JP4794109B2 - スピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法 - Google Patents

スピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法 Download PDF

Info

Publication number
JP4794109B2
JP4794109B2 JP2002119283A JP2002119283A JP4794109B2 JP 4794109 B2 JP4794109 B2 JP 4794109B2 JP 2002119283 A JP2002119283 A JP 2002119283A JP 2002119283 A JP2002119283 A JP 2002119283A JP 4794109 B2 JP4794109 B2 JP 4794109B2
Authority
JP
Japan
Prior art keywords
layer
thickness
read head
magnetoresistive read
ferromagnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002119283A
Other languages
English (en)
Other versions
JP2003045011A (ja
Inventor
洪 成宗
童 茹瑛
李 民
Original Assignee
ヘッドウェイテクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘッドウェイテクノロジーズ インコーポレイテッド filed Critical ヘッドウェイテクノロジーズ インコーポレイテッド
Publication of JP2003045011A publication Critical patent/JP2003045011A/ja
Application granted granted Critical
Publication of JP4794109B2 publication Critical patent/JP4794109B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、巨大磁気抵抗効果を利用した磁気再生ヘッドに関し、特に、極薄のフリー層を備えたスピンバルブ型の巨大磁気抵抗効果再生ヘッドに関するものである。
【0002】
【従来の技術】
初期の形式の磁気再生ヘッドは、パーマロイのような磁性材料中での異方性磁気抵抗効果(anisotropic magnetoresistive effect :AMR)を利用することによって、ディスクおよびテープのような媒体上に磁気的に格納されたデータを読み取るものであった。AMR効果とは、所定の磁性材料の電気抵抗の変化rであり、磁性材料の磁化方向と、磁性材料中に流れる電流の方向との角度に比例するものである。磁気信号によって情報を記録する磁気テープや磁気ディスクといった磁気記録媒体を再生する際、磁気記録媒体の再生箇所の移動に伴って磁界が変化する。この磁界の変化が磁気再生ヘッドにおける磁化の方向を変えるため、AMR効果による電気抵抗変化が生じる。これにより、適切に設計された回路が磁気記録媒体に記録された情報を感知し、読み取ることが可能となる。
【0003】
しかし、AMR効果によって生じる磁気抵抗変化率(magnetoresistive ratio:MR比)とも呼ばれるわずかな抵抗変化の最大値Dr/r(Drは、異方性磁界Hkとゼロ磁界との間で生じる磁性体の抵抗変化である)は、数パーセント程度しかないという欠点があった。このため、AMR効果を利用した磁気再生ヘッドでは、磁気信号を十分正確に感知することが困難であった。
【0004】
1980年代後半から1990年代の初めに、巨大磁気抵抗(GMR)という現象が発見され、この現象は磁気再生ヘッド技術にすぐに適用された。GMR効果は、厚みが2.0nm〜8.0nm程度の2つの強磁性層が、導電性非磁性材料よりなるさらに薄い(2.0nm〜3.0nm)層によって隔てられると、2つの強磁性層の間での交換相互作用によって強磁性状態(2つの強磁性層のスピン方向が互いに平行)あるいは反強磁性状態(2つの強磁性層のスピン方向が互いに反平行)となるという現象である。電子がこれらの層の間を通過する際のスピン依存散乱の結果、このような階層状の構造体の磁気抵抗は、強磁性状態の場合よりも反強磁性状態の場合により高くなることがわかった。さらに、GMR効果による抵抗変化は、AMR効果による抵抗変化よりはるかに高かった。
【0005】
こののち、スピンバルブ磁気抵抗(Spin Valve Magnetoresistive;SVMR)効果と呼ばれるGMR効果の一種が発見され、磁気再生ヘッド技術に導入された。このSVMR効果を利用した磁気再生ヘッド(以下、SVMRヘッドという。)は、スピンバルブ構造という積層構造を含んでいる。このSV構造は、コバルト鉄合金(CoFe)あるいはニッケル鉄合金(NiFe)等からなる2つの強磁性層と、それら2つの強磁性層を隔てる、例えば、銅(Cu)のような導電性非磁性材料よりなる薄層とを備えている。2つの強磁性層のうちの一方は、隣接する反強磁性層との交換結合によって磁化方向が一定方向に固定されており、一般的に「ピンド層」と呼ばれる。他方の強磁性層は、磁化方向が一定方向に固定されていない層、すなわちフリー層と呼ばれる。このフリー層は、磁気記録媒体の移動に伴って生じる外部磁界の微小な変化に応じてその磁化方向を回転させることができる。この場合、フリー層の磁化方向回転は、ピンド層の磁化方向には影響を与えない。このように、一方の強磁性層における磁化方向が回転し、他方の強磁性層における磁化方向との相対的な角度が変化すると、SV構造における抵抗に変化が生じる。SVMRヘッドでは、この抵抗変化を利用することにより、磁気記録媒体の磁気信号を感知し磁気情報を読み取る。
【0006】
他の種類のSVMRヘッドとしては、ピンド層として反強磁性層を利用したものがある。Nepela等は米国特許第5717550号において、緩衝層が軟磁性層(保磁力が小さい層)と隣接して積層されているSVMRヘッドを開示している。このSVMRヘッドには、ピンド層の磁化方向を固定するための反強磁性層が含まれており、緩衝層によってより強い交換結合が反強磁性層に生じるようになっている。さらに、このSVMRヘッドでは、軟磁性層により磁気抵抗センサ部に縦バイアスが印加されるようになっている。また、Brnard等による米国特許第5919580号では、ピンド層を固定するためのピンニング層として機能するクロム(Cr)とアルミニウム(Al)とからなる反強磁性層を含むSVMRヘッドについて開示されている。
【0007】
フリー層とピンド層とが積層された構造体は、信号磁界を検知できる磁気トンネル接合(MTJ)デバイスを形成する際に利用され、また、磁気ランダムアクセスメモリ(Magnetic Random Access Memory ;MRAM)のメモリアレイ中のメモリセルとして使用される。SVMRヘッドとMTJデバイスとの間には構造的な類似性があるが、機能的な類似性はほとんどない。Gallagher 等による米国特許第5841692号では、上部電極スタックが交換結合によって固定されないフリー層を含んでいるMTJデバイスについて開示されている。この上部電極スタックは、ピンド層上に積層されたトンネル層の上部に形成され、このピンド層の磁気モーメントは、ピンド層より下部に形成されている反強磁性層との界面で生じる交換結合によって固定されている。このMTJデバイスにおける上部電極スタックは、「20nm厚の白金(Pt)層/4nm厚のニッケル鉄合金(NiFe)層/10nm厚のマンガン鉄合金(MnFe)層/8nm厚のNiFe層」という構成の積層体である。この場合、MnFe層は、NiFe層同士を反強磁性結合させるように機能する。Parkinは米国特許5764567号により、シード層、反強磁性層、ピンド層、トンネル層、フリー層とが順に形成された積層体と、この積層体の両側面を挟み込む一対の導電リード層とを含んでなるMTJデバイスについて開示している。さらに、Parkinは米国特許第5936293号により、「硬磁性層/軟磁性層(すなわち、高保磁力層/低保磁力層)」という積層構造を備えるMTJデバイスを開示している。このMTJデバイスでは、隣接した縦バイアス層によって、上記の「硬磁性層/軟磁性層」を横切るように磁気バイアスが印加される。これにより、磁壁移動によって「硬磁性層/軟磁性層」が消磁されてしまうことを抑制することができる。
