいわゆるベースラインシフトと称されるようなプラスあるいはマイナスの比較的微弱な信号出力が観測される。これは同相磁界に対する出力が差動磁界に対してよりも小さいながらもゼロでないためで、軟磁性自由層と差動軟磁性自由層の間の反強磁性結合磁界を十分大きくすることで低減できる。
図17は、本発明の実施例による差動磁気抵抗効果型磁気ヘッドを搭載した垂直記録用記録再生分離型磁気ヘッドの概念図である。スライダーを兼ねる基体50上に磁気抵抗効果積層膜10、下部磁気シールド兼電極35、上部磁気シールド兼電極36、副磁極86、コイル42、主磁極85を形成してなり、記録媒体に対向する対向面63を有している。図13から15の磁区制御バイアス膜46に相当する単磁区化構造については本図では記載を省略した。本発明の差動磁気抵抗効果型磁気ヘッドは再生部分の能力を高めるものであるので、垂直記録及び従来の面内記録の双方に対応できる技術であるが、特に垂直磁気記録ヘッドと組み合わせることでより高い記録密度を実現することができる。
図18は、上記差動磁気抵抗効果型磁気ヘッドあるいは垂直記録用記録再生分離型磁気ヘッドを搭載する磁気記録再生装置の構成例である。磁気的に情報を記録する記録媒体91を保持する磁気ディスク95をスピンドルモーター93にて回転させ、アクチュエーター92によってヘッドスライダー90を磁気ディスク95のトラック上に誘導する。即ち磁気ディスク装置においては、ヘッドスライダー90上に形成した再生ヘッドあるいは記録再生ヘッドがアクチュエーター92によって、磁気ディスク95上の所定の記録位置に近接して相対運動し、信号を順次書き込み、及び読み取る。アクチュエーター92はロータリーアクチュエーターであることが望ましい。記録信号は信号処理系94を通じて記録ヘッドにて媒体上に記録し、再生ヘッドの出力を、信号処理系94を経て信号として得る。さらに再生ヘッドを所望の記録トラック上へ移動せしめるに際して、本再生ヘッドからの高感度な出力を用いてトラック上の位置を検出し、アクチュエーター92を制御して、ヘッドスライダー90の位置決めを行うことができる。本図ではヘッドスライダー90、磁気ディスク95を各1個示したが、これらは複数であっても構わない。また磁気ディスク95は両面に記録媒体91を有して情報を記録してもよい。情報の記録がディスク両面の場合ヘッドスライダー90はディスクの両面に配置する。
上述したような本発明の差動磁気抵抗効果型磁気ヘッドを搭載した磁気ディスク装置の磁気特性を試験した結果、記録波長が短く、記録トラック幅が狭い磁気記録において、充分な出力と、高い分解能を示し、また作製時の歩留まりも良好であった。
本発明の代表的な磁気抵抗効果積層膜の積層構造を示す図である。 長距離反平行結合積層膜の詳細構造例を加えた実施例による磁気抵抗効果積層膜の積層構造を示す図である。 軟磁性自由層と差動軟磁性自由層の同相磁界および差動磁界に対する挙動を示す図である。 一斉回転モデル磁化過程計算による実施例による差動磁気ヘッドの信号特性を示す図である。 実施例による磁気抵抗効果積層膜における、軟磁性自由層と差動自由層の間隔を説明するための図である。 作製した実施例による磁気抵抗効果積層膜の磁化曲線の一部を示す図である。 長距離反平行結合積層膜のGDに対する反強磁性結合磁界の依存性を示す図である。 反平行磁性層の厚さを変えた場合の長距離反平行結合積層膜の磁化量を示す図である。 従来技術および本発明の磁化曲線の計算結果の比較図である。 n=2から10としたときの反強磁性結合磁界をGDに対して示した図である。 n=4、印加磁界800エルステッドの時の磁化状態を示した図である。 本発明の差動磁気ヘッドの動作概念図である。 本発明の差動磁気ヘッドの構造例を示す図である。 本発明の差動磁気ヘッドの別の構造例を示す図である。 本発明の差動磁気ヘッドのさらに別の構造例を示す図である。 計算により求めた本発明の差動磁気ヘッドの再生波形と従来ヘッドの再生波形の比較を示す図である。 本発明の磁気抵抗効果積層膜を搭載した垂直記録用記録再生分離型磁気ヘッドの概念図である。 本発明の差動磁気抵抗効果型磁気ヘッドを用いた磁気ディスク装置の構成例を示した図である。
符号の説明
10…磁気抵抗効果積層膜、
11…反強磁性膜、
12…非磁性中間層、
13…軟磁性自由層、
14…下地膜、
15…強磁性固定層、
151…第1の強磁性固定層、
152…第2の強磁性固定層、
154…反平行結合層、
16…差動軟磁性自由層、
17…長距離反平行結合積層膜、
35…下部磁気シールド兼電極、
36…上部磁気シールド兼電極、
42…コイル、
46…磁区制御バイアス膜(第1バイアス膜)、
47…積層バイアス膜(第1バイアス膜)、
50…基体、
63…媒体対向面、
85…主磁極、
86…副磁極、
171…反平行結合層、
172…反平行磁性層、
711…下部導電性ギャップ、
721…上部導電性ギャップ、
731,732…絶縁層。

