JP2009010012A - 半導体発光素子、その製造方法及び発光装置 - Google Patents

半導体発光素子、その製造方法及び発光装置 Download PDF

Info

Publication number
JP2009010012A
JP2009010012A JP2007167633A JP2007167633A JP2009010012A JP 2009010012 A JP2009010012 A JP 2009010012A JP 2007167633 A JP2007167633 A JP 2007167633A JP 2007167633 A JP2007167633 A JP 2007167633A JP 2009010012 A JP2009010012 A JP 2009010012A
Authority
JP
Japan
Prior art keywords
layer
light emitting
crystal structure
columnar crystal
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007167633A
Other languages
English (en)
Inventor
信之 ▲高▼倉
Nobuyuki Takakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007167633A priority Critical patent/JP2009010012A/ja
Publication of JP2009010012A publication Critical patent/JP2009010012A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract


【課題】柱状結晶構造体を有する半導体発光素子の長所を活かしながら、前記リークやショートが生じることなく、かつ量産工程に好適な電極形成工程を可能とする。
【解決手段】半導体発光素子10は、基板11上にn型層13a、発光層13b、p型層13cの順番で積層された柱状結晶構造体13を有し、柱状結晶構造体13は、基板11近傍より先端の径が細く、かつ柱状結晶構造体13の表面を覆う絶縁膜14を有してなる。
【選択図】図5

