JP2009021506A - 半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法 - Google Patents

半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法 Download PDF

Info

Publication number
JP2009021506A
JP2009021506A JP2007184582A JP2007184582A JP2009021506A JP 2009021506 A JP2009021506 A JP 2009021506A JP 2007184582 A JP2007184582 A JP 2007184582A JP 2007184582 A JP2007184582 A JP 2007184582A JP 2009021506 A JP2009021506 A JP 2009021506A
Authority
JP
Japan
Prior art keywords
thin film
metal thin
semiconductor laser
laser array
resonators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007184582A
Other languages
English (en)
Inventor
Koji Takahashi
幸司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007184582A priority Critical patent/JP2009021506A/ja
Publication of JP2009021506A publication Critical patent/JP2009021506A/ja
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】少なくとも1つの共振器が故障して短絡状態となった場合においても残りの共振器が発振し続けるとともに、実現可能な半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法を提供する。
【解決手段】半導体レーザアレイは、複数の共振器110と、複数の電流供給部と、金属薄膜101とを備えている。複数の共振器110は、半導体層と、半導体層上に形成されたオーミック電極とを含み、オーミック電極が互いに分離構造を介して分離された状態で配置されている。複数の電流供給部は、それぞれの共振器110に並列に電流を供給している。金属薄膜101は、それぞれの共振器110と電流供給部とを電気的に接続している。複数の共振器のうち、少なくとも1つの共振器に過電流が流れた場合に、金属薄膜が溶断される。
【選択図】図2