Claims (16)

  1. 外部からの感知すべき磁界に対して実質的に磁化が固定した強磁性固定層と、非磁性中間層と、磁化の方向が外部磁界に応じて変化する軟磁性自由層と、反平行結合積層膜と、差動軟磁性自由層とを積層した磁気抵抗効果積層膜を有し、上記反平行結合積層膜は上記軟磁性自由層および上記差動軟磁性自由層との間に互いの磁化を反平行に結合させる反強磁性的結合力を発生させ、外部の磁界に応じて上記軟磁性自由層の磁化の方向と上記差動軟磁性自由層の磁化の方向が反対回転方向に変化して差動動作することを特徴とする差動磁気抵抗効果型磁気ヘッド。
  2. 上記軟磁性自由層および上記差動軟磁性自由層に、同方向の外部磁界が印加されたとき、それぞれの磁化回転は相殺され、それぞれに反対方向の外部磁界が印加されたとき、それぞれの磁化が同じ回転方向に変化することを特徴とする請求項1記載の差動磁気抵抗効果型磁気ヘッド。
  3. 上記軟磁性自由層および上記差動軟磁性自由層との間に配置される上記反平行結合積層膜が、偶数であるnに対して、n層の磁性層とn+1層の反平行結合層とを交互に繰り返し積層した構成であって、上記反平行結合層の1層を挟んで隣接する第1及び第2の磁性層が反強磁性的に結合してなることを特徴とする請求項1または2記載の差動磁気抵抗効果型磁気ヘッド。
  4. 上記反平行結合積層膜の厚さで定義される上記軟磁性自由層および上記差動軟磁性自由層との間の間隔が3ナノメートル以上20ナノメートル以下であることを特徴とする請求項1乃至3のいずれかに記載の差動磁気抵抗効果型磁気ヘッド
  5. 上記軟磁性自由層のトラック幅方向の端部側部に、該軟磁性自由層を単磁区化するための第1バイアス膜が一対配置され、該第1バイアス膜の印加磁界が上記差動軟磁性自由層よりも上記軟磁性自由層に優勢に印加されるように、上記端部側部の周辺において上記第1バイアス膜の厚さ方向の中心位置が上記差動軟磁性自由層より上記軟磁性自由層に近接してなることを特徴とする請求項1乃至4のいずれかに記載の差動磁気抵抗効果型磁気ヘッド。
  6. 上記差動軟磁性自由層に非磁性膜を介して該差動軟磁性自由層を単磁区化するための第2バイアス膜が積層され、該第2バイアス膜は該差動軟磁性自由層とほぼ同一のトラック方向の幅を有することを特徴とする請求項1乃至5のいずれかに記載の差動磁気抵抗効果型磁気ヘッド。
  7. 上記反平行結合層がRu、Ir、Os、Re、Rhの中から選ばれた1種、もしくはこれらを主成分とする合金からなり、厚さが0.3から0.5ナノメートルであることを特徴とする請求項3または4記載の差動磁気抵抗効果型磁気ヘッド。
  8. 上記反平行結合層がRu、Ir、Os、Re、Rhの中から選ばれた1種、もしくはこれらを主成分とする合金からなり、厚さが0.7から1ナノメートルであることを特徴とする請求項3または4記載の差動磁気抵抗効果型磁気ヘッド。
  9. 上記磁性層がCoFeまたはNiFeを主成分とする磁性金属からなり、上記軟磁性自由層、差動軟磁性自由層の各々と同等か、それよりも少ない磁化量を有し、厚さが0.5ナノメートル以上4ナノメートル未満であることを特徴とする請求項3または4記載の差動磁気抵抗効果型磁気ヘッド。
  10. 上記nが2から8の範囲の偶数であることを特徴とする請求項3記載の差動磁気抵抗効果型磁気ヘッド。