Description

本発明は、柱状結晶構造体内で電子と正孔を結合させて発光させることを特徴とする半導体発光素子、その製造方法及び該発光素子を用いた発光装置に関する。
近年、窒化物半導体もしくは酸化物半導体で構成された、発光層を有する発光素子が知られている。この発光素子の構造は、主としてサファイア基板を用い、発光層の下部にシリコン(Si)がドーピングされたn―GaN層からなるn―クラッド層とコンタクト層、発光層の上部のマグネシウム(Mg)がドーピングされたp−AlX1Ga1−X1Nからなる電子ブロック層、電子ブロック層の上部のp−GaNのコンタクト層によって構成されている。かかる発光素子(以下、プレーナー型LEDという)は、基板のサファイアと窒化物半導体との格子定数が大きく異なるため、基板上に窒化物半導体を成長させて薄膜を形成する工程において、結晶内に格子不整合による非常に多くの糸状の貫通転位(threading dislocation)を含んでしまうため、この貫通転位の存在が発光素子の発光効率を増大させる上でネックとなっていた。
特許文献1は、かかるプレーナー型LEDにおける課題を解決するものであり、GaNからなる柱状結晶構造体(以下、柱状結晶構造体をナノコラムという)を用いたLED(半導体発光素子)を提案している。すなわち、図13に示すように、このLEDは、サファイア基板61上に、n型GaNからなるバッファ層62と、GaNからなり、p−n接合面に介在される活性層(量子井戸(quantum well))を有するアレイ状に配列された多数のナノコラム63と、隣接するナノコラム間に埋め込まれている透明絶縁物層64と、透明電極65と、電極パッド66、67とで構成されている。特に、青色GaNナノコラム63は、n型GaNナノコラム、InGaN量子井戸、p型GaNナノコラムから構成されている。
このGaNナノコラム63を有するLEDでは、プレーナー型LEDとは異なり、GaN層のエピタキシャル成長法による層成長時に点在していた成長核がくっついて平面成長するのではなく、成長核がくっつく前に縦方向に成長するために、各ナノコラムには貫通転位は原理的に存在せず、貫通転位の周囲に発生する点欠陥もプレーナー型と比較して圧倒的に少ないことが期待されることから、プレーナー型LEDに比べて極めて結晶品質の良いGaN単結晶が得られ、内部量子効率も飛躍的に向上することが期待されている。
特開2005−228936号公報
特許文献1に記載されたLEDでは、貫通転位が発生するという課題は解決されているが、プレーナー型LEDに比して、電極形成が困難であるという課題を有している。ナノコラムLEDを作製するためには、多数のナノコラム上にプレート状の電極を形成する必要があり、そのためにナノコラム間に絶縁体物の充填が必要であるが、ナノコラム間の溝のアスペクト比は5〜10程度でかつ開口部もせいぜい数百ナノメートル(nm)であるため、通常のCVDプロセスでは溝の底まで充填するのは非常に困難である。また、SOG等をコーティングするにしても液体特有の表面張力のために溝の中まで入りにくい。したがって、プレーナー型LEDに比して、特にp型電極の形成が困難という欠点を有している。特に、p型GaN層が非常に薄いために、p型電極層と活性層との間、p型電極層とn型GaN層との間のリークやショートの防止が困難であるという課題を有する。
本発明は、上記課題に鑑みてなされたもので、その目的とするところは、柱状結晶構造体を有する半導体発光素子の長所を活かしながら、前記リークやショートが生じることなく、かつ量産工程に好適な電極形成工程を可能とする半導体発光素子、その製造方法及び該発光素子を用いた発光装置を提供することにある。
請求項1に記載の発明は、基板上にn型層、発光層、p型層の順番で積層された柱状結晶構造体を有し、前記柱状結晶構造体は、前記基板近傍より先端の径が細く、前記柱状結晶構造体の表面を覆う絶縁膜を有してなることを特徴とするものである。
請求項6に記載の発明は、基板上にn型層、発光層、p型層の順番で積層された柱状結晶構造体が形成された半導体発光素子の製造方法であって、前記柱状結晶構造体を前記基板近傍より先端の径を細く成長させる工程と、前記柱状結晶構造体の表面を絶縁膜で覆う工程と、前記p型層の先端に突き刺すための導電性を有する導電板を作製する工程と、前記p型層の先端に前記導電板を突き刺し加熱することにより、p型層と前記導電板とを合金化してオーミック接触させる工程とを含むことを特徴とするものである。
これらの構成によれば、柱状結晶構造体の先端が尖った形状を有することになり、CVD法やSOG法のように絶縁物のカバレッジの状態によらず、柱状結晶のp型層のみにプレーナー型の金属板を形成できるので、先端部に配置される電極との間のリークやショートが生じにくくなって信頼性が高くなると共に、電極となる電極板側との取付作業が容易となり、量産性に適し、かつ安価な半導体発光素子が提供可能となる。また、柱状結晶構造体の表面全体に絶縁膜を形成したので、隣接する柱状結晶構造体との間や電極との間での絶縁性が確保され、従来のような絶縁材を充填する等の複雑な作業に比して量産性に適したものとなる。
請求項2に記載の発明は、請求項1記載の半導体発光素子において、前記柱状結晶構造体の先端部の径が50nm以下である。特に柱状結晶構造体の先端部の径を50nm以下のように尖鋭にすることで、上記作用がより一層顕著となる。
請求項3に記載の発明は、請求項1又は2記載の半導体発光素子において、前記p型層の先端に突き刺された導電性を有する導電板であって、突き刺された状態で加熱されることによって前記p型層と合金化されてオーミック接触されたp型電極を有するものである。この構成によれば、導電板をp型層に突き刺し、埋め込んで加熱すれば、両者が合金化するので、従来のように、柱状結晶構造体間に絶縁材を充填し、それを土台にしてp型電極を形成するという複雑な工程を経ることがなくなり、p型電極の形成が簡単となる。