Description

半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法に関する。
半導体レーザ共振器を複数個並列に集積化した半導体レーザアレイは、ワット級の光出力を得ることができる。そのため、半導体レーザアレイを各種励起光源、加工分野、ディスプレイ分野および医療分野などで用いることができるようになる。一方、近年、光ディスクのピックアップ用の400nm付近の波長を有する青紫色レーザ光を出射する半導体レーザ共振器の開発が進められており、実用化段階に近づいている。青紫色レーザ光は波長が短く、ワット級の光出力を得ることができれば、応用分野がさらに広がることが期待される。
半導体レーザアレイは、数ワットから数十ワット級の出力を取り出す為に複数の共振器が1つのチップに電気的に並列に駆動されるように集積化されたものである。各共振器は高次の水平横モードを含むマルチモードで発振するレーザであるブロードエリア型とされることが多く、これによって発振閾値電流密度を大幅に下げることができるとともに、端面の光損傷を抑えることができ、各共振器から効率良く大出力の光を取り出すことができるようになる。
このような半導体レーザアレイとして、たとえば、GaN(窒化ガリウム)基板上に形成されたGaInN(窒化インジウムガリウム)多重量子井戸を活性層とする共振器を複数備える半導体レーザアレイが報告されている(非特許文献1参照)。非特許文献1には、4つの共振器が1チップに集積化された半導体レーザアレイを、1つのヒートシンクに11チップ実装し、出力4.2Wが得られたことが開示されている。
しかしながら、上記非特許文献1の半導体レーザアレイにおいてある共振器が劣化して故障すると、ある共振器と電気的に接続されている2つの電極間が電気的に短絡状態となる場合と、開放状態となる場合とがある。故障後にどちらの状態になるかは、事前にはわからない。
複数の共振器が電気的に並列に接続された半導体レーザアレイにおいて、複数の共振器のうちの少なくとも1つが故障した場合、故障した共振器が電気的に開放状態となった場合には他の共振器は発振し続ける。そのため、一時的に各共振器に供給される動作電流に変動が生じるものの光出力は取り出し続けることができる。一方、故障した共振器が電気的に短絡状態となった場合には、短絡した共振器に電流が集中し、他の共振器のレーザ発振が止まり、さらには駆動回路・制御回路等の外部回路を破壊する場合もある。
外部回路を保護するために、外部回路にヒューズを取り付けることも考えられる。しかし、この場合には、故障していない共振器も含めてレーザ発振が途絶えることになる。
そこで、特開2006−128236号公報(特許文献1)に、1つの共振器が短絡不良を起こしても他の共振器が発振できることを目的とした光半導体モジュールが開示されている。特許文献1によれば、共振器に動作電流を供給するボンディングワイヤは、共振器の動作電流以上の所定の過電流が流れた時に溶断するような材料、径および形状とされたことを特徴としている。
2006−128236号公報 M. TAKEYA et al., ゛High-power AlGaInN lasers", phys. stat. sol. (a) 192, No.2 (2002), p.269-276
しかしながら、上記特許文献1では、半導体レーザに電流を供給する金属ワイヤに溶断性を持たせているが、金属ワイヤの長さを厳密に制御しなければワイヤが溶断する電流値を制御することができない。多品種に渡る種々の特性の共振器を一つの製造ラインにて混在して製造する場合に、共振器の品種毎に金属ワイヤの太さ、長さ、材質および断面形状などを変更しなければならない。そのため、製造上の問題から実施するための困難を伴うことがわかった。
上記の状況を鑑み、本発明の目的は、複数の共振器が電気的に並列に一斉駆動される半導体レーザアレイにおいて、少なくとも1つの共振器が故障して短絡状態となった場合においても残りの共振器が発振し続け、外部回路を過電流から保護することができるとともに、実現可能な半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法を提供することである。
本発明の一の局面における半導体レーザアレイは、複数の共振器と、複数の電流供給部と、金属薄膜とを備えている。複数の共振器は、半導体層と、半導体層上に形成されたオーミック電極とを含み、オーミック電極が互いに分離構造を介して分離された状態で配置されている。複数の電流供給部は、それぞれの共振器に並列に電流を供給している。金属薄膜は、それぞれの共振器と電流供給部とを電気的に接続している。金属薄膜を構成する材料の融点は、電流供給部を構成する材料の融点よりも低い。
本発明の一の局面における半導体レーザアレイの製造方法は、複数の共振器を準備する工程と、複数の電流供給部を準備する工程と、金属薄膜を形成する工程とを備えている。複数の共振器を準備する工程では、半導体層と、半導体層上に形成されたオーミック電極とを含み、オーミック電極が互いに分離構造を介して分離された状態で配置された複数の共振器を準備する。複数の電流供給部を準備する工程では、それぞれの共振器に並列に電流を供給するための複数の電流供給部を準備する。金属薄膜を形成する工程では、それぞれの共振器と電流供給部とを電気的に接続する金属薄膜を形成する。金属薄膜を形成する工程では、電流供給部を構成する材料の融点よりも低い材料の金属薄膜を形成している。
本発明の他の局面における半導体レーザアレイは、複数の共振器と、複数の電流供給部と、金属薄膜とを備えている。複数の共振器は、半導体層と、半導体層上に形成されたオーミック電極とを含み、オーミック電極が互いに分離構造を介して分離された状態で配置されている。複数の電流供給部は、それぞれの共振器に並列に電流を供給している。金属薄膜は、それぞれの共振器と電流供給部とを電気的に接続している。複数の共振器のうち、少なくとも1つの共振器に過電流が流れた場合に、金属薄膜が溶断される。
本発明の他の局面における半導体レーザアレイの製造方法は、複数の共振器を準備する工程と、複数の電流供給部を準備する工程と、金属薄膜を形成する工程とを備えている。複数の共振器を準備する工程では、半導体層と、半導体層上に形成されたオーミック電極とを含み、オーミック電極が互いに分離構造を介して分離された状態で配置された複数の共振器を準備する。複数の電流供給部を準備する工程では、それぞれの共振器に並列に電流を供給するための複数の電流供給部を準備する。金属薄膜を形成する工程では、それぞれの共振器と電流供給部とを電気的に接続する金属薄膜を形成する。金属薄膜を形成する
工程では、複数の共振器のうち、少なくとも1つの共振器に過電流が流れた場合に、金属薄膜が溶断される金属薄膜を形成する。
本発明の一の局面および他の局面における半導体レーザアレイおよび半導体レーザアレイの製造方法によれば、複数の共振器が電気的に並列に一斉駆動される半導体レーザアレイにおいて、少なくとも1つの共振器が故障して短絡状態となった場合においても、短絡状態となった共振器と電気的に接続されている金属薄膜が溶断されるので、残りの共振器の発振に影響を及ぼさない。そのため、残りの共振器は発振し続け、少なくとも1つの共振器の故障により半導体レーザアレイにおいて短絡状態でない共振器の発振が止まることを防止できる。また、短絡した共振器に電流が集中することを防止できるので、外部回路を過電流から保護することができる。
また、過電流が流れた場合に他の共振器との電気的な接続を解除する部材としての金属薄膜は製造が容易であり、かつ形状の制御が容易である。そのため、溶断する電流値の制御を容易に行なうことができる。さらに、共振器毎に金属薄膜を個別に設けているので、多品種に渡る種々の特性の共振器を一つの製造ラインにて混在して製造することも可能となる。そのため、実現可能な半導体レーザアレイが得られる。
なお、上記「分離構造」とは、隣り合う2つの共振器が配置されている領域において最も抵抗値が高い部分を意味し、隣り合う2つの共振器が絶縁されている場合も含む。
上記半導体レーザアレイにおいて好ましくは、オーミック電極と金属薄膜とを電気的に接続する第2の金属層をさらに備えている。
また上記半導体レーザアレイの製造方法において好ましくは、金属薄膜を形成する工程は、オーミック電極と金属薄膜とを第2の金属層を介して電気的に接続する工程を含んでいる。
これにより、金属薄膜の形状の選択をより多くできる。そのため、製造上の実現がより容易になる。また金属薄膜の配置の選択をより多くできる。
上記半導体レーザアレイにおいて好ましくは、表面が絶縁性材料からなる基台と、基台の表面上に形成された導電性のパターンとをさらに備えている。パターンと金属薄膜とが電気的に接続されている。
また、上記半導体レーザアレイの製造方法において好ましくは、表面が絶縁性材料からなる基台を準備する工程と、基台の表面上に導電性のパターンを形成する工程と、パターンとオーミック電極とを電気的に接続する工程とをさらに備えている。金属薄膜を形成する工程では、パターンと金属薄膜とを電気的に接続している。
これにより、金属薄膜を備える半導体レーザアレイを種々の用途に用いることができる。
上記半導体レーザアレイにおいて好ましくは、金属薄膜と電流供給部とを電気的に接続する第3の金属層をさらに備えている。
また上記半導体レーザアレイにおいて好ましくは、金属薄膜を形成する工程は、金属薄膜と電流供給部とを第3の金属層を介して電気的に接続する工程を含んでいる。
これにより、金属薄膜の形状の選択をより多くできる。そのため、製造上の実現がより
容易になる。また金属薄膜の配置の選択をより多くできる。
上記半導体レーザアレイの製造方法において好ましくは、金属薄膜を形成する工程は、共振器に流れる過電流の大きさに応じた形状を有する金属薄膜を形成している。
これにより、任意の過電流の大きさに応じて溶断される金属薄膜を備える半導体レーザアレイを製造できる。
上記半導体レーザアレイの製造方法において好ましくは、金属薄膜を形成する工程では、真空蒸着法およびスパッタ法の少なくともいずれか一方により金属薄膜を形成している。これにより、金属薄膜の厚みを容易にかつ精密に制御できる。
上記半導体レーザアレイの製造方法において好ましくは、金属薄膜形成する工程は、金属薄膜となる層を形成する工程と、その層を、パターンを有するフォトレジストを用いたフォトエッチングにより金属薄膜を形成する工程とを含んでいる。
上記半導体レーザアレイの製造方法において好ましくは、金属薄膜を形成する工程は、金属薄膜となる層を形成する工程と、その層を、パターンを有するフォトレジストを用いたリフトオフにより金属薄膜を形成する工程とを含んでいる。
フォトエッチングまたはリフトオフにより、金属薄膜の幅および長さを容易にかつ精密に制御できる。
上記半導体レーザアレイにおいて好ましくは、複数の共振器の半導体層は、AlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)からなるダブルへテロ構造を有する。
また上記半導体レーザアレイの製造方法において好ましくは、共振器を準備する工程では、AlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)からなるダブルへテロ構造を有する半導体層を含む複数の共振器を準備する。
これにより、半導体レーザアレイは高性能な共振器を備えることができる。また、半導体レーザアレイにおいて複数の共振器の分離構造を容易に形成できる。
上記半導体レーザアレイにおいて好ましくは、分離構造は、それぞれの共振器の間に形成された溝である。
上記半導体レーザアレイの製造方法において好ましくは、共振器を準備する工程では、それぞれの共振器の間に溝を形成することにより、分離構造を形成する。
これにより、複数の共振器を実質的に電気的に分離できる。また、複数の共振器を容易に製造できる。
上記半導体レーザアレイの製造方法において好ましくは、共振器を準備する工程は、溝を有する窒化ガリウム基板を準備する工程と、窒化ガリウム基板上にAlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)からなるエピタキシャル層を形成することにより半導体層を形成する工程とを含んでいる。
これにより、窒化ガリウム基板の溝を引き継いた溝を有するエピタキシャル層が得られる。そのため、溝で高抵抗になるので、複数の共振器において実質的に電気的に分離でき
る。また、溝を有する共振器が容易に得られる。
上記半導体レーザアレイにおいて好ましくは、複数の共振器のうちの少なくとも1つが故障しても残りの共振器に影響を与えないAPC制御装置をさらに備えている。
上記半導体半導体レーザアレイの製造方法において好ましくは、複数の共振器のうちの少なくとも1つが故障しても残りの共振器に影響を与えないAPC制御装置を設置する工程をさらに備えている。
これにより、半導体レーザアレイ全体の出力を制御すれば、共振器のうちの一つが故障した場合でも一定の光量の光を取り出し続けることができる。
なお、上記「APC(Automatic Power Control)制御装置」とは、光出力値を検出し、参照値と比較して負帰還をかけることによって共振器の光出力を一定に保つ機能を有する制御装置を意味する。
本発明の一の局面における発光装置は、上記いずれかに記載の半導体レーザアレイと、共振器から発振されるレーザ光の少なくとも一部を吸収してレーザ光と異なる波長の光を発する変換手段とを備えている。
本発明の一の局面における発光装置の製造方法は、上記半導体レーザアレイの製造方法により半導体レーザアレイを製造する工程と、共振器から発振されるレーザ光の少なくとも一部を吸収してレーザ光と異なる波長の光を発する変換手段を形成する工程と備えている。
これにより、少なくとも1つの共振器が故障して短絡状態となった場合においても残りの共振器が光を発振し続ける、実現可能な発光装置が得られる。
上記一の局面における発光装置において好ましくは、変換手段は、共振器から発振される460nm未満の波長のレーザ光の少なくとも一部を吸収して、白色の光を発する蛍光体である。
上記一の局面における発光装置の製造方法において好ましくは、変換手段を形成する工程では、共振器から発振される460nm未満の波長のレーザ光の少なくとも一部を吸収して、白色の光を発する蛍光体を形成する。
これにより、少なくとも1つの共振器が故障して短絡状態となった場合においても残りの共振器が白色の光を発振し続ける、実現可能な発光装置が得られる。
本発明の他の局面における発光装置は、上記いずれかに記載の半導体レーザアレイと、半導体レーザアレイを光源とする画像表示機構とを備えている。
本発明の他の局面における発光装置の製造方法は、上記いずれかに記載の半導体レーザアレイの製造方法により半導体レーザアレイを製造する工程と、半導体レーザアレイを光源とする画像表示機構を形成する工程とを備えている。
これにより、少なくとも1つの共振器が故障して短絡状態となった場合においても残りの共振器が光を発振し続けて画像を表示できる、実現可能な発光装置が得られる。
本発明の半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法によれば、複数の共振器が電気的に並列に一斉駆動される半導体レーザアレイにおいて、過電流が流れたときに溶断する金属薄膜を備えているので、少なくとも1つの共振器が故障して短絡状態となった場合においても残りの共振器が発振し続け、外部回路を過電流から保護することができるとともに、実現可能である。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。
(実施の形態1)
図1は、本発明の実施の形態1における半導体レーザアレイを示す斜視図である。図2は、図1において領域Aとして示されたブロードエリア型共振器1つ分を拡大した斜視図である。図1および図2に示すように、半導体レーザアレイ100は、金属薄膜101と、サブマウント102と、ヒートシンク103と、電流供給部としてのワイヤ104と、第1の接続端子105と、第2の接続端子106と、第2の電流供給部としての第2のワイヤ107と、複数の共振器110と、第2の金属層140と、第3の金属層150と、APC制御装置(図示せず)を備えている。
図1に示すように、半導体レーザアレイ100においては、高次の水平横モードを含むマルチモードで発振するブロードエリア型レーザからなる6つの共振器110が集積化され、基板111(図2参照)がサブマウント102に接するよう(Junction-up)に実装されている。サブマウント102は、たとえばAlN(窒化アルミニウム)製であり、たとえばCu(銅)製のヒートシンク103に密着されている。各々の共振器110は、金属製のワイヤ104により第1の接続端子105に電気的に並列に接続されている。またサブマウント102の上面には金属蒸着層(図示せず)が設けられており、第2の接続端子106に第2のワイヤ107を介して接続されている。
図2に示すように、複数の共振器110は、半導体層と、半導体層上に形成されたオーミック電極117とを含み、オーミック電極117が互いに分離構造を介して分離された状態で配置されている。本実施の形態の共振器110は、基板111と、バッファ層112と、下クラッド層113と、活性層114と、上クラッド層115と、コンタクト層116とを含む半導体層と、オーミック電極117と、電極118と、絶縁膜119とを備えている。複数の共振器110には、ストライプ状のリッジが形成されている。