【0008】
【発明が解決しようとする課題】
SV構造は、磁気再生ヘッドのセンサ部として用いられる標準的な構造の1つになっている。しかしながら最近では、超高記録密度(例えば、60Gb/inch2 ≒9.3Gb/cm2 を越える記録密度)化がますます進んでおり、ビットの線密度(1インチ当たりのビット数、すなわちBPI)およびトラック密度(1インチ当たりのトラック数すなわちTPI)の著しい向上に対応することが可能な(上記したようなMTJデバイスとは異なる)SVMR再生ヘッドに対する要求が高まっている。その結果、SVMRヘッドを設計するにあたり、高い信号出力を維持するためにトラック幅をより狭くし、フリー層をより薄くするという方向に向かうようになっている。このようにSVMRヘッドについては、記録密度向上に追従するための継続的な開発が要求されている。ところで、MTJデバイスは上記したようなGMR同様の課題を抱えているわけではないので、MTJデバイスにおいて、極薄のフリー層や、MR比および再生出力の向上に対応するための方法を見出すことはできない。さらに、上記のBarnard 等やNepala等によって開示された再生ヘッドは、記録密度の増加に対応可能な極薄のフリー層を備えていない。
【0009】
極薄のフリー層を設けることは、MR比の向上と共に、高密度化された磁気記録データを再生する際、より高い信号強度を得るために有効な方法である。ここで、「極薄のフリー層」とは、その磁気モーメントが、厚み2.0nmのCo90Fe10の磁気モーメントか、または、厚み3.6nmのNi80Fe20の磁気モーメントよりも少ない磁気モーメントを有する強磁性層として定義されるものである。
【0011】
本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、完全反射型のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法を提供することにある。
【0012】
本発明の第2の目的は、超高密度(100Gb/in2 ≒15.5Gb/cm2 )の磁気記録媒体を再生可能な完全反射型のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法を提供することにある。
【0013】
本発明の第3の目的は、フリー層の磁歪が小さい正値であって、高い信号出力を得ることのできる完全反射型のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法を提供することにある。
【0014】
本発明の第4の目的は、従来のスピンバルブ構造に見られる出力振幅の劣化を克服し、検出性能の安定性が改善された導電性リードオーバーレイ層と、縦バイアス層とを備えた完全反射型のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法は、伝導電子を完全反射し、超高記録密度に対応したスピンバルブ型磁気抵抗再生ヘッドの製造方法であり、下部基体上に、信号磁界を感知する積層構造のフリー層を備えたセンサ部を形成する第1の工程と、このセンサ部の両側に、縦バイアス層を形成する第2の工程と、この縦バイアス層を覆って対称的に延在するように導電性リードオーバーレイ層を形成し、センサ部におけるトラック幅に対応する幅を規定する第3工程とを含み、第1の工程が、シード層を形成する第4の工程と、このシード層上に、ルテニウム(Ru)からなる第1の層と銅(Cu)からなる第2の層とを順に積層することによりフリー層との界面において伝導電子を完全反射する緩衝層を形成する第5の工程と、この緩衝層上に、ニッケル鉄合金(NiFe)からなる第1の強磁性層とコバルト鉄合金(CoFe)からなる第2の強磁性層とを順に積層することによりフリー層を形成する第6の工程と、このフリー層上に、銅(Cu)を用いて非磁性層を形成する第7の工程と、この非磁性層上に、コバルト鉄合金(CoFe)からなる第1の反平行強磁性層と、非磁性材料よりなるスペーサ層と、第1の反平行強磁性層と同一組成のコバルト鉄合金(CoFe)からなる第2の反平行強磁性層とを順に積層することによりシンセティック反強磁性被固定層を形成する第8の工程と、このシンセティック反強磁性被固定層上に、固定作用層を形成する第9の工程と、この固定作用層上に、保護層を形成する第10の工程とを含むようにしたものである。
ここで、フリー層とシンセティック反強磁性被固定層との層間結合磁界が正となる厚みをなすように非磁性層を形成した場合には、第2の反平行強磁性層よりも大きな厚みを有するように第1の反平行強磁性層を形成し、フリー層と前記シンセティック反強磁性被固定層との層間結合磁界が負となる厚みをなすように非磁性層を形成した場合には、第1の反平行強磁性層よりも大きな厚みを有するように第2の反平行強磁性層を形成する。
【0016】
本発明のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法では、センサ部を形成するにあたって、ルテニウム(Ru)からなる第1の層と銅(Cu)からなる第2の層とを順に積層することにより緩衝層を形成する工程と、この緩衝層上に、ニッケル鉄合金(NiFe)からなる第1の強磁性層とコバルト鉄合金(CoFe)からなる第2の強磁性層とを順に積層することにより磁気的に自由な層として機能するフリー層を形成する工程とを含むようにした。これにより、上向きスピンをもった電子と下向きスピンを持った電子との平均自由行程の差を維持することができる。
【0017】
さらに、本発明のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法では、フリー層を形成するにあたり、第1の強磁性層が1nm以上1.6nm以下の厚みとなるようにし、第2の強磁性層が1nm以上1.6nm以下の厚みとなるようにすることが好ましい。
【0018】
また、本発明のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法では、緩衝層を形成するにあたり、第1の層が0.4nm以上0.6nm以下の厚みとなるようにし、第2の層が0.4nm以上0.6nm以下の厚みとなるようにすることが好ましい。
【0019】
また、本発明のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法では、フリー層とシンセティック反強磁性固定層とが磁気的に交換結合するように非磁性層を設けることが好ましく、非磁性層は、層間結合磁界の信号およびその大きさを制御可能な程度の厚みを有することが好ましい。この場合、非磁性層は銅を含み、1.6nm以上2.2nm以下の厚みとすることが好ましい。
【0020】
また、本発明のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法では、第1の反平行強磁性層の厚みは、第2の反平行強磁性層の厚みよりも大きくなるようにしてもよい。その場合、コバルト鉄合金からなる第1の反平行強磁性層が1.5nmを超えて2nm以下の厚みとなるようにし、スペーサ層がルテニウムからなり、0.7nm以上0.8nm以下の厚みとなるようにし、コバルト鉄合金からなる第2の反平行強磁性層が1.5nm以上2nm未満の厚みとなるようにすることが望ましい。
【0021】
また、本発明のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法では、第1の反平行強磁性層の厚みは、第2の反平行強磁性層の厚みよりも小さくなるようにしてもよい。その場合、コバルト鉄合金からなる第1の反平行強磁性層が1.6nm以上2nm以下の厚みとなるようにし、スペーサ層がルテニウムからなり、0.7nm以上0.8nm以下の厚みとなるようにし、コバルト鉄合金からなる第2の反平行強磁性層が1.8nm以上2.1nm以下の厚みとなるようにすることが望ましい。
【0022】
また、本発明のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法では、マンガン白金合金を用いて、10nm以上20nm以下の厚みとなるように固定作用層を設けることが好ましい。さらに、ニッケルクロムおよびタンタルのうちの少なくとも1種を用いて、2nm以上3nm以下の厚みとなるように保護層を設けることが好ましい。