請求項4に記載の発明は、請求項3記載の半導体発光素子において、前記p型電極は、透光性を有し、前記基板は、前記p型電極と対向する面に発光層から放射された光に対して80%以上の反射率を有する反射膜を有してなるものである。この構成によれば、柱状結晶構造体に突き刺したp型電極は使用する光の波長に対して透光性を有するので、柱状結晶構造体からの発光を最小限のロスで上方(p型電極側)に取り出すことが可能となる。さらに、基板側に向けて出射された光については基板表面に80%以上の反射率を有する反射膜で反射して上方に向かわせるので、更に最小限のロスで光の取り出しが可能となる。これにより、光取り出し効率が飛躍的に向上する。
請求項5に記載の発明は、請求項3記載の半導体発光素子において、前記p型電極は、発光層から放射された光に対して80%以上の反射率を有する材料からなり、前記基板は、透光性を有してなるものである。この構成によれば、柱状結晶構造体からの光は基板側から外方へ出射される。そして、p型電極側に向けて出射された光についてはp型電極で80%以上反射して基板側に向かうので、最小限のロスで光の取り出しが可能となる。これにより、光取り出し効率が一層向上する。
請求項7に記載の発明は、請求項6記載の半導体発光素子の製造方法において、前記導電板を作製する工程は、前記導電板の一方面であって前記突き刺しが行われる面と反対側の面に変形を規制する補強層を形成する工程と、前記オーミック接触させる工程の後に、前記補強層を除去する工程とを有することを特徴とする。この構成によれば、補強層は、治具などを用いて柱状結晶構造体との間での機械的な突き刺し力に耐え、変形しない強度で形成されているので、オーミック接触させる工程での突き刺し力の付与作業が容易となり、しかも、この工程終了後の次工程で前記補強層を容易に剥離などにより除去するようにしたので、前記オーミック接触させる工程が精度良くかつ容易に行われる。
請求項8に記載の発明は、請求項1〜5のいずれかに記載の半導体発光素子を用いた発光装置である。この構成によれば、リークやショートの生じにくい信頼性が高く、量産性に適した発光装置が提供される。
請求項1,6に記載の発明によれば、柱状結晶構造体の先端を尖った形状を有するものとしたので、先端部を電極を形成する金属板に突き刺すことにより、完全にプレーナー型のp型電極が形成でき、先端部に配置される電極との間のリークやショートが生じにくくなって信頼性が高くなると共に、電極となる電極板側との取付作業を容易にでき、量産性に適し、かつ安価な半導体発光素子が提供可能となる。また、柱状結晶構造体の表面全体に絶縁膜を形成したので、p型層とn型層の間、もしくはそれらの電極との間の絶縁性を確保でき、従来のような絶縁材を充填する等の複雑な作業に比して量産性に適したものにできる。
請求項2に記載の発明によれば、特に柱状結晶構造体の先端部の径を50nm以下のように尖鋭にすることで、上記作用をより一層顕著に実現することができる。
請求項3に記載の発明によれば、導電板をp型層に突き刺し、埋め込んで加熱して両者を合金化することで、従来のように、柱状検証構造体間に絶縁材を充填し、それを土台にしてp型電極を形成するという複雑な工程を経ることがなくなり、p型電極の形成を簡単にすることができる。
請求項4に記載の発明によれば、柱状結晶構造体に突き刺したp型電極を使用する光の波長に対して透光性を有するものとしたので、柱状結晶構造体からの発光を最小限のロスで上方(p型電極側)に取り出すことが可能となる。さらに、基板側に向けて出射された光については基板表面に80%以上の反射率を有する反射膜で反射して上方に向かわせるので、更に最小限のロスで光の取り出しが可能となる。これにより、光取り出し効率が飛躍的に向上する。
請求項5に記載の発明によれば、p型電極側に向けて出射された光がp型電極で80%以上反射して基板側に向かうようにしたので、最小限のロスで光の取り出しが可能となる。これにより、光取り出し効率が一層向上する。
請求項7に記載の発明によれば、補強層として、治具などを用いて柱状結晶構造体との間での機械的な突き刺し力に耐え、変形しない強度のもので形成したので、オーミック接触させる工程での突き刺し力の付与作業を容易にでき、しかも、この工程終了後の次工程で前記補強層を容易に剥離などにより除去するようにしたので、前記オーミック接触させる工程を精度良くかつ容易に行える。
請求項8に記載の発明によればリークやショートの生じにくい信頼性の高い、かつ量産性に適した発光装置が提供可能となる。
以下に説明する実施形態は、主として窒化ガリウム(GaN)からなる柱状結晶構造体(以下、ナノコラムという)であるが、ナノコラム結晶としては、GaNに限定されるものではなく、酸化物、窒化物、酸窒化物、その他の化合物半導体材料を適宜採用可能である。また、絶縁体の基板としてサファイアを、導電性の基板としてシリコン(Si)を用いたが、基板の材料はこれらに限定されるものではなく、例えば、SiC、SiO、ZnO、AlN(窒化アルミニウム)等でもよい。
(第1実施形態)
図1〜図9は、本発明の第1実施形態を示す半導体発光素子の製造工程を示す図で、図1は基板部の形成工程を示し、図2は柱状結晶構造体の成長工程を示し、図3〜図5は絶縁膜の形成工程を示し、図6は電極部の形成工程を示し、図7は柱状結晶構造体と電極部との突き刺し工程を示し、図8は電極部から補強層を除去する工程を示し、図9は外部との接続のための電極の形成工程を示す図である。