具体的には、基板111は、たとえば層厚120μmのn型GaNからなる。バッファ層112は、基板111上に形成され、たとえば層厚0.5μmのn型GaNからなる。下クラッド層113は、バッファ層112上に形成され、たとえば層厚2μmのn型Al0.05Ga0.95N(窒化ガリウムアルミニウム)からなる。活性層114は、下クラッド層113上に形成され、たとえばIn混晶比が異なるInGaNバリア層とInGaNウエル層との多重量子井戸からなる。上クラッド層115は、活性層114上に形成され、たとえば最も大きな層厚が0.5μmのp型Al0.05Ga0.95Nからなる。コンタクト層116は、上クラッド層115上に形成され、層厚0.1μmのp型GaNからなる。複数の共振器110の半導体層は、AlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)からなるダブルへテロ構造を有している。
オーミック電極117は、コンタクト層116上に形成され、たとえばPd(パラジウム)からなる。電極118は、基板111下に形成され、たとえば、Hf(ハフニウム)/Al(アルミニウム)からなる。絶縁膜119は、ストライプ状のリッジが形成された上面を除いて上クラッド層115上に形成され、たとえばSiO(二酸化珪素)からな
る。
共振器110の光の取り出すストライプ状の幅Wを大きくすると出力を向上でき、幅Wを小さくすると整ったビーム形状が得られる。共振器110の幅Wは、たとえば20μmである。
複数の共振器110において、オーミック電極117が互いに分離構造を介して分離された状態で配置されている。本実施の形態では、分離構造は、それぞれの共振器110の間に形成された溝120である。隣り合う共振器110において溝120が形成された部分では、他の部分よりも電気的に抵抗が非常に高くなる。そのため、ある共振器110におけるpn接合部が故障により短絡状態となった場合に、短絡状態でない他の共振器110のオーミック電極117から短絡状態となった共振器110に実質的に電流が流れ込まない。
なお、分離構造は、複数の共振器110が物理的に繋がった状態で電気的に抵抗を高めて実質的に電気的に分離する溝120に特に限定されない。分離構造は、隣り合う2つの共振器110が配置されている領域において最も抵抗が高い部分であればよく、複数の共振器110においてpn接合部を互いに電気的に分離している。分離構造は、たとえば、半導体層において1層以上が設けられていないために電気的に分離されているトレンチなどの構造や、物理的に分離した単一ストライプの共振器が複数個電気的に分離された状態で実装されて、複数の共振器に並列に同時に電流が流れるように配置されている場合の各共振器間の構造などを含む。
溝120により分離されている各共振器110のピッチは、たとえば400μmである。本実施の形態では、5本の溝120により6つの共振器110が集積化されている。
複数の電流供給部としてのワイヤ104は、それぞれの共振器110に並列に電流を供給する。ワイヤ104は、たとえばAuからなる。
金属薄膜101は、それぞれの共振器110と電流供給部であるワイヤ104とを電気的に接続している。金属薄膜101を構成する材料の融点は、ワイヤ104を構成する材料の融点よりも低く、1の共振器110において電流を流れる経路を構成する材料の中で最も低い。そのため、複数の共振器110のうち、少なくとも1つの共振器110に過電流が流れた場合に、金属薄膜101が溶断される。たとえば、1つの共振器110の駆動電流の2倍の電流が流れた場合に金属薄膜101が溶断するように、金属薄膜101の材質、層厚、幅および長さが選択される。材質としてはたとえばInSb(アンチモン化インジウム)等の低融点金属を用いることができる。金属薄膜101がInSbからなる場合には、たとえば層厚を0.2μm、幅を3μm、長さを10μmとする。金属薄膜101において、層厚、幅および長さのうち溶断される最も薄い部分を、共振器110に流れる過電流の大きさに応じて制御することが好ましい。
金属薄膜101は、絶縁膜119上に接して設けられているととともに、第2の金属層140および第3の金属層150と接して設けられている。
第2の金属層140は、オーミック電極117と金属薄膜101とを電気的に接続している。第2の金属層140は、オーミック電極117およびオーミック電極117を挟んで設けられている絶縁膜119の一部に接して設けられている。金属薄膜101の一部が第2の金属層150の上に接して設けられている。第2の金属層140は、たとえばAuからなり、引き出し電極の役割りを担う。
第3の金属層150は、金属薄膜101と電流供給部としてのワイヤ104とを電気的に接続している。第3の金属層150は、絶縁膜119および金属薄膜101に接して設けられているとともに、絶縁膜119において第2の金属層140と分離されて設けられている。第3の金属層150は、たとえばAuからなり、パッド電極の役割りを担う。
APC(Automatic Power Control)制御装置は、複数の共振器110のうちの少なくとも1つが故障しても残りの共振器110に影響を与えないように制御する。APC制御装置は、光出力値を検出し、参照値と比較して負帰還をかけることによって複数の共振器110の光出力を一定に保つ機能を有する。光出力をこのように制御することにより、半導体レーザアレイ100を構成する複数の共振器110のうちの1つが故障しても、より確実に一定の光出力値を取り出し続けることができる。
図3は、実施の形態1における半導体レーザアレイの製造方法を示すフローチャートである。図1〜図3を参照して、本実施の形態における半導体レーザアレイの製造方法について説明する。
図3に示すように、まず、半導体層と、半導体層上に形成されたオーミック電極117とを含み、オーミック電極117が互いに分離構造を介して分離された状態で配置された複数の共振器110を準備する工程(S10)を実施する。準備する工程(S10)では、たとえば以下のようにして複数の共振器110を準備する。
具体的には、まず、基板111として溝120を有する窒化ガリウム基板を準備する。その後、窒化ガリウム基板上にAlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)からなるエピタキシャル層を形成することにより半導体層を形成する。本実施の形態では、基板111上に上述した材料のバッファ層112、下クラッド層113、活性層114、上クラッド層115およびコンタクト層116をたとえばMOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相堆積)法でこの順に形成する。
続いて、コンタクト層116上に上述した材料のオーミック電極117を、たとえば蒸着法により形成する。その後、リッジを形成する部分に相当する領域のオーミック電極117上にフォトレジストを形成する。そして、フォトレジストから開口している部分をエッチングにより除去すると、リッジが形成される。その後、リッジの上面を除く領域上に、上述した材料からなる絶縁膜119を形成する。また、基板111下に上述した材料の電極118を、たとえば蒸着法により形成する。これにより、AlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)からなるダブルへテロ構造を有する半導体層を含む共振器110を準備できる。この共振器110を複数準備する。
基板111に溝120が形成されているので、その上に結晶成長によって形成される半導体層も溝120を有する。それぞれの共振器110の間に溝120を形成することにより、分離構造を形成している。
次に、それぞれの共振器110に並列に電流を供給するための複数の電流供給部を準備する工程(S20)を実施する。具体的には、電流供給部として、たとえば上述した材料のワイヤ104を準備する。
次に、それぞれの共振器110と電流供給部とを電気的に接続する金属薄膜101を形成する工程(S30)を実施する。この工程(S30)では、複数の共振器110のうち、少なくとも1つの共振器110に過電流が流れた場合に、金属薄膜101が溶断される金属薄膜101を形成する。金属薄膜を形成する工程(S30)は、たとえば以下の工程
を実施する。
具体的には、まず、たとえば蒸着法により、共振器110のオーミック電極117上に、上述した材料からなる第2の金属層140を形成する工程(S31)を実施する。そして、たとえば蒸着法により、共振器110の絶縁膜119上に、上述した材料からなる第3の金属層150を形成する工程(S32)を実施する。続いて第3の金属層150とワイヤ104とを電気的に接続する。
続いて、上述した金属薄膜101の材料を準備する。そして、第2および第3の金属層140,150をまたぐように、金属薄膜101を形成する工程(S33)を実施する。金属薄膜101は、一方端から他方端に向けて(図2において左から右に向けて)、第2の金属層140、絶縁膜119および第3の金属層150上に形成されている。これにより、金属薄膜101を介して、それぞれの共振器110と電流供給部とを電気的に接続することができる。また、オーミック電極117と金属薄膜101とは、第2の金属層140を介して電気的に接続されている。また、金属薄膜101と電流供給部であるワイヤ104とは、第3の金属層150を介して電気的に接続されている。
金属薄膜101を形成する工程(S33)では、電流供給部(本実施の形態ではワイヤ104)を構成する材料の融点よりも低い材料の金属薄膜101を形成する。金属薄膜101を構成する材料としては、たとえば上述した材料を用いることができる。また、共振器110に流れる過電流の大きさに応じた形状を有する金属薄膜101を形成する。金属薄膜101において、最も薄い部分の厚みを共振器110に流れる過電流の大きさに応じて制御することが好ましい。
金属薄膜101は任意の方法により形成されるが、真空蒸着法およびスパッタ法の少なくともいずれか一方により金属薄膜101を形成することが好ましい。また、金属薄膜101となる層を形成し、その層をパターンを有するフォトレジストを用いたフォトエッチングにより、金属薄膜101を形成することが好ましい。あるいは、金属薄膜101となる層を形成し、その層をパターンを有するフォトレジストを用いたリフトオフにより、金属薄膜101を形成することが好ましい。真空蒸着法およびスパッタ法により金属薄膜101を形成すると、金属薄膜101の層厚を精密に制御できる。フォトエッチングまたはリフトオフにより金属薄膜101を形成すると、金属薄膜101の幅および長さを精密に制御できる。そのため、共振器110に流れる過電流の大きさに応じた形状を有する金属薄膜101を容易に形成できるので、金属薄膜101が溶断する電流値についても精密に制御することができる。
なお、金属薄膜101を形成する工程(S30)において、第2および第3の金属層140,150を形成する工程(S31,32)の少なくともいずれか一方は省略されてもよい。第2の金属層140を形成する工程(S31)が実施されない場合には、金属薄膜101と共振器110とは、直接接続される。また、第3の金属層150を形成する工程(S32)が実施されない場合には、金属薄膜101とワイヤ104とは、直接接続される。工程(S31,S32)を実施する場合には、金属薄膜101は、共振器110のオーミック電極117および絶縁膜119の少なくともいずれか一方上の任意の位置に形成することができる。
また、金属薄膜101の金属材料や大きさについても、適宜最適な材料や大きさを選択することができる。
次に、ヒートシンク103上にサブマウント102を形成し、そのサブマウント102上に複数の共振器110を配置する。次に、第3の金属層150と電気的に接続されてい
るワイヤ104と、第1の接続端子105とを電気的に接続する。また、サブマウント102の上面に形成された金属蒸着層と第2の接続端子106とを第2のワイヤ107を介して電気的に接続する。これにより、図1および図2に示す半導体レーザアレイ100が得られる。
次に、図1および図2を参照して、本実施の形態における半導体レーザアレイ100の動作について説明する。
半導体レーザアレイ100において複数の共振器110のうちの少なくとも1つの共振器110に過電流が流れて故障して短絡した場合、ワイヤ104を構成する材料の融点よりも金属薄膜101を構成する材料の融点が低いので、短絡故障した共振器110と電気的に接続されている金属薄膜101は発熱により溶断される。その結果、短絡故障した共振器110へ流れる電流が停止するので、残りの共振器110は一時的に駆動電流の変動を伴う場合があるが、それにも関わらずレーザ発振を続ける。また、短絡した共振器110に電流が集中することを防止できるので、外部回路は過電流から保護される。
以上説明したように、本実施の形態における半導体レーザアレイ100によれば、電流供給部としてのワイヤ104を構成する材料の融点よりも低い金属薄膜101を備えている。すなわち、半導体レーザアレイ100において、複数の共振器110のうち、少なくとも1つの共振器に過電流が流れた場合に、金属薄膜101が溶断される。そのため、複数の共振器110が電気的に並列に一斉駆動される半導体レーザアレイ100において、少なくとも1つの共振器110が故障して短絡状態となった場合においても、短絡状態となった共振器110と電気的に接続されている金属薄膜101が溶断されるので、短絡状態となった共振器110に電流が流れない。そのため、短絡状態でない残りの共振器110の発振に影響を及ぼさないので、残りの共振器110は発振し続け、少なくとも1つの共振器110の故障により半導体レーザアレイ100において短絡状態でない共振器110の発振が止まることを防止できる。また、短絡した共振器110に電流が集中することを防止できるので、外部回路を過電流から保護することができる。
また、過電流が流れた場合に他の共振器110との電気的な接続を解除する部材が金属薄膜101であるので、容易に製造ができるとともに形状の制御が容易である。そのため、溶断する電流値の制御が容易に行なうことができる。さらに、共振器110毎に金属薄膜101を個別に設けているので、多品種に渡る種々の特性の共振器110を一つの製造ラインにて混在して製造することも可能となる。そのため、実現可能な半導体レーザアレイ100が得られる。
特に、上記特許文献1の金属ワイヤと比較して、金属薄膜101は真空蒸着法やスパッタ法などで形成されるので、金属薄膜101の形状の制御が容易である。そのため、厚み、幅、大きさおよび材料など金属薄膜101で溶断する電流値の制御を容易に行なうことができる。また、上記特許文献1の金属ワイヤと比較して、金属薄膜101の配置は選択が多い。特に、第2および第3の金属層140,150を設けることによって、さらに金属薄膜101の配置の選択をより多くできる。
(実施の形態2)
図4は、本発明の実施の形態2における半導体レーザアレイを示す斜視図である。図5は、本発明の実施の形態2における共振器1つ分の側面方向からの断面図である。図4および図5に示すように、半導体レーザアレイ200は、金属薄膜101と、サブマウント202と、ヒートシンク103と、電流供給部としてのワイヤ104と、第1の接続端子105と、第2の接続端子106と、第2の電流供給部としての第2のワイヤ107と、複数の共振器110と、第2の金属層140と、第3の金属層150と、APC制御装置
(図示せず)とを備えている。
図4に示すように、半導体レーザアレイ200においては、ブロードエリア型レーザからなる5つの共振器110が集積化され、基板111(図5参照)がサブマウント102から遠くなるよう(Junction-down)に実装されている。サブマウント102は、表面が絶縁性材料からなる基台と、基台の表面上に形成された導電性のパターン(図示せず)とを含んでいる。本実施の形態におけるサブマウント102を構成する基台は、たとえばSiC(炭化珪素)などの絶縁性材料からなり、裏面側でたとえば銅タングステン製のヒートシンク103に密着されている。各々の共振器110は、金属製のワイヤ104により第1の接続端子105に電気的に並列に接続されている。またサブマウント202には、複数の共振器110から取り出されたオーミック電極117(図5参照)に接するパターンから第2の接続端子106に第2のワイヤ107を介して接続されている。
図5に示すように、共振器210は、基板111と、バッファ層112と、下クラッド層113と、活性層114と、上クラッド層115と、コンタクト層116とを含む半導体層と、オーミック電極117と、電極118とを備えている。実施の形態2における共振器210は、基本的には実施の形態1における共振器110と同様の構成を備えているが、絶縁膜119を備えていない点、各共振器210のストライプ幅Wがたとえば10μmである点、および各共振器のピッチがたとえば300μmのピッチで5つ集積化した点においてのみ異なる。
共振器210のオーミック電極117は、サブマウント202のパターンと半田(図示せず)を介して電気的に接続されている。金属薄膜101は、共振器210と電気的に接続されているパターンと電気的に接続されている。本実施の形態では、金属薄膜101は、そのパターンと接してまたは半田を介して設けられている第2の金属層140と電気的に接続されている。より具体的には、金属薄膜101は、サブマウント202のパターンと第2の金属層140と第3の金属層150とを介して、共振器210と電流供給部であるワイヤ104とを電気的に接続している。