  11. 上記軟磁性自由層、差動軟磁性自由層、磁性層の互いの磁化が反平行に結合し、合計の磁化量がおよそゼロであることを特徴とする請求項1乃至4のいずれかに記載の差動磁気抵抗効果型磁気ヘッド。
  12. 上記磁気抵抗効果積層膜が、垂直電流型巨大磁気抵抗効果積層膜またはトンネル磁気抵抗効果積層膜であることを特徴とする請求項1乃至4のいずれかに記載の差動磁気抵抗効果型磁気ヘッド。
  13. 差動軟磁性自由層と、反平行結合積層膜と、外部からの感知すべき磁界に応じて磁化の方向が変化する軟磁性自由層と、非磁性中間層と、外部磁界に対して実質的に磁化が固定した強磁性固定層とを積層した磁気抵抗効果積層膜を有し、上記反平行結合積層膜は上記軟磁性自由層および上記差動軟磁性自由層との間に互いの磁化を反平行に結合させる反強磁性的結合力を発生させ、外部の磁界に応じて上記軟磁性自由層の磁化の方向と上記差動軟磁性自由層の磁化の方向が反対回転方向に変化して差動動作することを特徴とする差動磁気抵抗効果型磁気ヘッド。
  14. 上記軟磁性自由層および上記差動軟磁性自由層に、同方向の外部磁界が印加されたとき、それぞれの磁化回転は相殺され、それぞれに反対方向の外部磁界が印加されたとき、それぞれの磁化が同じ回転方向に変化することを特徴とする請求項13記載の差動磁気抵抗効果型磁気ヘッド。
  15. 上記軟磁性自由層および上記差動軟磁性自由層との間に配置される上記反平行結合積層膜が、偶数であるnに対して、n層の磁性層とn+1層の反平行結合層とを交互に繰り返し積層した構成であって、上記反平行結合層の1層を挟んで隣接する第1及び第2の磁性層が反強磁性的に結合してなることを特徴とする請求項13または14に記載の差動磁気抵抗効果型磁気ヘッド。
  16. 上記反平行結合積層膜の厚さで定義される上記軟磁性自由層および上記差動軟磁性自由層との間の間隔が3ナノメートル以上20ナノメートル以下であることを特徴とする請求項13乃至15のいずれかに記載の差動磁気抵抗効果型磁気ヘッド。
JP2007189631A 2007-07-20 2007-07-20 差動磁気抵抗効果型磁気ヘッド Pending JP2009026400A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007189631A JP2009026400A (ja) 2007-07-20 2007-07-20 差動磁気抵抗効果型磁気ヘッド
US12/218,860 US8174799B2 (en) 2007-07-20 2008-07-17 Differential magnetoresistive magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189631A JP2009026400A (ja) 2007-07-20 2007-07-20 差動磁気抵抗効果型磁気ヘッド

Publications (1)

Publication Number Publication Date
JP2009026400A true JP2009026400A (ja) 2009-02-05

Family

ID=40337861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189631A Pending JP2009026400A (ja) 2007-07-20 2007-07-20 差動磁気抵抗効果型磁気ヘッド

Country Status (2)