まず、所要形状のシリコン(Si)基板11を準備し、これを公知のMOCVD(有機金属気相成長法)装置内に導入し、シリコン基板11を所定時間、例えば10分間だけ、所定温度、例えば1200℃の環境に晒し、表面に対するクリーニング処理を施す。なお、このときの反応炉内の圧力は略真空の、例えば76トール:Torr(=101.3パスカル:Pa)とした。次いで、MOCVD装置内で、ナノコラムを形成するために、シリコン基板11の温度が所定の低温度、例えば500℃になるように温度設定をし、低温AlN緩衝層12を所定厚み、例えば25nmだけ成長させる。Al原料としてはトリメチルアルミニウム(TMAl)が、窒素原料としてはNHが使用されている。
次に、図2に示すナノコラム13の形成を行う。本実施形態では、まず、図1に示すように、ナノコラムn型半導体層13の核としてのn型GaN13a′を、例えば1nmの高さ程度に形成する。
次いで、MOCVD装置内の圧力を76Torrに保ったまま、シリコン基板11の温度が所定温度、例えば1150℃になるように温度設定を行う。ガリウム(Ga)原料としてはトリメチルガリウム(TMGa)が使用されている。反応炉内の温度が安定した後、ナノコラムGaNを形成するための、TMGa、NHの他、ドーパントとなるシリコン(Si)の原料であるテトラエチルシラン(TESi)が供給される。ここでは、n伝導を得るためのドーパントとしてシリコンを用いたが、これに限定されず、例えばゲルマニウ(Ge)でもよい。かかる成長工程によって、n型伝導性を有するナノコラムn型半導体層13aが形成される(図2参照)。なお、ナノコラムn型半導体層13aの高さは、反応時間を適宜長短制御することで、所望の高さ、例えば数十nm〜数μmのナノコラムを成長させることが可能である。
次に、MOCVD装置を用いて、ナノコラムn型半導体層13a上に発光層13bの形成を行う。反応炉内圧力は76Torrであり、シリコン基板11の温度は750℃になるように温度設定を行う。発光層13bは量子井戸構造となっており、井戸層(InGaN)と障壁層(GaN)とで構成される。さらに、複数の井戸を有する多重量子井戸構造(MQW)が採用可能である。多重量子井戸構造は、井戸層と障壁層の成長を交互に所要回数だけ繰り返し行うことで形成できる。本実施形態では、発光層13bを構成する井戸層及び障壁層のIn組成は17%及び0%であり、厚さはそれぞれ2nm及び5nmである。上記工程より、多重量子井戸からなるナノコラム発光層13bが形成される。
次に、MOCVD装置を用いて、ナノコラム発光層13b上に、p型GaNからなるナノコラムp型半導体層13cの形成を行う。p型伝導を得るためのドーパントとしてマグネシウム(Mg)が採用されている。マグネシウムの原料としてはビスエヒルシクロペンタジエニルマグネシウム(CP2Mg)が採用されている。また、p型半導体層13cは、所要厚、例えば100nmの厚みに形成されている。これまでの成長において、ナノコラム13の径を、シリコン基板11近傍(図2では下側)より先端側が細い形状にするには、NHの流量、キャリアガス(例えば水素(H2))の流量、もしくは成長温度等の各種パラメータを変えていくことで実現できる。これらのパラメータ制御により、図2に示すように、p型半導体層13cの先端部を略20nmに調整している。なお、パラメータを制御することで、p型半導体層13cの先端部を数nm〜数十nm程度まで細くすることは充分可能である。
図7で後述するように、ナノコラム13の先端を、略50nm以下に細くすることで、電極部との突き刺し工程での好適な突き刺しが可能となる。なお、先端が細すぎると、突き刺し時に折れる等の不具合があることから、略10nm以上であることが好ましい。また、成長パラメータの制御によって、図2のように、n型半導体層13aの部分から漸次細くなるように形成することも可能であるが、n型半導体層13aの部分は、柱状でも、漸次細くなる先窄まり(縦断面視で台形形状)でも構わない。また、パラメータ制御によって、p型半導体層13cの全体に亘って先窄まり形状に成長させてもよいし、p型半導体層13cの先端側の所定寸法部分について先窄まり形状に成長させるようにしてもよい。
図3に示すように、ビーカー41等の容器に、チオアセトアミド(TAA)と酢酸とを混合した所定pH値、ここではpH2の水溶液にZnClを溶解した溶液42を満たし、その後、この溶液42中に、ナノコラム13が形成されているシリコン基板11を浸漬させる。Ph値、温度、時間を適切に制御することにより、ナノコラム13の表面に図4に示すように厚み数十nmのZnSの絶縁膜14を形成することができる。本工程では、反応を促進させるため、ハロゲンランプ43等を併用してもよい。その後、絶縁膜14が形成されたシリコン基板11をビーカー41から取り出し、図5に示すように公知のイオンエッチング装置(RIE:図示せず)により、ナノコラム13の上面に対して斜め方向からアルゴン等のイオン44を照射(矢印で示す)することにより、ナノコラム13の上部の絶縁膜14のエッチングを行う。イオン照射角度は好ましくはナノコラム13の上部の絶縁膜14のみをエッチングするべく考慮し、できればシリコン基板11を垂直軸周りに回転させながら行うのが望ましい。図5では、イオンエッチング処理により、絶縁膜14のうちナノコラム13の上部の絶縁膜がエッチングされ、露出している。ただし、側面及び底面はエッチングされることなくほぼ残存しており、ナノコラム13の表面保護膜としての機能を果たすようにしている。
本実施形態では、溶液を利用することで、ナノコラム13間の間隙に万遍なく、かつ確実に絶縁材料を行き渡らせることができる。さらに、ナノコラム13を上向きで電解溶液42中に浸漬することで、溶液42をナノコラム13間の間隙に、一層行き渡るようにしている。
<p型電極の製造>
続いて、図5の処理で形成されたナノコラム半導体10に電極を形成する工程の一例について、図6で説明する。