なお、サブマウント202がパターンを含んでいる場合には、第2の金属層140は省略されてもよい。
第2の金属層140および第3の金属層150を構成する材料は実施の形態1と同様であるので、その説明は繰り返さない。
次に、図3〜図5を参照して、本実施の形態における半導体レーザアレイ200の製造方法を説明する。まず、図3に示すように、実施の形態1と同様に、複数の共振器を準備する工程(S10)を実施する。複数の共振器を準備する工程(S10)では、絶縁膜119を形成せず、かつリッジを形成しない点においてのみ異なる。次に、電流供給部を準備する工程(S20)、およびオーミック電極に第2の金属層140を形成する工程(S31)を実施の形態1と同様に実施する。
次に、第2の金属層140とサブマウント202のパターンとを電気的に接続する。このとき半田を介して接続してもよい。続いて、サブマウント202上に第3の金属層150を形成する工程を実施する。その後、第3の金属層150とワイヤ104とを電気的に接続する。
次に、実施の形態1と同様に、金属薄膜101を形成する工程(S33)を実施する。このとき、サブマウント202のパターンと金属薄膜101とが電気的に接続されていることが好ましい。
次に、ヒートシンク103上にサブマウント202を形成し、そのサブマウント202上に5つの共振器110をジャンクション・ダウンで配置する。
次に、第3の金属層150と電気的に接続されているワイヤ104と、第1の接続端子105とを電気的に接続する。また、サブマウント202の上面に形成された金属蒸着層と第2の接続端子106とを第2のワイヤ107を介して電気的に接続する。これにより、図4および図5に示す半導体レーザアレイ200を製造できる。
以上説明したように、本実施の形態における半導体レーザアレイ200によれば、表面が絶縁性材料からなる基台と、基台の表面上に形成された導電性のパターンとをさらに備え、パターンと金属薄膜101とが電気的に接続されている。これにより、金属薄膜101を絶縁性材料のサブマウント上に配置することができる。そのため、半導体レーザアレイ200を種々の用途に用いることができる。
(実施の形態3)
図6は、本発明の実施の形態3における発光装置を示す模式図である。図6を参照して、本実施の形態の発光装置を説明する。図6に示すように、本実施の形態における発光装置400は、実施の形態1または2の半導体レーザアレイ100,200と、変換手段としてのレンズ402および蛍光体403と、制御部405と、リフレクタ406とを備えている。本実施の形態の発光装置は、白色照明装置である。
半導体レーザアレイを構成する共振器401は、たとえば、実施の形態1または2の共振器110,210と同一の構成であり、たとえば発振波長が405nmの半導体レーザ素子である。
レンズ402は、レーザアレイを構成する共振器401から発振されるレーザ光を効率的に蛍光体403に伝達させる。
蛍光体403は、レーザアレイを構成する共振器401から発振されるレーザ光の少なくとも一部を吸収してそのレーザ光と異なる波長の光を発する。蛍光体403は、共振器401から発振される460nm未満の波長のレーザ光の少なくとも一部を吸収して、白色の光を発する蛍光体であることが好ましい。本実施の形態では、蛍光体403は、共振器401から出射されたレーザ光のうち、たとえば波長が420nmよりも短いレーザ光を吸収し、吸収したレーザ光と異なる波長の光を発する。蛍光体403は、たとえば、赤色(Y22S:Eu3+)、緑色(ZnS:Cu,Al)および青色((Sr、Ca、Ba、Mg)10(PO46l2:Eu2+)の蛍光体を混合することによって得ることができる。
制御部405は、共振器401の駆動を制御する。リフレクタ406は、変換された白色蛍光404を外部に取り出す。
次に、本実施の形態における発光装置400の製造方法について説明する。まず、実施の形態1または2の半導体レーザアレイの製造方法により半導体レーザアレイ100,200を製造する工程を実施する。
次に、共振器401から発振されるレーザ光の少なくとも一部を吸収してレーザ光と異なる波長の光を発する変換手段を形成する工程を実施する。この工程では、上述したレンズ402および蛍光体403を形成する。
また、上述した制御部405およびリフレクタ406を設ける工程を実施する。以上の工程を実施することによって、本実施の形態における発光装置400を製造できる。
次に、本実施の形態における発光装置400の動作について説明する。半導体レーザアレイを構成する共振器401からレーザ光を出射すると、発振波長405nmのレーザ光が蛍光体403に集光され、白色蛍光404が放出される。なお、共振器401は制御部405により制御される。白色蛍光404は、リフレクタ406により外部に取り出される。
発光装置400により白色蛍光404を発振させているときに、半導体レーザアレイを構成する共振器401のうちの少なくとも1つが故障すると、金属薄膜が溶断される。そのため、他の共振器401はレーザ発振を続けることができ、かつ外部駆動回路も過電流から保護されている。その結果、少なくとも1つの共振器が故障しても、得られる白色蛍光404が突然途絶えることがなく、照明機能を維持することができる。また、APC制御等を用いて半導体レーザアレイ全体の出力を制御していれば、共振器401のうちの一つが故障した場合でも一定の光量の白色蛍光404を取り出し続けることができる。
なお、励起光源として用いる共振器401のレーザ光の波長は、405nmに限定されず、蛍光体の吸収線に合わせて任意に調節することができる。たとえば、青色(たとえば、波長445nm)の共振器を光源に用い、青色のレーザ光を赤色および緑色の蛍光に変換する蛍光体を含む構成にすることによって白色照明装置を提供することもできる。
以上説明したように、本実施の形態における発光装置400によれば、蛍光体403に対する励起素子として、実施の形態1または2の半導体レーザアレイ100,200が用いられている。そのため、共振器401への注入電流に応じて線形に白色光の光量および輝度を制御することができ、小型で高輝度な点光源が得られる。また、共振器401を光源に用いた発光装置400では、従来の照明に比べて電気と光との変換効率が極めて高く、かつ長寿命であり、かつ水銀などの有毒物質を含まない点で優れる。したがって、少なくとも1つの共振器401が故障して短絡状態となった場合においても残りの共振器401が発振し続けて光を取り出すことができるとともに、外部回路を過電流から保護することができる、蛍光灯および白熱灯の代替装置として有用な発光装置が実現可能である。
(実施の形態4)
図7は、本発明の実施の形態4における発光装置を示す模式図である。図7を参照して、実施の形態4の発光装置を説明する。図7に示すように、本実施の形態における発光装置500は、実施の形態1または2の半導体レーザアレイ100,200と、半導体レーザアレイ100,200を光源とする画像表示機構としてのミラー502と、光制御素子503と、投影部504と、スクリーン505とを備えている。本実施の形態の発光装置は、画像表示装置である。
発光装置500は、実施の形態1または2の半導体レーザアレイ100,200を構成する共振器501を光源としている。複数の共振器501は、少なくとも赤色、緑色および青色の3種類の可視レーザ光をそれぞれ発振する。
本実施の形態における画像表示機構は、ミラー502と、光制御素子503と、投影部504と、スクリーン505とを含んでいる。ミラー502は、共振器501から発振される可視光レーザを反射させる光学手段である。光制御素子503は、ミラー502から反射された可視光レーザが導入され、たとえば多数の微小鏡面(マイクロミラー)を平面に配列した表示素子であるデジタルマイクロミラーデバイス(DMD:Digital Mirror Device)などを用いることができる。投影部504は、光制御素子503から導入される
可視光をスクリーンに画像として投影するための制御手段であり、たとえばレンズ系である。
続いて、本実施の形態における発光装置の製造方法を説明する。まず、実施の形態1または2の半導体レーザアレイの製造方法により半導体レーザアレイ100,200を製造する工程を実施する。
次に、半導体レーザアレイを光源とする画像表示機構を形成する工程を実施する。この工程では、たとえば上述したミラー502と、光制御素子503と、投影部504と、スクリーン505とを形成する。
続いて、本実施の形態における発光装置の動作について説明する。半導体レーザアレイを構成する共振器501から発振した可視レーザ光は、ミラー502により光制御素子503に導入され、投影部504によって、スクリーン505に画像が投影される。
ここで、画像信号506は画像解析回路507により解析され、その解析結果に基づいて光制御素子503が制御される。また、解析結果に基づいて、光制御回路508を通して光源である共振器501が制御される。
また、各レーザアレイの駆動電流をAPC制御装置を用いて制御することにより、突然画像の色が変化することを防止できる。
以上説明したように、本実施の形態の発光装置500によれば、実施の形態1または2における半導体レーザアレイ100,200を構成する共振器501を光源とした画像表示機構を有するので、光源の色純度が高いために色再現性が高い。また、実施の形態1または2の半導体レーザアレイを備えているため、光源である共振器501の少なくとも1つが故障した場合であっても、画像を表示し続けることができ、突然特定の色が出なくなるといった故障を防止できる。さらに、外部駆動回路も過電流から保護される。
なお、本発明の発光装置は、本発明の半導体レーザアレイを備えていれば、実施の形態3および4における発光装置400,500に限定されない。たとえば、本発明の半導体レーザアレイは、レーザメスおよび各種加工用レーザなど、あるいは各種励起光源などの高出力かつ高効率のレーザ光を必要とする各種応用システムに用いることができる。励起光源として用いられる本発明の半導体レーザアレイの共振器から発振されるレーザ光の波長は405nmあるいはその近辺の波長でなくてもよく、応用形態に合わせて適宜選択することができる。
[実施例]
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
実施例1は、実施の形態1における半導体レーザアレイの製造方法にしたがって、図1および図2に示す半導体レーザアレイを製造した。
具体的には、複数の共振器を準備する工程(S10)では、まず、層厚120μmのn型GaNから基板111を準備した。そして、基板111上に、層厚0.5μmのn型GaNからなるバッファ層112、層厚2μmのn型Al0.05Ga0.95Nからなる下クラッド層113、層厚8nmのInGaNバリア層と層厚4nmのInGaNウエル層とが3組積層された多重量子井戸からなる活性層114、最も大きな層厚が0.5μmのp型A
0.05Ga0.95Nからなる上クラッド層115、および層厚0.1μmのp型GaNからなるコンタクト層116をこの順でMOCVD法により結晶成長させることによって形成した。その後、Pdからなるオーミック電極117を、コンタクト層116上に蒸着法により形成した。また、基板111において半導体層が形成された面と反対の面にHf/Alからなる電極118を形成した。次いで、ストライプ状のリッジを形成した後、リッジが形成された上面を除いて上クラッド層115上にSiOからなる絶縁膜119を形成した。共振器110のストライプ状の幅Wは20μmであり、ピッチは400μmとした。このようにして形成された共振器110を6つ準備した。
次に、電流供給部を準備する工程(S20)では、Auからなるワイヤ104を準備した。
次に、オーミック電極117上にAuからなる第2の金属層140を形成した(S31)。次に、絶縁膜119上にAuからなる第3の金属層150を形成した(S32)。その後、第3の金属層150とワイヤ104とを電気的に接続した。次に、金属薄膜を形成する工程(S33)では、まず、真空蒸着により金属薄膜101となるInSbからなる層を形成した。そして、フォトエッチングにより、その層から、層厚が0.1μm、幅が3μm、長さが10μmの金属薄膜を形成した。なお、金属薄膜101は、1つの共振器当たりの駆動電流の2.0倍の電流が流れた場合に溶断するように材質、層厚、幅および長さを決定した。
次に、Cuからなるヒートシンク103上にAlNからなるサブマウント102を形成し、そのサブマウント102上に6つの共振器110を配置した。
次に、ワイヤ104と第1の接続端子105とを電気的に接続した。また、サブマウント102の上面に形成された金属蒸着層と第2の接続端子106とをAuからなる第2のワイヤ107で電気的に接続した。これにより、図1および図2に示す実施例1の半導体レーザアレイ100が得られた。
(結果)
得られた半導体レーザアレイ100に、第1および第2の接続端子105,106を通して直流電流を流して、閾値電流1.8Aにて波長405nmでレーザ発振を開始し、駆動電流6.3Aにて光出力6Wを得た。この時、6つの共振器に、それぞれ1.05A流れ、それぞれ1Wずつの光出力が得られていた。
そして、1つの共振器に2.10Aの過電流を流したところ、その共振器と電気的に接続されていた金属薄膜は溶断された。その結果、残りの5つの共振器に流れた電流は1.05Aのままであり、1つの共振器に過電流が流れた後も、それぞれ1Wずつの光出力が得られた。
(実施例2)
実施例2は、実施の形態2における半導体レーザアレイの製造方法にしたがって、図4および図5に示す半導体レーザアレイを製造した。
具体的には、実施例2における複数の共振器210を準備する工程は、基本的には実施例1における複数の共振器110を準備する工程と同様の構成を備えていたが、絶縁膜119およびリッジを形成しなかった点、各共振器210のストライプ幅Wを10μmに形成した点、および各共振器のピッチを300μmで5つ集積化した点においてのみ異なる。
次に、電流供給部を準備し(S20)、オーミック電極に第2の金属層140を形成した(S31)。次に、第2の金属層140とサブマウント202のパターンとを電気的に接続した。次に、絶縁膜119上にAuからなる第3の金属層150を形成した。その後、第3の金属層150とワイヤ104とを電気的に接続した。
次に、金属薄膜101を形成する工程(S33)では、まず、真空蒸着により金属薄膜101となるべきInSbからなる層を形成した。そして、リフトオフにより、その層から、層厚が0.2μm、幅が3μm、長さが10μmの金属薄膜を形成した。なお、金属薄膜101は、1つの共振器当たりの駆動電流の2.5倍の電流が流れた場合に溶断するように材質、層厚、幅および長さを決定した。
次に、銅タングステンからなるヒートシンク103上にSiCからなる基台とAuからなるパターンとを含むサブマウント202を形成し、そのサブマウント202上に5つの共振器110をジャンクション・ダウンで配置した。
次に、ワイヤ104と第1の接続端子105とを電気的に接続した。また、サブマウント202の上面に形成された金属蒸着層と第2の接続端子106とを第2のワイヤ107を介して電気的に接続した。これにより、図4および図5に示す実施例2の半導体レーザアレイ100が得られた。
(測定結果)
得られた半導体レーザアレイ200に第1および第2の接続端子205,206を通して直流電流を流すと、閾値電流0.75Aにて波長445nmでレーザ発振を開始し、駆動電流2.5Aにて光出力2.5Wを得た。この時、5つの共振器には、それぞれ0.5Aずつ流れ、それぞれ0.5Wの光出力が得られていた。
そして、1つの共振器に6.25Aの過電流を流したところ、その共振器と電気的に接続されていた金属薄膜は溶断された。その結果、残りの5つの共振器に流れた電流は2.5Aのままであり、1つの共振器に過電流が流れた後も、それぞれ0.5Wずつの光出力が得られた。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の実施の形態1における半導体レーザアレイを示す斜視図である。 図1において領域Aの拡大斜視図である。 実施の形態1における半導体レーザアレイの製造方法を示すフローチャートである。 本発明の実施の形態2における半導体レーザアレイを示す斜視図である。 本発明の実施の形態2における共振器1つ分の側面方向からの断面図である。 本発明の実施の形態3における発光装置を示す模式図である。 本発明の実施の形態4における発光装置を示す模式図である。
符号の説明
100,200 半導体レーザアレイ、101 金属薄膜、102,202 サブマウント、103 ヒートシンク、104 ワイヤ、105,205 第1の接続端子、10
6,206 第2の接続端子、107 第2のワイヤ、110,210,401,501
共振器、111 基板、112 バッファ層、113 下クラッド層、114 活性層、115 上クラッド層、116 コンタクト層、117 オーミック電極、118 電極、119 絶縁膜、120 溝、140 第1の金属層、150 第2の金属層、400,500 発光装置、402 レンズ、403 蛍光体、404 白色蛍光、405 制御部、406 リフレクタ、502 ミラー、503 光制御素子、504 投影部、505 スクリーン、506 画像信号、507 画像解析回路、508 光制御回路、W 幅。