【0023】
また、本発明のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法では、高保磁力を有する磁性材料を用いて縦バイアス層を設けることが好ましく、特にコバルト白金クロム合金を用いて、15nm以上25nm以下の厚みとすることが好ましい。
【0024】
また、本発明のスピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法では、5nmの厚みのタンタル層と、25nmの厚みの金層と、5nmの厚みのタンタル層とを順に積層し、全体で35nmの厚みとなるように導電性リードオーバーレイ層を設けることが好ましい。
【0025】
本発明のスピンバルブ型磁気抵抗効果再生ヘッドは、伝導電子を完全反射し、超高記録密度に対応したスピンバルブ型磁気抵抗効果再生ヘッドであり、積層構造からなり、信号磁界を感知するフリー層を備えたセンサ部と、このセンサ部分の両側に延在する硬質磁性材料よりなる縦バイアス層と、縦バイアス層を覆って対称的に延在し、センサ部におけるトラック幅に対応する幅を規定する導電性リードオーバーレイ層とを含み、センサ部が、シード層と、フリー層との界面において伝導電子を完全反射する緩衝層と、フリー層と、非磁性層と、シンセティック反強磁性被固定層と、反強磁性材料よりなる固定作用層と、保護層とがこの順に積層された積層構造を含み、緩衝層が、シード層の側から順にルテニウムからなる第1の層と銅からなる第2の層とが積層されたものであり、フリー層が、緩衝層の側から順にニッケル鉄合金からなる第1の強磁性層とコバルト鉄合金からなる第2の強磁性層とが積層されたものであり、非磁性層が、銅からなり、シンセティック反強磁性被固定層が、非磁性層の側から順にコバルト鉄合金からなる第1の反平行強磁性層と、非磁性材料よりなるスペーサ層と、第1の反平行強磁性層と同一組成のコバルト鉄合金からなる第2の反平行強磁性層とが順に積層された構造を有するようにしたものである。
ここで、フリー層とシンセティック反強磁性被固定層との層間結合磁界が正の場合、第1の反平行強磁性層は第2の反平行強磁性層よりも大きな厚みを有し、層間結合磁界が負の場合、第1の反平行強磁性層は第2の反平行強磁性層よりも小さな厚みを有する。
【0026】
発明のスピンバルブ型磁気抵抗効果再生ヘッドでは、センサ部において、シード層の側から順にルテニウムからなる第1の層と銅からなる第2の層とが積層された緩衝層と、緩衝層の側から順にニッケル鉄合金からなる第1の強磁性層とコバルト鉄合金からなる第2の強磁性層とが積層されたフリー層とを含むようにした。これにより、上向きスピンをもった電子と下向きスピンを持った電子との平均自由行程の差を維持することができる。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態について適宜、図面を参照して詳細に説明する。
【0028】
最初に、図1を参照して、主に、本発明の実施の形態に係るスピンバルブ型磁気抵抗効果再生ヘッド(以下、SVMRヘッドという。)の構成について説明する。
【0029】
図1は、本発明の実施の形態に係るSVMRヘッドの断面構成を表すものである。図1では、SVMRヘッドの、エアベアリング面(磁気記録媒体に対向する面)に沿った要部断面構成を表している。
【0030】
このSVMRヘッドは、主に、下部基体2上に配設されたセンサ部30と、このセンサ部30の両側に延在する硬質磁性材料よりなる縦バイアス層18と、この縦バイアス層18およびセンサ部30を覆うように配設された導電性リードオーバーレイ層20とを備えている。この導電性リードオーバーレイ層20上には上部基体23が配設され、さらに、上部基体23上には、上部シールド層8が配設されている。下部基体2の下側(センサ部30とは反対側)には、下部シールド層9が形成されている。このSVMRヘッドは、磁気記録媒体等の外部からの信号磁界に応じてセンサ部30の電気抵抗が変化することを利用して、磁気記録媒体等の記録情報を読み出すようになっている。
【0031】
下部シールド層9は、例えば、ニッケル鉄合金(NiFe)等の磁性材料からなり、センサ部30に不要な磁界の影響が及ぶのを阻止する機能を有する。下部基体2は、10〜20nmの厚みを有し、アルミナ(Al2 3 )等の絶縁材料からなるものである。同様に、上部基体23も、アルミナ等の絶縁材料からなる。上部シールド層8は、例えば、ニッケル鉄合金(NiFe)等の磁性材料からなり、下部シールド層9と同様に、センサ部30に不要な磁界の影響が及ぶのを阻止する機能を有する。
【0032】
センサ部30は、下部基体2側から順に、シード層3、緩衝層4、フリー層7、非磁性層10、シンセティック反強磁性被固定(Synthetic Antiferromagnetic Pinnned,SyAP)層12、固定作用層25および保護層22が順に積層 されたものである。センサ部30の詳細な構成については、SVMRヘッドの製造方法と併せて後述する。
【0033】
縦バイアス層18は、フリー層7の磁化の向きを揃え、単磁区化し、いわゆるバルクハウゼンノイズの発生を抑える機能を示すものである。この縦バイアス層18は、例えば、高保磁力を有する硬質磁性材料、具体的にはコバルト白金クロム(CoPtCr)を含む磁性材料からなり、15nm以上25nm以下の厚みを有する。
【0034】
導電性リードオーバーレイ層20は、センサ部30にセンス電流を導くためのものである。この導電性リードオーバーレイ層20は、5nmの厚みを有する下部タンタル(Ta)層20Aと、25nmの厚みを有する金(Au)層20Bと、5nmの厚みを有する上部タンタル(Ta)層20Cとが順に積層され、全体の厚みが35nmとなった3層構造である。下部タンタル層20Aはセンサ部30および縦バイアス層18の全体を覆うように配設されており、金層20Bおよび上部タンタル層20Cは、センサ部30上の中央部で分断され、端面21を有している。
【0035】
本実施の形態のSVMRヘッドでは、縦バイアス層18によってセンサ部30に縦方向バイアスが印加された状態において、導電性リードオーバーレイ層20にセンス電流が付与されるとセンサ部30にGMR効果が生じる。このGMR効果を利用し、磁気記録媒体に記録された信号磁界をセンサ部30によって検出することにより、磁気記録情報の再生を行う。
【0036】
次に、図1を参照して、主に、本発明の実施の形態に係るSVMRヘッドの製造方法について説明する。さらに、SVMRヘッドの製造方法と併せて、センサ部30の構成および機能についても説明する。
【0037】
まず、例えば、アルティック(Al2 3 ・TiC)よりなる基体(図示せず)を用意し、その基体上に絶縁層を形成した後、例えばスパッタリング法により下部シールド層9を形成する。さらに、例えばスパッタリング法によりアルミニウム膜を形成し、酸化処理することでAl2 3 からなる下部基体2を形成する。
【0038】
続いて、下部基体2上に、センサ部30を形成する。ます、シード層3と、緩衝層4とを順に積層する。シード層3は、厚みが5.0nm以上6.0nm以下であり、ニッケルクロム合金(NiCr)等で構成され、磁気抵抗効果を高める機能を有するものである。緩衝層4は、フリー層7に含まれる後述の第1の強磁性層との間で結晶学的整合性を有する第1の層と、後述の第2の強磁性層との間で結晶学的整合性を有する第2の層とを順に積層したものである。具体的には、緩衝層4は、少なくともルテニウム(Ru)を含み、厚みが0.4nm以上0.6nm以下である第1の層と、少なくとも銅(Cu)を含み、厚みが0.4nm以上0.6nm以下である第2の層とを順に積層したものである。この場合、第1の層および第2の層は、いずれも0.5nmの厚みであることが望ましい。緩衝層4は、フリー層7との界面において伝導電子の散乱を起こさず、電子の完全反射を促進する。
【0039】
次に、緩衝層4上に第1の強磁性層と第2の強磁性層とを順に積層することによりフリー層7を形成する。フリー層7は、軟磁性層とも呼ばれ、磁気記録媒体からの信号磁界に応じて磁化の向きが変化するものである。ここでは、第1の磁性層を、少なくともNiFeを用いて1nm以上1.6nm以下の厚みとなるように形成し、第2の磁性層を、少なくともCoFeを用いて1nm以上1.6nm以下の厚みとなるように形成することが望ましい。特に、NiFeからなる第1の磁性層およびCoFeからなる第2の磁性層は、ともに1nmの厚みであることが好ましい。