図6は、p型電極部20の一例を示す断面図である。p型電極部20は、所要厚を有するシリコン(Si)からなる基板21上に、熱酸化によるSi酸化膜22を所定厚、例えば100nm形成し、その上面に、所要厚、例えば100nmの酸化インジウムスズ(ITO)薄膜23と所要厚、例えば50nmのロジウム(Rh)薄膜24とがこの順で形成されたものである。Si酸化膜22は、後で除去されるべき犠牲層の機能を果たすものである。
図7に示すように、p型電極部20をロジウム薄膜24の面が前記ナノコラム13に接触するように対向配置して、治具45を用いてナノコラム半導体10とp型電極部20との当接方向に所要圧を付与する。治具45は、互いに対向配置された下部押圧板46、上部押圧板47、及び両押圧板46,47を平行に保持して連結するネジ部材48,48で構成されている。ネジ部材48を回動操作することで、両押圧板46,47を接離方向に移動できる。ネジ部材48を締め付けることで、ナノコラム半導体10とp型電極部20との間に機械的な所要圧を付与でき、これによりナノコラム半導体10のナノコラム13の頂部がp型電極部20のロジウム薄膜24に微小な所定寸法分、例えば50nm程度だけ突き刺される(侵入する)。侵入寸法によっては、ITO薄膜23に達しても良い。なお、治具45は、耐熱温度が後述の合金化処理のための加熱温度、ここでは後述するように600℃以上の部材で構成されている。p型電極部20にシリコン(Si)基板21を機械的な押圧時における補強用として用いることで、治具45による機械的圧力の付与作業が容易かつ確実に行えるようにしている。
この状態で、治具45を公知のアニール炉に入れ、所定温度、例えば600℃で、所定時間、例えば5分だけ、所定の雰囲気(例えば窒素(N2)雰囲気)中に放置する。このアニール処理が終了すると、冷却してアニール炉から取り出し、治具45を外した後、ナノコラム13のp型半導体層13cとロジウム薄膜24(あるいは侵入寸法によってはRh/ITO両薄膜部位25)は合金化し、機械的にも電気的にも良好な接合状態が形成される。
その後、接合された両部材10,20をフッ酸溶液が満たされたビーカー等の容器に浸漬して、シリコン酸化膜22を溶解することにより、シリコン基板21を切り離す。接合後は、シリコン(Si)基板21及びSi酸化膜22は、その役目が終了したとして除去される。すなわち、図8に示すように、p型電極部20からシリコン基板21、シリコン酸化膜22の部分が除去され、ナノコラム13のp型半導体層13cの先端部にロジウム薄膜23、ITO薄膜24からなる透明導電膜25が形成される。
さらに、図9に示すように、通常のリソグラフィ技術とエッチング技術とにより、ITO薄膜23上に、p型パッド電極31として、厚さ50nmのニッケル(Ni)層、厚さ50nmのチタン(Ti)層、及び厚さ500nmの金(Au)層からなる積層膜が形成され、一方、シリコン基板11の裏面にはn型電極32として、厚さ50nmのチタン(Ti)層、及び厚さ500nmの金(Au)層からなる積層膜が形成され、これによってナノコラム半導体発光素子が作製される。
(第2実施形態)
図10は、ナノコラム半導体発光素子の第2実施形態の構成を説明するための図で、図10(a)は、シリコン基板111の上面の、図1と同様にして形成された低温AlN緩衝層112の上面に、電子ビーム共蒸着(EB)装置によりロジウム(Rh)膜115を所定厚、例えば50nmだけ形成し、その後、一般のリソグラフィ技術とエッチング技術とを用いて、ロジウム膜115に、所定径、例えば直径100nm程度の開口した凹部116を数十nm〜ナノコラムの予めの設計個数(単位面積当たりの個数)等に基づいて設定された間隔を置いて多数形成する。ロジウム膜115は、ナノコラム発光層で発光される波長帯、例えば波長460nmの青色光に対して80%以上の反射率を有する反射膜として機能する。シリコン基板111側に向かう光に対する反射率が80%以上であれば、所望する高輝度の発光素子が作製できる。
次いで、図2と同様な工程を経ることで、凹部116によって露出したシリコン基板111の上面に、図10(b)に示すように、n型半導体層113a、発光層113b、p型半導体層113cの順番で積層されたナノコラム113が形成される。なお、ロジウム(Rh)の融点は1970℃であるので、ナノコラム113の成長工程において、ロジウム薄膜115は安定している。さらに、図10(b)に示すように、ナノコラム113の表面には、図3、図4のようにして、保護用、絶縁用のZnS酸化膜114が形成される。さらにナノコラム113の上部に図5と同様にしてイオン44を照射して、図10(c)のようなナノコラム113の上部の絶縁膜114のエッチングを行って、ナノコラム半導体110を作製する。
その後、図6と同様にして、図10(d)に示すようなp型電極が作製される。なお、第2実施形態では、厚さ100nmのSi酸化膜22の上面に形成されるITO薄膜23,Rh薄膜24の膜厚を薄層、例えば5nm程度に薄くすると、Rh薄膜24はナノコラム113の発光層113bで発光した光を透過し、ITO薄膜23及びRh薄膜24からなる層は全体として透明導電膜を形成する。
p型電極20のナノコラム半導体110への接合は、図7、図8と同様な方法で行われ、電極部となる積層膜31,32の形成は図9と同様にして行われる。
このように、第2実施形態では、ナノコラム半導体層110の基部側の間隙部位にロジウム膜115を形成したので、発光層113bからの発光光のうち、下方に向かった光を高効率で上方に向けることが可能となり、高輝度の発光素子が製造できる。
(第3実施形態)