Claims (27)

  1. 半導体層と、前記半導体層上に形成されたオーミック電極とを含み、前記オーミック電極が互いに分離構造を介して分離された状態で配置された複数の共振器と、
    それぞれの前記共振器に並列に電流を供給する複数の電流供給部と、
    それぞれの前記共振器と前記電流供給部とを電気的に接続する金属薄膜とを備え、
    前記金属薄膜を構成する材料の融点は、前記電流供給部を構成する材料の融点よりも低い、半導体レーザアレイ。
  2. 半導体層と、前記半導体層上に形成されたオーミック電極とを含み、前記オーミック電極が互いに分離構造を介して分離された状態で配置された複数の共振器と、
    それぞれの前記共振器に並列に電流を供給する複数の電流供給部と、
    それぞれの前記共振器と前記電流供給部とを電気的に接続する金属薄膜とを備え、
    前記複数の共振器のうち、少なくとも1つの前記共振器に過電流が流れた場合に、前記金属薄膜が溶断される、半導体レーザアレイ。
  3. 前記オーミック電極と前記金属薄膜とを電気的に接続する第2の金属層をさらに備える、請求項1または2に記載の半導体レーザアレイ。
  4. 表面が絶縁性材料からなる基台と、
    前記基台の前記表面上に形成された導電性のパターンとをさらに備え、
    前記パターンと前記金属薄膜とが電気的に接続されている、請求項1または2に記載の半導体レーザアレイ。
  5. 前記金属薄膜と前記電流供給部とを電気的に接続する第3の金属層をさらに備える、請求項1〜3のいずれかに記載の半導体レーザアレイ。
  6. 複数の前記共振器の前記半導体層は、AlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)からなるダブルへテロ構造を有する、請求項1〜5のいずれかに記載の半導体レーザアレイ。
  7. 前記分離構造は、それぞれの前記共振器の間に形成された溝である、請求項1〜6のいずれかに記載の半導体レーザアレイ。
  8. 複数の前記共振器のうちの少なくとも1つが故障しても残りの前記共振器に影響を与えないAPC制御装置をさらに備える、請求項1〜7のいずれかに記載の半導体レーザアレイ。
  9. 請求項1〜8のいずれかに記載の半導体レーザアレイと、
    前記共振器から発振されるレーザ光の少なくとも一部を吸収して前記レーザ光と異なる波長の光を発する変換手段とを備える、発光装置。
  10. 前記変換手段は、前記共振器から発振される460nm未満の波長の前記レーザ光の少なくとも一部を吸収して、白色の光を発する蛍光体である、請求項9に記載の発光装置。
  11. 請求項1〜8のいずれかに記載の半導体レーザアレイと、
    前記半導体レーザアレイを光源とする画像表示機構とを備える、発光装置。
  12. 半導体層と、前記半導体層上に形成されたオーミック電極とを含み、前記オーミック電極が互いに分離構造を介して分離された状態で配置された複数の共振器を準備する工程と

    それぞれの前記共振器に並列に電流を供給するための複数の電流供給部を準備する工程と、
    それぞれの前記共振器と前記電流供給部とを電気的に接続する金属薄膜を形成する工程とを備え、
    前記金属薄膜を形成する工程では、前記電流供給部を構成する材料の融点よりも低い材料の前記金属薄膜を形成する、半導体レーザアレイの製造方法。
  13. 半導体層と、前記半導体層上に形成されたオーミック電極とを含み、前記オーミック電極が互いに分離構造を介して分離された状態で配置された複数の共振器を準備する工程と、
    それぞれの前記共振器に並列に電流を供給するための複数の電流供給部を準備する工程と、
    それぞれの前記共振器と前記電流供給部とを電気的に接続する金属薄膜を形成する工程とを備え、
    前記金属薄膜を形成する工程では、前記複数の共振器のうち、少なくとも1つの前記共振器に過電流が流れた場合に、前記金属薄膜が溶断される前記金属薄膜を形成する、半導体レーザアレイの製造方法。
  14. 前記金属薄膜を形成する工程は、前記オーミック電極と前記金属薄膜とを第2の金属層を介して電気的に接続する工程を含む、請求項12または13に記載の半導体レーザアレイの製造方法。
  15. 表面が絶縁性材料からなる基台を準備する工程と、
    前記基台の前記表面上に導電性のパターンを形成する工程と、
    前記パターンと前記オーミック電極とを電気的に接続する工程とをさらに備え、
    前記金属薄膜を形成する工程では、前記パターンと前記金属薄膜とを電気的に接続する、請求項12または13に記載の半導体レーザアレイの製造方法。
  16. 前記金属薄膜を形成する工程は、前記金属薄膜と前記電流供給部とを第3の金属層を介して電気的に接続する工程を含む、請求項12〜15のいずれかに記載の半導体レーザアレイの製造方法。
  17. 前記金属薄膜を形成する工程では、前記共振器に流れる過電流の大きさに応じた形状を有する前記金属薄膜を形成する、請求項12〜16のいずれかに記載の半導体レーザアレイの製造方法。
  18. 前記金属薄膜を形成する工程では、真空蒸着法およびスパッタ法の少なくともいずれか一方により前記金属薄膜を形成する、請求項12〜16のいずれかに記載の半導体レーザアレイの製造方法。
  19. 前記金属薄膜形成する工程は、前記金属薄膜となる層を形成する工程と、
    前記層を、パターンを有するフォトレジストを用いたフォトエッチングにより前記金属薄膜を形成する工程とを含む、請求項12〜18のいずれかに記載の半導体レーザアレイの製造方法。
  20. 前記金属薄膜を形成する工程は、前記金属薄膜となる層を形成する工程と、
    前記層を、パターンを有するフォトレジストを用いたリフトオフにより前記金属薄膜を形成する工程とを含む、請求項12〜18のいずれかに記載の半導体レーザアレイの製造方法。
  21. 前記共振器を準備する工程では、AlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)からなるダブルへテロ構造を有する半導体層を含む複数の前記共振器を準備する、請求項12〜20のいずれかに記載の半導体レーザアレイの製造方法。
  22. 前記共振器を準備する工程では、それぞれの前記共振器の間に溝を形成することにより、前記分離構造を形成する、請求項12〜21のいずれかに記載の半導体レーザアレイの製造方法。
  23. 前記共振器を準備する工程は、溝を有する窒化ガリウム基板を準備する工程と、
    前記窒化ガリウム基板上にAlxInyGa(1-x-y)N(0≦x≦1、0≦y≦1、x+y≦1)からなるエピタキシャル層を形成することにより前記半導体層を形成する工程とを備える、請求項12〜22のいずれかに記載の半導体レーザアレイの製造方法。
  24. 複数の前記共振器のうちの少なくとも1つが故障しても残りの前記共振器に影響を与えないAPC制御装置を設置する工程をさらに備える、請求項12〜23のいずれかに記載の半導体レーザアレイの製造方法。
  25. 請求項12〜24のいずれかに記載の半導体レーザアレイの製造方法により半導体レーザアレイを製造する工程と、
    前記共振器から発振されるレーザ光の少なくとも一部を吸収して前記レーザ光と異なる波長の光を発する変換手段を形成する工程と備える、発光装置の製造方法。
  26. 前記変換手段を形成する工程では、前記共振器から発振される460nm未満の波長の前記レーザ光の少なくとも一部を吸収して、白色の光を発する蛍光体を形成する、請求項25に記載の発光装置の製造方法。
  27. 請求項12〜24のいずれかに記載の半導体レーザアレイの製造方法により半導体レーザアレイを製造する工程と、
    前記半導体レーザアレイを光源とする画像表示機構を形成する工程とを備える、発光装置の製造方法。
JP2007184582A 2007-07-13 2007-07-13 半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法 Ceased JP2009021506A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007184582A JP2009021506A (ja) 2007-07-13 2007-07-13 半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007184582A JP2009021506A (ja) 2007-07-13 2007-07-13 半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法

Publications (1)

Publication Number Publication Date
JP2009021506A true JP2009021506A (ja) 2009-01-29

Family

ID=40360865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184582A Ceased JP2009021506A (ja) 2007-07-13 2007-07-13 半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法

Country Status (1)

Country Link
JP (1) JP2009021506A (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243369A (ja) * 2010-05-17 2011-12-01 Sharp Corp 発光装置、照明装置および車両用前照灯
JP2012164981A (ja) * 2011-01-24 2012-08-30 Soraa Inc 基板部材上に構成された複数のエミッタを有するレーザーパッケージ
JP2012212927A (ja) * 2012-07-03 2012-11-01 Sharp Corp 発光装置
US8638828B1 (en) 2010-05-17 2014-01-28 Soraa, Inc. Method and system for providing directional light sources with broad spectrum
US8717505B1 (en) 2009-05-29 2014-05-06 Soraa Laser Diode, Inc. Laser based display method and system
US8833991B2 (en) 2010-02-10 2014-09-16 Sharp Kabushiki Kaisha Light emitting device, with light guide member having smaller exit section, and illuminating device, and vehicle headlight including the same
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
CN104078833A (zh) * 2013-03-29 2014-10-01 山东华光光电子有限公司 一种带有集成封装过流保护装置的大功率半导体激光器
US8876344B2 (en) 2009-12-17 2014-11-04 Sharp Kabushiki Kaisha Vehicle headlamp with excitation light source, light emitting part and light projection section
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
WO2017122782A1 (ja) * 2016-01-13 2017-07-20 古河電気工業株式会社 半導体レーザ素子、チップオンサブマウント、および半導体レーザモジュール
WO2017154096A1 (ja) * 2016-03-08 2017-09-14 三菱電機株式会社 レーザ光源装置及びその制御方法
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
JP2018190750A (ja) * 2017-04-28 2018-11-29 日亜化学工業株式会社 レーザ装置
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
CN111463658A (zh) * 2019-01-22 2020-07-28 日亚化学工业株式会社 发光装置
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
WO2022093689A1 (en) * 2020-10-26 2022-05-05 Sense Photonics, Inc. Defect-tolerant, self-healing vcsel array architectures with vcsel devices having integrated fuse structures
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231144A (ja) * 1993-03-25 1995-08-29 Nippon Telegr & Teleph Corp <Ntt> 光機能素子、これを含む光集積素子およびそれらの製造方法
JP2003298182A (ja) * 2002-04-03 2003-10-17 Sony Corp 半導体レーザアレイ装置
JP2005129583A (ja) * 2003-10-21 2005-05-19 Sony Corp 半導体発光素子の評価方法
JP2006128236A (ja) * 2004-10-27 2006-05-18 Mitsubishi Electric Corp 光半導体モジュール
JP2006216772A (ja) * 2005-02-03 2006-08-17 Sony Corp 光集積型半導体発光素子
JP2007157831A (ja) * 2005-12-01 2007-06-21 Sharp Corp 発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231144A (ja) * 1993-03-25 1995-08-29 Nippon Telegr & Teleph Corp <Ntt> 光機能素子、これを含む光集積素子およびそれらの製造方法
JP2003298182A (ja) * 2002-04-03 2003-10-17 Sony Corp 半導体レーザアレイ装置
JP2005129583A (ja) * 2003-10-21 2005-05-19 Sony Corp 半導体発光素子の評価方法
JP2006128236A (ja) * 2004-10-27 2006-05-18 Mitsubishi Electric Corp 光半導体モジュール
JP2006216772A (ja) * 2005-02-03 2006-08-17 Sony Corp 光集積型半導体発光素子
JP2007157831A (ja) * 2005-12-01 2007-06-21 Sharp Corp 発光装置

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908731B1 (en) 2009-05-29 2014-12-09 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9013638B2 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Laser based display method and system
US9014229B1 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling method
US8717505B1 (en) 2009-05-29 2014-05-06 Soraa Laser Diode, Inc. Laser based display method and system
US8749719B2 (en) 2009-05-29 2014-06-10 Soraa Laser Diode, Inc. Laser based display method and system
US8773598B2 (en) 2009-05-29 2014-07-08 Soraa Laser Diode, Inc. Laser based display method and system
US11817675B1 (en) 2009-05-29 2023-11-14 Kyocera Sld Laser, Inc. Laser device for white light
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US9829778B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source
US11088507B1 (en) 2009-05-29 2021-08-10 Kyocera Sld Laser, Inc. Laser source apparatus
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US10205300B1 (en) 2009-05-29 2019-02-12 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US11016378B2 (en) 2009-05-29 2021-05-25 Kyocera Sld Laser, Inc. Laser light source
US11796903B2 (en) 2009-05-29 2023-10-24 Kyocera Sld Laser, Inc. Laser based display system
US9019437B2 (en) 2009-05-29 2015-04-28 Soraa Laser Diode, Inc. Laser based display method and system
US11101618B1 (en) 2009-05-29 2021-08-24 Kyocera Sld Laser, Inc. Laser device for dynamic white light
US9100590B2 (en) 2009-05-29 2015-08-04 Soraa Laser Diode, Inc. Laser based display method and system
US10084281B1 (en) 2009-05-29 2018-09-25 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10904506B1 (en) 2009-05-29 2021-01-26 Soraa Laser Diode, Inc. Laser device for white light
US11619871B2 (en) 2009-05-29 2023-04-04 Kyocera Sld Laser, Inc. Laser based display system
US10297977B1 (en) 2009-05-29 2019-05-21 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8876344B2 (en) 2009-12-17 2014-11-04 Sharp Kabushiki Kaisha Vehicle headlamp with excitation light source, light emitting part and light projection section
US8833991B2 (en) 2010-02-10 2014-09-16 Sharp Kabushiki Kaisha Light emitting device, with light guide member having smaller exit section, and illuminating device, and vehicle headlight including the same
US9106049B1 (en) 2010-05-17 2015-08-11 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US11791606B1 (en) 2010-05-17 2023-10-17 Kyocera Sld Laser, Inc. Method and system for providing directional light sources with broad spectrum
JP2011243369A (ja) * 2010-05-17 2011-12-01 Sharp Corp 発光装置、照明装置および車両用前照灯
US10122148B1 (en) 2010-05-17 2018-11-06 Soraa Laser Diodide, Inc. Method and system for providing directional light sources with broad spectrum
US9362720B1 (en) 2010-05-17 2016-06-07 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10505344B1 (en) 2010-05-17 2019-12-10 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US8848755B1 (en) 2010-05-17 2014-09-30 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9837790B1 (en) 2010-05-17 2017-12-05 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US8638828B1 (en) 2010-05-17 2014-01-28 Soraa, Inc. Method and system for providing directional light sources with broad spectrum
US10923878B1 (en) 2010-05-17 2021-02-16 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US10281102B2 (en) 2010-10-29 2019-05-07 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US10465873B2 (en) 2010-10-29 2019-11-05 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
JP2012164981A (ja) * 2011-01-24 2012-08-30 Soraa Inc 基板部材上に構成された複数のエミッタを有するレーザーパッケージ
US10655800B2 (en) 2011-01-24 2020-05-19 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9810383B2 (en) 2011-01-24 2017-11-07 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US11543590B2 (en) 2011-01-24 2023-01-03 Kyocera Sld Laser, Inc. Optical module having multiple laser diode devices and a support member
US10247366B2 (en) 2011-01-24 2019-04-02 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9835296B2 (en) 2011-01-24 2017-12-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9371970B2 (en) 2011-01-24 2016-06-21 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US11573374B2 (en) 2011-01-24 2023-02-07 Kyocera Sld Laser, Inc. Gallium and nitrogen containing laser module configured for phosphor pumping
US10050415B1 (en) 2011-04-04 2018-08-14 Soraa Laser Diode, Inc. Laser device having multiple emitters
US11742634B1 (en) 2011-04-04 2023-08-29 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
US10587097B1 (en) 2011-04-04 2020-03-10 Soraa Laser Diode, Inc. Laser bar device having multiple emitters
US9716369B1 (en) 2011-04-04 2017-07-25 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US11005234B1 (en) 2011-04-04 2021-05-11 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
JP2012212927A (ja) * 2012-07-03 2012-11-01 Sharp Corp 発光装置
CN104078833A (zh) * 2013-03-29 2014-10-01 山东华光光电子有限公司 一种带有集成封装过流保护装置的大功率半导体激光器
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US10506210B2 (en) 2015-10-08 2019-12-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US11172182B2 (en) 2015-10-08 2021-11-09 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US11800077B2 (en) 2015-10-08 2023-10-24 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
WO2017122782A1 (ja) * 2016-01-13 2017-07-20 古河電気工業株式会社 半導体レーザ素子、チップオンサブマウント、および半導体レーザモジュール
US11152762B2 (en) 2016-01-13 2021-10-19 Furukawa Electric Co., Ltd. Semiconductor laser device, chip on submount, and semiconductor laser module
JP6998774B2 (ja) 2016-01-13 2022-02-10 古河電気工業株式会社 半導体レーザ素子、チップオンサブマウント、および半導体レーザモジュール
JPWO2017122782A1 (ja) * 2016-01-13 2018-11-01 古河電気工業株式会社 半導体レーザ素子、チップオンサブマウント、および半導体レーザモジュール
JPWO2017154096A1 (ja) * 2016-03-08 2018-06-28 三菱電機株式会社 レーザ光源装置及びその制御方法
US10554016B2 (en) 2016-03-08 2020-02-04 Mitsubishi Electric Corporation Laser light source device and method of controlling same
WO2017154096A1 (ja) * 2016-03-08 2017-09-14 三菱電機株式会社 レーザ光源装置及びその制御方法
JP2018190750A (ja) * 2017-04-28 2018-11-29 日亜化学工業株式会社 レーザ装置
US11121772B2 (en) 2017-09-28 2021-09-14 Kyocera Sld Laser, Inc. Smart laser light for a vehicle
US10784960B2 (en) 2017-09-28 2020-09-22 Soraa Laser Diode, Inc. Fiber delivered laser based white light source configured for communication
US11153011B2 (en) 2017-09-28 2021-10-19 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11677468B2 (en) 2017-09-28 2023-06-13 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US10880005B2 (en) 2017-09-28 2020-12-29 Soraa Laser Diode, Inc. Laser based white light source configured for communication
US11502753B2 (en) 2017-09-28 2022-11-15 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10873395B2 (en) 2017-09-28 2020-12-22 Soraa Laser Diode, Inc. Smart laser light for communication
US11870495B2 (en) 2017-09-28 2024-01-09 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11277204B2 (en) 2017-09-28 2022-03-15 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US10649086B2 (en) 2017-12-13 2020-05-12 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US11287527B2 (en) 2017-12-13 2022-03-29 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11249189B2 (en) 2017-12-13 2022-02-15 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11841429B2 (en) 2017-12-13 2023-12-12 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machine applications
US11231499B2 (en) 2017-12-13 2022-01-25 Kyocera Sld Laser, Inc. Distance detecting systems for use in automotive applications including gallium and nitrogen containing laser diodes
US10345446B2 (en) 2017-12-13 2019-07-09 Soraa Laser Diode, Inc. Integrated laser lighting and LIDAR system
US11199628B2 (en) 2017-12-13 2021-12-14 Kyocera Sld Laser, Inc. Distance detecting systems including gallium and nitrogen containing laser diodes
US10338220B1 (en) 2017-12-13 2019-07-02 Soraa Laser Diode, Inc. Integrated lighting and LIDAR system
US11867813B2 (en) 2017-12-13 2024-01-09 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US11294267B1 (en) 2018-04-10 2022-04-05 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11811189B1 (en) 2018-04-10 2023-11-07 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US10809606B1 (en) 2018-04-10 2020-10-20 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle
CN111463658A (zh) * 2019-01-22 2020-07-28 日亚化学工业株式会社 发光装置
CN111463658B (zh) * 2019-01-22 2024-02-27 日亚化学工业株式会社 发光装置
WO2022093689A1 (en) * 2020-10-26 2022-05-05 Sense Photonics, Inc. Defect-tolerant, self-healing vcsel array architectures with vcsel devices having integrated fuse structures

Similar Documents

Publication Publication Date Title
JP2009021506A (ja) 半導体レーザアレイ、発光装置、半導体レーザアレイの製造方法および発光装置の製造方法
US11573374B2 (en) Gallium and nitrogen containing laser module configured for phosphor pumping
JP5193048B2 (ja) 垂直に積層された発光ダイオードを有する発光素子
JP3745763B2 (ja) フリップチップボンディング用窒化ガリウム系発光ダイオード及びその製造方法
JP6267635B2 (ja) チップオンボード型のパッケージ基板を有する発光装置及びその製造方法
US20120314398A1 (en) Laser package having multiple emitters with color wheel
JP2018525836A (ja) レーザダイオードを用いた特殊一体型光源
JP2005311364A (ja) 発光装置とその製造方法、及びそれを利用した発光システム
JP2004128502A (ja) トンネル接合を含む発光装置
JP2006216933A (ja) 発光素子及びその製造方法
US11923662B2 (en) Edge-emitting laser bar
JP2009076730A (ja) 窒化物半導体レーザ装置
JP5282605B2 (ja) 半導体レーザ装置、及びその製造方法
JP2004104132A (ja) 高効率発光ダイオード
JP2004071885A (ja) 半導体発光素子
CN218300556U (zh) 基于高光通量激光的白光源
JP2002280674A (ja) 半導体発光装置及びその製造方法
KR100644215B1 (ko) 발광소자와 그 제조방법
WO2018158934A1 (ja) 半導体レーザ及びその製造方法
KR20140028288A (ko) 발광 소자
KR20200086590A (ko) 발광 소자 및 발광 소자 패키지
JP2008160005A (ja) 半導体レーザ装置及びその製造方法
JP2000058966A (ja) 半導体レーザおよび半導体レーザ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130326