Country Link
US (1) US8174799B2 (ja)
JP (1) JP2009026400A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373943B2 (en) 2009-11-17 2013-02-12 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head having a multilayer magnetic film and method for producing the same
US9208804B1 (en) 2014-05-16 2015-12-08 Kabushiki Kaisha Toshiba Magnetic head and magnetic recording and reproducing apparatus
JP2016071919A (ja) * 2014-10-01 2016-05-09 株式会社東芝 磁気ヘッド、磁気ヘッドアセンブリ、磁気記録再生装置、および磁気ヘッドの製造方法
JP2017027645A (ja) * 2015-07-24 2017-02-02 株式会社東芝 磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置
JP2018037131A (ja) * 2017-11-22 2018-03-08 株式会社東芝 磁気ヘッド、磁気記録再生装置、および磁気ヘッドの製造方法
JP2018182256A (ja) * 2017-04-21 2018-11-15 Tdk株式会社 スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152835A (ja) * 2006-12-15 2008-07-03 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗効果ヘッド、磁気記録再生装置及び磁気ヘッドの製造方法
JP2009259354A (ja) * 2008-04-18 2009-11-05 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッド及びその製造方法
JP6970654B2 (ja) * 2018-11-28 2021-11-24 株式会社東芝 磁気記憶装置
US11489108B2 (en) 2020-04-28 2022-11-01 Western Digital Technologies, Inc. BiSb topological insulator with seed layer or interlayer to prevent sb diffusion and promote BiSb (012) orientation
US11495741B2 (en) 2020-06-30 2022-11-08 Western Digital Technologies, Inc. Bismuth antimony alloys for use as topological insulators
US11100946B1 (en) 2020-07-01 2021-08-24 Western Digital Technologies, Inc. SOT differential reader and method of making same
US11094338B1 (en) 2020-07-09 2021-08-17 Western Digital Technologies, Inc. SOT film stack for differential reader
US11763973B2 (en) 2021-08-13 2023-09-19 Western Digital Technologies, Inc. Buffer layers and interlayers that promote BiSbx (012) alloy orientation for SOT and MRAM devices
US11532323B1 (en) 2021-08-18 2022-12-20 Western Digital Technologies, Inc. BiSbX (012) layers having increased operating temperatures for SOT and MRAM devices
US11875827B2 (en) 2022-03-25 2024-01-16 Western Digital Technologies, Inc. SOT reader using BiSb topological insulator
US11783853B1 (en) 2022-05-31 2023-10-10 Western Digital Technologies, Inc. Topological insulator based spin torque oscillator reader

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576915A (en) 1993-03-15 1996-11-19 Kabushiki Kaisha Toshiba Magnetoresistive head with antiferromagnetic sublayers interposed between first and second spin-valve units to exchange bias inner magnetic films thereof
US5408377A (en) 1993-10-15 1995-04-18 International Business Machines Corporation Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor
US5751521A (en) * 1996-09-23 1998-05-12 International Business Machines Corporation Differential spin valve sensor structure
EP0971423A1 (en) * 1998-07-10 2000-01-12 Interuniversitair Micro-Elektronica Centrum Vzw Spin-valve structure and method for making same
JP2002151758A (ja) 2000-11-09 2002-05-24 Hitachi Ltd 強磁性トンネル磁気抵抗効果素子、磁気メモリ及び磁気抵抗効果型ヘッド
JP2003069109A (ja) 2001-08-30 2003-03-07 Sony Corp 磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、磁気再生装置と、磁気抵抗効果型磁気センサおよび磁気抵抗効果型磁気ヘッドの製造方法
US6927948B2 (en) 2003-01-23 2005-08-09 Hitachi Global Storage Technologies Netherlands B.V. Differential CPP GMR sensor with free layers separated by metal gap layer
US7298595B2 (en) * 2003-09-26 2007-11-20 Hitachi Global Storage Technologies Netherlands B.V. Differential GMR sensor with multi-layer bias structure between free layers of first and second self-pinned GMR sensors
US7016160B2 (en) * 2003-11-18 2006-03-21 Seagate Technology Llc Differential CPP reader for perpendicular magnetic recording
JP2007085426A (ja) 2005-09-21 2007-04-05 Matsunaga Seisakusho:Kk パイプの長さ調節機構