図11は、ナノコラム半導体発光素子の第3実施形態の構成を説明するための図で、図11(a)に示すように、基板として絶縁体であるサファイア基板211を用いる。このサファイア基板211の上部に、図1と同様に低温AlN緩衝膜212を厚さ25nm形成する。ここで、サファイア基板211は発光層から出る波長460nmの光に対して透明であり、かつその上面に形成された低温AlN緩衝膜212のバンドギャップ幅は6.2eVと波長460nmの光を透過するほど充分大きいので、ナノコラム半導体210からの発光波長460nmの光を透過する透光性を有した基板部(211,212)を形成することができる。なお、ナノコラム213、絶縁膜214の作製工程は、実施形態1と同様で、これによってナノコラム半導体210が作製される。
次いで、実施形態1に示す方法で、p型電極20を形成する。p型電極20は、厚さ100nmのSi酸化膜上に形成されるITO薄膜23及びRh薄膜24のうちのRh薄膜24の膜厚を100nm程度に厚くすると、このRh薄膜24は波長460nmの青色光に対して80%以上の反射率を有する高反射膜となる。ナノコラム213から上方に向かう光に対する反射率が80%以上であれば、所望する高輝度の発光素子が作製できる。そして、図11(b)に示すように、p型電極25が接合されたナノコラム半導体210が作製される。
この後、図11(c)に示すように、ITO薄膜23上面の適所にp型電極231となる積層膜が形成され、一方、電極従来のリソグラフィ技術及びエッチング技術を用いて、n電極を構成する部分のITO薄膜23及びRh薄膜24及びナノコラム213が除去され、この除去部分の適所にn型電極232の積層膜が形成される。この構成により、第3実施形態のナノコラム半導体発光素子210では、図中、下方に向けて光が放射される。
図12は、第3実施形態に係るナノコラム半導体発光素子を発光装置に適用した場合の一実施形態を示す側断面図である。
発光装置50は、ナノコラム半導体発光素子を所定材料、例えばセラミックからなるパッケージ51で保持する形で構成されている。パッケージ51は、所要の立体形状、例えば直方体形状(縦横共に数mm〜10mm程度)を有しており、上面には、その内部に向けて所要サイズを有するすり鉢状の凹部52が形成されている。凹部52は周囲の斜面部521と所要サイズの底面部522とで構成されている。底面部522の適所にはp型配線53,n型配線54が互いに離間してパターニングされており、図では詳細には示していないが、両配線53,54はパッケージ51外に引き出されている。
底面部522の上部にはナノコラム半導体発光素子210が配置され、発光した光を上方に出射するようにしている。ナノコラム半導体発光素子210のサイズは、縦横共に0.数mm〜略1mm程度である。ナノコラム半導体発光素子210の電極として機能する積層膜231,232は対応する配線53,54と電気的に接続されている。なお、積層膜232の高さ調整のため、金(Au)からなるバンプ55が介設され、これにより積層膜232とn型配線54との電気的な接続が確保されている。
凹部52の斜面部521は、所要角度、例えば略45度を有し、その表面には所要厚で高反射材からなる反射膜、例えばアルミニウム(Al)の薄膜56が塗布等により形成されており、ナノコラム半導体発光素子210から横方向に射出した光を、最小のロス(高効率)で上方に反射させるようにしている。また、ナノコラム半導体発光素子210が配置された凹部52内は、透光性樹脂57で封止され、保護及びナノコラム半導体発光素子210の安定固定を兼ねている。透光性樹脂57で全体をモールドすることで、ナノコラム半導体発光素子210から射出した光を最小のロスで上方に向けて出力できる。
なお、パッケージ51の形状は、上記に限定されず、円柱形状でも良く、用途等に応じて適宜な形状、サイズが採用可能である。また用途(特に輝度)に応じて、1個のパッケージ51内に複数のナノコラム半導体発光素子210を配設する態様としてもよい。また、凹部521の形状も、円錐形状が好ましいが、これに限定されず、多角錐でもよい。また、発光装置は、第1、第2実施形態に係るナノコラム半導体発光素子を適用することも可能である。
基板部の形成工程を示す図である。 柱状結晶構造体の成長工程を示す図である。 絶縁膜の形成工程を示す図である。 絶縁膜の形成工程を示す図である。 絶縁膜の形成工程を示す図である。 電極部の形成工程を示す図である。 柱状結晶構造体と電極部との突き刺し工程を示す図である。 電極部から補強層を除去する工程を示す図である。 外部との接続のための電極の形成工程を示す図である。 第2実施形態の構成を説明するための図で、(a)は基板部の形成工程を示す図、(b)は絶縁用のZnS酸化膜が形成された図、(c)はナノコラムの上部の絶縁膜のエッチングを行っている図、(d)は作製された発光素子を示す図である。 第3実施形態の構成を説明するための図で、(a)は柱状結晶構造体の成長工程〜絶縁膜の形成工程を示す図、(b)は柱状結晶構造体と電極部との突き刺し工程を示す図、(c)は外部との接続のための電極の形成工程を示す図である。 第3実施形態に係るナノコラム半導体発光素子を発光装置に適用した場合の一実施形態を示す側断面図である。 従来の柱状結晶構造体を用いたLEDの構造を示す図である。
符号の説明
11,111,211 シリコン基板
12,112,212 低温AlN緩衝層
13,113,213 ナノコラム
13a′,13a、113a n型半導体層
13b、113b 発光層
13c、113c p型半導体層
14,114,214 酸化膜
20 p型電極部
21 シリコン基板
22 シリコン酸化膜
23 酸化インジウムスズ(ITO)薄膜
24 ロジウム(Rh)薄膜24
31,231 p型パッド電極
32,232 n型パッド電極
42 溶液
44 イオン
45 治具
115 ロジウム膜
116 凹部
10,110,210 ナノコラム半導体
50 発光装置
51 パッケージ
57 透光性樹脂