【0040】
フリー層7の上に、非磁性材料、例えば銅を用いて、1.6nm以上2.2nm以下の厚みとなるように非磁性層10を形成する。この場合、銅からなる非磁性層10の厚みは、1.8nm以上2.0nm以下であることが好ましく、より好ましくは、1.9nmである。非磁性層10は、フリー層7とSyAP層12とが、磁気的に交換結合をおこなうようにするためのものであり、層間結合磁界の信号および大きさを制御可能な厚みを有していることが望ましい。
【0041】
続いて、非磁性層10の上に、第1の反平行強磁性層(以下、AP1とする。
)と、スペーサ層と、第2の反平行強磁性層(以下、AP2とする。)とを順に積層することにより、SyAP層12を形成する。AP1の厚みは、AP2の厚みよりも大きくなるように形成することが望ましく、この場合には、CoFeを用いて1.5nm以上2nm以下の厚みとなるようにAP1を形成し、ルテニウム(Ru)を用いて0.7nm以上0.8nm以下の厚みとなるようにスペーサ層を形成し、さらに、CoFeを用いて1.5nmを超えて2.0nm未満の厚みとなるようにAP2を形成することが望ましい。この場合、ルテニウムからなるスペーサ層は0.75nmの厚みとすることがより望ましい。また、AP1の厚みが、AP2の厚みよりも小さくなるように形成してもよい。その場合には、CoFeを用いて1.6nm以上2nm以下の厚みとなるようにAP1を形成し、ルテニウムを用いて0.7nm以上0.8nm以下の厚みとなるようにスペーサ層を形成し、さらに、CoFeを用いて1.8nm以上2.1nm未満の厚みとなるようにAP2を形成することが望ましい。この場合、ルテニウムからなるスペーサ層は0.75nmの厚みとすることがより望ましい。AP1およびAP2の厚みは、非磁性層10の厚みに応じて変化させればよい。SyAP層12では、スペーサ層を介して、交換結合作用によりAP1およびAP2の2つの強磁性層が互いに反平行状態となるようにする。
【0042】
次いで、SyAP層12の上に、マンガン白金合金(MnPt)を用いて10nm以上20nm以下の厚みとなるように固定作用層25を形成する。この場合、特に、12nmの厚みとすることが望ましい。この固定作用層25は、一般的にピンニング層と呼ばれ、SyAP層12の磁化方向を固定するものである。 最後に、固定作用層25上に、ニッケルクロム合金(NiCr)およびタンタル(Ta)のうちの少なくとも1種を用いて、2nm以上3nm以下、好ましくは2nmの厚みとなるように保護層22を形成する。
【0043】
以上により、センサ部30の形成が完了する。
【0044】
センサ部30を形成したのち、このセンサ部30の両側に隣接するように、縦バイアス層18を形成する。CoPtCrを用いて縦バイアス層18を形成する場合、それに先立ち、下地層としてクロム層を形成するようにしてもよい。さらに、この縦バイアス層18とセンサ部30の最上層である保護層22とを覆うように、下部タンタル層20A、金層20Bおよび上部タンタル層20Cを順に積層することによって導電性リードオーバーレイ層20を形成する。導電性リードオーバーレイ層20のうち、センサ部30上に形成された磁気記録媒体のトラック幅に対応する部分を、反応性イオンエッチング(Reactive Ion Etching;RIE)等により下部タンタル層20Aに達するまでエッチング処理する。これにより端面21が露出する。こののち、全体を覆うように上部基体23をAl2 3 等で形成し、最後に上部基体23の上に上部シールド層8を形成することにより、SVMRヘッドが完成する。
【0045】
以上、説明した本実施の形態のSVMRヘッドは、完全反射型のシングルトップスピンバルブ型磁気抵抗効果再生ヘッドである。これに含まれるセンサ部30の最適な構成例は、下部基体2上のシード層3から順に「NiCr(5.5nm厚)/ルテニウム(0.5nm厚)/銅(0.5nm厚)/NiFe(1nm厚)/CoFe(1nm厚)/Cu(1.9nm厚)/CoFe/ルテニウム(0.75nm厚)/CoFe/MnPt(12nm厚)/NiCr(2nm厚)」である。ここで、「ルテニウム/銅」の積層構造からなる緩衝層4は、第1の強磁性層としてのNiFeおよび第2の強磁性層としてのCoFeとの間で最適な結晶学的整合性を有し、極薄のフリー層7の構成を可能とする。この場合、より軟磁性を示すフリー層7とするため、NiFeからなる第1の磁性層をCoFeからなる第2の磁性層よりも厚くすることが好ましい。
【0046】
【実施例】
本実施の形態のSVMRヘッドの優れた諸物理特性を明らかにするため、いくつかの調査をおこなったので以下に説明する。
【0047】
表1は、本実施の形態のSVMRヘッドのセンサ部30とは異なった構成を有するセンサのサンプルS11を作製し、本実施の形態のSVMRヘッドのサンプルS12,S13と諸物理特性について比較したものである。
【0048】
【表1】
Figure 0004794109
【0049】
表1は、最も左側の列から順に、サンプル名、センサ部の構成、フリー層の磁気モーメントBs[nWb]、フリー層の保磁力Hc[A/m]、層間結合磁界He[A/m]、異方性磁界Hk[A/m]、シート抵抗[Ω/□]、磁気抵抗変化率Dr/r[単位無し]、磁気抵抗変化Dr[Ω/□]および磁歪定数λs[単位無し]を示したものである。S11〜S13の各サンプルは、それぞれ極薄のフリー層を備えており、厚み3.7nmのNiFe層とほぼ同等の磁気モーメントを示す。
【0050】
S11は、従来のスピンバルブ構造におけるセンサ部である。S11は、「NiFe/CoFe」からなる複合のフリー層を有しているが、このフリー層とNiCrからなるシード層との間に緩衝層を備えていない。S12は、NiCrからなるシード層3と「NiFe/CoFe」からなる複合のフリー層7との間に、厚み1.0nmの銅からなる緩衝層4を有している。この場合、緩衝層4は、いわゆるHCL(high conductive layer )と呼ばれる。
【0051】
S13は、フリー層7が単層のCoFe層となっている。S13は、厚み0.5nmのルテニウムからなる緩衝層4を有している。この緩衝層4は、フリー層7のCoFe層との間で結晶学的整合性を有するものである。これによって、伝導電子が完全反射するために有効な領域が形成される。実際に、S13では、緩衝層4(ルテニウム)とフリー層7(CoFe)との界面での完全反射因子は0.6である。このような「ルテニウム/CoFe」の構成により、「ルテニウム/NiFe」の構成よりも完全反射因子をより大きくすることができるばかりでなく、保磁力Hcを下げることができる。さらに、再生出力の大きさを表す磁気抵抗変化率Dr/rを向上させることができる。
【0052】
表2に、様々な緩衝層上に極薄のフリー層を備えたSVMRヘッドのサンプルS21〜S23について、諸物理特性を測定した結果を示す。
【0053】
【表2】
Figure 0004794109
【0054】
S21は、銅からなる緩衝層の上に「NiFe/CoFe」の複合層からなるフリー層を備えた標準的なサンプルである。S22は、ルテニウムからなる緩衝層の上にCoFeからなる単層のフリー層を備えたサンプルである。S23は、銅からなる緩衝層の上にCoFeからなる単層のフリー層を備えたサンプルである。表2における右側から2列目の項目は、各サンプルS21〜S23において、フリー層の磁化方向を困難軸(HA;Hard Axis )に近づけるために要する磁界の大きさを示す。最も右側の項目は、磁歪定数λsを示す。この磁歪定数λsは、SVMRヘッドの性能を示す重要な指標である。SVMRヘッドでは、フリー層の厚みが薄くなるほど磁歪定数λsが漸次増加する。この磁歪定数λsは、負の値の場合よりも正の値のほうが良好であり、特に、1.0×10−6程度の小さな正値であることが望ましい。
【0055】