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373943B2 (en) 2009-11-17 2013-02-12 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head having a multilayer magnetic film and method for producing the same
US9208804B1 (en) 2014-05-16 2015-12-08 Kabushiki Kaisha Toshiba Magnetic head and magnetic recording and reproducing apparatus
US9489970B2 (en) 2014-05-16 2016-11-08 Kabushiki Kaisha Toshiba Magnetic head and magnetic recording and reproducing apparatus
JP2016071919A (ja) * 2014-10-01 2016-05-09 株式会社東芝 磁気ヘッド、磁気ヘッドアセンブリ、磁気記録再生装置、および磁気ヘッドの製造方法
JP2017027645A (ja) * 2015-07-24 2017-02-02 株式会社東芝 磁気ヘッド、磁気ヘッドアセンブリ、および磁気記録再生装置
JP2018182256A (ja) * 2017-04-21 2018-11-15 Tdk株式会社 スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
US10937480B2 (en) 2017-04-21 2021-03-02 Tdk Corporation Spin current magnetization rotational element, magnetoresistance effect element, and magnetic memory
JP7024204B2 (ja) 2017-04-21 2022-02-24 Tdk株式会社 スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
JP2018037131A (ja) * 2017-11-22 2018-03-08 株式会社東芝 磁気ヘッド、磁気記録再生装置、および磁気ヘッドの製造方法

Also Published As

Publication number Publication date
US20090034135A1 (en) 2009-02-05
US8174799B2 (en) 2012-05-08

Similar Documents

Publication Publication Date Title
JP2009026400A (ja) 差動磁気抵抗効果型磁気ヘッド
US8873204B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor structure with multiple stacked sensors and center shield with CoFeB insertion layer
US8638530B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor having a top shield with an antiparallel structure
US6947264B2 (en) Self-pinned in-stack bias structure for magnetoresistive read heads
JP3462832B2 (ja) 磁気抵抗センサ並びにこれを用いた磁気ヘッド及び磁気記録再生装置
JP4794109B2 (ja) スピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法
JP3760095B2 (ja) 2素子型再生センサ、垂直磁気記録再生用薄膜磁気ヘッド及び垂直磁気記録再生装置
JP6023158B2 (ja) 磁気抵抗性センサシールド
JP3657916B2 (ja) 磁気抵抗効果ヘッドおよび垂直磁気記録再生装置
JP2003069109A (ja) 磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、磁気再生装置と、磁気抵抗効果型磁気センサおよび磁気抵抗効果型磁気ヘッドの製造方法
JPH11296823A (ja) 磁気抵抗効果素子およびその製造方法、ならびに磁気抵抗効果センサ,磁気記録システム
JP5448438B2 (ja) 磁気リード・ヘッド
JP2010140524A (ja) 差動型磁気抵抗効果ヘッド及び磁気記録再生装置
JP4939050B2 (ja) 磁気トンネル接合素子の磁化自由層の形成方法ならびにトンネル接合型再生ヘッドおよびその製造方法
JP2004146480A (ja) ホイスラー磁性層と体心立方構造の非磁性中間層を積層した磁気抵抗効果素子および磁気ヘッド
JP2004039869A (ja) 磁気抵抗センサ、磁気ヘッド、ならびに磁気記録装置
JP3212569B2 (ja) デュアルスピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びデュアルスピンバルブ型薄膜磁気素子の製造方法
US10249329B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with wedge shaped free layer
JPH11161921A (ja) 磁気抵抗効果素子およびその製造方法
JP2005302131A (ja) 磁気ヘッド及びそれを用いた磁気記録再生装置
JP2001307308A (ja) 磁気抵抗効果型ヘッドおよび情報再生装置
JP2003229612A (ja) 磁気抵抗効果センサーおよび磁気ディスク装置
JP3575672B2 (ja) 磁気抵抗効果膜及び磁気抵抗効果素子
JP2000276714A (ja) 電流で磁化を固定するスピンバルブセンサー
JPH06325329A (ja) 薄膜磁気ヘッド