Claims (8)

  1. 基板上にn型層、発光層、p型層の順番で積層された柱状結晶構造体を有し、
    前記柱状結晶構造体は、前記基板近傍より先端の径が細く、前記柱状結晶構造体の表面を覆う絶縁膜を有してなることを特徴とする半導体発光素子。
  2. 前記柱状結晶構造体の先端部の径が50nm以下である請求項1記載の半導体発光素子。
  3. 前記p型層の先端に突き刺された導電性を有する導電板であって、突き刺された状態で加熱されることによって前記p型層と合金化されてオーミック接触されたp型電極を有する請求項1又は2記載の半導体発光素子。
  4. 前記p型電極は、透光性を有し、前記基板は、前記p型電極と対向する面に発光層から放射された光に対して80%以上の反射率を有する反射膜を有してなる請求項3記載の半導体発光素子。
  5. 前記p型電極は、発光層から放射された光に対して80%以上の反射率を有する材料からなり、前記基板は、透光性を有してなる請求項3記載の半導体発光素子。
  6. 基板上にn型層、発光層、p型層の順番で積層された柱状結晶構造体が形成された半導体発光素子の製造方法であって、
    前記柱状結晶構造体を前記基板近傍より先端の径を細く成長させる工程と、
    前記柱状結晶構造体の表面を絶縁膜で覆う工程と、
    前記p型層の先端に突き刺すための導電性を有する導電板を作製する工程と、
    前記p型層の先端に前記導電板を突き刺し加熱することにより、p型層と前記導電板とを合金化してオーミック接触させる工程とを含むことを特徴とする半導体発光素子の製造方法。
  7. 前記導電板を作製する工程は、前記導電板の一方面であって前記突き刺しが行われる面と反対側の面に変形を規制する補強層を形成する工程と、前記オーミック接触させる工程の後に、前記補強層を除去する工程とを有することを特徴とする請求項6記載の半導体発光素子の製造方法。
  8. 請求項1〜5のいずれかに記載の半導体発光素子を用いた発光装置。
JP2007167633A 2007-06-26 2007-06-26 半導体発光素子、その製造方法及び発光装置 Pending JP2009010012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167633A JP2009010012A (ja) 2007-06-26 2007-06-26 半導体発光素子、その製造方法及び発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167633A JP2009010012A (ja) 2007-06-26 2007-06-26 半導体発光素子、その製造方法及び発光装置

Publications (1)

Publication Number Publication Date
JP2009010012A true JP2009010012A (ja) 2009-01-15

Family

ID=40324848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167633A Pending JP2009010012A (ja) 2007-06-26 2007-06-26 半導体発光素子、その製造方法及び発光装置

Country Status (1)

Country Link
JP (1) JP2009010012A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156451B1 (ko) 2010-06-25 2012-06-13 서울옵토디바이스주식회사 고효율 발광 다이오드
KR101296432B1 (ko) * 2011-03-08 2013-08-13 옵토 테크 코포레이션 넓은 시야각을 갖는 발광 다이오드와 이의 제조 방법
KR20160011286A (ko) * 2014-07-21 2016-02-01 삼성전자주식회사 반도체 발광소자, 반도체 발광소자 제조방법 및 반도체 발광소자 패키지 제조방법
JP2016506076A (ja) * 2012-12-21 2016-02-25 アレディア Ledワイヤを備える隣接した領域の製造方法およびその製造方法により得られる装置
JP2016535434A (ja) * 2013-09-30 2016-11-10 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ 発光ダイオードを備えた光電子デバイスを製造する方法
JP2018521516A (ja) * 2015-07-13 2018-08-02 クラヨナノ エーエス ナノワイヤ/ナノピラミッド型発光ダイオード及び光検出器
US11239391B2 (en) 2017-04-10 2022-02-01 Norwegian University Of Science And Technology (Ntnu) Nanostructure
US11257967B2 (en) 2012-06-21 2022-02-22 Norwegian University Of Science And Technology (Ntnu) Solar cells
US11264536B2 (en) 2015-07-13 2022-03-01 Crayonano As Nanowires or nanopyramids grown on a graphene substrate
US11450528B2 (en) 2015-07-31 2022-09-20 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156451B1 (ko) 2010-06-25 2012-06-13 서울옵토디바이스주식회사 고효율 발광 다이오드
KR101296432B1 (ko) * 2011-03-08 2013-08-13 옵토 테크 코포레이션 넓은 시야각을 갖는 발광 다이오드와 이의 제조 방법
US11257967B2 (en) 2012-06-21 2022-02-22 Norwegian University Of Science And Technology (Ntnu) Solar cells
JP2016506076A (ja) * 2012-12-21 2016-02-25 アレディア Ledワイヤを備える隣接した領域の製造方法およびその製造方法により得られる装置
US11063177B2 (en) 2012-12-21 2021-07-13 Aledia Process for producing adjacent chips comprising LED wires and device obtained by the process
JP2019145830A (ja) * 2013-09-30 2019-08-29 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ 発光ダイオードを備えた光電子デバイスを製造する方法
JP2016535434A (ja) * 2013-09-30 2016-11-10 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ 発光ダイオードを備えた光電子デバイスを製造する方法
KR102188494B1 (ko) * 2014-07-21 2020-12-09 삼성전자주식회사 반도체 발광소자, 반도체 발광소자 제조방법 및 반도체 발광소자 패키지 제조방법
KR20160011286A (ko) * 2014-07-21 2016-02-01 삼성전자주식회사 반도체 발광소자, 반도체 발광소자 제조방법 및 반도체 발광소자 패키지 제조방법
JP2018521516A (ja) * 2015-07-13 2018-08-02 クラヨナノ エーエス ナノワイヤ/ナノピラミッド型発光ダイオード及び光検出器
US11264536B2 (en) 2015-07-13 2022-03-01 Crayonano As Nanowires or nanopyramids grown on a graphene substrate
JP7066610B2 (ja) 2015-07-13 2022-05-13 クラヨナノ エーエス 発光ダイオードデバイス、光検出デバイス、およびグラファイト基板上のナノワイヤ又はナノピラミッドを含む組成物
US11594657B2 (en) 2015-07-13 2023-02-28 Crayonano As Nanowires/nanopyramids shaped light emitting diodes and photodetectors
US11450528B2 (en) 2015-07-31 2022-09-20 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
US11239391B2 (en) 2017-04-10 2022-02-01 Norwegian University Of Science And Technology (Ntnu) Nanostructure

Similar Documents

Publication Publication Date Title
US9871164B2 (en) Nanostructure light emitting device and method of manufacturing the same
JP2009010012A (ja) 半導体発光素子、その製造方法及び発光装置
TWI455345B (zh) 具有垂直結構之發光二極體及其製造方法
JP5286045B2 (ja) 半導体発光素子の製造方法
JP5237570B2 (ja) 垂直型発光素子製造方法
KR20110097011A (ko) 하이브리드 발광다이오드 칩과 이를 포함하는 발광다이오드 소자 및 이의 제조방법
JP2007305999A (ja) 垂直構造窒化ガリウム系led素子の製造方法
TWI501418B (zh) Quasi - vertical structure of light - emitting diodes
JP2008047860A (ja) 表面凹凸の形成方法及びそれを利用した窒化ガリウム系発光ダイオード素子の製造方法
JP2013534050A (ja) ナノワイヤledの構造体およびそれを製作する方法
TW201214772A (en) Method of forming a light emitting diode structure and a light emitting diode structure
JP2007266571A (ja) Ledチップ、その製造方法および発光装置
JP2010118450A (ja) 半導体発光素子の製造方法及び半導体発光素子
TW201312813A (zh) 用於共晶接合製程之非反應性阻障層金屬
JP2014036231A (ja) 半導体素子の製造方法
TW201515269A (zh) 用於平整化及界定奈米線裝置之活化區的絕緣層
TW201312792A (zh) 發光二極體結構及其製造方法
JP2007221146A (ja) 縦型発光素子及びその製造方法
JP5105310B2 (ja) 発光素子及びその製造方法
US9698329B2 (en) Solid-state light emitters having substrates with thermal and electrical conductivity enhancements and method of manufacture
KR101525913B1 (ko) 수직구조 발광다이오드 및 이의 제조방법
KR20090105462A (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법
JP2010165983A (ja) 発光チップ集積デバイスおよびその製造方法
JP2009049195A (ja) 半導体発光素子及び発光装置
KR20090106294A (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및이의 제조 방법