次に、本実施の形態のSVMRヘッドにおいて、抵抗変化率Dr/rおよび磁気抵抗Drの、フリー層7を構成する第2の強磁性層の厚み依存性を調査した。図2は、横軸を第2の強磁性層を形成するCoFe層の厚みXとし、縦軸を抵抗変化率Dr/rとして特性値をプロットしたものである。図3は、横軸を第2の強磁性層を形成するCoFe層の厚みXとし、縦軸を磁気抵抗変化Dr[Ω/□]として特性値をプロットしたものである。図2および図3の場合、センサ部30の詳細な構成は、「Ni60Cr40(5.5nm厚)/NiFe(Ynm厚)/CoFe(Xnm厚)/Cu(1.8nm厚)/CoFe(1.8nm厚)/Ru(0.75nm厚)/CoFe(2.3nm厚)/MnPt(15nm厚)/Ni60Cr40」である。なお、フリー層7(すなわち、Ynm厚のNiFe層とXnm厚のCoFe層とを合わせた全体)の磁気モーメントは、厚み3.7nmのNiFe層の磁気モーメントとほぼ同等である。図2,図3に示したように、第2の強磁性層であるCoFe層の厚みXが0.5nm未満の場合、抵抗変化率Dr/rおよび磁気抵抗変化Drは共に急激な変化を示す。しかし、第2の強磁性層であるCoFe層の厚みXが0.5nm〜2.0nmの場合には、抵抗変化率Dr/rおよび磁気抵抗変化Drの変化は共に緩やかである。
【0056】
表3に、本実施の形態のSVMRヘッドの製造方法に基づいて形成されたSVMRヘッドから得られた諸物理特性を示すものである。
【0057】
【表3】
Figure 0004794109
【0058】
S31は、本発明に関連する米国特許出願(整理番号HT99−031)の明細書中に記載された、ルテニウムからなる緩衝層上にCoFeからなるフリー層を備えたSVMRヘッドのサンプルであり、比較例として表3に示した。S32〜S34は、全て本実施の形態のSVMRヘッドのサンプルであり、いずれも「ルテニウム/銅」の2層の緩衝層4と、その緩衝層4上に形成される「NiFe/CoFe」からなる2層のフリー層とを備えている。
【0059】
表3に示したように、S31と、S32〜S34とを比較すると、磁気抵抗変化Drについてはほとんど同等の値である。しかし、磁歪定数λsについては、S31の4.8×10-6に対し、S32〜S34では1.8〜2.2×10-6と、小さな正の値を示している。このことは、SVMRヘッドとして非常に有利である。さらに、層間結合磁界Heは、S32〜S34では負の値を示している。S32〜S34では、センサの安定性、すなわち、SyAP層12における磁化方向の安定性を得るため、SyAP層12を「CoFe(1.9nm厚)/ルテニウム(0.75nm厚)/CoFe(2.1nm厚)」という構成にし、AP1(すなわち、1.9nm厚のCoFe層)がAP2(すなわち、2.1nm厚のCoFe層)よりも僅かに薄くなるようにしている。層間結合磁界Heと、フリー層7とSyAP層12とを隔てる銅の非磁性層10の厚みとの間には相関があり、銅の非磁性層10の厚みを厚く、あるいは薄くすることにより層間結合磁界Heを正の値とすることができる。その場合には、例えば、SyAP層12を「CoFe(2.1nm厚)/ルテニウム(0.75nm厚)/CoFe(1.9nm厚)」という構成にし、AP1(すなわち、2.1nm厚のCoFe層)がAP2(すなわち、1.9nm厚のCoFe層)よりも僅かに厚くなるようにする必要がある。
【0060】
以上、説明したように、本実施の形態のSVMRヘッドおよびその製造方法によれば、以下に挙げる効果が得られる。
【0061】
(1)ルテニウムからなる緩衝層および銅からなる緩衝層(HCL)を適用したことにより、完全反射を促進させ、全体の厚みが1.5nm以上2.0nm以下であるコバルト鉄合金(CoFe)からなる極薄のフリー層7が使用できるようになる。
【0062】
(2)「NiFe/CoFe」の複合層からなるフリー層7の磁気抵抗変化Drは、本発明に関連する米国特許出願(整理番号HT99−031)の明細書中に記載された、ルテニウムからなる緩衝層上にCoFeからなるフリー層を備えたSVMRヘッドの磁気抵抗変化Drと同等の値を示す。
【0063】
(3)極薄のフリー層7とすることにより、磁歪定数λsを1.0-6以上2.2-6以下とすることができる。
【0064】
(4)センサ部30の両側に縦バイアス層18を設け、さらに縦バイアス層18を覆ってセンサ部30を中央として対称的に拡がるように導電性リードオーバーレイ層20を設けたことにより、出力振幅およびセンサ部30の検出性能の安定性を改善できる。
【0065】
以上のように、本実施の形態によれば、例えば、「ルテニウム/銅/NiFe/CoFe」で示される緩衝層4およびフリー層7の積層構造を有するので、伝導電子を完全反射することができる。このような完全反射は、GMR効果のスピン依存散乱と調和し(上向きスピンをもった電子と下向きスピンを持った電子との平均自由行程の差を維持し)、磁気抵抗変化率(Dr/r)を増大させる。これにより、センサ部30は、より高記録密度化された記録媒体からの微弱な信号磁界を感知することが可能となる。さらに、フリー層7は、優れた熱安定性を有し、非常に好ましい磁気特性を示す。特に、軟磁性特性の改善による信号磁界の感度向上の信頼性が得られる。
【0066】
さらに、本実施の形態のSVMRヘッドでは、「CoFe/ルテニウム/CoFe」という3層構造からなるSyAP層12を備えており、このSyAP層12の磁化方向はアニール処理によって一定方向に固定される。このため、製造後のSyAP層12における磁化方向の変動がなく安定している。さらにまた、固定作用層25がMnPtからなるので、高ブロッキング温度、高交換バイアス磁界および優れた耐食性という特性が得られる。
【0067】
以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上部実施の形態において説明したSVMRヘッドの構成や製造方法に関する詳細な部分については、必ずしもこれに限定されるものではなく、各請求項に記載した範囲において製造方法、材料、構造および寸法において変更可能である。
【0068】
【発明の効果】
以上説明したように、請求項1ないし請求項16のいずれか1項に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法または請求項17ないし請求項32のいずれか1項に記載のスピンバルブ型磁気抵抗効果再生ヘッドによれば、シード層の側から順にルテニウムからなる第1の層と銅からなる第2の層とが積層されてなり、フリー層との界面において伝導電子を完全反射する緩衝層と、緩衝層の側から順にニッケル鉄合金からなる第1の強磁性層とコバルト鉄合金からなる第2の強磁性層とが積層されたフリー層とを含むようにしたので、フリー層の厚みを低減しても磁気抵抗変化率を増大させることができる。これにより、より高記録密度化された記録媒体からの微弱な信号磁界を感知することが可能となる。さらに、縦バイアス層と導電性リードオーバーレイ層とを備えるようにしたので、出力振幅およびセンサ部における検出性能の安定性を改善できる。
【0069】
さらに、第1の反平行強磁性層とスペーサ層と第2の反平行強磁性層とが順に積層されたシンセティック反強磁性被固定層を備えており、このシンセティック反強磁性被固定層の磁化方向は一定方向に固定されている。ここで、フリー層とシンセティック反強磁性被固定層との層間結合磁界が正の場合には、第1の反平行強磁性層は第2の反平行強磁性層よりも大きな厚みを有し、フリー層とシンセティック反強磁性被固定層との層間結合磁界が負の場合には、第1の反平行強磁性層は第2の反平行強磁性層よりも小さな厚みを有するように構成される。このため、磁化方向の変動がなく安定した磁気特性を得ることができる。
【0070】
さらに、請求項に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法、または請求項20に記載のスピンバルブ型磁気抵抗効果再生ヘッドによれば、固定作用層がマンガン白金合金層からなるので、高ブロッキング温度、高交換バイアス磁界および優れた耐食性という特性が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るスピンバルブ構造の断面構成を説明するための断面図である。
【図2】図1のスピンバルブ構造における抵抗変化率のフリー層の厚み依存性を示す特性図である。
【図3】図1のスピンバルブ構造における磁気抵抗変化のフリー層の厚み依存性を示す特性図である。
【符号の説明】
2…下部基体、3…シード層、4…緩衝層、7…フリー層、10…非磁性層、12…シンセティック反強磁性被固定層(SyAP層)、18…縦バイアス層、20…導電性リードオーバーレイ層、25…固定作用層、30…センサ部。

Claims (24)

  1. 伝導電子を完全反射し、超高記録密度に対応したスピンバルブ型磁気抵抗効果再生ヘッドの製造方法であって、
    下部基体上に、信号磁界を感知する積層構造のフリー層を備えたセンサ部を形成する第1の工程と、
    前記センサ部の両側に、縦バイアス層を形成する第2の工程と、
    前記縦バイアス層を覆って前記センサ部を中央として対称的に延在するように導電性リードオーバーレイ層を形成し、前記センサ部におけるトラック幅に対応する幅を規定する第3工程とを含み、
    前記第1の工程は、シード層を形成する第4の工程と、
    このシード層上に、ルテニウム(Ru)からなる第1の層と銅(Cu)からなる第2の層とを順に積層することにより前記フリー層との界面において伝導電子を完全反射する緩衝層を形成する第5の工程と、
    この緩衝層上に、ニッケル鉄合金(NiFe)からなる第1の強磁性層とコバルト鉄合金(CoFe)からなる第2の強磁性層とを順に積層することにより前記フリー層を形成する第6の工程と、
    このフリー層上に、銅(Cu)を用いて非磁性層を形成する第7の工程と、
    この非磁性層上に、コバルト鉄合金(CoFe)からなる第1の反平行強磁性層と、非磁性材料よりなるスペーサ層と、前記第1の反平行強磁性層と同一組成のコバルト鉄合金(CoFe)からなる第2の反平行強磁性層とを順に積層することによりシンセティック反強磁性被固定層を形成する第8の工程と、
    このシンセティック反強磁性被固定層上に、固定作用層を形成する第9の工程と、
    この固定作用層上に、保護層を形成する第10の工程と
    を含み、
    前記フリー層と前記シンセティック反強磁性被固定層との層間結合磁界が正となる厚みをなすように前記非磁性層を形成した場合には、前記第2の反平行強磁性層よりも大きな厚みを有するように第1の反平行強磁性層を形成し、
    前記フリー層と前記シンセティック反強磁性被固定層との層間結合磁界が負となる厚みをなすように前記非磁性層を形成した場合には、前記第1の反平行強磁性層よりも大きな厚みを有するように第2の反平行強磁性層を形成する
    ことを特徴とするスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  2. 前記第6の工程において、1nm以上1.6nm以下の厚みとなるように前記第1の強磁性層を形成する
    ことを特徴とする請求項1に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  3. 前記第6の工程において、1nm以上1.6nm以下の厚みとなるように前記第2の強磁性層を形成する
    ことを特徴とする請求項1に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  4. 前記第5の工程において、0.4nm以上0.6nm以下の厚みを有するように前記第1の層を形成し、0.4nm以上0.6nm以下の厚みを有するように前記第2の層を形成する
    ことを特徴とする請求項1に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  5. 前記第7の工程において、1.6nm以上2.2nm以下の厚みとなるように前記非磁性層を形成する
    ことを特徴とする請求項に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  6. 前記第8の工程において、1.5nmを超えて2nm以下の厚みとなるように前記第1の反平行強磁性層を形成し、ルテニウム(Ru)を用いて、0.7nm以上0.8nm以下の厚みとなるようにスペーサ層を形成し、1.5nm以上2nm未満の厚み範囲で前記第1の反平行強磁性層の厚みよりも薄くなるように前記第2の反平行強磁性層を形成する
    ことを特徴とする請求項1に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  7. 前記第8の工程において、1.6nm以上2nm以下の厚みとなるように前記第1の反平行強磁性層を形成し、ルテニウム(Ru)を用いて、0.7nm以上0.8nm以下の厚みとなるように前記スペーサ層を形成し、1.8nm以上2.1nm以下の厚み範囲で前記第1の反平行強磁性層よりも厚くなるように前記第2の反平行強磁性層を形成する
    ことを特徴とする請求項1に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  8. 前記第9の工程において、マンガン白金合金(MnPt)を用いて、10nm以上20nm以下の厚みとなるように前記固定作用層を形成する
    ことを特徴とする請求項1に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  9. 前記第10の工程において、ニッケルクロム合金(NiCr)およびタンタル(Ta)のうちの少なくとも一種を用いて、2nm以上3nm以下の厚みとなるように前記保護層を形成する
    ことを特徴とする請求項1に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  10. 前記第2の工程において、高保磁力を有する磁性材料を用いて前記縦バイアス層を形成する
    ことを特徴とする請求項1に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  11. 前記第2の工程において、
    少なくともコバルト白金クロム合金(CoPtCr)を用いて、15nm以上25nm以下の厚みとなるように前記縦バイアス層を形成する
    ことを特徴とする請求項10に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  12. 前記第3の工程において、
    5nmの厚みのタンタル層と、25nmの厚みの金の層と、5nmの厚みのタンタル層とを順に積層し、全体で35nmの厚みとなるように前記導電性リードオーバーレイ層を形成する
    ことを特徴とする請求項1に記載のスピンバルブ型磁気抵抗効果再生ヘッドの製造方法。
  13. 伝導電子を完全反射し、超高記録密度に対応したスピンバルブ型磁気抵抗効果再生ヘッドであって、
    積層構造からなり、信号磁界を感知するフリー層を備えたセンサ部と、
    このセンサ部分の両側に延在する硬質磁性材料よりなる縦バイアス層と、
    この縦バイアス層を覆って前記センサ部を中央として対称的に延在し、前記センサ部におけるトラック幅に対応する幅を規定する導電性リードオーバーレイ層と
    を含み、
    前記センサ部は、
    シード層と、前記フリー層との界面において伝導電子を完全反射する緩衝層と、前記フリー層と、非磁性層と、シンセティック反強磁性被固定層と、反強磁性材料よりなる固定作用層と、保護層とがこの順に積層された積層構造を含み、
    前記緩衝層は、前記シード層の側から順にルテニウム(Ru)からなる第1の層と銅(Cu)からなる第2の層とが積層されたものであり、
    前記フリー層は、前記緩衝層の側から順にニッケル鉄合金(NiFe)からなる第1の強磁性層とコバルト鉄合金(CoFe)からなる第2の強磁性層とが積層されたものであり、
    前記非磁性層は、銅(Cu)からなり、
    前記シンセティック反強磁性被固定層は、前記非磁性層の側から順にコバルト鉄合金(CoFe)からなる第1の反平行強磁性層と、非磁性材料よりなるスペーサ層と、前記第1の反平行強磁性層と同一組成のコバルト鉄合金(CoFe)からなる第2の反平行強磁性層とが順に積層された構造を有し、
    前記フリー層と前記シンセティック反強磁性被固定層との層間結合磁界が正の場合、前記第1の反平行強磁性層は前記第2の反平行強磁性層よりも大きな厚みを有し、
    前記フリー層と前記シンセティック反強磁性被固定層との層間結合磁界が負の場合、前記第1の反平行強磁性層は前記第2の反平行強磁性層よりも小さな厚みを有する
    ことを特徴とするスピンバルブ型磁気抵抗効果再生ヘッド。
  14. 前記第1の強磁性層は、1nm以上1.6nm以下の厚みを有することを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  15. 前記第2の強磁性層は、1nm以上1.6nm以下の厚みを有することを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  16. 前記第1の層は、0.4nm以上0.6nm以下の厚みを有し、前記第2の層は、0.4nm以上0.6nm以下の厚みを有する
    ことを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  17. 前記非磁性層は、1.6nm以上2.2nm以下の厚みを有する
    ことを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  18. 前記第1の反平行強磁性層は、1.5nmを超えて2nm以下の厚みを有し、
    前記スペーサ層は、ルテニウム(Ru)よりなり、0.7nm以上0.8nm以下の厚みを有し、
    前記第2の反平行強磁性層は、1.5nm以上2nm未満の範囲内で前記第1の反平行強磁性層の厚みよりも薄い厚みを有する
    ことを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  19. 前記第1の反平行強磁性層は、1.6nm以上2nm以下の厚みを有し、
    前記スペーサ層は、ルテニウム(Ru)よりなり、0.7nm以上0.8nm以下の厚みを有し、
    前記第2の反平行強磁性層は、1.8nm以上2.1nm以下の範囲内で前記第1の反平行強磁性層の厚みを越える厚みを有する
    ことを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  20. 前記固定作用層は、マンガン白金合金(MnPt)よりなり、10nm以上20nm以下の厚みを有する
    ことを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  21. 前記保護層は、ニッケルクロム合金(NiCr)およびタンタル(Ta)のうちの少なくとも一種からなり、2nm以上3nm以下の厚みを有する
    ことを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  22. 前記縦バイアス層は、高保磁力を有する磁性材料からなる
    ことを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  23. 前記縦バイアス層は、少なくともコバルト白金クロム合金(CoPtCr)を含み、15nm以上25nm以下の厚みを有する
    ことを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
  24. 前記導電性リードオーバーレイ層は、
    5nmの厚みを有するタンタル(Ta)層と、25nmの厚みを有する金(Au)層と、5nmの厚みを有するタンタル(Ta)層とが順に積層された構造であり、全体で350nmの厚みを有する
    ことを特徴とする請求項13に記載のスピンバルブ型磁気抵抗効果再生ヘッド。
JP2002119283A 2001-04-23 2002-04-22 スピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法 Expired - Fee Related JP4794109B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/839,960 US6614630B2 (en) 2001-04-23 2001-04-23 Top spin valve heads for ultra-high recording density
US09/839960 2001-04-23

Publications (2)

Publication Number Publication Date
JP2003045011A JP2003045011A (ja) 2003-02-14
JP4794109B2 true JP4794109B2 (ja) 2011-10-19

Family

ID=25281087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002119283A Expired - Fee Related JP4794109B2 (ja) 2001-04-23 2002-04-22 スピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法

Country Status (2)

Country Link
US (1) US6614630B2 (ja)
JP (1) JP4794109B2 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634087B2 (en) * 2000-12-26 2003-10-21 Headway Technologies, Inc. Spin valve head having lead overlay
JP3379704B2 (ja) * 2001-07-24 2003-02-24 ティーディーケイ株式会社 薄膜磁気ヘッド、磁気ヘッド装置及び磁気記録再生装置
US6751070B2 (en) * 2001-11-01 2004-06-15 Tdk Corporation Thin film magnetic head and method for fabricating the same
US7107667B2 (en) * 2001-11-01 2006-09-19 Tdk Corporation Method for fabricating thin film magnetic head
US7133264B2 (en) * 2002-09-13 2006-11-07 Hitachi Global Storage Technologies Netherlands B.V. High resistance sense current perpendicular-to-plane (CPP) giant magnetoresistive (GMR) head
US7007373B2 (en) * 2002-11-18 2006-03-07 Hitachi Global Storage Technologies Netherlands B.V. Method of manufacturing enhanced spin-valve sensor with engineered overlayer
US6888704B1 (en) * 2003-01-22 2005-05-03 Western Digital (Fremont), Inc. Method and system for providing high sensitivity giant magnetoresistive sensors
US6943994B2 (en) * 2003-02-13 2005-09-13 Headway Technologies, Inc. Design of canted synthetic pattern exchange spin valve head for improving stability and bias
US6873501B2 (en) * 2003-04-03 2005-03-29 Headway Technologies, Inc. CPP spin valve head with bias point control
US7050277B2 (en) * 2003-07-29 2006-05-23 Hitachi Global Storage Technologies Netherlands B.V. Apparatus having a self-pinned abutted junction magnetic read sensor with hard bias layers formed over ends of a self-pinned layer and extending under a hard bias layer
US7072154B2 (en) 2003-07-29 2006-07-04 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for providing a self-pinned bias layer that extends beyond the ends of the free layer
US7092220B2 (en) * 2003-07-29 2006-08-15 Hitachi Global Storage Technologies Apparatus for enhancing thermal stability, improving biasing and reducing damage from electrostatic discharge in self-pinned abutted junction heads having a first self-pinned layer extending under the hard bias layers
US7099123B2 (en) * 2003-07-29 2006-08-29 Hitachi Global Storage Technologies Self-pinned abutted junction heads having an arrangement of a second hard bias layer and a free layer for providing a net net longitudinal bias on the free layer
US7230802B2 (en) * 2003-11-12 2007-06-12 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for providing magnetostriction control in a freelayer of a magnetic memory device
US7105372B2 (en) * 2004-01-20 2006-09-12 Headway Technologies, Inc. Magnetic tunneling junction film structure with process determined in-plane magnetic anisotropy
US7190560B2 (en) * 2004-02-18 2007-03-13 Hitachi Global Storage Technologies Netherlands B.V. Self-pinned CPP sensor using Fe/Cr/Fe structure
US7221545B2 (en) * 2004-02-18 2007-05-22 Hitachi Global Storage Technologies Netherlands B.V. High HC reference layer structure for self-pinned GMR heads
US7323215B2 (en) * 2004-05-14 2008-01-29 Headway Technologies, Inc. Free layer design for CPP GMR enhancement
US6960480B1 (en) * 2004-05-19 2005-11-01 Headway Technologies, Inc. Method of forming a magnetic tunneling junction (MTJ) MRAM device and a tunneling magnetoresistive (TMR) read head
US7611912B2 (en) * 2004-06-30 2009-11-03 Headway Technologies, Inc. Underlayer for high performance magnetic tunneling junction MRAM
JP2006128410A (ja) * 2004-10-28 2006-05-18 Alps Electric Co Ltd 磁気検出素子及びその製造方法
US7431961B2 (en) * 2004-12-10 2008-10-07 Headway Technologies, Inc. Composite free layer for CIP GMR device
US7330340B2 (en) * 2005-02-07 2008-02-12 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with free layer bias adjustment capability
US7472469B2 (en) * 2005-09-20 2009-01-06 Hitachi Global Storage Technologies Netherlands B.V. Method for fabricating a magnetic head having a sensor stack and two lateral stack
JP2008016675A (ja) * 2006-07-06 2008-01-24 Fujitsu Ltd 磁気抵抗効果素子、それを有する読み取りヘッド並びに記録装置
US8710603B2 (en) * 2012-02-29 2014-04-29 Headway Technologies, Inc. Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications
US8698260B2 (en) 2012-02-29 2014-04-15 Headway Technologies, Inc. Engineered magnetic layer with improved perpendicular anisotropy using glassing agents for spintronic applications
KR20180086351A (ko) * 2017-01-20 2018-07-31 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US11264560B2 (en) 2019-06-21 2022-03-01 Headway Technologies, Inc. Minimal thickness, low switching voltage magnetic free layers using an oxidation control layer and magnetic moment tuning layer for spintronic applications
US11264566B2 (en) 2019-06-21 2022-03-01 Headway Technologies, Inc. Magnetic element with perpendicular magnetic anisotropy (PMA) and improved coercivity field (Hc)/switching current ratio
CN110416405A (zh) * 2019-08-05 2019-11-05 杭州电子科技大学 一种具有合成反铁磁结构的自旋阀薄膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608593A (en) * 1995-03-09 1997-03-04 Quantum Peripherals Colorado, Inc. Shaped spin valve type magnetoresistive transducer and method for fabricating the same incorporating domain stabilization technique
US5627704A (en) * 1996-02-12 1997-05-06 Read-Rite Corporation Thin film giant magnetoresistive CPP transducer with flux guide yoke structure
SG47214A1 (en) * 1996-03-14 1998-03-20 Sony Corp Thin-film magnetic head
US5764567A (en) 1996-11-27 1998-06-09 International Business Machines Corporation Magnetic tunnel junction device with nonferromagnetic interface layer for improved magnetic field response
US5650958A (en) 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
KR100262282B1 (ko) * 1996-04-30 2000-10-02 니시무로 타이죠 자기 저항 효과 소자
US5717550A (en) 1996-11-01 1998-02-10 Read-Rite Corporation Antiferromagnetic exchange biasing using buffer layer
US5919580A (en) 1997-05-22 1999-07-06 University Of Alabama Spin valve device containing a Cr-rich antiferromagnetic pinning layer
JP3274392B2 (ja) * 1997-09-17 2002-04-15 アルプス電気株式会社 スピンバルブ型薄膜素子
US5936293A (en) 1998-01-23 1999-08-10 International Business Machines Corporation Hard/soft magnetic tunnel junction device with stable hard ferromagnetic layer
US6275362B1 (en) * 1999-07-30 2001-08-14 International Business Machines Corporation Magnetic read head having spin valve sensor with improved seed layer for a free layer
US6466418B1 (en) * 2000-02-11 2002-10-15 Headway Technologies, Inc. Bottom spin valves with continuous spacer exchange (or hard) bias

Also Published As

Publication number Publication date
JP2003045011A (ja) 2003-02-14
US20020154457A1 (en) 2002-10-24
US6614630B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP4794109B2 (ja) スピンバルブ型磁気抵抗効果再生ヘッドおよびその製造方法
US6353518B2 (en) Spin valve sensor having antiparallel (AP) pinned layer structure with low coercivity and high resistance
JP3807254B2 (ja) 磁気抵抗効果素子、磁気抵抗効果型磁気センサ、および磁気抵抗効果型磁気ヘッド
JP5771352B2 (ja) 磁気再生記録ヘッドおよびその製造方法
US7283333B2 (en) Self-pinned double tunnel junction head
JP3462832B2 (ja) 磁気抵抗センサ並びにこれを用いた磁気ヘッド及び磁気記録再生装置
US9704517B2 (en) Magnetoresistive sensor with SAF structure having amorphous alloy layer
JP3657875B2 (ja) トンネル磁気抵抗効果素子
JP3657916B2 (ja) 磁気抵抗効果ヘッドおよび垂直磁気記録再生装置
JP2009026400A (ja) 差動磁気抵抗効果型磁気ヘッド
US20070230070A1 (en) Magnetoresistive element including heusler alloy layer
US7177120B2 (en) Self-pinned spin valve sensor with a high coercivity antiparallel (AP) pinned layer
JP3706793B2 (ja) スピンバルブ型薄膜磁気素子及びその製造方法並びにこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド
JP4939050B2 (ja) 磁気トンネル接合素子の磁化自由層の形成方法ならびにトンネル接合型再生ヘッドおよびその製造方法
JP2004319060A (ja) 薄膜磁気ヘッドおよびその製造方法
US7145755B2 (en) Spin valve sensor having one of two AP pinned layers made of cobalt
JP3357649B2 (ja) 磁気再生ヘッド、磁気ヘッド組立体および磁気ディスク駆動装置
US7173796B2 (en) Spin valve with a capping layer comprising an oxidized cobalt layer and method of forming same
US7256972B2 (en) CPP sensor with improved pinning strength longitudinal bias structure
JP2003229612A (ja) 磁気抵抗効果センサーおよび磁気ディスク装置
US7038891B2 (en) Method and apparatus for providing precise control of magnetic coupling field in NiMn top spin valve heads and amplitude enhancement
US7372675B2 (en) Magnetoresistive element, thin-film magnetic head, head gimbal assembly, head arm assembly and magnetic disk drive
JP2000348307A (ja) 磁気抵抗効果素子、薄膜磁気ヘッドおよびそれらの製造方法
JPH10269532A (ja) スピンバルブ型磁気抵抗効果ヘッド
JP3995520B2 (ja) 磁気再生ヘッドおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060911

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070928

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071029

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071128

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080805

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees