JP2008525489A - 産褥由来細胞を用いたパーキンソン病および関連の障害の治療 - Google Patents

産褥由来細胞を用いたパーキンソン病および関連の障害の治療 Download PDF

Info

Publication number
JP2008525489A
JP2008525489A JP2007548532A JP2007548532A JP2008525489A JP 2008525489 A JP2008525489 A JP 2008525489A JP 2007548532 A JP2007548532 A JP 2007548532A JP 2007548532 A JP2007548532 A JP 2007548532A JP 2008525489 A JP2008525489 A JP 2008525489A
Authority
JP
Japan
Prior art keywords
cells
cell
protein
derived
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007548532A
Other languages
English (en)
Other versions
JP5425399B2 (ja
Inventor
メッシーナ・ダーリン・ジェイ
ミストリー・サンジェイ
ホン・エル・エス・クローダイン
クレイマー・ブライアン・シー
ロマンコ・マイケル・ジェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Inc
Original Assignee
Ethicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Inc filed Critical Ethicon Inc
Publication of JP2008525489A publication Critical patent/JP2008525489A/ja
Application granted granted Critical
Publication of JP5425399B2 publication Critical patent/JP5425399B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/44Vessels; Vascular smooth muscle cells; Endothelial cells; Endothelial progenitor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/119Other fibroblast growth factors, e.g. FGF-4, FGF-8, FGF-10
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/03Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from non-embryonic pluripotent stem cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurosurgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Vascular Medicine (AREA)
  • Biochemistry (AREA)
  • Psychology (AREA)
  • Cardiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Microbiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Urology & Nephrology (AREA)
  • Psychiatry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】産褥細胞を用いてパーキンソン病および関連の障害を治療すること。
【解決手段】臍帯および胎盤などの産褥組織に由来する細胞、このような細胞を含む医薬組成物、ならびにパーキンソン病などの黒質または線条体の神経変性症状を有する患者を治療するためにこのような細胞および医薬組成物を用いる方法が提供される。
【選択図】図3

Description

開示の内容
〔関連出願の相互参照〕
本明細書は、それ自体2003年6月27日に出願された米国仮出願第60/483,264号の利益を請求する、2004年6月25日の出願された米国出願第10/877,269号の一部継続出願であり、各出願の全開示内容は参照して本明細書に組み入れる。本明細書はまた、2004年12月23日の出願された米国仮出願60/638,966号の利益を請求するものであり、その全開示内も参照して本明細書に組み入れる。
〔発明の分野〕
本発明は、パーキンソン病などの、黒質または線条体の神経変性症状を有する患者のための、細胞に基づく治療、または再生治療の分野に関する。詳しくは、本発明は、黒質または線条体の神経変性症状を有する患者において神経組織を再生、修復、および改善し、挙動および神経機能を改善するための医薬組成物ならびに産褥由来細胞の使用方法を提供する。
〔発明の背景〕
本明細書には特許、公開出願、技術論文および学術論文を含む様々な刊行物が引用されている。引用されているこれらの各刊行物は参照してそのまま本明細書に組み入れる。
変性性神経疾患ならびに中枢神経系および末梢神経系の他の障害は、個々の身体作用のためだけでなく永続性のために苦しむ場合がある最も衰弱する疾病である。過去、いくつか挙げると、パーキンソン病、アルツハイマー病または多発性硬化症などの中枢神経系および末梢神経系の神経変性症状に苦しむ患者は回復または治癒の望みが薄かった。
パーキンソン病(PD)は、治療法が知られていない一般的な神経変性疾患である。PDの変性プロセスは、黒質緻密部(SNc)内のドーパミンニューロンの選択的損失を原因とする。実際に、黒質はパーキンソン病の病状の主要部位である。黒質の色素沈着ニューロンは、尾状被殻(線条体)に向かって広範囲に散漫に突起を形成し、ドーパミンの合成と放出に特化している。パーキンソン症候群の症状は、ドーパミン作動性の神経支配の75〜80%が破壊された際に現れ、運動機能不全に至り、それ自体、動作の緩慢、筋強剛、休止時の振戦、および不安定な体位を呈する(Dawson TMら(2002) Nat. Neurosci. 5 Suppl: 1058-1061)。
従って、細胞レベルでは、PDは、動作挙動の形成に回路的に関与する複雑な基本神経節を調節する重要な構造である黒質におけるドーパミン(DA)ニューロンの著しい損失を特徴とする。ヒトでは、SNcおよび線条体の複合変性により、レボドーパ(levadopa)置換に基づく抗パーキンソン症候群療法は、90%を超える患者には結局成功していない(Wenningら(1999) J. Nueral. Transm. Suppl. 55:103-113)。パーキンソン患者で見られる神経変性欠損を元通りにするための治療法は現在利用できないので、現行の治療戦略は維持管理療法に基づくものである。ドーパミン置換療法は、パーキンソン患者に適合し、ある程度成功している。残念なことに、ドーパミン置換療法の有効性は、黒質線条体ドーパミン作動性経路の持続的変性に伴って段階的に低下する。
神経損傷および神経変性疾患は、成体においてはニューロンおよび神経系の他の細胞が増殖できないために、不可逆的なものであると長年考えられてきた。しかし、組織修復および再生を目的とした近年の幹細胞に基づく療法の登場により、いくつかの神経変性病態および他の神経疾患の有望な治療が提供される。幹細胞は、様々な成熟神経細胞系統を形成すべく自己再生および分化が可能である。このような細胞の移植は、標的組織を再構築し、それにより生理学的および解剖学的機能を回復させるための臨床手段として利用できる。幹細胞技術の適用は、組織工学、遺伝子療法送達、および細胞治療薬、すなわち、生物治療薬を生成する、または含む生細胞または細胞成分を外部から供給することによる、標的部位への生物治療薬の送達をはじめ、広範囲である(総説としては、Tresco, P. A.ら, (2000) Advanced Drug Delivery Reviews 42:2-37参照)。幹細胞の確認は、再生医療のための特定の細胞種の選択的再生を目的とした研究を促進した。
失われたニューロンを補うための細胞移植は、PDのような進行性の神経変性症を治療する新たなアプローチである。幹細胞技術の治療的可能性を実現する1つの障害は、十分な数の幹細胞を得るのが難しいことであった。胚、または胎児組織は幹細胞の1つの供給源である。胚幹細胞および前駆細胞が、ヒトをはじめとするいくつかの哺乳類種から単離されており、このような細胞種のいくつかは自己再生および拡大培養可能であるとともに、全ての神経細胞系統へ分化可能であることが示されている(Svendsen, CV.ら(1997) Exp. Neurol. 148:135-146; Freed, C.R.ら(2001) New Engl J. Med. 344(10):-719; Burnstein, R.M.ら(2003) Int. J. Biochem. Cell Biol. 36:702-713; Zhang, S-C.ら(2001) Nat. Biotechnol. 19:1129-1133; Reubinoff, B.E.ら(2001) Nat. Biotechnol. 19:1134-1140; Bjorklund, L.M.ら(2002) Proc. Natl. Acad. Sci. USA 99(4):2344-2349)。しかし、胚または胎児の供給源からの幹細胞の誘導においては、多くの倫理的および道義的問題が持ち上がり、これらの問題は多分化能性(multipotent)または多能性(pluripotent)細胞の他の供給源を特定することにより避けるのが望ましい。
神経的潜在能力を有する幹細胞はまた、成体組織からも単離されている。神経幹細胞は発達中の脳や成体の神経系に存在する。これらの細胞は拡大培養可能であり、ニューロン、星状細胞および乏突起神経膠細胞へと分化可能である。しかしながら、成体神経幹細胞はまれにしかないばかりか、侵襲的手法によって得るしかなく、胚幹細胞よりも培養拡大力が限定されている場合がある。
他の成体組織からも、細胞に基づく神経療法に有用な前駆細胞を得ることができる。例えば、最近、骨髄および皮膚由来の成体幹細胞は拡大培養可能であり、かつ、数種の神経細胞系統を含む複数の系統を形成することが報告されている(Azizi, S.A.ら(1998) Proc. Natl. Acad. Sci. USA 95:3908-3913; Li, Y.ら(2001) Neurosci. Lett. 315:67-70)。ヒト奇形腫およびヒト臍帯血(human ubilical cord)単核細胞由来のニューロンなど、他の細胞種の線条体内グラフトおよび黒質内グラフトもパーキンソン病の動物モデルで試験されている(Baker, K.A.ら(2000) Exp. Neurol. 162:350-360; Ende, N. and R. Chen (2002) J Med. 33(1-4):173-180)。
臍帯および胎盤などの産褥組織は、幹細胞のもう1つの供給源として注目されている。例えば、胎盤の潅流または臍帯血もしくは組織からの採取により幹細胞を回収する方法が記載されている。これらの方法からの幹細胞の獲得の限定要因は、臍帯血の量または得られる細胞の量が不十分であること、ならびにこのような供給源から得られる細胞集団が不均一なこと、また特性決定ができないことであった。
パーキンソン病の治療のためのドーパミン作動性(DA)ニューロンなどの治療上関連のある細胞種への幹細胞の指定分化のためのプロトコールが開発されているが(Isacson, O.ら(1996) Neurosci. 75:827-837; Kim, J-H.ら(2002) Nature 418:50-56, Barbieri, F.ら(2003) Nat. Biotechnol 21(10): 1200-1207)、実質的な数のDAニューロンの効率的再生はまだ報告されていない。中脳のDAニューロンマーカーの全成分を発現するDAニューロンが数に限りなく生成することができれば、パーキンソン病の治療に重要な寄与をもたらすであろう。
よって、一連の神経細胞系統へと分化する能力を有する細胞を十分供給する別の供給源が依然として切望されている。さらに、パーキンソン病(パーキンソン症候群)などの神経障害により引き起こされる障害を修復するために満足のいく方法も存在しない。一連の神経細胞系統へと分化する能力を有するこのような細胞の、実質的に均質な集団の、信頼性があり、十分特性決定され、かつ豊富な供給は、神経修復、再生および改善のための様々な診断適用および治療適用、ならびに特にPD患者における挙動および神経機能の改善のための適用に有利となる。
〔発明の概要〕
本発明は、黒質または線条体の神経変性症状の、細胞に基づく治療、または再生治療に適用可能な方法を提供する。詳しくは、本発明は、産褥由来細胞を用いた神経組織の再生および/または修復のための方法を特徴とする。
本発明の一態様は、黒質または線条体の神経変性症状を有する患者を治療する方法を特徴とする。当該方法は、その症状を治療するのに有効な量の産褥由来細胞をこのような患者に投与することを含み、前記産褥由来細胞は実質的に血液を含まないヒト胎盤組織またはヒト臍帯組織に由来し、前記細胞は自己再生および拡大培養が可能であり、かつ、少なくとも神経表現型の細胞へと分化する能力を有し、前記細胞は増殖にL−バリンを必要とし、かつ、少なくとも約5%の酸素中で増殖可能であり、前記細胞は次の特徴:
(a)培養において少なくとも約40回の倍加能;(b)コートまたは非コート組織培養容器における接着および拡大培養(該コート組織培養容器はゼラチン、ラミニン、コラーゲン、ポリオルニチン、ビトロネクチン、またはフィブロネクチンのコーティングを含む);(c)組織因子、ビメンチン(vimentin)、およびα−平滑筋アクチンのうち少なくとも1つの産生;(d)CD10、CD13、CD44、CD73、CD90、PDGFr−α、PD−L2およびHLA−A、B、Cのうち少なくとも1つの産生;(e)フローサイトメトリーにより検出されるCD31、CD34、CD45、CD80、CD86、CD117、CD141、CD178、B7−H2、HLA−G、およびHLA−DR、DP、DQのうち少なくとも1つの産生の欠如;(f)繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、インターロイキン8;レチクロン(reticulon)1;ケモカイン(C−X−Cモチーフ)リガンド1(黒色腫(melonoma)増殖刺激活性α);ケモカイン(C−X−Cモチーフ)リガンド6(顆粒球走化性タンパク質2);ケモカイン(C−X−Cモチーフ)リガンド3;腫瘍壊死因子α誘導タンパク質3;C型レクチンスーパーファミリーメンバー2;ウィルムス腫瘍1;アルデヒドデヒドロゲナーゼ1ファミリーメンバーA2;レニン(renin);酸化低密度リポタンパク質受容体1;ヒト(Homo sapiens)クローンIMAGE:4179671;プロテインキナーゼCζ;機能未知タンパク質DKFZp564F013;卵巣癌1においてダウンレギュレーション;およびクローンDKFZp547k1113由来のヒト(Homo sapiens)遺伝子をコードする遺伝子の少なくとも1つが増大されている遺伝子発現;(g)繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、低身長ホメオボックス2;熱ショック27kDaタンパク質2;ケモカイン(C−X−Cモチーフ)リガンド12(間質細胞由来因子1);エラスチン(大動脈弁上部狭窄症、ウィリアムス−ビューレン症候群);ヒト(Homo sapiens)mRNA;cDNA DKFZp586M2022(クローンDKFZp586M2022);間充織ホメオボックス2(成長停止特異的ホメオボックス);sine oculisホメオボックスホモログ1(ショウジョウバエ(Drosophila));クリスタリン(crystallin)αB;形態形成のdisheveled関連アクチベーター2;DKFZP586B2420タンパク質;ニューラリン(neuralin)1に類似;テトラネクチン(プラスミノーゲン結合タンパク質);src homology three(SH3)およびシステイン豊富ドメイン;コレステロール25−ヒドロキシラーゼ;runt関連転写因子3;インターロイキン11受容体α;プロコラーゲンC−エンドペプチダーゼエンハンサー;frizzledホモログ7(ショウジョウバエ(Drosophila));機能未知遺伝子BC008967;VIII型コラーゲンα1;テネイシンC(hexabrachion);iroquoisホメオボックスタンパク質5;hephaestin;インテグリンβ8;シナプス小胞糖タンパク質2;神経芽腫、腫瘍形成抑制1;インスリン様増殖因子結合タンパク質2、36kDa;ヒト(Homo sapiens)cDNA FLJ12280 fis、クローンMAMMA1001744;サイトカイン受容体様因子1;カリウム中間体/低コンダクタンスカルシウム依存性チャネルサブファミリーNメンバー4;インテグリンβ7;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;sine oculisホメオボックスホモログ2(ショウジョウバエ(Drosophila));KIAA1034タンパク質;小胞関連膜タンパク質5(myobrevin);EGF含有fibulin様細胞外マトリックスタンパク質1;初期成長応答3;distal-lessホメオボックス5;機能未知タンパク質FLJ20373;アルド−ケト還元酵素ファミリー1メンバーC3(3αヒドロキシステロイドデヒドロゲナーゼII);ビグリカン;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;フィブロネクチン1;プロエンケファリン;インテグリンβ様1(EGF様リピートドメイン);ヒト(Homo sapiens)mRNA全長インサートcDNAクローンEUROIMAGE 1968422;EphA3;KIAA0367タンパク質;ナトリウム利尿ペプチド受容体C/グアニル酸シクラーゼC(atrionatriureticペプチド受容体C);機能未知タンパク質FLJ14054;ヒト(Homo sapiens)mRNA;cDNA DKFZp564B222(クローンDKFZp564B222由来);BCL2/アデノウイルスE1B 19kDa相互作用タンパク質3様;AE結合タンパク質1;シトクロムcオキシダーゼサブユニットVIIaポリペプチド1(筋肉);ニューラリン(neuralin)1と類似;B細胞輸送遺伝子1;機能未知タンパク質FLJ23191;およびDKFZp586L151をコードする遺伝子の少なくとも1つが低減されている遺伝子発現;(h)MCP−1、IL−6、IL−8、GCP−2、HGF、KGF、FGF、HB−EGF、BDNF、TPO、MIP1a、RANTES、およびTIMP1のうち少なくとも1つの分泌;ならびに(i)ELISAにより検出されるTGF−β2、ANG2、PDGFbb、MIP1b、I309、MDC、およびVEGFのうち少なくとも1つの分泌の欠如、のうち少なくとも1つを含む。
特定の実施形態では、該神経変性疾患は、慢性または進行性の神経変性症状であり、特定の実施形態では、該慢性または進行性の神経変性疾患は、パーキンソン病、パーキンソン症候群、または関連の症状である。ある特定の詳細な実施形態では、産褥由来細胞は、神経変性症状の治療を促進する遺伝子産物を産生するように遺伝的に操作され、これらの細胞は、患者へ投与される前に、神経系統へ分化するようにインビトロで誘導することができる。いくつかの好ましい実施形態では、これらの細胞は、星状細胞、乏突起神経膠細胞、ニューロン、神経前駆体、神経幹細胞、または、他の多分化能性(multipotent)もしくは多能性(pluripotent)幹細胞などの少なくとも1つの他の細胞種、および/または1つの他の薬剤とともに投与され、産褥由来細胞と同時、その前または後に投与される。好ましくは、これらの細胞は患者の中枢神経系または末梢神経系の所定の部位に投与され、注射もしくは注入によるか、細胞を含むマトリックスまたはスキャフォールドの移植によるか、または細胞が封入されているデバイスの移植によって投与することができる。極めて好ましい実施形態では、産褥由来細胞は、患者の神経系に対して栄養作用を発揮する。
本発明はまた、製薬上許容される担体と神経変性症状を治療するのに有効な量のヒト胎盤組織またはヒト臍帯組織に由来する細胞とを含む、黒質または線条体の神経変性症状を有する患者を治療するための医薬組成物を特徴とし、前記細胞は次の特徴:実質的に血液を含まないこと、自己再生および培養増殖が可能であること、および少なくとも神経表現型の細胞へ分化する能力を有すること、増殖にL−バリンを必要とすること、少なくとも約5%の酸素中で増殖可能であることを含み、かつ、前記細胞は次の特徴:(a)培養において少なくとも約40回の倍加能;(b)コートまたは非コート組織培養容器における接着および拡大培養(該コート組織培養容器はゼラチン、ラミニン、コラーゲン、ポリオルニチン、ビトロネクチン、またはフィブロネクチンのコーティングを含む);(c)組織因子、ビメンチン(vimentin)、およびα−平滑筋アクチンのうち少なくとも1つの産生;(d)CD10、CD13、CD44、CD73、CD90、PDGFr−α、PD−L2およびHLA−A、B、Cのうち少なくとも1つの産生;(e)フローサイトメトリーにより検出されるCD31、CD34、CD45、CD80、CD86、CD117、CD141、CD178、B7−H2、HLA−G、およびHLA−DR、DP、DQのうち少なくとも1つの産生の欠如;(f)繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、インターロイキン8;レチクロン(reticulon)1;ケモカイン(C−X−Cモチーフ)リガンド1(黒色腫(melonoma)増殖刺激活性α);ケモカイン(C−X−Cモチーフ)リガンド6(顆粒球走化性タンパク質2);ケモカイン(C−X−Cモチーフ)リガンド3;腫瘍壊死因子α誘導タンパク質3;C型レクチンスーパーファミリーメンバー2;ウィルムス腫瘍1;アルデヒドデヒドロゲナーゼ1ファミリーメンバーA2;レニン(renin);酸化低密度リポタンパク質受容体1;ヒト(Homo sapiens)クローンIMAGE:4179671;プロテインキナーゼCζ;機能未知タンパク質DKFZp564F013;卵巣癌1においてダウンレギュレーション;およびクローンDKFZp547k1113由来のヒト(Homo sapiens)遺伝子をコードする遺伝子の少なくとも1つが増大されている遺伝子発現;(g)繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、低身長ホメオボックス2;熱ショック27kDaタンパク質2;ケモカイン(C−X−Cモチーフ)リガンド12(間質細胞由来因子1);エラスチン(大動脈弁上部狭窄症、ウィリアムス−ビューレン症候群);ヒト(Homo sapiens)mRNA;cDNA DKFZp586M2022(クローンDKFZp586M2022);間充織ホメオボックス2(成長停止特異的ホメオボックス);sine oculisホメオボックスホモログ1(ショウジョウバエ(Drosophila));クリスタリン(crystallin)αB;形態形成のdisheveled関連アクチベーター2;DKFZP586B2420タンパク質;ニューラリン(neuralin)1に類似;テトラネクチン(プラスミノーゲン結合タンパク質);src homology three(SH3)およびシステイン豊富ドメイン;コレステロール25−ヒドロキシラーゼ;runt関連転写因子3;インターロイキン11受容体α;プロコラーゲンC−エンドペプチダーゼエンハンサー;frizzledホモログ7(ショウジョウバエ(Drosophila));機能未知遺伝子BC008967;VIII型コラーゲンα1;テネイシンC(hexabrachion);iroquoisホメオボックスタンパク質5;hephaestin;インテグリンβ8;シナプス小胞糖タンパク質2;神経芽腫、腫瘍形成抑制1;インスリン様増殖因子結合タンパク質2、36kDa;ヒト(Homo sapiens)cDNA FLJ12280 fis、クローンMAMMA1001744;サイトカイン受容体様因子1;カリウム中間体/低コンダクタンスカルシウム依存性チャネルサブファミリーNメンバー4;インテグリンβ7;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;sine oculisホメオボックスホモログ2(ショウジョウバエ(Drosophila));KIAA1034タンパク質;小胞関連膜タンパク質5(myobrevin);EGF含有fibulin様細胞外マトリックスタンパク質1;初期成長応答3;distal-lessホメオボックス5;機能未知タンパク質FLJ20373;アルド−ケト還元酵素ファミリー1メンバーC3(3αヒドロキシステロイドデヒドロゲナーゼII);ビグリカン;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;フィブロネクチン1;プロエンケファリン;インテグリンβ様1(EGF様リピートドメイン);ヒト(Homo sapiens)mRNA全長インサートcDNAクローンEUROIMAGE 1968422;EphA3;KIAA0367タンパク質;ナトリウム利尿ペプチド受容体C/グアニル酸シクラーゼC(atrionatriureticペプチド受容体C);機能未知タンパク質FLJ14054;ヒト(Homo sapiens)mRNA;cDNA DKFZp564B222(クローンDKFZp564B222由来);BCL2/アデノウイルスE1B 19kDa相互作用タンパク質3様;AE結合タンパク質1;シトクロムcオキシダーゼサブユニットVIIaポリペプチド1(筋肉);ニューラリン(neuralin)1と類似;B細胞輸送遺伝子1;機能未知タンパク質FLJ23191;およびDKFZp586L151をコードする遺伝子の少なくとも1つが低減されている遺伝子発現;(h)MCP−1、IL−6、IL−8、GCP−2、HGF、KGF、FGF、HB−EGF、BDNF、TPO、MIP1a、RANTES、およびTIMP1のうち少なくとも1つの分泌;ならびに(i)ELISAにより検出されるTGF−β2、ANG2、PDGFbb、MIP1b、I309、MDC、およびVEGFのうち少なくとも1つの分泌の欠如、のうち少なくとも1つを含む。
特定の実施形態では、該神経変性症状は慢性または進行性の神経変性症状であり、特定の実施形態では、該慢性または進行性の神経変性疾患は、パーキンソン病、パーキンソン症候群、または関連の症状である。ある特定の詳細な実施形態では、医薬組成物中の産褥由来細胞は、神経変性症状の治療を促進する遺伝子産物を産生するように遺伝的に操作することができ、これらの細胞は、患者へ投与される前に、神経系統へ分化するようにインビトロで誘導することができる。いくつかの好ましい実施形態では、これらの医薬組成物は、星状細胞、乏突起神経膠細胞、ニューロン、神経前駆体、神経幹細胞、または他の多分化能性もしくは多能性幹細胞などの少なくとも1つの他の細胞種、および/または1つの他の薬剤を含む。好ましくは、これらの医薬組成物は、注射または注入による投与向けに処方される。いくつかの好ましい実施形態では、これらの医薬組成物の細胞は移植可能なデバイス内に封入されるか、またはマトリックスもしくはスキャフォールド内に含められる。極めて好ましい実施形態では、本医薬組成物の産褥由来細胞は、患者の神経系に対して栄養作用を発揮する。
本発明の別の態様は、黒質または線条体の神経変性症状を有する患者を治療する方法を特徴とし、該方法は、神経変性症状を治療するのに有効な量の、前記の特徴を有する産褥由来細胞から得られた調製物を患者に投与することを含む。いくつかの実施形態では、該調製物は、産褥由来細胞の細胞溶解物、産褥由来細胞の細胞外マトリックス、および/または産褥由来細胞が増殖された細胞馴化培地を含む。
本発明の別の態様は、黒質または線条体の神経変性症状を有する患者を治療するための医薬組成物を特徴とし、該医薬組成物は、製薬上許容される担体と、前記の特徴を有する産褥由来細胞から得られた調製物とを含む。いくつかの実施形態では、該調製物は、産褥由来細胞の細胞溶解物、産褥由来細胞の細胞外マトリックス、および/または産褥由来細胞が増殖された細胞馴化培地を含む。
また、本発明によれば、治療を必要とする患者においてパーキンソン病またはパーキンソン症候群を治療する方法が特徴とされ、該方法は、次の特徴:実質的に血液を含まないこと、自己再生および培養増殖が可能であること、および少なくとも神経表現型の細胞へ分化する能力を有すること、増殖にL−バリンを必要とすること、少なくとも約5%の酸素中で増殖可能であることを含み、かつ、前記細胞は次の特徴:(a)培養において少なくとも約40回の倍加能;(b)コートまたは非コート組織培養容器における接着および拡大培養(該コート組織培養容器はゼラチン、ラミニン、コラーゲン、ポリオルニチン、ビトロネクチン、またはフィブロネクチンのコーティングを含む);(c)組織因子、ビメンチン(vimentin)、およびα−平滑筋アクチンのうち少なくとも1つの産生;(d)CD10、CD13、CD44、CD73、CD90、PDGFr−α、PD−L2およびHLA−A、B、Cのうち少なくとも1つの産生;(e)フローサイトメトリーにより検出されるCD31、CD34、CD45、CD80、CD86、CD117、CD141、CD178、B7−H2、HLA−G、およびHLA−DR、DP、DQのうち少なくとも1つの産生の欠如;(f)繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、インターロイキン8;レチクロン(reticulon)1;ケモカイン(C−X−Cモチーフ)リガンド1(黒色腫(melonoma)増殖刺激活性α);ケモカイン(C−X−Cモチーフ)リガンド6(顆粒球走化性タンパク質2);ケモカイン(C−X−Cモチーフ)リガンド3;腫瘍壊死因子α誘導タンパク質3;C型レクチンスーパーファミリーメンバー2;ウィルムス腫瘍1;アルデヒドデヒドロゲナーゼ1ファミリーメンバーA2;レニン(renin);酸化低密度リポタンパク質受容体1;ヒト(Homo sapiens)クローンIMAGE:4179671;プロテインキナーゼCζ;機能未知タンパク質DKFZp564F013;卵巣癌1においてダウンレギュレーション;およびクローンDKFZp547k1113由来のヒト(Homo sapiens)遺伝子をコードする遺伝子の少なくとも1つが増大されている遺伝子発現;(g)繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、低身長ホメオボックス2;熱ショック27kDaタンパク質2;ケモカイン(C−X−Cモチーフ)リガンド12(間質細胞由来因子1);エラスチン(大動脈弁上部狭窄症、ウィリアムス−ビューレン症候群);ヒト(Homo sapiens)mRNA;cDNA DKFZp586M2022(クローンDKFZp586M2022);間充織ホメオボックス2(成長停止特異的ホメオボックス);sine oculisホメオボックスホモログ1(ショウジョウバエ(Drosophila));クリスタリン(crystallin)αB;形態形成のdisheveled関連アクチベーター2;DKFZP586B2420タンパク質;ニューラリン(neuralin)1に類似;テトラネクチン(プラスミノーゲン結合タンパク質);src homology three(SH3)およびシステイン豊富ドメイン;コレステロール25−ヒドロキシラーゼ;runt関連転写因子3;インターロイキン11受容体α;プロコラーゲンC−エンドペプチダーゼエンハンサー;frizzledホモログ7(ショウジョウバエ(Drosophila));機能未知遺伝子BC008967;VIII型コラーゲンα1;テネイシンC(hexabrachion);iroquoisホメオボックスタンパク質5;hephaestin;インテグリンβ8;シナプス小胞糖タンパク質2;神経芽腫、腫瘍形成抑制1;インスリン様増殖因子結合タンパク質2、36kDa;ヒト(Homo sapiens)cDNA FLJ12280 fis、クローンMAMMA1001744;サイトカイン受容体様因子1;カリウム中間体/低コンダクタンスカルシウム依存性チャネルサブファミリーNメンバー4;インテグリンβ7;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;sine oculisホメオボックスホモログ2(ショウジョウバエ(Drosophila));KIAA1034タンパク質;小胞関連膜タンパク質5(myobrevin);EGF含有fibulin様細胞外マトリックスタンパク質1;初期成長応答3;distal-lessホメオボックス5;機能未知タンパク質FLJ20373;アルド−ケト還元酵素ファミリー1メンバーC3(3αヒドロキシステロイドデヒドロゲナーゼII);ビグリカン;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;フィブロネクチン1;プロエンケファリン;インテグリンβ様1(EGF様リピートドメイン);ヒト(Homo sapiens)mRNA全長インサートcDNAクローンEUROIMAGE 1968422;EphA3;KIAA0367タンパク質;ナトリウム利尿ペプチド受容体C/グアニル酸シクラーゼC(atrionatriureticペプチド受容体C);機能未知タンパク質FLJ14054;ヒト(Homo sapiens)mRNA;cDNA DKFZp564B222(クローンDKFZp564B222由来);BCL2/アデノウイルスE1B 19kDa相互作用タンパク質3様;AE結合タンパク質1;シトクロムcオキシダーゼサブユニットVIIaポリペプチド1(筋肉);ニューラリン(neuralin)1と類似;B細胞輸送遺伝子1;機能未知タンパク質FLJ23191;およびDKFZp586L151をコードする遺伝子の少なくとも1つが低減されている遺伝子発現;(h)MCP−1、IL−6、IL−8、GCP−2、HGF、KGF、FGF、HB−EGF、BDNF、TPO、MIP1a、RANTES、およびTIMP1のうち少なくとも1つの分泌;ならびに(i)ELISAにより検出されるTGF−β2、ANG2、PDGFbb、MIP1b、I309、MDC、およびVEGFのうち少なくとも1つの分泌の欠如、のうち少なくとも1つを含む、ヒト胎盤組織またはヒト臍帯組織由来の単離された産褥由来細胞を含む、治療上有効な量の細胞調製物をこのような患者に投与することを含む。
好ましい実施形態では、該産褥由来細胞は、パーキンソン病またはパーキンソン症候群の治療を促進する遺伝子産物を産生するように遺伝的に操作され、これらの細胞は、患者へ投与される前に、神経系統へ分化するようにインビトロで誘導することができる。いくつかの好ましい実施形態では、これらの調製物はさらに、星状細胞、乏突起神経膠細胞、ニューロン、神経前駆体、神経幹細胞、または他の多分化能性もしくは多能性幹細胞などの少なくとも1つの他の細胞種、および/または1つの他の薬剤を含む。いくつかの好ましい実施形態では、該細胞調製物は未分画の細胞溶解物を含む。他の好ましい実施形態では、該細胞調製物は膜不含細胞溶解物を含む。好ましくは、該細胞調製物は、注射または注入による投与向けに処方される。いくつかの好ましい実施形態では、該細胞は移植可能なデバイス内に封入される。他の好ましい実施形態では、該細胞調製物はマトリックスまたはスキャフォールド内に含められる。極めて好ましい実施形態では、該細胞調製物は、患者の神経系に対して栄養作用を発揮する。
〔例示的実施形態の詳細な説明〕
定義
本明細書および特許請求の範囲では、本発明の方法およびその他の態様に関する様々な用語が使用されている。このような用語は特に断りのない限り、当技術分野での通常の意味を示すものとする。他の特に定義された用語は、ここに示される定義に即して解釈される。
「幹細胞」は、自己再生中の前駆細胞、非再生中の前駆細胞、および最終的な分化細胞を含む、単一細胞の自己再生能と後代細胞産生のための分化能の双方により定義される未分化細胞である。幹細胞はまた、複数の胚葉(内胚葉、中胚葉および外胚葉)からの様々な細胞系統の機能的細胞へとインビトロで分化する能力、ならびに移植後に複数の胚葉の組織を生じる能力、および胚盤胞へ注射した後に、全てではなくても、実質的にほとんどの組織に寄与する能力を特徴とする。
幹細胞はそれらの発達能に従って、(1)「全能性」;(2)「多能性」;(3)「多分化能性(multipotent)」;(4)「貧能性(oligopotent)」;および(5)「分化単能性(unipotent)」として分類される。「全能性」細胞は全ての胚細胞種および胚体外細胞種を形成し得る。「多能性」細胞は全ての胚細胞種を形成し得る。「多分化能性」細胞は細胞系統のサブセットを形成し得るが、全て特定の組織、器官または生理系の範囲内である(例えば、造血幹細胞(HSC)は、HSC(自己再生)、血液細胞限定貧能性前駆体、ならびに通常の血液成分である全ての細胞種および要素(例えば、血小板)を含む後代細胞を産生することができる)。「貧能性」の細胞は多分化能性幹細胞よりも限定された細胞系統のサブセットを生じ、「分化単能性」の細胞は単一の細胞系統(例えば、精子形成性幹細胞)を生じ得る。
幹細胞はまた、幹細胞が採取可能な供給源に基づいても分類される。「成体幹細胞」は一般に、複数の分化細胞種を含む組織に見られる多分化能性の未分化細胞である。成体幹細胞はそれ自体再生可能である。通常の環境下で、成体幹細胞はまた、その起源である組織およびおそらく他の組織種の特化した細胞種を得るために分化することができる。「胚幹細胞」は、胚盤胞段階の胚の内部細胞塊由来の多能性細胞である。「胎児」幹細胞は胎児組織または胎膜起源のものである。「産褥幹細胞」は、誕生後に利用可能な胚体外組織、すなわち、胎盤および臍帯に実質的に起源する多分化能性または多能性細胞である。これらの細胞は、速い増殖および多くの細胞系統へと分化する能力を含む多能性幹細胞の特徴を有することが分かっている。産褥幹細胞は血液由来(例えば、臍帯血から採取されるもの)または非血液由来(例えば、臍帯および胎盤の非血液組織から採取されるもの)であり得る。
「胚組織」は一般に、胚起源の組織として定義される (ヒトでは、受精から発達約6週までの期間をさす)。「胎児組織」は胎児起源の組織をさし、ヒトでは、発達約6週目から分娩までの期間をさす。「胚体外組織」は胚または胎児に関連しているが、胚または胎児起源ではない組織である。胚体外組織は、胚体外膜(絨毛膜、羊膜、卵黄嚢および尿膜)、臍帯および胎盤(それ自体は絨毛膜および母体の基底脱落膜から形成される)。
「分化」は、非特化(「決定済みでない」)または特化性の低い細胞が、例えば、神経細胞または筋肉細胞などの特化細胞の特徴を獲得するプロセスである。「分化」細胞は、その細胞系統内でより特化性の高い(「決定済みの」)立場をとった細胞である。「決定済み」とは、分化の過程に用いる場合、通常の環境下で特定の細胞種または細胞種サブセットに分化し続けるが、通常の環境下で異なる細胞種に分化することができないか、または分化性の低い細胞種には後戻りすることができないポイントまで分化経路が進行した細胞をさす。「脱分化」は、細胞が、その細胞系統内の特化性の低い(または決定済みでない)状態に後戻りするプロセスをさす。本明細書において、その細胞「系統」はその細胞の遺伝性、すなわち、どの細胞に由来し、どの細胞を生じるかを規定する。その細胞系統は、その細胞を発達および分化の遺伝スキーム内に置く。
広義において、「前駆細胞(progenitor cell)」は、それ自体よりも分化した後代を作り出す能力を有し、かつ、する前駆細胞のプールを満たす能力をなお保持する細胞である。この定義によれば幹細胞それ自体も、最終分化細胞へのより直接的な前駆体であるので、前駆細胞である。下記により詳細に記載するように、本発明の細胞に関しては、この「前駆細胞」のより広い定義が用いられる。狭義においては、前駆細胞は、多くの場合、分化経路の中間体である細胞として定義されており、すなわち、幹細胞から生じ、成熟細胞種または細胞種のサブセットの産生における中間体となる。この種の前駆細胞は一般に、自己再生不能である。よって、本明細書にこの種の細胞が言及される場合、「非再生前駆細胞」と呼ばれるか、または「中間的前駆細胞」もしくは「前駆体細胞(precursor cell)」と呼ばれる。
本発明の細胞は一般に、「産褥細胞」または「産褥由来細胞」(PPDC)と呼ばれる。本発明の細胞はまた、より詳しくは「臍由来細胞」(UDC)または「胎盤由来細胞」(PDC)と呼ばれる場合もある。さらに、これらの細胞は幹細胞または前駆細胞と記載される場合もあり、当該用語は広義において用いられる。「由来」とは、それらの細胞が生物源から採取され、インビトロで増殖、またはそうでなければ操作された(例えば、増殖培地で集団を拡大するまで、かつ/または細胞系統となるまで培養された)ことを示すのに用いる。インビトロにおける臍帯幹細胞に操作および本発明の臍由来細胞のユニークな特徴を以下に詳細に記載する。
培養細胞を表すために様々な用語が用いられる。「細胞培養物」とは一般に、生物体から採取され、制御された条件下で増殖(培養)された細胞をさす。「一次細胞培養」とは、最初の植え継ぎ前に、生物から直接採取された細胞、組織または器官の培養物である。細胞増殖および/または分裂を促進する条件下で増殖培地に置かれた場合に「拡大培養(expanded in culture)」され、大きな細胞集団が得られる。細胞を拡大培養した場合、細胞増殖速度は細胞数が倍加するのに必要な時間量により測定される場合がある。これは「倍加時間」と呼ばれる。
「細胞系統」は、一次細胞培養物の1回以上の植え継ぎ(subcultivations)により形成される細胞集団である。各回の植え継ぎは「継代培養」と呼ばれる。細胞が植え継がれる場合、その細胞は「継代培養」されたといわれる。特定の細胞集団または細胞系統は、継代培養された回数に関して示され、あるいは特徴付けられる場合がある。例えば、10回継代培養された培養細胞集団はP10培養物と呼ぶことができる。一次培養物、すなわち、組織から細胞を単離した後の初代培養物はP0と呼ばれる。1回目の植え継ぎの後、当該細胞は二次培養物(P1または1代目)で表される。2回目の植え継ぎの後、当該細胞は三次培養物(P2または2代目)などとなる。当業者ならば、継代培養期間中は何回も集団倍加し得るので、ある培養物の集団倍加回数は継代培養回数よりも大きい場合があることが分かるであろう。継代培養間の期間の細胞の増殖(すなわち、集団倍加回数)は、限定されるものではないが、播種密度、支持体、培地、増殖条件および継代培養間の時間を含む多くの因子によって異なる。
「細胞馴化培地」とは、その中で特定の細胞または細胞集団が培養された後、取り出された培地である。細胞をある培地中で培養した場合、当該細胞は他の細胞に栄養的支持体を提供することができる細胞因子を分泌する場合がある。このような栄養因子としては、限定されるものではないが、ホルモン、サイトカイン、細胞外マトリックス(ECM)、タンパク質、小胞、抗体、および顆粒が挙げられる。これらの細胞因子を含む培地が細胞馴化培地である。
「増殖培地」とは一般に、PPDCの培養に十分な培地をさす。特に、現在のところ本発明の細胞の培養に好ましい培地としては、ダルベッコの改変イーグル培地(ダルベッコの最少必須培地としても知られる)(DMEM)が挙げられる。特に好ましいのは、DMEM−低グルコースである(本明細書では、DMEM−LGともいう)(Invitrogen, Carlsbad, CA)。このDMEM−低グルコースには、15%(v/v)ウシ胎児血清(例えば、定義済みウシ胎児血清,Hyclone, Logan UT)、抗生剤および抗真菌剤(好ましくは、50〜100単位/mLペニシリン、50〜100μg/mLストレプトマイシン、および0〜0.25μg/mLアムホテリシンB;Invitrogen, Carlsbad, CA)、ならびに0.001%(v/v)2−メルカプトエタノール(Sigma, St. Louis MO)を添加することが好ましい。
「標準増殖条件」とは、5%CO2を含む標準的な加湿雰囲気下、37℃で細胞を培養することをさす。このような条件は培養に有用であるが、当該条件は、細胞を培養するために当技術分野で利用可能な選択肢を認識している当業者ならば変更することができる。
一般に、「栄養因子」は、細胞の生存、成長、分化、増殖および/もしくは成熟を促進する、または細胞の活性増大を刺激する物質として定義される。
培養脊椎動物細胞に関して、「老化」(また、複製老化または細胞老化)とは、細胞培養の限定、すなわち、それらが集団倍加の現定数(ヘイフリック限界と呼ばれる場合もある)を超えては増殖できないことに関与する特性をさす。細胞老化は最初に繊維芽細胞様細胞を用いて記載されたが、培養系で首尾よく増殖可能なほとんどの正常ヒト細胞種は細胞老化を受ける。細胞種が異なればインビトロでの寿命も異なるが、最大寿命は典型的には集団倍加100回より少ない(これは、全ての培養細胞が老化に至る、従って分裂できない培養物となる倍加回数である)。老化は生活期間には依存せず、むしろ培養が行われた細胞分裂、または集団倍加の回数を尺度とする。従って、必須増殖因子を取り除くことにより休止した細胞は、それらの増殖因子が再導入されれば成長および分裂を再開し、その後、継続的に増殖した等価の細胞と同じ回数倍加を行うことができる。同様に、細胞を様々な集団倍加回数後に液体窒素中で凍結させ、その後、解凍および培養すれば、それらの細胞は凍結させずに培養で維持した細胞と実質的に同じ回数倍加する。老化細胞は死細胞でも死に至りつつある細胞でもなく、プログラムされた細胞死(アポトーシス)に実際に耐性があり、3年といった長期間分裂しない状態で維持された。これらの細胞はまさに生きており、代謝活性があるが、分裂しない。分裂しない状態の老化細胞は生物剤、化学剤またはウイルス剤によっても逆転できるということはまだ見出されていない。
「神経変性症状または(障害)」とは、中枢神経系または末梢神経系の急性および慢性の症状、障害または疾病を包含する包括的な用語である。神経変性症状は加齢による場合もあり、あるいは、損傷または外傷による場合もあり、あるいは特定の疾病または障害に関連する場合もある。急性神経変性症状は、限定されるものではないが、例えば、脳血管不全、局部的または散在的脳外傷、散在的脳損傷、脊髄損傷、または例えば、物理的または化学的火傷、深い裂傷または四肢切断による末梢神経外傷を含む、神経細胞の死滅または損傷に関連する症状が含まれる。急性神経変性疾患の例としては、脳虚血または脳梗塞(塞栓性閉塞および血栓性閉塞を含む)、急性虚血後の再潅流、周産期低酸素性虚血性損傷、心停止、ならびにいずれかのタイプ(硬膜外、硬膜下、くも膜下、および大脳内など)の頭蓋内出血、および頭蓋内および脊椎内損傷(挫傷、貫通、剪断、圧迫および裂傷など)、ならびにむち打ち症および揺さぶられっ子症候群(shaken infant syndrome)が挙げられる。慢性神経変性症状としては、限定されるものではないが、アルツハイマー病、ピック病、びまん性レビー小体病、進行性核上麻痺(スチール−リチャードソン症候群(Steel-Richardson Syndrome))、多系統変性(シャイ−ドレーガー症候群(Shy-Drager Syndrome)、神経変性関連の慢性癲癇症状;筋萎縮性側索硬化症、変性性運動失調(degenerative ataxias)、皮層基底変性、グアムのALS−パーキンソン−痴呆合併症、亜急性硬化性汎脳炎、ハンチントン病、パーキンソン病、シヌクレイン病(synucleinopathy)(多系統萎縮を含む)、原発性進行性失語症、線条体黒質変性、マチャド−ヨセフ病(Machado-Joseph disease)/脊髄小脳失調症3型およびオリーブ橋小脳変性を含む運動神経性疾患、ジル・ド・ラ・トゥレット病(Gilles De La Tourette's disease)、延髄麻痺および偽延髄麻痺、脊髄および脊髄延髄筋萎縮(ケネディ病)(Kennedy's disease)、原発性側索硬化症、家族性痙性対麻痺、ウェルドニッヒ−ホフマン病(Werdnig-Hoffmann disease)、クーゲルベルグ−ヴェランダー病(Kugelberg-Welander disease)、テイ−サックス病(Tay-Sach's disease)、サンドホフ病(Sandhoff disease)、家族性痙性病、ウォルファルト−クーゲルベルク−ヴェランダー病(Wohlfart-Kugelberg-Welander disease)、痙攣性不全対麻痺、進行性多巣性白質脳症、家族性自律神経障害(ライリー−デイ症候群(Riley-Day syndrome))、およびプリオン病(限定されるものではないが、クロイツフェルト−ヤコブ病(Creutzfeldt-Jakob)を含む)、ゲルストマン−シュトロイスラー−シャインカ−病(Gerstmann-Straussler-Scheinker disease)、クールー(Kuru)および致死性家族性不眠症);多発性硬化症および遺伝病(白質萎縮症など)を含む脱髄性疾患が挙げられる。
「パーキンソン病(Parkinson 's disease)」および「パーキンソン症候群(parkinsonism)」とは、ひとまとめに、パーキンソン症候群関連の運動障害を特徴とし得る神経変性症候群をさす。これらの障害は、遺伝的なものも非遺伝的なものも、典型的には、4つの主要なパーキンソン徴候:振戦、筋強剛、不安定な体位、および運動緩徐を特徴とし、黒質におけるドーパミン産生ニューロンの損失または機能不全を原因とする。パーキンソン症候群は、特発性パーキンソン病から起こる場合があり、あるいは、全面的または部分的に、限定されるものではないが、投薬、アルツハイマー病、進行性の核上麻痺、多系統萎縮症、シャイ−ドレーガー症候群、オリーブ橋小脳萎縮症、汎発性線条体黒質変性、またはあまり一般的ではないが、水頭症、ウィルソン病、皮質基底核変性症、ハンチントン病、ハレルフォルデン−シュパッツ病、脳炎後パーキンソン症候群、マンガン中毒、殺虫剤暴露、および一酸化炭素中毒を含む他の要因によって起こる場合がある。「パーキンソン症候群」はまた、本態性振戦および血管性偽性パーキンソン症候群などの関連障害も含むものとする。
他の神経変性症状としては、CNSおよびPNSに影響を及ぼす腫瘍および他の新生物性症状が挙げられる。この基礎にある疾病が増殖性のものである(神経変性性のものではなく)と考えられるが、周囲組織は損なわれているおそれがある。さらに、細胞治療は、アポトーシス分子または他の抗新生物性分子を、例えば、このような薬剤を産生する遺伝的に改変された細胞の送達によって、腫瘍部位に送達するために利用可能である。
他の神経変性症状としては、中でも、多巣性神経障害、感覚神経障害、運動神経障害、感覚−運動神経障害、感染関連神経障害、自律神経障害、感覚−自律神経障害、脱髄神経障害(限定されるものではないが、ギラン−バレー症候群(Guillain-Barre syndrome)および慢性炎症性脱髄性多発性神経障害を含む)、他の炎症性および免疫神経障害、薬剤性神経障害、薬理学的処置により誘発される神経障害、毒物性神経障害、外傷性神経障害(限定されるものではないが、圧迫、挫傷、裂傷および分断性神経障害を含む)、代謝性神経障害、内分泌および傍新生物性神経障害が挙げられる。
他の神経変性症状としては、基礎にある病因に関わらず、加齢性痴呆ならびにアルツハイマー病関連の痴呆、血管性痴呆、びまん性白質疾患(ビンスバンガー病(Binswanger's disease))、内分泌または代謝起源の痴呆、頭部外傷およびびまん性脳損傷の痴呆、拳闘家痴呆および前頭葉痴呆をはじめとする、記憶喪失を伴う他の痴呆および症状が挙げられる。
「黒質の神経変性疾患または障害」には、前記で定義されたようなパーキンソン症候群および関連の症状、ならびに黒質の細胞を少なくとも部分的に標的とする前記に挙げられた症状、疾病または障害の他のいずれかのものを含む。
「神経変性症状を治療する(または神経変性症状の治療)」とは、本明細書に記載されるような神経変性疾患の作用を緩和すること、あるいは、その神経変性疾患の進行を遅延させること、停止すること、または逆転させること、あるいは、その神経変性疾患の発症を遅延させること、または予防すること、をさす。
「有効量」とは、特定の生物学的結果を達成するのに有効な、本明細書に記載の化合物、材料または組成物の濃度または量をさす。このような結果としては、限定されるものではないが、神経組織の再生、修復、または改善、および/またはパーキンソン病患者における挙動および神経機能の改善が挙げられる。このような有効活性は、例えば、パーキンソン病患者に本発明の細胞および/または組成物を投与することにより達成され得る。インビボにおいて患者にPPDCを投与する場合、有効量は数百以下といった少量から数百万以上といった多量までの範囲であり得る。特定の実施形態では、有効量は103〜1011細胞の範囲、より具体的には、少なくとも約104細胞であり得る。投与される細胞の数は、限定されるものではないが、医薬生物学者に知られている他の因子の中でも、治療部分の大きさまたは総体積/表面積、ならびに治療される領域の場所に対して投与部位の近接度を含む、治療される障害の詳細によって異なると考えられる。
「有効期間(または時間)」および「有効な条件」とは、薬剤または医薬組成物が意図する結果を達成するために必要な、または好ましい期間または他の制御可能な条件(例えば、インビトロ法については温度、湿度)をさす。
「患者」または「被験体」は本明細書では互換的に用いられ、医薬または治療組成物で、または本明細書に記載の方法に従って治療される動物、好ましくは哺乳類、より好ましくはヒトをさす。
「製薬上許容される担体(または媒体)」は「生体適合性担体または媒体」と互換的に使用することができ、治療的に投与される細胞および他の薬剤と適合するだけでなく、過度な毒性、刺激、アレルギー反応または他の合併症を生じることなく、適正な医学的判断の範囲内で、ヒトおよび動物の組織と接触して使用するのに好適で、合理的な利益/リスク比で釣り合った、試薬、細胞、化合物、材料、組成物および/または投与形をさす。本明細書においてさらに詳しく記載されるように、本発明における使用に好適な製薬上許容される担体としては、液体、半固体(例えば、ゲル)および固体材料が含まれる(例えば、細胞スキャフォールドおよびマトリックス、チューブ、シート、ならびに当技術分野で公知であり、かつ、本明細書でさらに詳しく記載される他の材料)。これらの半固体および固体材料は体内で分解耐性を示す(非生分解性)ように設計することもできるし、あるいは体内で分解する(生分解性または生物浸食性)ように設計することもできる。生分解性材料は生体吸収性(bioresorbableまたはbioabsorbable)であってもよく、すなわち、生分解性材料は体液に溶解および吸収可能であるか(一例として、水溶性インプラントがある)、または他の材料への変換または天然経路による分解および排除により、分解され、最終的には体内から排除され得る。一度脳に移植されると、生分解速度は所望の放出速度により異なり得る。マトリックスはまた、新たに増殖した神経組織に置き換わるまでの一時的スキャフォールドとしても働くことが望ましい。よって、一実施形態では、マトリックスは、産褥由来細胞と併用される他の薬剤の徐放性をもたらし、患者内で組織増殖を進展させるための構造となり得る。他の実施形態では、マトリックスは単に、発達中の組織の一時的スキャフォールドとなる。マトリックスは球状(直径10μmを超えるマクロ粒子、または直径10μm未満の微粒子)であってもよいし、あるいは構造的な安定な三次元インプラント(例えば、スキャフォールド)の形態であってもよい。このインプラントは、例えば、立方体、円柱、管、ブロック、フィルム、シート、または適当な解剖学的形態であり得る。
「挙動」は、本明細書では広義において使用され、動物が所与の刺激または一連の条件に応答または反応して行う何らかのものをさす。
本明細書では、細胞移植または組織移植に関する用語もいくつか使用されている。「自己移入(autologous transfer)」、「自己移植(autologous transplantation)」、および「自己移植片(autograft)」などは、移植ドナーが移植レシピエントでもある場合の移植をさす。「同種異系移入」、「同種異系移植」、および「同種異系移植片(allograft)」などは、移植ドナーが移植レシピエントと同種であるが、同じ個体ではない場合の移植をさす。ドナーの細胞がレシピエントと一致した組織適合性を有していた細胞移植を同系移入と呼ぶ場合がある。「異種移入」、「異種移植」および「異種移植片」などは、移植ドナーが移植レシピエントとは異なる種である場合の移植をさす。
説明:
多様な原因を持つ急性、慢性および進行性障害および疾患を包含する神経変性症状は、神経細胞の特定群または易損群の機能不全または損失を共通の特徴として有する。この共通性から、易損神経組織または損傷神経組織の修復および再生のための、類似の治療アプローチの開発が可能となり、その1つが細胞に基づく療法である。本明細書に記載のその様々な実施形態において、本発明は、産褥組織に由来する前駆細胞および細胞集団を利用する神経修復および再生のための方法および医薬組成物を特徴とする。本発明はいずれの神経変性症状にも適用可能であるが、パーキンソン病および関連の神経障害の治療に特に好適であると思われる。
上記で概略を示したように、本発明は、その一態様において、一般に、実質的に血液を含まないようにした胎盤組織または臍帯組織に由来する、単離された産褥由来細胞(PPDC)に向けられる。これらのPPDCは自己再生および拡大培養が可能であり、かつ、神経表現型の細胞へと分化する能力を有する。ある実施形態は、当該細胞を含む集団、当該細胞またはその成分もしくは産物を含む医薬組成物、およびパーキンソン病患者を治療するために当該医薬組成物を使用する方法を特徴とする。これらの産褥由来細胞は、培養増殖特性、細胞表面マーカー、遺伝子発現、ある種の生化学的栄養因子を産生する能力、および免疫特性を特徴とする。
PPDCの調製
本明細書に記載の方法によれば、哺乳類胎盤および臍帯は、満期妊娠または早産妊娠の終了時または終了後短時間のうちに、例えば、誕生後の娩出の後に回収する。産褥組織は、フラスコ、ビーカー、培養皿またはバッグなどの無菌容器にて、分娩室から研究室に移送することができる。この容器には、限定されるものではないが、例えば、ダルベッコの改変イーグル培地(DMEM)(ダルベッコの最少必須培地としても知られる)またはリン酸緩衝生理食塩水(PBS)などの塩溶液、またはウイスコンシン大学溶液またはペルフルオロ化学溶液などの、移植に用いる器官の輸送に用いる溶液をはじめとする、溶液または媒体を入れればよい。限定されるものではないが、ペニシリン、ストレプトマイシン、アムホテリシンB、ゲンタマイシン、およびナイスタチンなどの1種類以上の抗生剤および/または抗真菌剤を培地またはバッファーに添加してもよい。この産褥組織をヘパリン含有溶液などの抗凝固溶液ですすげばよい。この組織はPPDCの抽出まで約4〜10℃で維持するのが好ましい。この組織はPPDCの抽出まで冷凍しないことがさらにより好ましい。
PPDCの単離は好ましくは、無菌環境で行う。臍帯は、当技術分野で公知の手段により胎盤から分離することができる。あるいは、臍帯と胎盤を分離せずに用いる。PPDCの単離前に産褥組織から血液および残渣を除去することが好ましい。例えば、産褥組織は、限定されるものではないが、リン酸緩衝生理食塩水などのバッファー溶液で洗浄してもよい。洗浄バッファーはまた、1種類以上の抗真菌剤および/または限定されるものではないが、ペニシリン、ストレプトマイシン、アムホテリシンB、ゲンタマイシン、およびナイスタチンなどの抗生剤を含んでもよい。
全胎盤またはその断片もしくは切片を含む産褥組織は、機械力(細断力または剪断力)によって解離させる。現在のところ好ましい実施形態では、この単離手順は酵素消化法も利用する。多くの酵素が、培養増殖を促進するため、複雑な組織マトリックスから個々の細胞を単離するのに有用であることが当技術分野で知られている。消化力の弱いもの(例えば、デオキシリボヌクレアーゼおよび天然プロテアーゼであるディスパーゼ)から消化力の強いもの(例えば、パパインおよびトリプシン)まで、このような酵素は市販されている。これと適合する酵素を非網羅的に挙げると、粘液溶解酵素活性、メタロプロテアーゼ、中性プロテアーゼ、セリンプロテアーゼ(トリプシン、キモトリプシン、またはエラスターゼなど)、およびデオキシリボヌクレアーゼがある。現在のところ、メタロプロテアーゼ、中性プロテアーゼおよび粘液溶解活性から選択される酵素活性が好ましい。例えば、コラゲナーゼは組織から様々な細胞を単離するのに有用であることが知られている。デオキシリボヌクレアーゼは一本鎖DNAを消化することができ、単離中の細胞の凝集を最小限とすることができる。好ましい方法は、例えば、コラゲナーゼとディスパーゼ、またはコラゲナーゼとディスパーゼとヒアルロニダーゼによる酵素処理を含み、このような方法が提供され、特定の好ましい実施形態では、コラゲナーゼと中性プロテアーゼであるディスパーゼの混合物が解離工程に使用される。ヒストリチクス菌(Clostridium histolyticum)由来の少なくとも1種のコラゲナーゼと、プロテアーゼ活性、ディスパーゼおよびサーモライシンのいずれかとの存在下での消化を用いる方法がより好ましい。コラゲナーゼ酵素活性とディスパーゼ酵素活性による消化を用いる方法がさらにより好ましい。また、コラゲナーゼ活性とディスパーゼ活性に加えてヒアルロニダーゼ活性による消化を含む方法も好ましい。当業者ならば、当技術分野において、様々な組織源から細胞を単離するための、このような多くの酵素処理が公知であることが分かるであろう。例えば、リベラーゼブレンドザイム(LIBERASE Blendzyme)(Roche)系の酵素の組合せが、本方法における使用に好適である。他の酵素源も公知であり、当業者ならば、このような酵素をそれらの天然源から直接採取することもできる。また、当業者ならば、新たな、または付加的な酵素もしくは酵素の組合せを、本発明の細胞を単離する上での有用性に関して評価する能力を備えている。好ましい酵素処理は0.5、1、1.5、または2時間またはそれを超える。他の好ましい実施形態において、解離工程の酵素処理中、37℃で組織をインキュベートする。
本発明のいくつかの実施形態では、産褥組織は、例えば、胎盤の新生児相、新生児/母体相、および母胎相などの組織の様々な相を含む切片に分離する。その後、分離された切片を、本明細書に記載の方法に従い、機械的解離および/または酵素的解離により解離する。新生児系統または母体系統の細胞は、例えば、Y染色体に関する核型分析またはin situハイブリダイゼーションによるなど、当技術分野で公知のいずれかの手段により同定することができる。
それからPPDCが増殖する単離細胞または産褥組織を用い、細胞培養物を誘導または播種することができる。単離細胞を、コートされていない、または細胞外マトリックス、またはラミニン、コラーゲン(天然、変性または架橋)、ゼラチン、フィブロネクチン、および他の細胞外マトリックスタンパク質などのリガンドでコートされた無菌組織培養容器に移す。PPDCは、限定されるものではないが、DMEM(高グルコースまたは低グルコース)、改良DMEM、DMEM/MCDB 201、イーグルの基本培地、ハムのF10培地(F10)、ハムのF−12培地(F12)、Neurobasel培地、イスコーブの改変ダルベッコ培地、間葉幹細胞増殖培地(MSCGM)、DMEM/F12、RPMI 1640、およびCELL−GRO−FREEなどの細胞の増殖を維持し得るいずれかの培養培地で培養する。この培養培地には、例えば、ウシ胎児血清(FBS)、好ましくは約2〜15%(v/v);ウマ血清(ES);ヒト血清(HS);β−メルカプトエタノール(BMEまたは2−ME)、好ましくは約0.001%(v/v);1種類以上の増殖因子、例えば、血小板由来増殖因子(PDGF)、上皮増殖因子(EGF)、繊維芽細胞増殖因子(FGF)、血管内皮増殖因子(VEGF)、インスリン様増殖因子−1(IGF−1)、白血球阻害因子(LIF)およびエリスロポエチン;L−バリンを含むアミノ酸;および例えば、単独または組み合わせたペニシリンG、ストレプトマイシン硫酸塩、アムホテリシンB、ゲンタマイシンおよびナイスタチンなど、微生物汚染を抑制する1種類以上の抗生剤および/または抗真菌剤を含む、1種類以上の成分を添加してもよい。培養培地は以下の実施例で定義される増殖培地を含むのが好ましい。
これらの細胞を培養容器に、細胞増殖が可能な密度で播種する。好ましい実施形態では、これらの細胞を空気中CO2体積約0〜約5%で培養する。いくつかの好ましい実施形態では、細胞は、空気中約2〜約25%のO2、好ましくは、空気中約5〜約20%のO2下で培養する。細胞は好ましくは約25〜約40℃で培養し、より好ましくは37℃で培養する。細胞は好ましくはインキュベーター内で培養する。培養容器中の培地は静置しても、例えばバイオリアクターを用いて振盪してもよい。PPDCは好ましくは、低酸化ストレス下(例えば、グルタチオン、ビタミンC、カタラーゼ、ビタミンE、N−アセチルシステインの添加)で増殖される。本明細書において「低酸化ストレス」とは、培養細胞に対するフリーラジカル傷害が全くないか、または最小限である条件をさす。
最も適当な培養培地、培地調製および細胞培養技術の選択方法は当技術分野で周知であり、参照して本明細書に組み入れる、Doyleら(編), 1995, CELL & TISSUE CULTURE: LABORATORY PROCEDURES, John Wiley & Sons, Chichester;およびHo and Wang (編), 1991, ANIMAL CELL BIOREACTORS, Butterworth-Heinemann, Bostonをはじめとする様々な出典に記載されている。
単離細胞または組織断片を十分な期間培養した後、産褥組織からの移動または細胞分裂、またはその双方の結果としてPPDCが増殖する。本発明のいくつかの実施形態では、PPDCを継代培養、すなわち、細胞集団が有糸分裂により拡大培養できる、最初に使用されたものと同じまたは異なるタイプの新鮮培地を含有する個々の培養容器に取り出す。本発明の細胞は継代培養0代目〜老化までのいずれの時点で用いてもよい。これらの細胞は好ましくは、約3回〜約25回の間継代培養され、より好ましくは、約4回〜約12回継代培養され、好ましくは、10回または11回継代培養される。細胞のクローン集団が単離されたことを確認するために、クローニングおよび/またはサブクローニングを行うことができる。
本発明のいくつかの実施形態では、産褥組織に存在する種々の細胞種を部分集団に分画し、それからPPDCを単離することができる。これは、限定されるものではないが、産褥組織を解離してその成分を得るための酵素処理、その後のクローニングと、例えば、限定されるものではないが、形態学的マーカーおよび/または生化学マーカーに基づく選択;所望の細胞の選択的増殖(正の選択)、望ましくない細胞の選択的破壊(負の選択);例えば、ダイズのアグルチニンによる、混合集団における示差的細胞凝集力に基づく分離;凍結−解凍法;混合集団における細胞の示差的接着性;濾過;通常の遠心分離およびゾーン遠心分離;遠心分離傾瀉(対流遠心分離);単位重力分離;向流分布;電気泳動;および蛍光活性化セルソーター(FACS)をはじめとする、特定の細胞種の選択を含む、細胞分離の標準的技術を用いて達成することができる。クローン選択および細胞分離技術の総説としては、参照して本明細書に組み入れるFreshney, 1994, CULTURE OF ANIMAL CELLS: A MANUAL OF BASIC TECHNIQUES, 3rd Ed., Wiley- Liss, Inc, New Yorkを参照
培養培地は、必要に応じ、例えば、ピペットを用いてディッシュから培地を注意深く吸引し、新鮮培地を補充することにより変更される。インキュベーションは、ディッシュに十分な数または密度の細胞が蓄積するまで続ける。元の外植組織片は除去し、残りの細胞を標準的な技術を用いてトリプシン処理するか、またはセルスクレーパーを用いる。トリプシン処理後、細胞を回収し、新鮮培地へ移し、前記のようにインキュベートする。いくつかの実施形態では、培地は、浮遊細胞を除去するため、トリプシン処理から約24時間後に少なくとも一度交換する。残った培養細胞をPPDCであると考えられる。
PPDCは低温保存可能である。よって、以下にさらに詳しく記載される好ましい実施形態では、自己移入用のPPDC(母または子のいずれか)は、子供の誕生後に適当な産褥組織から誘導することができ、その後、移植が必要になった場合に利用できるように低温保存することができる。
PPDCの特徴
PPDCは、例えば、増殖の特徴(例えば、集団倍加力、倍加時間、老化までの継代培養回数)、核型分析(例えば、正常な核型;母体系統または新生児系統)、フローサイトメトリー(例えば、FACS分析)、免疫組織化学および/または免疫細胞化学(例えば、エピトープの検出のためのもの)、遺伝子発現プロファイリング(例えば、遺伝子チップアレイ;ポリメラーゼ連鎖反応(例えば、逆転写酵素PCR、リアルタイムPCR、および従来のPCR))、タンパク質アレイ、タンパク質分泌(例えば、血漿凝固アッセイまたはPDC細胞馴化培地の分析によるもの、例えば、酵素結合免疫吸着検定法(ELISA)によるもの)、混合リンパ球反応(例えば、PBMCの刺激の測定)、および/または当技術分野で公知の他の方法により特性決定することができる。
胎盤組織由来のPPDCの例は、the American Type Culture Collection (ATCC, Manassas, VA)に寄託され、次のようにATCC受託番号が割り当てられている:(1)株名PLA071003(P8)は2004年6月15日に寄託され、受託番号PTA−6074が割り当てられ;(2)株名PLA071003(P11)は2004年6月15日に寄託され、受託番号PTA−6075が割り当てられ;また(3)株名PLA071003(P16)は2004年6月16日に寄託され、受託番号PTA−6079が割り当てられている。臍組織由来のPPDCの例は2004年6月10日にthe American Type Culture Collectionに寄託され、次のようにATCC受託番号が割り当てられている:(1)株名UMB022803(P7)は受託番号PTA−6067が割り当てられ;また(2)株名UMB022803(P17)は受託番号PTA−6068が割り当てられている。
種々の実施形態では、PPDCは、次の増殖の特徴のうち1以上を有する:(1)培養増殖にL−バリンを必要とする;(2)約5%〜少なくとも約20%の酸素を含有する雰囲気下で増殖することができる;(3)老化に達するまで少なくとも約40回倍加する能力を有する;および(4)コートまたは非コート組織培養容器上で接着および拡大培養する(このコート組織培養容器は、ゼラチン、ラミニン、コラーゲン、ポリオルニチン、ビトロネクチンまたはフィブロネクチンのコーティングを含む。
特定の実施形態では、PPDCは正常な核型を有し、細胞の継代培養の際に維持される。核型分析は、胎盤由来の母体細胞から新生児細胞を同定および識別するのに特に有用である。核型分析法は当業者に利用可能であり、公知である。
他の実施形態では、PPDCは、(1)組織因子、ビメンチン、およびα−平滑筋アクチンのうち少なくとも1つの産生;および(2)フローサイトメトリーにより検出されるCD10、CD13、CD44、CD73、CD90、PDGFr−α、PD−L2およびHLA−A、B、C細胞表面マーカーのうち少なくとも1つの産生を含む特定のタンパク質の産生によって同定することができる。他の実施形態では、PPDCは、フローサイトメトリーにより検出されるCD31、CD34、CD45、CD80、CD86、CD117、CD141、CD178、B7−H2、HLA−G、およびHLA−DR、DP、DQ細胞表面マーカーの少なくとも1つの産生の欠如により同定することができる。組織因子、ビメンチン、およびα−平滑筋アクチンのうち少なくとも2つを産生する細胞が特に好ましい。タンパク質組織因子、ビメンチン、およびα−平滑筋アクチンのうち3つ全てを産生する細胞がより好ましい。
他の実施形態では、PPDCは、繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、インターロイキン8;レチクロン(reticulon)1;ケモカイン(C−X−Cモチーフ)リガンド1(黒色腫(melonoma)増殖刺激活性α);ケモカイン(C−X−Cモチーフ)リガンド6(顆粒球走化性タンパク質2);ケモカイン(C−X−Cモチーフ)リガンド3;腫瘍壊死因子α誘導タンパク質3;C型レクチンスーパーファミリーメンバー2;ウィルムス腫瘍1;アルデヒドデヒドロゲナーゼ1ファミリーメンバーA2;レニン;酸化低密度リポタンパク質受容体1;ヒト(Homo sapiens)クローンIMAGE:4179671;プロテインキナーゼCζ;機能未知タンパク質DKFZp564F013;卵巣癌1においてダウンレギュレーション;およびクローンDKFZp547k1113由来のヒト(Homo sapiens)遺伝子のうち少なくとも1つをコードする遺伝子が増大されている遺伝子発現により同定することができる。
さらに他の実施形態では、PPDCは、繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、低身長ホメオボックス2;熱ショック27kDaタンパク質2;ケモカイン(C−X−Cモチーフ)リガンド12(間質細胞由来因子1);エラスチン(大動脈弁上部狭窄症、ウィリアムス−ビューレン症候群);ヒト(Homo sapiens)mRNA;cDNA DKFZp586M2022(クローンDKFZp586M2022);間充織ホメオボックス2(成長停止特異的ホメオボックス);sine oculisホメオボックスホモログ1(ショウジョウバエ(Drosophila));クリスタリン(crystallin)αB;形態形成のdisheveled関連アクチベーター2;DKFZP586B2420タンパク質;ニューラリン(neuralin)1に類似;テトラネクチン(プラスミノーゲン結合タンパク質);src homology three(SH3)およびシステイン豊富ドメイン;コレステロール25−ヒドロキシラーゼ;runt関連転写因子3;インターロイキン11受容体α;プロコラーゲンC−エンドペプチダーゼエンハンサー;frizzledホモログ7(ショウジョウバエ(Drosophila));機能未知遺伝子BC008967;VIII型コラーゲンα1;テネイシンC(hexabrachion);iroquoisホメオボックスタンパク質5;hephaestin;インテグリンβ8;シナプス小胞糖タンパク質2;神経芽腫、腫瘍形成抑制1;インスリン様増殖因子結合タンパク質2、36kDa;ヒト(Homo sapiens)cDNA FLJ12280 fis、クローンMAMMA1001744;サイトカイン受容体様因子1;カリウム中間体/低コンダクタンスカルシウム依存性チャネルサブファミリーNメンバー4;インテグリンβ7;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;sine oculisホメオボックスホモログ2(ショウジョウバエ(Drosophila));KIAA1034タンパク質;小胞関連膜タンパク質5(myobrevin);EGF含有fibulin様細胞外マトリックスタンパク質1;初期成長応答3;distal-lessホメオボックス5;機能未知タンパク質FLJ20373;アルド−ケト還元酵素ファミリー1メンバーC3(3αヒドロキシステロイドデヒドロゲナーゼII);ビグリカン;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;フィブロネクチン1;プロエンケファリン;インテグリンβ様1(EGF様リピートドメイン);ヒト(Homo sapiens)mRNA全長インサートcDNAクローンEUROIMAGE 1968422;EphA3;KIAA0367タンパク質;ナトリウム利尿ペプチド受容体C/グアニル酸シクラーゼC(atrionatriureticペプチド受容体C);機能未知タンパク質FLJ14054;ヒト(Homo sapiens)mRNA;cDNA DKFZp564B222(クローンDKFZp564B222由来);BCL2/アデノウイルスE1B 19kDa相互作用タンパク質3様;AE結合タンパク質1;シトクロムcオキシダーゼサブユニットVIIaポリペプチド1(筋肉)のうち少なくとも1つをコードする遺伝子が低減されている遺伝子発現により同定することができる。
他の実施形態では、PPDCは、MCP−1、IL−6、IL−8、GCP−2、HGF、KGF、FGF、HB−EGF、BDNF、TPO、MIP1a、RANTES、およびTIMP1、bFGF、BMP−4、CK b 8−1、CNTF、CTACK、EGF、エオタキシン−3、Fas/TNFRSF6、FGF−6、FIT−3リガンド、フラクタルカイン、GCSF、GITRリガンド、GM−CSF、I−309、ICAM−1、IGFBP−1、IGFBP−2、IGFBP−3、IGFBP−6、IL−10、IL−13、IL−1a、IL−1Ra、IL−3、IL−5、IL−7、I−TAC、MIF、オンコスタチンM、PIGF、sgp130、TGF−β3、TIMP−2、TNF−α、TNF−β、TRAIL−R3、TRAIL−R4、uPARの少なくとも1つの分泌により同定することができる。別の実施形態では、PPDCは、ELISAにより検出されるTGF−β2、ANG2、PDGFbb、MIP1b、I309、MDC、およびVEGFのうち少なくとも1つの分泌の欠如により同定することができる。
好ましい実施形態では、該細胞は前記の増殖、タンパク質/表面マーカーの産生,遺伝子発現または物質分泌の特徴のうち2以上を含む。これらの特徴のうち3つ、4つ、または5つ、またはそれを超える特徴を含む細胞がより好ましい。これらの特徴のうち、6つ、7つまたは8つ、またはそれを超える特徴を含むPPDCがさらにより好ましい。現在のところ、前記特徴の全てを含む細胞がさらにより好ましい。
いくつかの態様において本発明のとともに使用するのに現在のところ好ましい細胞としては、前記の特徴を有する産褥細胞があり、より詳しくは、その細胞が正常な核型を有し、継代培養で正常な核型を維持する場合、さらに、その細胞がCD10、CD13、CD44、CD73、CD90、PDGFr−α、およびHLA−A、B、Cの各マーカーを発現する(これらの細胞は挙げられているマーカーに相当する、免疫学的に検出可能なタンパク質を産生する)場合がある。前記のものに加え、フローサイトメトリーにより検出されるマーカーCD31、CD34、CD45、CD117、CD141、またはHLA−DR、DP、DQのいずれに相当するタンパク質も産生しない細胞がさらにより好ましい。
種々の表現型をもたらす系統を分化する能力を有するある種の細胞は安定でないため、自発的に分化することができる。例えば神経系統を自発的に分化しない細胞が、現在のところ本発明とともに使用するのに好ましい。好ましい細胞は、増殖培地で増殖させた際に、それらの表面で産生されるマーカーに関して、また、例えばAffymetrix GENECHIPを用いて測定される種々の遺伝子の発現パターンに関して実質的に安定である。これらの細胞は、例えば、継代培養中に何回も集団倍加しても、それらの表面マーカーの特徴を実質的に一定に保持している。
しかしながら、PPDCの1つの特徴は、分化を誘導する細胞培養条件に置くことにより神経系表現型へと分化するように人為的に誘導することができるということである。これは、当技術分野で公知の1以上の方法によって行うことができる。例えば、本明細書で例示されているように、PPDCは、ラミニンコートしたフラスコの、B27(B27サプリメント,Invitrogen)、L−グルタミンおよびペニシリン/ストレプトマイシンを含有するNeurobasal−A培地(Invitrogen, Carlsbad, CA)(この組合せは本明細書では神経前駆体拡大(Neural Progenitor Expansion)(NPE)培地と呼ぶ)中に置けばよい。NPE培地にはbFGFおよび/またはEGFをさらに添加してもよい。あるいは、PPDCは、(1)PPDCを神経前駆細胞と共存培養することによるか、または(2)神経前駆細胞の細胞馴化培地中でPPDCを増殖させることにより、インビトロで分化誘導することもできる。
PPDCの分化は、突起を延長して双極性細胞の形態により証明することができる。これらの誘導済みの細胞集団は、ネスチンの存在に関して陽性染色することができる。分化したPPDCはネスチン、TuJ1(βIIIチューブリン)、GFAP、チロシンヒドロキシラーゼ、GABA、O4および/またはMBPの検出により評価することができる。いくつかの実施形態では、PPDCは、ニューロスフェアの神経幹細胞形成に特徴的な三次元体を形成する能力を示した。
PPDC集団、改変、成分および産物
本発明の別の態様は、前記PPDCの集団を特徴とする。いくつかの実施形態では、細胞集団は不均質である。本発明の不均質な細胞集団は、本発明の少なくとも約5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、または95%のPPDCを含み得る。本発明の不均質な細胞集団は、幹細胞、または神経前駆細胞などの他の前駆細胞をさらに含み得るし、あるいは完全に分化した神経細胞もさらに含み得る。いくつかの実施形態では、この集団は実質的に均質であり、すなわち、実質的にPPDCのみ(好ましくは、少なくとも約96%、97%、98%、99%またはそれを超えるPPDC)を含む。本発明の均質な細胞集団は臍由来細胞または胎盤由来細胞を含み得る。臍由来細胞の均質な集団は好ましくは母体系の細胞を含まない。胎盤由来細胞の均質な集団は、新生児系または母体系のものであり得る。細胞集団の均質性は、例えば、細胞選別(例えば、フローサイトメトリー)によるか、または公知の方法に従ったクローン拡大によるなど、当業者に公知のいずれかの方法により達成することができる。よって、好ましい均質PPDC集団は、産褥由来細胞のクローン細胞系統を含み得る。このような集団は、極めて望ましい機能性を有する細胞クローンが単離された場合に特に有用である。
また、1以上の因子の存在下で、または神経形成経路に沿って幹細胞分化を刺激する条件下でインキュベートされた細胞の集団も提供される。このような因子は当技術分野で公知であり、当業者ならば、分化に好適な条件の決定は慣例の実験を用いて行い得ることが分かるであろう。このような条件の至適化は、統計学的実験計画および分析によって行うことができ、例えば、応答表面の方法論によれば、例えば生体培養において複数の変数を同時に至適化することができる。現在のところ好ましい因子としては、限定されるものではないが、増殖因子または栄養因子などの因子、脱メチル化剤、神経系統細胞との共存培養または神経系統細胞の細胞馴化培地中での培養、ならびに神経形成経路または系統に沿って幹細胞分化を刺激するための当技術分野で公知の他の条件(例えば、Lang, KJDら, 2004, J. Neurosci. Res. 76:184-192; Johe, KKら, (1996) Genes Devel. 10:3129-3140; Gottleib, D., (2002) Ann. Rev. Neurosci. 25:381-407参照)が挙げられる。
PPDCはまた、例えば、神経治療上有用な遺伝子産物を産生するように、遺伝的に改変することもできる。遺伝的改変は、限定されるものではないが、組み込み型ウイルスベクター、例えば、レトロウイルスベクターまたはアデノ随伴ウイルスベクター;非組み込み型複製ベクター、例えば、パピローマウイルスベクター、SV40ベクター、アデノウイルスベクター;または複製欠陥ウイルスベクターを含む様々なベクターのいずれかを用いて行うことができる。DNAを細胞へ導入する他の方法としては、リポソーム、エレクトロポレーション、パーティクルガン、または直接的DNA注入の使用を含む。
宿主細胞は好ましくは、中でもプロモーターまたはエンハンサー配列、転写ターミネーター、ポリアデニル化部位などの1以上の適当な発現制御エレメントおよび選択マーカーにより制御された、またはそれらのものと作動可能なように連結されたDNAで形質転換またはトランスフェクトされる。いずれのプロモーターを用いて、挿入された遺伝子の発現を駆動してもよい。例えば、ウイルスプロモーターとしては、限定されるものではないが、CMVプロモーター/エンハンサー、SV40、パピローマウイルス、エプスタイン−バーウイルスまたはエラスチン遺伝子プロモーターが挙げられる。いくつかの実施形態では、目的の遺伝子の発現を制御するのに用いる制御エレメントにより、インビボで必要な場合にのみ、その産物が合成されるように遺伝子発現の調節を可能とする。一時的発現が望ましい場合、非組み込み型および/または複製欠陥ベクターにおいて構成プロモーターを使用するのが好ましい。あるいは、誘導プロモーターを用いて、必要時に挿入遺伝子の発現を駆動することもできる。誘導プロモーターとしては、限定されるものではないが、メタロチオネインおよび熱ショックタンパク質関連のものが挙げられる。
外来DNAを導入した後、操作された細胞を富化培地で増殖させ、その後、選択培地に切り替えることができる。外来DNAにおける選択マーカーは選択耐性を付与し、細胞の、例えばプラスミド上、それらの染色体中に外来DNAを組み込まれ、細胞叢が形成するまで拡大培養し、これを次にクローン化し、増殖させて細胞系統とすることができる。この方法は、遺伝子産物を発現する細胞系統を操作するために有利に使用することができる。
本発明の細胞は、移植部位で炎症または拒絶反応を促進する因子の発現を「ノックアウト」または「ノックダウン」するように遺伝的に操作することができる。標的遺伝子発現レベルまたは標的遺伝子産物活性レベルを低下させる負の調節技術を以下に述べる。本明細書において「負の調節」とは、調節処理の不在下での標的遺伝子産物のレベルおよび/または活性に比べて、標的遺伝子産物のレベルおよび/または活性が低下していることをさす。ニューロンまたはグリア細胞に本来備わっている遺伝子発現は、例えば、相同組換え技術を用いて遺伝子を不活性化することによる発現阻害をはじめ、いくつかの技術を用いて低減またはノックアウトすることができる。典型的には、そのタンパク質の重要な領域をコードするエキソン(すなわち、その領域に対して5’側のエキソン)に、陽性選択マーカー、例えばneoを挿入し、標的遺伝子からの正常なmRNAの生成を妨げ、その結果、その遺伝子は不活性化させる。また、遺伝子は、遺伝子の一部欠失を作出することにより、または全遺伝子を欠失させることにより不活性化することもできる。ゲノム中距離が離れた、標的遺伝子に対して相同な2つの領域を有する構築物を用いることで、この2領域間の配列を欠失させることができる(Mombaertsら, 1991, Proc. Nat. Acad. Sci. U.S.A. 88:3084)。また、アンチセンス、DNAザイム、リボザイム、small interfering RNA(siRNA)および標的遺伝子の発現を阻害する他のこのような分子を使用して、標的遺伝子活性のレベルを低減させることもできる。例えば、主要組織適合性遺伝子複合体(HLA)の発現を阻害するアンチセンスRNA分子は、免疫応答に関して最も融通が利くことが示されている。さらに、標的遺伝子活性のレベルを低減する際に三重らせん分子を使用することもできる。これらの技術は、L.G. Davisら(編), 1994, BASIC METHODS IN MOLECULAR BIOLOGY, 2nd ed., Appleton & Lange, Norwalk, CNが詳細に記載している。
他の態様では、本発明は、PPDCから調製された細胞溶解物および細胞溶解画分、PPDCを含む不均質細胞集団または均質細胞集団、ならびに遺伝的に改変された、または神経形成経路に沿って分化するように刺激されたPPDCまたはその集団を提供する。細胞溶解物またはその画分は多くの用途を持つ。例えば、PPDC溶解物溶解画分(すなわち、実質的に膜を含まない)をインビボで使用すると、拒絶反応、または他の有害な免疫応答を誘発する可能性が最も高い、かなりの量の細胞表面タンパク質を導入することなく、患者において同種異系的に使用される有益な細胞内環境が可能となる。細胞を溶解する方法は当技術分野で周知であり、機械的破砕、酵素的破砕、または化学的破砕、またはその組合せの種々の手段が挙げられる。このような細胞溶解物は、増殖培地において直接細胞から、従って、分泌された増殖因子などを含有した状態で調製することもできるし、あるいは例えばPBSまたは他の溶液を含まない洗浄細胞から調製することもできる。洗浄細胞は、好ましい場合には、元の集団密度よりも高い濃度で再懸濁させてもよい。
一実施形態では、例えば、細胞を破砕した後に細胞画分の分離を行わずに、全細胞溶解物を調製する。もう1つの実施形態では、当技術分野で公知の常法、例えば、遠心分離、濾過または類似の方法により、細胞膜画分を可溶性の細胞画分から分離する。
産褥由来細胞集団から調製された細胞溶解物または細胞可溶性画分はそのまま使用してもよいし、例えば限外濾過もしくは凍結乾燥、または一様乾燥によりさらに濃縮してもよいし、部分精製してもよいし、当技術分野で公知の製薬上許容される担体または希釈剤と組み合わせてもよいし、あるいは例えば製薬上有用なタンパク質組成物などの生物製品のような他の化合物と組み合わせてもよい。細胞溶解物またはその画分はインビトロまたはインビボで、単独、または例えば自己のまたは同系の生細胞とともに使用することができる。これらの細胞溶解物は、インビボ導入する場合、治療部位に局所導入してもよいし、あるいは例えば、患者に必要な細胞増殖因子を提供するよう遠位に導入してもよい。
さらなる実施形態では、PPDCは生体産物を高収量で生産するためにインビトロで培養することができる。例えば、目的の特定の生体産物(例えば、栄養因子)を本来産生するか、または生体産物を産生するように遺伝的に操作されたこのような細胞を、本明細書に記載の培養技術を用い、クローン拡大させることができる。あるいは、神経系統への分化を誘導する培地で細胞を拡大培養することもできる。いずれの場合でも、当該細胞によって産生され、培地中に分泌された生体産物は、標準的な分離技術、例えば、いくつか挙げれば、示差的タンパク質沈降法、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、電気泳動およびHPLCなどを用い、細胞馴化培地から容易に単離することができる。例えば、インビトロ三次元培養物を養うための流動法を利用するために「バイオリアクター」を使用することができる。基本的に、新鮮な培地が三次元培養物を通過する度に生体産物が培養物から洗い出され、流出物から前記のように単離することができる。
あるいは、目的の生体産物は細胞内に留まっている場合もあり、その場合は、その回収に前記のように細胞を溶解させることが必要となる。その後、生体産物を、前記に挙げた技術のいずれか1以上を用いて精製することができる。
他の実施形態では、本発明は、以下に記載するようなインビトロおよびインビボ使用のための、培養PPDC由来の細胞馴化培地を提供する。PPDC細胞馴化培地の使用により、PPDCにより分泌された有益な栄養因子が、拒絶反応または他の有害な免疫応答を誘発し得る完全な細胞を導入することなく、患者において同種異系的に使用可能となる。細胞馴化培地は、培養培地で細胞を培養した後、培地から細胞を除去することにより調製される。
産褥由来細胞集団から調製された細胞馴化培地はそのまま使用してもよいし、例えば限外濾過もしくは凍結乾燥、または一様乾燥によりさらに濃縮してもよいし、部分精製してもよいし、当技術分野で公知の製薬上許容される担体または希釈剤と組み合わせてもよいし、あるいは例えば製薬上有用なタンパク質組成物などの生物製品のような他の化合物と組み合わせてもよい。細胞馴化培地はインビトロまたはインビボで、単独、または例えば自己のまたは同系の生細胞とともに使用することができる。細胞馴化培地は、インビボ導入する場合、治療部位に局所導入してもよいし、あるいは例えば、患者に必要な細胞増殖因子または栄養因子を提供するよう遠位に導入してもよい。
別の実施形態では、液体、固体または半固体支持体上でPPDCを培養することにより形成される細胞外マトリックス(ECM)を作製し、回収し、組織修復または置換を必要とする被験体に生細胞を移植する代わりに利用する。PPDCをインビトロにおいて、本明細書の他所で記載される三次元フレームワーク上、所望の量のECMがそのフレームワークに分泌されるような条件下で培養する。これは、新しい組織を取り出し、ECMをさらなる使用のために、例えば、注射用製剤として処理することを含む。これを達成するため、フレームワーク上の細胞を死滅させ、そのフレームワークから細胞残渣を取り出す。このプロセスはいくつかの異なる方法で行うことができる。例えば、生組織を、低温保存剤を用いずに液体窒素中で急速凍結させることもできるし、あるいは組織を無菌蒸留水中に浸漬し、細胞を浸透圧に応じてバーストさせることもできる。
細胞は一度死滅すると、細胞膜が破れ、細胞残渣は、EDTA、CHAPSまたは両性イオン性界面活性剤などの穏和な界面活性剤ですすいで処理することにより除去される。あるいは、組織を酵素消化し、かつ/または、細胞膜を分解し、細胞内容物の除去を可能とする試薬で抽出することができる。このような酵素の例としては、限定されるものではないが、ヒアルロニダーゼ、ディスパーゼ、プロテアーゼ、およびヌクレアーゼが挙げられる。界面活性剤の例としては、例えば、アルキルアリールポリエーテルアルコール(トリトン X−100)、オクチルフェノキシポリエトキシ−エタノール(Rohm and Haas Philadelphia, PA)、BRIJ−35、ポリエトキシエタノールラウリルエーテル(Atlas Chemical Co., San Diego, CA)、ポリソルベート20(TWEEN 20)、ポリエトキシエタノールソルビタンモノラウレート(Rohm and Haas)、ポリエチレンラウリルエーテル(Rohm and Haas)などの非イオン性界面活性剤;ならびに例えば、ドデシル硫酸ナトリウム、硫酸化高級脂肪族アルコール、分枝鎖または非分枝鎖で7〜22個の炭素原子を含有するスルホン化アルカンおよびスルホン化アルキルアレンなどのイオン性界面活性剤が挙げられる。
ECMの回収は、例えば、生分解性または非生分解性の三次元フレームワークで新たな組織が形成されたかどうかによって、様々な方法で行うことができる。例えば、フレームワークが非生分解性である場合、ECMは、このフレームワークに対して音波処理、高圧水ジェット、機械的掻き取り、または界面活性剤もしくは酵素による穏和な処理、または前記の任意の組合せを行うことによって取り出すことができる。
フレームワークが生分解性である場合、ECMは、例えば、フレームワークを溶液中で分解させるか、または溶解させることにより回収することができる。あるいは、生分解性フレームワークが、それ自体ECMとともに注射可能な材料からなっている場合、このフレームワークとECMは、その後の注射用にまとめて処理することができる。あるいは、ECMは、非生分解性フレームワークからECMを回収するための前記方法のいずれかにより生分解性フレームワークから取り出すことができる。全ての回収プロセスは、ECMが変性しないように設計するのが好ましい。
回収された後、ECMはさらなる処理を施すことができる。例えば、音波処理によるなど当技術分野で周知の技術を用い、ECMをホモジナイズして微粒子とすることができ、従って外科用針を通り抜けることができる。このECMの成分は、所望によりγ線照射により架橋することができる。好ましくは、ECMを滅菌および架橋するためには、ECMを0.25〜2メガラドの間で照射することができる。グルタルアルデヒドなどの有毒な薬剤を用いた化学架橋も可能であるが、一般に好ましくない。
ECM中に存在する様々な種のコラーゲンなどのタンパク質の量および/または比率は、本発明の細胞によって産生されたECMと、1以上の他の細胞種のECMとを混合することにより調整することができる。また、タンパク質、増殖因子および/または薬剤などの生物学的に活性な物質をECMに配合することができる。生物学的に活性な物質の例としては、注射部位において治癒および組織修復を促進する、TGF−β、脳由来神経栄養因子(BDNF)などような組織増殖因子が挙げられる。このような付加的薬剤は、本明細書の前記のいずれの実施形態においても、例えば、全細胞溶解物、可溶性細胞画分、またはさらなる精製成分およびPPDCにより産生された産物とともに使用可能である。
PPDC、PPDC誘導体成分または産物を含む医薬組成物
別の態様では、本発明は、パーキンソン病および関連の障害を治療するための種々の方法においてPPDC、PPDC集団、PPDCの成分および産物を用いる医薬組成物を提供する。ある特定の実施形態は、生細胞(PPDC単独または他の細胞種と混合したもの)を含む医薬組成物を包含する。他の実施形態は、PPDC細胞成分(例えば、細胞溶解物、可溶性細胞画分、細胞馴化培地、ECM、または前記のいずれかの成分)または産物(例えば、PPDCにより本来産生される、または遺伝的改変から産生された栄養因子または他の生物因子、PPDC培養物由来の細胞馴化培地)を含む医薬組成物を包含する。いずれの場合でも、当該医薬組成物は、当技術分野で公知の抗炎症薬、抗アポトーシス薬、抗酸化薬、増殖因子、神経栄養因子、または神経産生薬もしくは神経保護薬などの他の活性剤をさらに含んでもよい。
PPDC医薬組成物に添加可能な他の成分の例としては、限定されるものではないが、いくつか挙げると、(1)他の神経保護薬または神経受益薬;(2)当技術分野で公知の1以上のコラーゲン種、および/または増殖因子、血小板豊富血漿、および薬剤などの選択された細胞外マトリックス成分(あるいは、PPDCは、増殖因子を発現および産生するよう遺伝的に操作することもできる);(3)抗アポトーシス薬(例えば、エリスロポエチン(EPO)、EPOミメチボディ(mimetibody)、トロンボポエチン、インスリン様増殖因子(IGF)−I、IGF−II、肝細胞増殖因子、カスパーゼ阻害剤);(4)抗炎症化合物(例えば、p38 MAPキナーゼ阻害剤、TGF−β阻害剤、スタチン、IL−6およびIL−1阻害剤、ペミロラスト(PEMIROLAST)、トラニラスト(TRANILAST)、レミケード(REMICADE)、シロリムス(SIROLIMUS)、および非ステロイド系抗炎症薬(NSAID)(テポキサリン(TEPOXALIN)、トルメチン(TOLMETIN)、およびスプロフェン(SUPROFEN)など);(5)免疫抑制剤または免疫調節薬、例えば、カルシニュリン阻害剤、mTOR阻害剤、抗増殖薬、コルチコステロイド、および種々の抗体;(6)抗酸化薬、例えば、プロブコール、ビタミンCおよびE、補酵素Q−10、グルタチオン、L−システインおよびN−アセチルシステイン;(6)局所麻酔薬;ならびに(7)神経栄養因子、例えば、GDF5、BMP−14、CDMP−1、MP52、BMP7、ソニック・ヘッジホッグ(Sonic Hedgehog)(SHH)、繊維芽細胞増殖因子8(FGF8)がある。
本発明の医薬組成物は、製薬上許容される担体または媒体とともに処方されたPPDC、またはその成分もしくは産物を含む。好適な製薬上許容される担体としては、水、塩溶液(リンゲル液)、アルコール、オイル、ゼラチン、および炭水化物(ラクトース、アミロースまたはデンプンなど)、脂肪酸エステル、ヒドロキシメチルセルロース、およびポリビニルピロリドンが挙げられる。このような調製物は滅菌することができ、所望により、滑沢剤、保存剤、安定剤、湿潤剤、乳化剤、浸透圧に影響を与える塩、バッファー、および着色剤などの補助剤と混合することができる。本発明において用いるために好適な医薬担体は当技術分野で公知であり、例えば、Pharmaceutical Sciences (17th Ed., Mack Pub. Co., Easton, PA)、および国際公開第96/05309号に記載されている。
専らというわけではないが典型的には、PPDC成分または産物を含むが、生細胞を含まない医薬組成物は液体(または経口送達が適当である場合には固形錠剤、カプセル剤など)として処方される。これらは、限定されるものではないが、経口、鼻腔、眼内、および静脈内を含む非経口など、標的神経組織への薬剤および生体分子の送達を達成するための当技術分野で公知の許容されるいずれの経路の投与用にも処方することができる。特定の非経口投与経路としては、限定されるものではないが、筋肉内、皮下、腹腔内、大脳内、心室内、脳室内、くも膜下腔内、大槽内、脊髄内および/またはポンプ装置を伴う、もしくは伴わない頭蓋内もしくは脊椎内ニードルおよび/またはカテーテルもしくはマイクロカテーテルを介した送達による脊髄周辺投与経路が挙げられる。
PPDC生細胞を含む医薬組成物は典型的には液体、半固体(例えば、ゲル)または固体(例えば、神経組織工学に適当なマトリックス、スキャフォールドなど)として処方される。液体組成物は、標的神経組織への生細胞の送達を達成するための当技術分野で公知の許容されるいずれの経路の投与用にも処方することができる。典型的には、これらには、限定されるものではないが、眼内、大脳内、心室内、脳室内、くも膜下腔内、大槽内、脊髄内および/またはポンプ装置を伴う、もしくは伴わない頭蓋内もしくは脊椎内ニードルおよび/またはカテーテルを介した送達による脊髄周辺投与経路を含む投与経路による、拡散様式での、または神経疾患または窮迫の部位へ標的化された、CNSまたはPNSへの注射または注入が含まれる。
半固体または固体担体中に生細胞を含む医薬組成物は、典型的には、神経損傷または窮迫部位に外科的に移植するために処方される。液体組成物も外科的手法により投与することができると考えられる。特定の実施形態では、半固体または固体医薬組成物は、半透性ゲル、格子、細胞スキャフォールドなどを含むことができ、これらは非生分解性であっても生分解性であってもよい。例えば、特定の実施形態では、それらの周囲から外因性細胞を隔離することが望ましいか、または適当であり、さらに当該細胞に周囲の神経細胞に生体分子(例えば、神経栄養因子)を分泌および送達させることができる。これらの実施形態では、細胞は、宿主組織から移植細胞を物理的に分離する非分解性の選択的透過バリアにより取り囲まれた、生きたPPDCまたはPPDCを含む細胞集団を含む自己インプラントとして処方することができる。このようなインプラントは、これらが免疫細胞および高分子を、薬理学的に誘導される免疫抑制の不在下で移植細胞の死滅から守る能力を有することから、「免疫保護」と呼ぶことがある(このような装置および方法の総説としては、例えば、P.A. Trescoら, (2000) Adv. Drug Delivery Rev. 42:3-27参照)。
他の実施形態では、多様な分解性ゲルおよびネットワークを本発明の医薬組成物に用いる。例えば、徐放性処方物に特に好適な分解性材料としては、ポリ(乳酸)、ポリ(乳酸−コ−グリコール酸)、メチルセルロース、ヒアルロン酸、コラーゲンなどの生体適合性ポリマーが挙げられる。薬物送達ビヒクル中の分解性ポリマーの構造、選択および使用は、A. Dombら, 1992, Polymers for Advanced Technologies 3:279をはじめ、いくつかの刊行物に総説されている。
他の実施形態では、例えば、大きな神経損傷部の修復のために、分解性、好ましくは、生体吸収性(bioresorbableまたはbioabsorbable)のスキャフォールドまたはマトリックス上または内に細胞を送達するのが望ましいか、または適当である。これらの典型的三次元生体材料はスキャフォールドに付着した、またはスキャフォールド内に分散した、またはスキャフォールドに捕捉された細胞外マトリックスに組み込まれた生細胞を含む。ひと度、身体の標的領域に移植されれば、これらのインプラントは宿主組織と一体となり、移植細胞がしだいに確立されてくる(例えば、Tresco, PAら(2000)前掲参照;また、Hutmacher, DW (2001) J. Biomater. Sci. Polymer Edn. 12:107-174も参照)。
生体適合性マトリックスは、ホモポリマー、コポリマーおよびブロックポリマー、ならびにそれらの組合せを含む天然、修飾天然または合成生分解性ポリマーからなってよい。ポリマーは一般に、それが合成されたモノマーに基づいて呼称されることに注意されたい。
好適な生分解性ポリマーまたはポリマー種の例としては、フィブリン、コラーゲン、エラスチン、ゼラチン、ビトロネクチン、フィブロネクチン、ラミニン、再構成基底膜マトリックス、デンプン、デキストラン、アルギン酸塩、ヒアルロン、キチン、キトサン、アガロース、多糖類、ヒアルロン酸、ポリ(乳酸)、ポリ(グリコール酸)、ポリエチレングリコール、脱細胞化組織、自己集合ペプチド、ポリペプチド、グリコサミノグリカン、それらの誘導体および混合物が挙げられる。両グリコール酸および乳酸とも、中間体の環状ダイマーは重合前に調製および精製されるのが典型である。これらの中間体ダイマーはそれぞれグリコリドおよびラクチドと呼ばれる。他の有用な生分解性ポリマーまたはポリマー種としては、限定されるものではないが、ポリジオキサノン、ポリカーボネート、ポリオキサレート、ポリ(α−エステル)、ポリ無水物、ポリアセテート、ポリカプロラクトン、ポリ(オルトエステル)、ポリアミノ酸、ポリアミド、ならびにそれらの混合物およびコポリマーが挙げられる。さらなる有用な生分解性ポリマーとしては、限定されるものではないが、L−乳酸とD−乳酸のステレオポリマー、ビス(パラ−カルボキシフェノキシ)プロパン酸とセバシン酸のコポリマー、セバシン酸コポリマー、カプロラクトンのコポリマー、ポリ(乳酸)/ポリ(グリコール酸)/ポリエチレングリコールのコポリマー、ポリウレタンとポリ(乳酸)のコポリマー、ポリウレタンとポリ(乳酸)のコポリマー、α−アミノ酸のコポリマー、α−アミノ酸とカプロン酸のコポリマー、α−ベンジルグルタメートとポリエチレングリコールのコポリマー、コハク酸塩とポリ(グリコール)のコポリマー、ポリホスファゼン、ポリヒドロキシ−アルカノエートおよびそれらの混合物が挙げられる。二元系および三元系も意図される。
一般に、マトリックスとして用いるのに好適な生分解性ポリマーは、意図される適用に好適な機械特性を有し、組織が内植して治癒するまで十分に完全な状態を保持し、炎症性応答または毒性応答を誘発せず、その目的を満たした後は体内で代謝され、形成される目的の最終産物へと容易に加工され、許容される保存寿命を示し、かつ、容易に滅菌されるように構成されるのが望ましい。
本発明の一態様では、マトリックスを形成するために用いる生体適合性ポリマーはヒドロゲルの形態である。一般に、ヒドロゲルは水において20重量%を上回る吸収が可能であって、なお、明瞭な三次元構造を維持する架橋ポリマー材料である。この定義には、水性環境で膨潤する乾燥架橋ポリマーならびに水膨潤性材料が含まれる。親水性ポリマーの宿主は、そのポリマーが生物起源のものであれ、半合性品または完全合成品であれ、架橋されてヒドロゲルを形成することができる。このヒドロゲルは合成ポリマー材料から生成され得る。このような合成ポリマーは、ある範囲の特性および予測できるロット間の均一性が得られるように調整可能であり、一般に免疫原性の問題がない信頼性のある材料源となる。このようなマトリックスとしては、米国特許第5,670,483号および同第5,955,343号、米国特許出願第2002/0160471号、PCT出願第WO02/062969号に記載されているものなど、自己集合ペプチドから形成されるヒドロゲルが挙げられる。
ヒドロゲルを薬剤送達適用に有用なものとする特性としては、平衡膨潤度、吸収動態、溶質透過性、およびそれらのインビボ性能が挙げられる。化合物に対する透過性は、一部には、膨潤度または水分含量および生分解速度によって異なる。ゲルの機械強度は膨潤度に正比例して低下するので、その混成系が機械強度を増強するようヒドロゲルを支持体に結合させることができるということもまた、十分本発明の意図の範囲内である。別の実施形態では、ヒドロゲルの有用な送達特性とともに支持体の機械強度が得られるよう、当該ヒドロゲルを多孔質支持体内に含浸させることができる。
本発明において使用可能なスキャフォールドまたはマトリックス(ひとまとめにして「フレームワーク」と呼ぶ場合がある)材料の限定されない例としては、不織マット、多孔質発泡体、微粒子系、または自己集合ペプチドが挙げられる。不織マットは例えば、以下VNWと呼ぶポリ(乳酸−コ−グリコール酸)(10/90PLGA)の合成吸収性コポリマーからなる繊維を用いて形成してもよい。例えば、米国特許第6,355,699号に述べられているような凍結乾燥などの方法で形成されたポリ(ε−カプロラクトン)/ポリ(グリコール酸)(PCL/PGA)コポリマーからなる発泡体も使用可能である。自己集合ペプチド(例えば、RAD16)などのヒドロゲルも使用可能である。in situ形成する分解性ネットワークも本発明における使用に好適である(例えば、Anseth, KSら(2002) J. Controlled Release 78:199-209; Wang, D.ら, (2003) Biomaterials 24:3969-3980;Heらの米国特許公報第2002/0022676号参照)。これらの材料は注射に好適な液体として処方し、その後、in situまたはインビボで分解性のヒドロゲルネットワークを形成するよう、様々な手段(例えば、温度、pH、露光の変化)によって誘導することができる。
別の実施形態では、このフレームワークはフェルトであり、このフェルトは生体吸収性材料、例えば、PGA、PLA、PCLコポリマーもしくはブレンド、またはヒアルロン酸から製造されたマルチ糸から構成することができる。この糸はクランピング、カッティング、カーディングおよびニードリングからなる標準的なテキスタイル加工技術を用いてフェルトとする。別の実施形態では、細胞を混成構造であり得る発泡体スキャフォールド上に播種する。
前記実施形態の多くでは、フレームワークは、例えば、神経索修復用の分離した円柱を備えた脊髄の形状などの有用な形状に成型することができる(Friedman, JAら, (2002) Neurosurgery 51:742-751)。さらに、PPDCは、プレフォーム型の非分解性外科用または移植用デバイス上で、例えば、繊維芽細胞含有GDC血管内コイルを作製するのに使用されるものに対応する方法で培養することができる(Marx, WFら, (2001) Am. J. Neuroradiol 22:323-333)。細胞または細胞誘導体でコートした微粒子系、ビーズ、スフェア、繊維も使用可能である。
当該マトリックス、スキャフォールドまたはデバイスは細胞の接着を増強するために、細胞の接種前に処理することができる。例えば、接種前に、ナイロンマトリックスは0.1モル酢酸で処理し、ポリリジン、PBSおよび/またはコラーゲン中でインキュベートしてこのナイロンをコーティングすることができる。ポリスチレンも硫酸を用いて同様に処理することができる。また、フレームワークの外面は細胞の接着または増殖と組織の分化を向上させるため、フレームワークの血漿コーティングまたは1種類以上のタンパク質(例えば、コラーゲン、弾性繊維、細網繊維)、糖タンパク質、グリコサミノグリカン(例えば、ヘパリン硫酸、コンドロイチン−4−硫酸、コンドロイチン−6−硫酸、デルマタン硫酸、ケラチン硫酸)、細胞マトリックス、および/または限定されるものではないが、とりわけ、ゼラチン、アルギン酸塩、寒天、アガロース、および植物ゴムなどの他の材料の添加などにより改良することができる。
PPDC含有フレームワークは当技術分野で公知の方法に従って作製される。例えば、細胞を集密前または集密まで培養容器で自由に増殖させ、培養物から採取し、フレームワーク上に接種することができる。増殖因子は、所望により分化および組織形成を誘発するため、細胞の接種前、接種中または接種後に培養培地に添加することができる。あるいは、フレームワークそれ自体を、そのフレームワーク上での細胞の増殖が増強されるように、またはインプラントの拒絶反応のリスクが軽減されるように改良することもできる。従って、限定されるものではないが、抗炎症薬、免疫抑制薬または増殖因子を含む1種類以上の生物学的に活性な化合物を、局所放出用のフレームワークに添加してもよい。
パーキンソン症候群および関連の症状を治療する方法
PPDC、PPDCの一部、またはPPDCを含む細胞集団、またはPPDCの成分もしくはPPDCにより産生される産物は、特にパーキンソン病患者において、神経細胞および組織の修復および再生を補助および促進するため、また、神経機能および挙動を改善するための様々な方法で使用することができる。このような利用にはインビトロ法、エキソビボ法およびインビボ法が包含される。
インビトロ法およびエキソビボ法(ex vivo method):
一実施形態では、PPDCは、それらの細胞により本来産生される、または神経系統へと分化を誘導した際に細胞により産生される、または遺伝的改変によって細胞により産生される生体産物を産生させるためインビトロで培養することができる。例えば、TIMP1、TPO、KGF、HGF、FGF、HBEGF、BDNF、MIP1b、MCP1、RANTES、I309、TARC、MDC、およびIL−8は、増殖培地で増殖させた臍由来細胞から分泌されることが分かった。TIMP1、TPO、KGF、HGF、HBEGF、BDNF、MIP1a、MCP−1、RANTES、TARC、エオタキシン、およびIL−8は、増殖培地で培養した胎盤由来PPDCから分泌されることが分かった(実施例参照)。これらの栄養因子のうちBDNFおよびIL−6などのいくつかは、神経再生に重要な役割を持っている。他の栄養因子も、神経修復および再生における使用に関してまだ検出または検討されていないので、PPDCにより産生されるかもしれないし、培地に分泌されるかもしれない。
これに関して、本発明の別の実施形態は、神経系統への分化を刺激する条件下でインキュベートされた未分化PPDCまたはPPDCのいずれかからの細胞馴化培地の産生のためのPPDCの使用を特徴とする。このような細胞馴化培地は、神経形成前駆細胞のインビトロもしくはエキソビボ培養における使用、またはインビボにおいて、PPDCの均質集団、もしくは例えば、PPDCと神経前駆体を含む不均質集団を含む移植細胞を支持することが意図される。
さらに別の実施形態は、様々な目的での、PPDC細胞溶解物、可溶性細胞画分もしくはその成分、またはECMもしくはその成分の使用を含む。前記のように、これらの成分のうちいくつかは医薬組成物において使用可能である。他の実施形態では、細胞溶解物、細胞馴化培地、他の細胞誘導体、またはECMは、外科術に用いる、または移植用の、またはエキソビボ目的の、物質またはデバイスをコーティング、またはそうでなければ処理して、このような処置の過程で接触する細胞または組織の治癒または生存を高める。
以下の実施例に示されるように、PPDCは、成体神経前駆細胞との共存培養で増殖させた場合に、これらの細胞の生存、増殖および分化を補助する能力を示した。よって、別の実施形態では、PPDCは、他の細胞、特に神経細胞および神経前駆体に栄養的支持体を提供するために、インビトロ共存培養で有利に使用される。共存培養では、PPDCおよび所望の他の細胞が、この2種の細胞が接触される条件下で共存培養されるのが望ましい。これは、例えば、細胞を、不均質な細胞集団として培養培地中または好適な培養支持体上に播種することによって達成することができる。あるいは、PPDCはまず集密まで増殖させ、その後、第2の所望の培養細胞種の支持体として働き得る。この実施形態では、細胞はさらに、例えば、膜または類似のデバイスによって物理的に分離することができ、これにより、共存培養後、他の細胞種が除去され、個別に使用することができる。神経細胞種の増殖および分化を促進するための、共存培養物におけるPPDCの使用は、研究およびと臨床/治療分野で適用を見出せる。例えば、PPDC共存培養は、基礎研究目的または薬剤スクリーニングアッセイで用いるため、培養神経細胞の拡大培養および分化を助長するために使用することができる。PPDC共存培養はまた、治療目的で後に投与するために、神経前駆体のエキソビボ拡大培養に使用することができる。例えば、神経前駆細胞は個体から採取し、PPDCとの共存培養でエキソビボ拡大培養し、その後、その個体(自己移植)または別の個体(同系または同種異系移植)に戻すことができる。これらの実施形態では、エキソビボ拡大培養後、PPDCと神経前駆体を含む混合細胞集団を、治療を必要とする患者に投与することができると考えられる。あるいは、自己移植が適当または望ましい場合では、これらの共存培養細胞集団を物理的に分離して培養すれば、患者に投与するための自己神経前駆体を取り出すことができる。
インビボ法:
実施例16〜19に示されるように、PPDCは体内に有効に移植されること、およびヒトにおける有効性の予測可能性に関して受け入れられている動物モデルにおいて喪失した神経機能を提供することが示されている。これらの結果は、パーキンソン病患者において神経組織を修復することによりパーキンソン病を治療するための細胞療法においてPPDCが用いられる場合、パーキンソン病患者において神経組織を再生することによりパーキンソン病を治療するための細胞療法においてPPDCが用いられる場合、パーキンソン病患者において神経機能および/または挙動を改善することによりパーキンソン病を治療するための細胞療法においてPPDCが用いられる場合の本発明の好ましい実施形態を裏付けるものである。実施例18に示されるように、PPDCはチロシネーゲ(thyrosinage)経路によりL−DOPAの産生を可能とするために使用することができ、あるいはPPDCはDOPAアミノ酸豊富な食餌の後、血漿DOPAからドーパミンへの処理を可能とする。一実施形態では、PPDCは体内の標的神経部位に移植され、とりわけ、そこで当該PPDCは1以上の神経表現型へ分化可能であるか、または当該PPDCはその部位で神経前駆体および神経細胞の栄養的支持体となり得るか、または当該PPDCはこれらの両方の様式で有益な効果を発揮し得る。
本発明の特定の実施形態は、パーキンソン病および脳のDA豊富領域に影響を及ぼす他の状態の治療のためのドーパミン作動性(DA)ニューロンの支持、再生または置換に向けられる。
PPDCは単独で投与してもよいし(例えば、実質的に均質な集団)、あるいは他の細胞との混合物として投与してもよい。前記のように、PPDCはマトリックスもしくはスキャフォールドを用いて、または従来の製薬上許容される担体を用いて、医薬製剤として処方して投与することができる。PPDCがマトリックスまたはスキャフォールドとともに投与される場合、治療薬は、材料の取り込みと交換を可能とするGMPにより製造された封入系により投与することができる。PPDCが他の細胞とともに投与される場合、他の細胞と同時または逐次に(他の細胞の前または後に)投与することができる。PPDCとともに投与可能な細胞としては、限定されるものではないが、ニューロン、星状細胞、乏突起神経膠細胞、神経前駆細胞、神経幹細胞および/または他の多分化能性もしくは多能性幹細胞が挙げられる。種々のタイプの細胞を投与の直前または少し前にPPDCと混合することもできるし、あるいは投与前のある期間、共存培養することもできる。
PPDCは他の神経受益薬もしくは生体分子、または当技術分野で公知の抗炎症薬、抗アポトーシス薬、抗酸化薬、増殖因子、神経栄養因子、神経再生薬もしくは神経保護薬などの他の活性薬剤とともに投与してもよい。PPDCが他の薬剤とともに投与される場合、単一の医薬組成物として一緒に投与してもよいし、あるいは他の薬剤と別の医薬組成物として同時または逐次時に(他の薬剤の投与前または投与後に)投与してもよい。他の薬剤は、移植前から始まる、または回復経過中継続した治療計画の一部であってもよいし、あるいは当業者が適宜であると考える場合には、移植時点、さらには移植後に始まってもよい。治療計画は、移植前、移植中、または移植後の電気刺激を含むことができる。
PPDCとともに投与可能な他の成分の例としては、限定されるものではないが、いくつか挙げると、(1)他の神経保護薬または神経受益薬;(2)当技術分野で公知の1以上のコラーゲン種、および/または増殖因子、血小板豊富血漿、および薬剤などの選択された細胞外マトリックス成分(あるいは、PPDCは、増殖因子を発現および産生するよう遺伝的に操作することもできる);(3)抗アポトーシス薬(例えば、エリスロポエチン(EPO)、EPOミメチボディ(mimetibody)、トロンボポエチン、インスリン様増殖因子(IGF)−I、IGF−II、肝細胞増殖因子、カスパーゼ阻害剤);(4)抗炎症化合物(例えば、p38 MAPキナーゼ阻害剤、TGF−β阻害剤、スタチン、IL−6およびIL−1阻害剤、ペミロラスト(PEMIROLAST)、トラニラスト(TRANILAST)、レミケード(REMICADE)、シロリムス(SIROLIMUS)、および非ステロイド系抗炎症薬(NSAID)(テポキサリン(TEPOXALIN)、トルメチン(TOLMETIN)、およびスプロフェン(SUPROFEN)など);(5)免疫抑制剤または免疫調節薬、例えば、カルシニュリン阻害剤、mTOR阻害剤、抗増殖薬、コルチコステロイド、および種々の抗体;(6)抗酸化薬、例えば、プロブコール、ビタミンCおよびE、補酵素Q−10、グルタチオン、L−システインおよびN−アセチルシステイン;ならびに(6)局所麻酔薬がある。
一実施形態では、PPDCは未分化細胞、すなわち、増殖培地で培養されたものとして投与される。あるいは、PPDCは、培養系において所望の神経表現型、例えば、星状細胞、乏突起神経膠細胞またはニューロン、より具体的には、セロトニン作動性ニューロン、ドーパミン作動性ニューロン、コリン作動性ニューロン、GABA作動性ニューロンまたはグルタミン酸作動性ニューロンへの分化を刺激する条件に曝した後に投与してもよい(例えば、Isacson, O., (2003) The Lancet (Neurology) 2:417-424参照)。
本発明の細胞は外科的移植、注射、送達(例えば、カテーテルまたはシリンジによる)が可能であるか、そうでなければ、神経損傷または窮迫部位に直接的または間接的に投与可能である。本発明の細胞またはその組成物の投与経路としては、限定されるものではないが、静脈内、筋肉内、皮下、鼻腔内、大脳内、心室内、脳室内、くも膜下腔内、大槽内、眼内、脊髄内および/またはポンプ装置を伴う、もしくは伴わない頭蓋内もしくは脊椎内ニードルおよび/またはカテーテルを介した送達による脊髄周辺投与経路が挙げられる。
細胞が半固体または固体デバイスで投与される場合、体内の正確な場所への外科的移植が典型的に好ましい投与手段である。しかしながら、神経前駆細胞は、例えば、放射神経膠に従って、または化学シグナルに対する応答によって、神経系へ入る点から特定の場所へに大量の移動が可能であることが知られているので、液体または流体医薬組成物をCNSまたはPNSのより全般的な場所(例えば、パーキンソン病または広汎性の虚血性損傷の場合に予測されるような広汎な罹患領域)に投与することもできる。
産褥由来細胞または産褥由来細胞を含む組成物および/もしくはマトリックスは、マイクロカテーテル、カテーテル留置、シャント、カニューレまたはミニポンプを介してその部位へ送達することができる。これらの組成物および/またはマトリックスは、くも膜下腔内送達、または脳室内投与、または鼻腔内投与により黒質または線条体へ間接的に送達することもできる。ビヒクル賦形剤または担体は、患者への投与、特に、細胞分化が誘発される部位への局所投与に製薬上許容されることが知られているいずれのものであってもよい。例としては、液体培地、例えば、ダルベッコの改変イーグル培地(DMEM)、無菌生理食塩水、無菌リン酸緩衝生理食塩水、Leibovitzの培地(L15,Invitrogen, Carlsbad, CA)、無菌水中のデキストロース、および他のいずれかの生理学上許容される液体が挙げられる。
黒質または線条体への好ましい送達方法は、例えば、F. Balis and D. Poplack (1989) Am. J. Pediatric. Hematol. Oncol. 11(1):74-86に教示されているものなどの既知の技術に従ってオマヤレザバーを用いたくも膜下腔内または脳室内送達である。黒質または線条体へのさらにより好ましい送達方法としては、マイクロカテーテルを介した直接的な実質組織注射によるものがある。
他の実施形態は、製薬上許容される担体とPPDC細胞成分(例えば、細胞溶解物またはその成分)または産物(例えば、PPDCにより本来産生されるか、または遺伝的改変によって産生される栄養因子およびその他の生物因子、PPDC培養からの細胞馴化培地)、または増殖培地から精製されたPPDC増殖培地または産物とを含む治療組成物を投与することによりパーキンソン病を治療する方法を包含する。また、これらの方法はさらに、当技術分野で公知の増殖因子、神経栄養因子または神経再生薬もしくは神経保護薬などの他の薬剤を投与することを含む。
PPDCまたは任意の他の治療薬もしくは本明細書に記載の組成物を投与するための投与形および投与計画は、個々の患者の状態、例えば、そのパーキンソン病からの神経損傷の性質および程度、年齢、性別、体重および健康状態、ならびに医療従事者に知られている他の因子を考慮して、優良医療規範に従って開発される、従って、患者に投与される医薬組成物の有効量は当技術分野で公知のこれらの考慮により決定される。
CNSは多少免疫特権組織であるので、PPDCによる細胞療法を開始する前に患者を免疫抑制する必要がないか、または望まれない。さらに、実施例11に示されるように、PPDCは混合リンパ球反応において同種異系PBMCを刺激しないことが示されている。よって、同種異系PPDCの移植、または異種PPDCの移植でさえも、場合によっては許容される。いくつかの実施形態では、PPDCはそれ自体、免疫抑制効果を提供し、それにより、移植PPDCの宿主拒絶反応を防ぎ、移植細胞を投与後少なくとも2か月間生きた状態で留まらせる。このような場合、細胞療法中の薬理学的な免疫抑制の必要はないと考えられる。
しかしながら、他の例では、細胞療法を開始する前に患者を薬理学的に免疫抑制するのが望ましい、または適当である場合がある。これは、全身または局所免疫抑制薬の使用により達成することもできるし、あるいは上記のように封入デバイスにて細胞を送達することにより達成することもできる。移植細胞に対する免疫応答を軽減または排除するためのこれら、および他の手段は当技術分野で公知である。別法として、PPDCは前記のようにそれらの免疫原性を軽減するために遺伝的に改変することができる。
生きた患者における移植PPDCの生存は、様々な走査技術、例えば、コンピューター体軸断層撮影法(CATまたはCT)スキャン、磁気共鳴画像法(MRI)または陽電子放射型断層撮影(PET)スキャンの使用によって決定することができる。移植生存の決定は、また、神経組織を取り出し、それを視覚的または顕微鏡によって検査することにより死後に行うことができる。あるいは、細胞を神経細胞またはその産物、例えば、神経伝達物質に特異的な染色剤で処理することができる。移植細胞はまた、ローダミン標識またはフルオレセイン標識マイクロスフェア、ファーストブルー、鉄(III)微粒子、ビスベンズアミドなどのトレーサー色素、またはβ−ガラクトシダーゼまたはβ−グルクロニダーゼなどの遺伝的に改変されたリポーター遺伝子産物の組み込み前までに同定することができる。
移植PPDCの、被験体の神経組織への機能的組み込みは、損傷した、または罹患した機能の回復を調べることにより評価することができる。このような機能としては、神経生物学者および医師に周知の手順に従った、限定されるものではないが、運動、認知、感覚および内分泌機能を含む。
PPDC、PPDC成分または産物を含むキットおよびバンク
別の態様では、本発明は、神経の再生および修復のための様々な方法、ならびに前記のようにパーキンソン病および関連の症状を治療するための方法において、PPDC、PPDC集団、PPDCの成分および産物を利用するキットを提供する。パーキンソン病の治療または他の計画治療に用いる場合、当該キットは、少なくともPPDCと製薬上許容される担体(液体、半固体または固体)を含む1以上の細胞集団を含み得る。当該キットはまた、所望により、例えば注射などの細胞を投与する手段を含み得る。当該キットはさらに細胞の使用説明書を含んでもよい。
以下の実施例は本発明の実施形態のいくつかの態様をさらに詳細に説明する。これらの実施例は限定されるものではないが、本明細書に記載の本発明の態様をさらに説明するために提供される。
本明細書および実施例においては次の省略形が使用され得る:PPDC、産褥細胞;UDC、臍由来細胞;PDC、胎盤由来細胞;ANG2(またはAng2)、アンギオポエチン2;APC、抗原提示細胞;BDNF、脳由来神経栄養因子;bFGF、塩基性繊維芽細胞増殖因子;bid(BID)、「bis in die」(1日2回);CK18、サイトケラチン18;CNS、中枢神経系;CXCリガンド3、ケモカイン受容体リガンド3; DMEM、ダルベッコの最小必須培地;DMEM;:lg(またはDMEM:Lg、DMEM:LG)、低グルコースを含むDMEM;EDTA、エチレンジアミン四酢酸;EGF(またはE)、上皮細胞増殖因子;FACS、蛍光活性細胞選別;FBS、ウシ胎児血清;FGF(またはF)、繊維芽細胞増殖因子;GCP−2、顆粒球走化性タンパク質−2;GFAP、膠原繊維酸性タンパク質;HB−EGF、ヘパリン結合上皮細胞増殖因子;HCAEC、ヒト冠動脈内皮細胞;HGF、肝細胞増殖因子;hMSC、ヒト間葉幹細胞;HNF−1α、肝細胞特異的転写因子1α;HUVEC、ヒト臍帯静脈内皮細胞;I309、ケモカインおよびCCR8受容体のリガンド;IGF−I、インスリン様増殖因子1;IL−6、インターロイキン−6;IL−8、インターロイキン8;K19、ケラチン19;K8、ケラチン8;KGF、ケラチノサイト増殖因子;LIF、白血病阻害因子;MBP、ミエリン塩基性タンパク質;MCP−1、単球走化性タンパク質1;MDC、マクロファージ由来ケモカイン;MIP1α、マクロファージ炎症性タンパク質1α;MIP1β、マクロファージ炎症性タンパク質1β;MMP、マトリックスメタロプロテアーゼ(MMP);MSC、間葉幹細胞;NHDF、正常ヒト表皮繊維芽細胞;NPE、神経前駆体拡大培養培地;O4、乏突起神経膠細胞または神経膠分化マーカーO4;PBMC、末梢血単核細胞;PBS、リン酸緩衝生理食塩水;PDGFbb、血小板由来増殖因子;PO、「per os」(経口);PNS、末梢神経系;Rantes(またはRANTES)、活性化時に調節される正常T細胞発現および分泌(regulated on activation, normal T cell expressed and secreted);rhGDF−5、組換えヒト増殖および分化因子5;SC、皮下;SDF−1α、間質由来因子1α;SHH、ソニック・ヘッジホッグ(Sonic Hedgehog);SOP、標準的操作手順;TARC、胸腺および活性化調節ケモカイン;TCP、組織培養プラスチック;TCPS、組織培養ポリスチレン;TGFβ2、トランスフォーミング増殖因子β2;TGFβ−3、トランスフォーミング増殖因子β−3;TIMP1、マトリックスメタロプロテイナーゼ1の組織阻害剤;TPO、トロンボポエチン;TuJ1、βIIIチューブリン;VEGF、血管内皮増殖因子;vWF、すなわち(for)フォン・ウィルブランド因子;およびαFP、α−フェトタンパク質。
以下の実施例および本明細書の他所で用いられるように、増殖培地は一般にPPDCの培養に十分な培地をさす。特に、本発明の細胞の培養に現在のところ好ましい培地は、ダルベッコの最少必須培地(本明細書ではDMEMとも省略される)を含む。DMEM−低グルコース(本明細書ではDMEM−LGとも)(Invitrogen, Carlsbad, CA)が特に好ましい。DMEM−低グルコースには好ましくは、15%(v/v)ウシ胎児血清(例えば、定義済みウシ胎児血清、Hyclone, Logan UT)、抗生剤/抗真菌剤((好ましくは、50〜100単位/mLペニシリン、50〜100μg/mLストレプトマイシン、および0〜0.25μg/mLアムホテリシンB;Invitrogen, Carlsbad, CA))、および0.001%(v/v)2−メルカプトエタノール(Sigma, St. Louis, MO)を添加する。以下の実施例で用いるように、増殖培地とは、15%ウシ胎児血清および抗生剤/抗真菌剤(ペニシリン/ストレプトマイシンが含まれる場合、好ましくはそれぞれ50U/mLおよび50μg/mLであり;ペニシリン/ストレプトマイシン/アムホテリシンBが用いられる場合、好ましくはそれぞれ100U/mL、100μmg/mLおよび0.25μg/mLである)を含むDMEM−低グルコースをさす。場合によっては異なる増殖培地が用いられ、または異なるサプリメントが提供され、これらは通常、増殖培地に対するサプリメントとして本明細書に示されている。
また、以下の実施例に関して、また、本明細書の他所で用いられる、標準増殖条件とは、5%CO2を標準的雰囲気下、37℃での細胞の培養をさす。前述の条件は培養に有用であるが、このような条件は、細胞培養のため当技術分野で利用可能な選択肢を認識する当業者により変更可能である。
実施例1
産褥組織からの誘導
本実施例では、胎盤および臍帯組織からの産褥由来細胞の調製を記載する。産褥臍帯および胎盤は、満期妊娠または早産妊娠のいずれかの出産時に得た。細胞を臍および胎盤組織の別の5ドナーから採取した。種々の細胞単離法を、1)幹細胞に共通の特徴である、表現型の異なる細胞へ分化する能力、または2)他の細胞および組織に有用な栄養因子を提供する能力、を有する細胞を得る能力に関して試験した。
方法および材料
臍帯細胞の単離。臍帯はNational Disease Research Interchange (NDRI, Philadelphia, PA)から入手した。これらの組織を通常分娩から得られたものであった。細胞単離プロトコールを層流フード内で無菌的に行った。血液および残渣を除去するため、臍帯を、抗真菌剤および抗生剤(100単位/mLペニシリン、100μg/mLストレプトマイシン、0.25μg/mLアムホテリシンB)の存在下、リン酸緩衝生理食塩水(PBS;Invitrogen, Carlsbad, CA)で洗浄した。次に、これらの組織を、150cm2の組織培養プレート中、50mLの培地(DMEM−低グルコースまたはDMEM−高グルコース;Invitrogen)の存在下で、組織が微細パルプ(fine pulp)状に細断されるまで機械的に解離させた。細断した組織を50mLのコニカルチューブ(1本当たり組織約5g)を移した。次に、この組織を、それぞれ前記のような抗真菌剤および抗生剤を含有するDMEM−低グルコース培地またはDMEM高グルコース培地のいずれかの中で消化した。ある実験では、コラゲナーゼおよびディスパーゼの酵素混合物を用いた(DMEM−低グルコース培地中、「C:D;」コラゲナーゼ(Sigma, St. Louis, MO)500単位/mL;およびディスパーゼ(Invitrogen)50単位/mL)。また別の実験では、コラゲナーゼ、ディスパーゼおよびヒアルロニダーゼ(「C:D:H」)の混合物を用いた(DMEM−低グルコース培地中、コラゲナーゼ500単位/mL;ディスパーゼ50単位/mL;およびヒアルロニダーゼ(Sigma)5単位/mL)。この組織と培地と消化酵素を含むコニカルチューブを、37℃、オービタルシェーカー(Environ, Brooklyn, NY)にて225rpmで2時間インキュベートした。
消化後、組織を150xgで5分間遠心分離し、上清を吸引した。ペレットを、20mLの増殖培地(DMEM:低グルコース(Invitrogen)、15%(v/v)ウシ胎児血清(FBS;定義済みウシ血清;Lot#AND18475;Hyclone, Logan, UT)、0.001%(v/v)2−メルカプトエタノール(Sigma)、1mL/100mLの、前記のような抗生剤/抗真菌剤に再懸濁させた。この細胞懸濁液を70μmナイロン細胞濾過器(BD Biosciences)で濾過した。増殖培地を含むさらに5mLの洗液も濾過器に通した。次に、この細胞懸濁液を40μmナイロン細胞濾過器(BD Biosciences)に通し、続けてさらに5mLの増殖培地ですすいだ。
濾液を増殖培地(総量50mL)に再懸濁させ、150xgで5分間遠心分離した。上清を吸引し、細胞を50mLの新鮮増殖培地に再懸濁させた。この過程をさらに2回繰り返した。
最終の遠心分離上清を吸引した際、細胞ペレットを5mLの新鮮増殖培地に再懸濁させた。トリパンプルー染色を用い、生細胞数を求めた。その後、標準条件下で細胞を培養した。
臍帯から単離した細胞を、ゼラチンコートT−75cm2フラスコ(Corning Inc., Corning, NY)の、前記のような抗生剤/抗真菌剤を含む増殖培地中に5,000細胞/cm2で播種した。2日後(実験によっては細胞を2〜4日間インキュベートした)、消耗培地をフラスコから吸引した。細胞をPBSで3回洗浄して残渣と血液由来細胞を除去した。次に、細胞を増殖培地に再懸濁させ、密集するまで(0第目から約10日間)増殖させ、継代培養1代目とした。その後の継代培養では(1代目から2代目など)、細胞は4〜5日で密集前(集密度75〜85%密集)に達する。これらのその後の継代培養では、細胞を5000細胞/cm2で播種した。細胞は、5%二酸化炭素と大気酸素を含む加湿インキュベーター内、37℃で増殖させた。
胎盤細胞の単離。胎盤組織はNDRI(Philadelphia, PA)から得た。これらの組織は妊婦由来のものであり、通常の外科的分娩時に採取されたものであった。胎盤細胞も臍帯細胞の単離に関して記載したように単離した。
以下の実施例は、胎盤組織からの母体由来細胞および新生児由来細胞の別集団の単離に適用する。
細胞単離プロトコールは層流フード内で無菌的に行った。胎盤組織を、抗真菌剤および抗生剤(前記の通り)の存在下、リン酸緩衝生理食塩水(PBS;Invitrogen, Carlsbad, CA)で洗浄し、血液および残渣を除去した。次に、この胎盤組織を3片:上層(新生児側または新生児相)、中層(細胞分離帯の新生児および母体混合物)および下層(母体側または母体相)に切り分けた。
分離した切片を個々に、抗生剤/抗真菌剤を含むPBSで数回洗浄し、さらに血液および残渣を除去した。次に、各切片を150cm2組織培養プレート中、50mLのDMEM/低グルコースの存在下で機械的に解離させ、微細なパルプにした。このパルプを50mLのコニカルチューブに移した。各チューブには、約5gの組織を含んだ。この組織を、抗真菌剤および抗生剤(100U/mLペニシリン、100μg/mLストレプトマイシン、0.25μg/mLアムホテリシンB)と消化酵素を含有するDMEM−低グルコースまたはDMEM−高グルコースのいずれかの中で消化した。いくつかの実験では、コラゲナーゼとディスパーゼ(「C:D」)の酵素混合物を用い、これはDMEM−低グルコース培地中に500単位/mLのコラゲナーゼ(Sigma, St. Louis, MO)と50単位/mLのディスパーゼ(Invitrogen)を含んだ。他の実験では、コラゲナーゼとディスパーゼとヒアルロニダーゼ(C:D:H)の混合物を用いた(DMEM−低グルコース中、500単位/mLのコラゲナーゼ、50単位/mLのディスパーゼ、および5単位/mLのヒアルロニダーゼ(Sigma))。組織、培地、および消化酵素を含有するコニカルチューブを、37℃、オービタルシェーカー(Environ, Brooklyn, NY)にて225rpmで2時間インキュベートした。
消化後、組織を150xgで5分間遠心分離し、生じた上清を吸引除去した。このペレットを、ペニシリン/ストレプトマイシン/アムホテリシンBを含む20mLの増殖培地に再懸濁させた。この細胞懸濁液を70μmのナイロン細胞濾過器(BD Biosciences)で濾過した後、さらに5mLの増殖培地ですすいだ。全細胞懸濁液を40μmのナイロン細胞濾過器(BD Biosciences)に通した後、洗液として5mLの増殖培地を加えた。
濾液を増殖培地(総量50mL)に再懸濁させ、150xgで5分間遠心分離した。上清を吸引し、細胞ペレットを50mLの新鮮増殖培地に再懸濁させた。この過程をさらに2回繰り返した。最終の遠心分離の後、上清を吸引し、細胞ペレットを5mLの新鮮増殖培地に再懸濁させた。細胞数は、トリパンプルー排除試験を用いて求めた。その後、細胞を標準条件で培養した。
リベラーゼ細胞単離。リベラーゼ(Boehringer Mannheim Corp., Indianapolis, IN)(2.5mg/mL,ブレンドザイム(Blendzyme)3;Roche Applied Sciences, Indianapolis, IN)とヒアルロニダーゼ(5単位/mL,Sigma)を含むDMEM−低グルコース培地中で臍組織から細胞を単離した。組織の消化および細胞の単離は、C:DまたはC:D:H酵素混合物の代わりにリベラーゼ/ヒアルロニダーゼ混合物を用い、上記で他のプロテアーゼ消化に関する記載と同様であった。リベラーゼで組織を消化すると、拡大培養が容易な産褥組織由来の細胞集団が単離された。
他の酵素の組合せを用いた細胞単離。種々の酵素の組合せを用い、臍帯から細胞を単離する手順を比較した。消化に関して比較した酵素には、i)コラゲナーゼ;ii)ディスパーゼ;iii)ヒアルロニダーゼ;iv)コラゲナーゼ:ディスパーゼ混合物(C;D);v)コラゲナーゼ:ヒアルロニダーゼ混合物(C:H);vi)ディスパーゼ:ヒアルロニダーゼ混合物(D:H);およびvii)コラゲナーゼ:ディスパーゼ:ヒアルロニダーゼ混合物(C:D:H)が含まれた。これらの種々の酵素消化条件を用いたところ、細胞単離の違いが見られた(表1−1)。
Figure 2008525489
臍帯中に残留する血液からの細胞の単離。種々のアプローチにより臍帯から細胞プールを単離するため、他の試みを行った。ある場合には、臍帯をスライスし、増殖培地で洗浄して血餅とゼラチン質を除去した。この血液とゼラチン質と増殖培地の混合物を回収し、150xgで遠心分離した。このペレットを再懸濁させ、ゼラチンコートフラスコの増殖培地中に播種した。これらの実験から、拡大培養の容易な細胞集団が単離された。
臍帯血からの細胞の単離。NDRIから入手した臍帯血サンプルからも細胞を単離した。ここで用いた単離プロトコールは、Hoらによる国際特許出願第US0229971号(Ho, T. W.ら,国際公開第2003025149 A2号)のものであった。臍帯血(NDRI,Philadelphia PA)のサンプル(それぞれ50mLおよび10.5mL)を溶解バッファー(濾過除菌155mM塩化アンモニウム、10mM重炭酸カリウム、pH7.2に緩衝させた0.1mM EDTA(全成分ともSigma, St. Louis, MOから))と混合した。細胞を臍帯血:溶解バッファー1:20の比率で溶解させた。得られた細胞懸濁液を5秒間ボルテックスにかけ、周囲温度で2分間インキュベートした。この溶解液を遠心分離した(200xgで10分間)。細胞ペレットを、10%ウシ胎児血清(Hyclone, Logan UT)、4mMグルタミン(Mediatech Herndon, VA)、100単位ペニシリン/100mLおよび100μgストレプトマイシン/100mL(Gibco, Carlsbad, CA)を含有する完全最小必須培地(Gibco, Carlsbad CA)に再懸濁させた。再懸濁した細胞を遠心分離し(200xgで10分間)、上清を吸引し、細胞ペレットを完全培地で洗浄した。細胞をT75フラスコ(Corning, NY)、T75ラミニンコートフラスコ、またはT175フィブロネクチンコートフラスコ(双方ともBecton Dickinson, Bedford, MA)のいずれかに直接播種した。
種々の酵素の組合せと増殖条件を用いた細胞の単離。細胞集団が種々の条件下で単離され、単離直後に種々の条件下で拡大培養されるかどうかを決定するため、前記の手順に従い、C:D:Hの酵素組合せを用い、0.001%(v/v)の2−メルカプトエタノール(Sigma, St. Louis, MO)を含むまたは含まない増殖培地中で細胞を消化した。このようにして単離した胎盤由来細胞を様々な条件下で播種した。細胞は全てペニシリン/ストレプトマイシンの存在下で増殖させた(表1−2)。
Figure 2008525489
種々の酵素の組合せと増殖条件を用いた細胞の単離。全ての条件で、細胞は継代培養0〜1代目の間、よく接着および拡大培養された(表1−2)。条件5〜8および13〜16の細胞は、播種後4代目までよく増殖することが示され、この時点でそれらの細胞を低温保存し、バンクに入れた。
結果
種々の酵素の組合せを用いた細胞の単離。C:D:Hの組合せは、単離後に最良の細胞収量をもたらし、他の条件よりも培養でより多い世代拡大される細胞を生じた(表1)。コラゲナーゼまたはヒアルロニダーゼ単独を用いても拡大培養可能な細胞集団は得られなかった。この結果が供試したコラーゲンに特異的なものであるかどうかを決定する試みは行わなかった。
種々の酵素の組合せと増殖条件を用いた細胞の単離。酵素消化および増殖を試験した全ての条件下で、細胞は継代培養0〜1代目の間、よく接着および拡大培養された(表2)。実験条件5〜8および13〜16の細胞は播種後4代目までよく増殖し、この時点でそれらの細胞を低温保存した。さらなる検討のために全ての細胞をバンクに入れた。
臍帯の残留血液からの細胞の単離。有核細胞は接着し、急速に増殖した。これらの細胞をフローサイトメトリーで分析したところ、酵素消化により得られた細胞と同等であった。
臍帯血からの細胞の単離。これらの調製物は赤血球と血小板を含んだ。最初の3週間、接着および分裂する有核細胞は見られなかった。播種3週間後に培地を交換しても、接着および増殖が見られた細胞はなかった。
要約。酵素組合せコラゲナーゼ(マトリックスメタロプロテアーゼ)、ディスパーゼ(中性プロテアーゼ)およびヒアルロニダーゼ(ヒアルロン酸を分解する粘液溶解酵素)を用い、臍帯および胎盤組織から効率的に細胞集団を誘導することができる。ブレンドザイムであるリベラーゼも使用可能である。具体的には、コラゲナーゼ(4Wunsch単位/g)とサーモライシン(1714カゼイン単位/g)であるブレンドザイム3も、細胞を単離するため、ヒアルロニダーゼとともに用いた。これらの細胞は、ゼラチンコートプラスチック上の増殖培地で培養したところ、多数回の継代培養で容易に拡大培養された。
また、臍帯の残留血液からも細胞が単離されたが、臍帯血ではなかった。この組織から洗い流した血餅中の、使用した条件下で接着および増殖する細胞の存在は、解剖過程で遊離した細胞によるものである可能性がある。
実施例2
産褥由来細胞の増殖の特徴
産褥由来細胞(PPDC)の細胞拡大培養能を、単離された幹細胞の他の集団と比較した。老化までの細胞拡大培養過程はヘイフリック限界(Hayflick L. 1974a, 1974b)と呼ばれる。産褥由来細胞は、十分な細胞数まで容易に拡大培養できることから、治療使用に極めて適している。
材料および方法
ゼラチンコーティングフラスコ。組織培養プラスチックフラスコは、20分間室温でT75フラスコ(Corning, Corning, NY)に2%(w/v)ブタゼラチン(タイプB:225 Bloom;Sigma, St. Louis, MO)20mLを添加することによりコーティングした。ゼラチン溶液を除去した後、10mLのリン酸緩衝生理食塩水(PBS)(Invitrogen, Carlsbad, CA)を加え、その後、吸引した。
PPDCと他の細胞集団の拡大培養能の比較。増殖拡大能の比較のため、次の細胞集団を用いた;i)間葉幹細胞(MSC;Cambrex, Walkersville, MD);ii)脂肪由来細胞(米国特許第6,555,374 B1号;米国特許出願第US20040058412号);iii)正常皮膚繊維芽細胞(cc−2509ロット#9F0844;Cambrex, Walkersville, MD);iv)臍由来細胞;およびv)胎盤由来細胞。細胞をまず、ゼラチンコートT75フラスコの、ペニシリン/ストレプトマイシン/アムホテリシンBを含む増殖培地に5,000細胞/cm2で播種した。次の継代培養では、細胞培養物を次のように処理した。トリプシン処理後、生細胞をトリパンプルー染色の後に計数した。細胞懸濁液(50μL)をトリパンプルー(50mL,Sigma, St. Louis MO)と合わせた。生細胞数は血球計を用いて評価した。
計数後、細胞を、ゼラチンコートT75フラスコの25mL新鮮増殖培地に5,000細胞/cm2で播種した。37℃の標準条件下で細胞を増殖させた。増殖培地は1週間に2回交換した。細胞が集密度約85%に達した際に継代培養し、細胞が老化するまでこの過程を繰り返した。
各継代培養時に、細胞をトリプシン処理し、計数した。生細胞収量、集団倍加[ln(最終の細胞/最初の細胞)/ln2]および倍加時間(培養時間(時間)/集団倍加)を算出した。至適細胞拡大を決定するため、継代培養ごとの全細胞収量を、それまでの継代培養の全収量に各継代培養の拡大倍率を掛けることにより求めた(すなわち、拡大倍率=最終の細胞/最初の細胞)。
低密度での細胞バンクの培養拡大能。継代培養10代目の時点でバンクに入れた細胞の拡大能もまた、種々の条件セットを用いて試験した。正常皮膚繊維芽細胞(cc−2509ロット#9F0844;Cambrex, Walkersville, MD)、臍由来細胞、および胎盤由来細胞を試験した。これらの細胞集団はそれまでの継代培養10代目の時点でバンクに入れたものであり、5,000細胞/cm2で培養され、その点まで各継代培養において密集するまで増殖させたものであった。解凍した後、継代培養10代目の細胞集団に対する細胞密度の効果を調べた。細胞を標準条件下で解凍し、トリパンプルー染色を用いて計数した。次に、解凍した細胞を、前記のように抗生剤/抗真菌剤を含むDMEM:低グルコース増殖培地に1000細胞/cm2で播種した。細胞は37℃、標準的大気条件下で増殖させた。増殖培地は1週間に2回交換し、細胞が集密度約85%に達した際に継代培養した。その後、細胞を老化するまで、すなわち、それ以上拡大培養できなくなるまで継代培養した。各継代培養時に、細胞をトリプシン処理し、計数した。細胞収量、集団倍加[ln(最終の細胞/最初の細胞)/ln2]および倍加時間(培養時間(時間)/集団倍加)を算出した。継代培養ごとの全細胞収量を、それまでの継代培養の全収量に各継代培養の拡大倍率を掛けることにより求めた(すなわち、拡大倍率=最終の細胞/最初の細胞)。
最初の細胞播種から低密度でのPPDCの拡大培養。新たに単離したPPDCの培養拡大能を低密度細胞播種条件下で試験した。PPDDは本明細書に記載のように調製した。細胞を1000細胞/cm2で播種し、老化するまで前記のように継代培養した。細胞は37℃、標準的大気条件下で増殖させた。増殖培地は1週間に2回交換した。細胞は集密度約85%に達した際に継代培養した。各継代培養に対し、細胞をトリプシン処理し、トリパンプルー染色により計数した。細胞収量、集団倍加[ln(最終の細胞/最初の細胞)/ln2]および倍加時間(培養時間(時間)/集団倍加)を各継代培養において算出した。継代培養ごとの全細胞収量を、それまでの継代培養の全収量に各継代培養の拡大倍率を掛けることにより求めた(すなわち、拡大倍率=最終の細胞/最初の細胞)。細胞を、ゼラチンおよび非ゼラチンコートフラスコで増殖させた。
クローン新生児胎盤由来細胞の拡大培養。胎盤組織からの新生児細胞の集団を拡大培養するためにクローニングを用いた。胎盤から3種類の異なる細胞集団を単離した後(前記の通り)、これらの細胞集団を標準増殖条件下で拡大培養し、その後、核型分析を行い、単離された細胞集団の属性を明らかにした。これらの細胞は男児を分娩した母親から単離されたので、中期染色体進展を行うことで雌雄染色体間を識別するのが簡単であった。これらの実験により、胎児相細胞は新生児表現型(phenotpye)陽性の核型であり、中層細胞は新生児および母体双方の表現型に陽性の核型であり、母体相細胞は母体細胞陽性の核型であったことが示された。
低酸素培養条件における細胞の拡大培養。低酸素細胞培養条件はある特定の状況で細胞拡大を向上させ得ることが示されている(US20040005704)。PPDCの細胞拡大が細胞培養条件を変更することによって向上するかどうかを調べるため、臍帯由来細胞の培養物を低酸素条件で増殖させた。細胞を、ゼラチンコートフラスコの増殖培地に5000細胞/cm2で播種した。まず。細胞を標準的大気条件下で5代まで継代培養し、その時点で低酸素(5%O2)培養条件に移行した。
他の増殖条件。他のプロトコールでは、細胞を、非コート、コラーゲンコート、フィブロネクチンコート、ラミニンコートおよび細胞外マトリックスタンパク質コートを施したプレート上で拡大培養した。培養物はこれらの異なるマトリックス上で十分拡大培養することが示された。
結果
PPDCと他の細胞および非幹細胞集団との培養拡大能の比較。臍帯由来細胞と胎盤由来細胞の双方を40代以上拡大培養すると、60日で細胞収量は>1E17細胞となった。これに対し、MSCおよび繊維芽細胞はそれぞれ<25日後および<60日後に老化した。脂肪由来細胞はほぼ60日間拡大培養したが、全細胞収量は4.5E12であった。従って、用いた実験条件下、5000細胞/cm2で播種すると、産褥由来細胞は同じ条件下で増殖した他の細胞種よりもはるかに良好に拡大培養された(表2−1)。
Figure 2008525489
低密度での細胞バンクの培養拡大能。臍由来細胞、胎盤由来細胞および繊維芽細胞は10代以上拡大培養され、60日で細胞収量は>1E11細胞となった(表2−2)。これらの条件下で60日後、繊維芽細胞は老化したが、臍由来細胞および胎盤由来細胞集団は、80日後に老化し、それぞれ>50倍および>40倍の集団倍加となった。
Figure 2008525489
最初の細胞播種から低密度でのPPDCの増殖。PPDCを、ゼラチンコートおよび非コートプレートまたはフラスコにて低密度(1,000細胞/cm2)で拡大培養した。これらの条件下でこれらの細胞の培養拡大能は良好であった。細胞は対数増殖期には容易に拡大培養された。細胞拡大率は、胎盤由来細胞がゼラチンコートフラスコの増殖培地中、5000細胞/cm2で播種された場合に見られたものと同等であった。非コートフラスコまたはゼラチンコートフラスコでの培養間の細胞拡大能に違いは見られなかった。しかしながら、細胞は、ゼラチンコートフラスコでは表現型としてはるかに小さく見え、非コートフラスコ非コートではもっと大きい細胞表現型が見られた。
クローン新生児胎盤由来細胞または母体胎盤由来細胞の拡大培養。クローン新生児細胞または母体細胞集団は、胎盤の、それぞれ新生児相または母体相から単離された胎盤由来細胞から拡大培養することができる。細胞を連続希釈した後、ゼラチンコートプレートの拡大培養用増殖培地に、96ウェルゼラチンコートプレートの1ウェルにつき1細胞播種する。この最初のクローニングから、拡大性のクローンを同定し、トリプシン処理し、12ウェルゼラチンコートプレートの増殖培地に再び播種した後、引き続き、T25ゼラチンコートフラスコの増殖培地に5,000細胞/cm2で継代培養する。クローン細胞集団が特定されたことを確認するためサブクローニングを行う。サブクローニング実験では、細胞をトリプシン処理し、0.5細胞/ウェルで再び播種する。増殖の良いサブクローンをゼラチンコートT25フラスコにて5,000細胞/cm2/フラスコで拡大培養する。細胞は5,000細胞/cm2/T75フラスコで拡大培養する。クローンの増殖の特徴をプロットすれば、細胞拡大を示すことができる。核型分析により、クローンが新生児のものか母体のものかを確認することができる。
低酸素培養条件での細胞の拡大培養。細胞は低酸素条件下でも十分拡大培養されたが、低酸素条件下での培養では、用いた条件下で、PPDCの細胞拡大に対する有意な効果は見られなかった。
要約。単離された産褥由来細胞を標準的大気酸素下、ゼラチンコートまたは非コートフラスコの増殖培地中、約5000細胞/cm2の密度で増殖させることを含む細胞拡大条件は、継代培養11代目において多数の細胞を形成するに十分である。さらに、このデータは、より低い密度の培養条件(例えば、1000細胞/cm2)を用いて容易に拡大培養可能であることを示唆する。低酸素条件での産褥由来細胞の拡大培養はまた細胞の拡大培養も促進するが、これらの増殖条件を用いた場合の細胞拡大能の増加向上はまだ認められたことがなかった。現在のところ、大きな細胞プールを形成するには標準的大気条件での産褥由来細胞の培養が好ましい。しかしながら、培養条件を変更すれば、産褥由来細胞の拡大も同様に変化し得る。この戦略を用い、これらの細胞集団の増殖能および分化能を向上させることができる。
用いた条件下で、MSCおよび脂肪由来細胞の培養拡大能には限界があるが、産褥由来細胞は、容易に拡大培養され多数の細胞が得られる。
実施例2の参照文献
Figure 2008525489
実施例3
胎盤由来細胞の増殖培地の評価
いくつかの細胞培養培地を胎盤由来細胞の増殖を補助する能力に関して評価した。通常(20%)および低(5%)酸素における胎盤由来細胞の増殖を、MTS比色定量アッセイを用い、3日後に評価した。
方法および材料
継代培養8代目(P8)の胎盤由来細胞を、96ウェルプレートにて、ペニシリン/ストレプトマイシンを含む増殖培地中、1×103細胞/ウェルで播種した。8時間後、下記のように培地を交換し、細胞を37℃、5%CO2下で48時間、通常酸素(大気)または低(5%v/v)酸素中でインキュベートした。MTSを培養培地(CELLTITER 96 AQueous One Solution Cell Proliferation Assay, Promega, Madison, WI)に3時間加え、490nmで吸光度を測定した(Molecular Devices, Sunnyvale CA)。
Figure 2008525489
結果
MTSアッセイの標準曲線は、吸光度増加と細胞数増加の間に直線的な相関を確立した。得られた吸光度値を推定細胞数に変換し、最初の播種に対する変化率(%)を算出した。
血清の影響。通常の酸素条件において培地に血清を添加すると、吸光度、従って生細胞数に用量依存的な増加がもたらされた。完全MSCGMに血清を添加すると、吸光度に用量依存的な低下がもたらされた。血清を添加しない培地では、セルグロフリー(CELLGRO FREE)、ハムのF10およびDMEMでしか明瞭に増殖しなかった。
酸素の影響。低酸素は増殖培地、ハムのF10、およびMSCGMの細胞増殖率を高めるものと思われた。最良の細胞増殖をもたらす培地を増殖の高いものから挙げると、増殖培地>MSCGM>イスコブ(Iscove)+10%FBS=DMEM−H+10%FBS=ハムのF12+10%FBS=RPMI 1640+10%FBSであった。
要約。胎盤由来細胞を通常酸素または低酸素において様々な培養培地で増殖可能である。胎盤由来細胞の短期増殖は、5%酸素または大気酸素中、0、2および10%(v/v)血清を含む12の基本培地で調べた。一般に、胎盤由来細胞は、タンパク質フリーでもあるハムのF10およびセルグロフリーを除き、血清フリー条件では同様に増殖しなかった。これらの血清フリー培地における増殖は、15%血清を含有する培地で見られた最大増殖の約25〜33%であった。
実施例4
D−バリンを含有する培地での産褥由来細胞の増殖
通常のL−バリンイソ型の代わりにD−バリンを含有する培地を用いると、培養繊維芽細胞様細胞の増殖を選択的に阻害できることが報告されている(Hongpaisan, 2000; Sordilloら, 1988)。産褥由来細胞がD−バリンを含有する培地で増殖可能かどうかはこれまでは知られていなかった。
方法および材料
胎盤由来細胞(P3)、繊維芽細胞(P9)および臍帯由来細胞(P5)をゼラチンコートT75フラスコ(Corning, Corning, NY)に5×103細胞/cm2で播種した。24時間後、培地を除去し、細胞をリン酸緩衝生理食塩水(PBS)(Gibco, Carlsbad, CA)で洗浄して残留する培地を除去した。この培地を改変増殖培地(D−バリン(特注品Gibco)、15%(v/v)透析済みウシ胎児血清(Hyclone, Logan, UT)、0.001%(v/v)βメルカプトエタノール(Sigma)、ペニシリン/ストレプトマイシン(Gibco)を含むDMEM)に交換した。
結果
このD−バリン含有培地に播種した胎盤由来細胞、臍帯由来細胞、および繊維芽細胞は、透析済み血清を含有する増殖培地に播種した細胞とは違い、増殖しなかった。繊維芽細胞は形態学的に変化し、サイズが大きくなり、形状も変化した。全ての細胞が死滅し、やがて4週間後、フラスコ表面から剥離した。これらの結果は、D−バリンを含有する培地が産褥由来細胞を選択的に増殖させるのに適さないことを示す。
実施例4の参照文献
Figure 2008525489
実施例5
胎盤由来細胞用の低温保存培地
胎盤由来細胞の低温保存用の低温保存培地を評価した。
方法および材料
ゼラチンコートT75フラスコの増殖培地中で増殖させた胎盤由来細胞をPBSで洗浄し、1mLのトリプシン/EDTA(Gibco)を用いてトリプシン処理した。トリプシン処理を、10mLの増殖培地を添加することで停止させた。これらの細胞を150xgで遠心分離した。上清を除去し、細胞ペレットを1mLの増殖培地に再懸濁させた。細胞懸濁液のアリコート60μLを取り出し、60μLのトリパンプルー(Sigma)に加えた。血球計を用い、生細胞数を評価した。この細胞懸濁液を4等分したところ、各アリコートは88×104細胞を含んだ。細胞懸濁液を遠心分離し、下記の各培地1mLに再懸濁させ、クリオバイアル(Cryovial)(Nalgene)に移した。
1.)増殖培地+10%(v/v)DMSO(Hybrimax, Sigma, St. Louis, MO)
2.)細胞凍結剤w/DMSO、w/メチルセルロース、血清フリー(C6295,Sigma, St. Louis, MO)
3.)細胞凍結剤血清フリー(C2639,Sigma, St. Louis, MO)
4.)細胞凍結剤w/グリセロール(C6039,Sigma, St. Louis, MO)
「マイフロスティ(Mr Frosty)」冷凍容器を製造業者(Nalgene, Rochester, NY)の使用説明書に従って用い、−80℃の冷凍庫で一晩、約−1℃/分で細胞を冷却した。細胞のバイアルを2日間液体窒素中に移した後、37℃の水浴で急速解凍した。これらの細胞を10mLの増殖培地に加え、遠心分離した後、細胞数および生存率を評価した。ゼラチンコートフラスコに5,000細胞/cm2で播種し、細胞が接着および増殖するかどうかを判定した。
結果
低温保存する細胞の最初の生存率をトリパンプルー染色により評価したところ100%であった。低温保存する細胞の最初の生存率をトリパンプルー染色により評価したところ100%であった。
細胞溶解により、C6295に対する生存率と比例する細胞数の減少が見られた。4種類全ての溶液で低温保存した生細胞は3日以内に接着し、分裂し、密集単層を形成した。評価した増殖率に区別可能な違いはなかった。
要約。細胞の低温保存は、細胞バンクまたは細胞産物の作製に利用可能な一手法である。4種類の低温保存混合物を、ヒト胎盤由来細胞を凍結傷害から保護する能力に関して比較した。胎盤由来細胞の低温保存に関して比較されたもののうち、ダルベッコの改変イーグル培地(DMEM)および10%(v/v)ジメチルスルホキシド(DMSO)が好ましい培地である。
実施例6
産褥由来細胞の核型分析
細胞療法に用いる細胞系統は均質であり、夾雑細胞種を含まないことが好ましい。細胞療法に用いる細胞は、通常の染色体数(46本)と構造を持っていなければならない。均質であり、かつ、非産褥組織起源の細胞を含まない胎盤および臍由来細胞系統を同定するため、細胞サンプルの核型分析を行った。
材料および方法
新生男児の産褥組織由来のPPDCを、ペニシリン/ストレプトマイシンを含有する増殖培地で培養した。新生児由来細胞と母体由来細胞(X,X)間の識別が可能となるよう新生男児(X,Y)由来の産褥組織を選択した。細胞を、T25フラスコ(Corning, Corning, NY)の増殖培地に5,000細胞/cm2で播種し、集密度80%まで拡大培養した。細胞を含むT25フラスコは、頚の部分まで増殖培地で満たされていた。サンプルを臨床細胞遺伝学研究所に特別便で配送した(研究所間の推定輸送時間は1時間である)。染色体が最もよく見える分裂中期に細胞を分析した。計数した分裂中期の20細胞のうち5細胞を正常な均質な核型数(2)であるかどうか分析した。細胞サンプルは、2つの核型が見られた場合に均質と特定した。2を超える核型が見られた場合を不均質と特定した。不均質な核型数(4)が見られた場合には、さらなる分裂中期細胞を計数し、分析した。
結果
染色体分析に送られた全ての細胞サンプルは、正常な様相を呈していると解釈された。16の細胞系統のうち3系統は不均質な表現型(XXとXY)を示したが、このことは新生児起源と母体起源の双方に由来する細胞の存在を示す(表6−1)。組織胎盤−N由来の細胞を胎盤の新生児相から単離された。継代培養0代目において、この細胞系統は均質XYを呈していた。しかしながら、継代培養9代目で、この細胞系統は不均質(XX/XY)となったが、これは前には検出されなかった母体起源の細胞が存在していたことを示す。
Figure 2008525489
要約。染色体分析により胎盤由来細胞および臍由来細胞を同定したところ、その核型は臨床細胞遺伝学研究所により解釈されたとろでは正常を呈していた。また、核型分析により、均質な核型により判定されるように、母体細胞由来のものを含まない細胞系統も確認された。
実施例7
フローサイトメトリーによるヒト産褥由来細胞表面マーカーの評価
フローサイトメトリーによる細胞表面タンパク質または「マーカー」の同定を用い、細胞系統の属性を決定することができる。複数のドナーからの、また、種々の処理および培養条件に曝された細胞における発現の一貫性を判定することができる。胎盤および臍から単離された産褥由来細胞(PPDC)系統が同定され(フローサイトメトリーによる)、これらの細胞系統の同定に関するプロフィールが得られた。
材料および方法
培地および培養容器。細胞を、ペニシリン/ストレプトマイシンを含む増殖培地(Gibco Carlsbad, CA)で培養した。細胞を、血漿処理したT75、T150、およびT225組織培養フラスコ(Corning, Corning, NY)で密集するまで培養した。これらのフラスコの増殖面は、2%(w/v)ゼラチン(Sigma, St. Louis, MO)とともに室温で20分間インキュベートすることによりゼラチンコートした。
抗体染色およびフローサイトメトリー分析。フラスコ内の接着細胞をPBSで洗浄し、トリプシン/EDTAで解離させた。細胞を採取し、遠心分離し、PBS中3%(v/v)のFBSに1×107/mLの細胞密度で再懸濁させた。製造業者の使用説明書に従い、目的の細胞表面マーカーに対する抗体(下記参照)を100μLの細胞懸濁液に加え、混合物を暗所で4℃にて30分間インキュベートした。インキュベーション後、細胞をPBSで洗浄し、遠心分離して結合していない抗体を除去した。細胞を500μLのPBSに再懸濁させ、フローサイトメトリーにより分析した。フローサイトメトリー分析は、FACSCalibur装置(Becton Dickinson, San Jose, CA)を用いて行った。
次の細胞表面マーカーに対する抗体を使用した。
Figure 2008525489
胎盤と臍の比較。継代培養8代目において、胎盤由来細胞を臍由来細胞と比較した。
継代培養間の比較。胎盤由来細胞と臍由来細胞を継代培養8代目、15代目および20代目において分析した。
ドナー間の比較。ドナー間の違いを比較するため、種々のドナーからの胎盤由来細胞を互いに比較し、また、種々のドナーからの臍由来細胞を互いに比較した。
表面コートの比較。ゼラチンコートフラスコで培養した胎盤由来細胞を、非コートフラスコで培養した胎盤由来細胞と比較した。ゼラチンコートフラスコで培養した臍由来細胞を、非コートフラスコで培養した臍由来細胞と比較した。
消化酵素の比較。細胞の単離および調製に用いた4つの処理を比較した。1)コラゲナーゼ;2)コラゲナーゼ/ディスパーゼ;3)コラゲナーゼ/ヒアルロニダーゼ;および4)コラゲナーゼ/ヒアルロニダーゼ/ディスパーゼ処置により胎盤から単離された細胞を比較した。
胎盤層の比較。胎盤組織の母体相由来の細胞を、胎盤組織の絨毛領域由来の細胞および胎盤の新生胎児相由来の細胞と比較した。
結果
胎盤と臍の比較。胎盤由来細胞および臍由来細胞をフローサイトメトリーにより分析したところ、IgG対照に対する蛍光値の増大により示される、CD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cの陽性発現が示された。これらの細胞は、IgG対照に匹敵する蛍光値により示される、CD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQの検出可能な発現に関して陰性であった。陽性曲線の蛍光値の変動を考慮した。陽性曲線の平均(すなわち、CD13)および範囲(すなわち、CD90)はいくらかの変動を示したが、これらの曲線は正常であるものと思われ、均質な集団であることが確認された。両曲線ともそれぞれIgG対照よりも高い値を示した。
継代培養間の比較−胎盤由来細胞。フローサイトメトリーにより、継代培養8代目、15代目、および20代目における胎盤由来細胞を分析したところ、IgG対照に対する蛍光値の増大により示されるように、CD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cに関して全て陽性であった。これらの細胞はCD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQの発現に関して陰性であり、IgG対照と一致する蛍光値を有していた。
継代培養間の比較−臍由来細胞。フローサイトメトリーにより、継代培養8代目、15代目、および20代目における臍由来細胞を分析したところ、IgG対照に対する蛍光の増大により示されるように、全てCD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cを発現した。これらの細胞は、IgG対照と一致する蛍光値により示されるように、CD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQについては陰性であった。
ドナー間の比較−胎盤由来細胞。フローサイトメトリーにより分析された、個々のドナーから単離された胎盤由来細胞は各々、CD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cを発現し、IgG対照よりも蛍光値が増大していた。これらの細胞は、IgG対照と一致する蛍光値により示されるように、CD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQの発現については陰性であった。
ドナー間の比較−臍由来細胞。フローサイトメトリーにより分析された、個々のドナーから単離された臍由来細胞は各々、IgG対照に対する蛍光値の増大に反映されるように、CD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cの陽性発現を示した。これらの細胞は、CD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQの発現については陰性であり、IgG対照と一致する蛍光値を有していた。
胎盤由来細胞に対するゼラチンによる表面コーティングの効果。ゼラチンコートまたは非コートフラスコのいずれかで拡大培養した胎盤由来細胞をフローサイトメトリーにより分析したところ、IgG対照に対する蛍光値の増大に反映されるように、全てCD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cを発現した。これらの細胞は、IgG対照と一致する蛍光値により示されるように、CD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQの発現については陰性であった。
臍由来細胞に対するゼラチンによる表面コーティングの効果。ゼラチンおよび非コートフラスコで拡大培養した臍由来細胞をフローサイトメトリーにより分析したところ、全てCD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cの発現に関して陽性であり、IgG対照よりも高い蛍光値を有していた。これらの細胞は、CD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQの発現については陰性であり、IgG対照と一致する蛍光値を有していた。
細胞表面マーカープロフィールに対する細胞の調製に用いる酵素消化法の効果。種々の消化酵素を用いて単離された胎盤由来細胞をフローサイトメトリーにより分析したところ、IgG対照に対する蛍光の増大により示されるように、全てCD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cを発現した。これらの細胞は、IgG対照と一致する蛍光値により示されるように、CD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQの発現については陰性であった。
胎盤層の比較。胎盤の母体層、絨毛層、および新生児層からそれぞれ単離された細胞をフローサイトメトリーにより分析したところ、IgG対照に対する蛍光の増大により示されるように、CD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cの陽性発現を示した。これらの細胞は、IgG対照と一致する蛍光値により示されるように、CD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQの発現については陰性であった。
要約。フローサイトメトリーによる胎盤由来細胞および臍由来細胞の分析により、これらの細胞系統の属性が確認された。胎盤由来細胞および臍由来細胞はCD10、CD13、CD44、CD73、CD90、PDGFr−αおよびHLA−A、B、Cについて陽性であり、CD31、CD34、CD45、CD117、CD141、およびHLA−DR、DP、DQについては陰性である。この属性は、ドナー、継代培養、培養容器表面コーティング、消化酵素、および胎盤層を含む変数における変動間で一致していた。個々の蛍光値ヒストグラム曲線の平均および範囲にはある程度の変動が見られたが、全ての試験条件下で全ての陽性曲線が正常であり、発現した蛍光値はIgG対照よりも大きく、従って、これらの細胞はマーカーの陽性発現を有する均質な集団を含むことが確認された。
実施例8
産褥組織表現型の免疫組織化学的同定
ヒト産褥組織、すなわち、臍帯および胎盤内で見られる細胞の表現型を免疫組織化学により分析した。
材料および方法
組織の調製。ヒト臍帯および胎盤組織を採取し、4℃にて一晩、4%(w/v)パラホルムアルデヒドに浸漬固定した。免疫組織化学は、次のエピトープ:ビメンチン(1:500;Sigma, St. Louis, MO)、デスミン(desmin)(1:150、ウサギで作製;Sigma;または1:300、マウスで作製;Chemicon, Temecula, CA)、α−平滑筋アクチン(SMA;1:400;Sigma)、サイトケラチン18(CK18;1:400;Sigma)、フォン・ウィルブランド因子(vWF;1:200;Sigma)、およびCD34(ヒトCD34クラスIII;1:100;DAKOCytomation, Carpinteria, CA)に対する抗体を用いて行った。さらに、次のマーカーも試験した:抗ヒトGROα−PE(1:100;Becton Dickinson, Franklin Lakes, NJ)、抗ヒトGCP−2(1:100;Santa Cruz Biotech, Santa Cruz, CA)、抗ヒト酸化LDL受容体1(ox−LDL R1;1:100;Santa Cruz Biotech)、および抗ヒトNOGO−A(1:100;Santa Cruz Biotech)。固定標本をメスでトリミングし、エタノールを含むドライアイス浴上、OCT包理化合物(Tissue−Tek OCT;Sakura, Torrance, CA)内に入れた。次に、凍結したブロックを標準的なクリオスタット (Leica Microsystems)を用いて切片とし(10μm厚)、染色のためスライドグラスに置いた。
免疫組織化学。免疫組織化学は、従前の研究(例えば、Messinaら,(2003) Exper. Neurol. 184:816-829)と同様に行った。組織切片をリン酸緩衝生理食塩水(PBS)で洗浄し、細胞内抗原に接近するため、PBS、4%(v/v)ヤギ血清(Chemicon, Temecula, CA)、および0.3%(v/v)トリトン(トリトン X−100;Sigma)を含有するタンパク質遮断溶液に1時間曝した。目的のエピトープ(CD34、ox−LDL R1)が細胞表面に存在している場合には、エピトープの損失を避けるために、当該手順の全ての工程からトリトンを除いた。さらに、一次抗体がヤギに対して作製された場合には(GCP−2、ox−LDL R1、NOGO−A)、手順全体においてヤギ血清の代わりに3%(v/v)ロバ血清を用いた。遮断溶液に希釈した一次抗体を、次に、室温で4時間、これらの切片に適用した。一次抗体溶液を除去し、培養物をPBSで洗浄した後、ヤギ抗マウスIgG−テキサスレッド(1:250;Molecular Probes, Eugene, OR)および/またはヤギ抗ウサギIgG−アレキサ(Alexa)488(1:250;Molecular Probes)またはロバ抗ヤギIgG−FITC(1:150;Santa Cruz Biotech)とともにブロックを含む二次抗体溶液を適用した(室温で1時間)。培養物を洗浄し、10μMのDAPI(Molecular Probes)を10分間適用し、細胞核を可視化した。
免疫染色後、オリンパス倒立エピ蛍光顕微鏡(Olympus, Melville, NY)にて、適当な蛍光フィルターを用い、蛍光を可視化した。陽性染色は、対照染色を超える蛍光シグナルにより表された。代表的な画像を、デジタルカラービデオカメラとイメージプロ(ImagePro)ソフトウエア(Media Cybernetics, Carlsbad, CA)を用いて取り込んだ。三重染色サンプルについては、1回に放射フィルターを1つだけ用いて各画像を採取した。次に、アドビ・フォトショップ(Adobe Photoshop)ソフトウエア(Adobe, San Jose, CA)を用いて層状モンタージュを作製した。
結果
臍帯の特性決定。ビメンチン、デスミン、SMA、CK18、vWF、およびCD34マーカーは臍帯内に見られた細胞のサブセットで発現された。特に、vWFおよびCD34の発現は臍帯内に含まれる血管に限定されていた。CD34+細胞は最内層(管腔側)に存在した。ビメンチンの発現は臍帯のマトリックスおよび血管の全域に見られた。SMAはマトリックスおよび動脈と静脈の外壁に限定されたが、血管それ自体には含まれていなかった。CK18およびデスミンは血管内だけに見られ、デスミンは中層と外層に限定されていた。
胎盤の特性決定。ビメンチン、デスミン、SMA、CK18、vWF、およびCD34は全て胎盤内に見られ、領域特異的であった。
GROα、GCP−2、ox−LDL R1、およびNOGO−Aの組織発現。これらのマーカーで臍帯または胎盤組織内に見られたものは無かった。
要約。ビメンチン、デスミン、α−平滑筋アクチン、サイトケラチン18、フォン・ウィルブランド因子、およびCD34はヒト臍帯および胎盤内の細胞で発現される。
実施例9
オリゴヌクレオチドアレイを用いた産褥組織由来細胞の分析
Affymetrix GENECHIPアレイを用い、臍由来細胞および胎盤由来細胞の遺伝子発現プロフィールを、繊維芽細胞、ヒト間葉幹細胞、およびヒト骨髄由来の別の細胞系統の場合と比較した。この分析により産褥由来細胞の特性決定ができ、これらの細胞に独特な分子マーカーが同定された。
材料および方法
細胞の単離および培養。ヒト臍帯および胎盤は、National Disease Research Interchange (NDRI, Philadelphia, PA)から、患者の同意を得て正常な満期分娩のものを入手した。これらの組織を受け取り、実施例1に記載のように細胞を単離した。細胞を、ゼラチンコート組織培養プラスチックフラスコの増殖培地(DMEM−LGを使用)で培養した。これらの培養物を37℃、5%CO2でインキュベートした。
ヒト皮膚繊維芽細胞は、Cambrex Incorporated (Walkersville, MD;ロット番号9F0844)およびATCC CRL−1501(CCD39SK)から購入した。両系統を10%(v/v)ウシ胎児血清(Hyclone)およびペニシリン/ストレプトマイシン(Invitrogen)を含むDMEM/F12培地(Invitrogen, Carlsbad, CA)で培養した。これらの細胞は、標準的な組織処理プラスチックで増殖させた。
ヒト間葉幹細胞(hMSC)は、Cambrex Incorporated (Walkersville, MD;ロット番号2F1655、2F1656および2F1657)から購入し、製造業者の使用説明書に従い、MSCGM培地(Cambrex)で培養した。これらの細胞は37℃、5%CO2下、標準的な組織培養プラスチックで増殖させた。
ヒト腸骨稜(ileac crest)骨髄は、患者の同意を得てNDRIから得た。骨髄はHoら(WO03/025149)が概略を示した方法に従って処理した。骨髄を溶解バッファー(155mM NH4Cl、10mM KHCO3、および0.1mM EDTA、pH7.2)と、溶解バッファー20部に対して骨髄1部の比率で混合した。この細胞懸濁液をボルテックスにかけ、周囲温度で2分間インキュベートし、500xgで10分間遠心分離した。上清を廃棄し、細胞ペレットを、10%(v/v)ウシ胎児血清および4mMグルタミンを添加した最小必須培地−α(Invitrogen)に再懸濁させた。これらの細胞を再び遠心分離し、細胞ペレットを新鮮培地に再懸濁させた。生単核細胞を、トリパンブルー排除(Sigma, St. Louis, MO)を用いて計数した。これらの単核細胞を組織培養プラスチックフラスコに5×104細胞/cm2で播種した。これらの細胞を37℃、標準的大気O2または5%O2のいずれかで5%CO2下、インキュベートした。細胞を、培地を交換せずに5日間培養した。培養5日後に培地と非接着細胞を除去した。接着細胞を培養維持した。
mRNAの単離およびGENECHIP分析。活発に増殖する細胞の培養物を、冷PBSにて細胞スクレーパーを用いてフラスコから取り出した。これらの細胞を300xgで5分間遠心分離した。上清を除去し、細胞を新鮮なPBSに再懸濁させ、再び遠心分離した。上清を除去し、細胞ペレットをすぐに凍結させ、−80℃で保存した。細胞のmRNAを抽出し、cDNAへと転写させ、次にこれをcRNAへと転写させ、ビオチン標識した。このビオチン標識cRNAをHG−U133A GENECHIPオリゴヌクレオチドアレイ(Affymetrix, Santa Clara CA)とハイブリダイズさせた。ハイブリダイゼーションおよびデータ収集は、製造業者の使用説明書に従って行った。分析は"Significance Analysis of Microarrays"(SAM)バージョン1.21コンピューターソフトウエア(Stanford University, www-stat.stanford.edu/〜tibs/SAM; Tusher, VGら, (2001) Proc. Natl. Acad. Sci. USA 98:5116-5121)を用いて行った。
結果
14の異なる細胞集団を分析した。これらの細胞を、継代培養情報、培養支持体、および培養培地とともに表9−1に挙げる。
Figure 2008525489
このデータを、これらの細胞で示差的に発現された290の遺伝子を分析する主成分分析により評価した。この分析によれば、集団間の類似性の相対的比較が可能となる。表9−2は、細胞対の比較に関して算出されたユークリッド距離を示す。これらのユークリッド距離は、細胞種間で示差的に発現された290の遺伝子に基づく細胞も比較を基にしたものであった。ユークリッド距離は、290の遺伝子の発現間の類似性と反比例する(すなわち、距離が長くなるほど、存在する類似性が小さくなる)。
Figure 2008525489
表9−3、9−4、および9−5は、胎盤由来細胞で増大された遺伝子発現(表9−3)、臍由来細胞で増大された遺伝子発現(表9−4)、および臍由来細胞および胎盤由来細胞で低下した遺伝子発現(表9−5)を示す。「プローブセットID」とされた列は、特定の受託番号(「NCBI受託番号」の列)のNCBI(GenBank)データベース内に見出すことができる配列を含む、命名された遺伝子(「遺伝子名」の列)とハイブリダイズする、チップ上の特定の部位に存在するいくつかのオリゴヌクレオチドプローブのセットに関する製造業者の識別コードをさす。
Figure 2008525489
Figure 2008525489
Figure 2008525489
Figure 2008525489
Figure 2008525489
表9−6、9−7、および9−8は、ヒト繊維芽細胞(表9−6)、ICBM細胞(表9−7)、およびMSC(表9−8)において増大されている遺伝子の発現を示す。
Figure 2008525489
Figure 2008525489
Figure 2008525489
要約。本検討は臍帯および胎盤に由来する産褥細胞の分子同定を得るために行った。この分析は3種類の異なる臍帯と3種類の異なる胎盤に由来する細胞を含んだ。この検討はまた、2種類の異なる皮膚繊維芽細胞系統と、3種類の間葉幹細胞系統と、3種類の腸骨稜(ileac crest)骨髄細胞系統も含んだ。これらの細胞によって発現されたmRNAを、22,000遺伝子のプローブを含んだオリゴヌクレオチドアレイを用いて分析した。結果は、これら5つの異なる細胞種で290の遺伝子が示差的に発現されたことを示した。これらの遺伝子は、胎盤由来細胞で特異的に増大されている10遺伝子と、臍帯由来細胞で特異的に増大されている7遺伝子を含む。54遺伝子は、他の細胞種に比較して胎盤および臍帯で特異的に低い発現レベルを有することが分かった。選択された遺伝子の発現をPCRで確認した(以下の実施例を参照)。これらの結果は、産褥由来細胞は、例えば、骨髄由来細胞および繊維芽細胞と比較して、明瞭な遺伝子発現プロフィールを有することを示す。
実施例10
産褥由来細胞の細胞マーカー
前記の実施例では、ヒト胎盤およびヒト臍帯由来の細胞における類似性および相違を、他の供給源に由来する細胞と遺伝子発現プロフィールを比較することによって評価した(オリゴヌクレオチドアレイを使用)。6つの「シグネチャー」遺伝子:酸化LDL受容体 1、インターロイキン−8、レニン、レチクロン、ケモカイン受容体リガンド3(CXCリガンド3)、および顆粒球走化性タンパク質2(GCP−2)を同定した。これらの「シグネチャー」遺伝子は産褥由来細胞では比較的高レベルで発現した。
本実施例に記載される手順を行い、マイクロアレイデータを立証し、遺伝子とタンパク質発現の間の一致/不一致を見つけるとともに、胎盤由来細胞および臍由来細胞に独特な識別子の検出のための信頼できる一連のアッセイを確立した。
方法および材料
細胞。ゼラチンコートT75フラスコにて、ペニシリン/ストレプトマイシンを含む増殖培地で増殖させた胎盤由来細胞(3つの単離物、核型分析により同定したところ、主として新生児の単離物1つを含む)、臍由来細胞(4つの単離物)、および正常ヒト表皮繊維芽細胞(NHDF;新生児および成人)。間葉(Mesechymal幹細胞(MSC)を間葉幹細胞 増殖培地ブリットキット(MSCGM;Cambrex, Walkerville, MD)で増殖させた。
IL−8プロトコールでは、細胞を液体窒素から解凍し、ゼラチンコートフラスコに5,000細胞/cm2でプレーティングし、48時間、増殖培地で増殖させ、その後、さらに8時間、10mLの血清飢餓培地[DMEM−低グルコース(Gibco, Carlsbad, CA)、ペニシリン/ストレプトマイシン(Gibco, Carlsbad, CA)および0.1%(w/v)ウシ血清アルブミン(BSA; Sigma, St. Louis, MO)]で増殖させた。この処理の後、RNAを抽出し、上清を150xgで5分間遠心分離して細胞残渣を除去した。その後、上清をELISA分析のため−80℃で冷凍した。
ELISAアッセイのための細胞培養。胎盤および臍由来の産褥細胞、ならびにヒト新生児包皮由来のヒト繊維芽細胞を、ゼラチンコートT75フラスコの増殖培地で培養した。継代培養11代目に液体窒素中で細胞を凍結させた。細胞を解凍し、15mL容の遠沈管に移した。150xgで5分間遠心分離した後、上清を廃棄した。細胞を4mLの培養培地に再懸濁させ、計数した。細胞を、15mLの増殖培地が入った75cm2フラスコ中、375,000細胞/フラスコで24時間増殖させた。この培地を血清飢餓培地に8時間交換した。インキュベーション終了時に血清飢餓培地を回収し、14,000xgで5分間遠心分離した(−20℃で保存)。
各フラスコ内の細胞の数を評価するため、2mLのチルプシン(tyrpsin)/EDTA(Gibco, Carlsbad, CA)を各フラスコに加えた。細胞をフラスコから解離させた後、トリプシン活性を8mLの増殖培地で中和した。細胞を15mLの遠沈管に移し、150xgで5分間、遠心分離した。上清を除去し、各管に1mLの増殖培地を加えて細胞を再懸濁させた。細胞数は血球計を用いて評価した。
ELISAアッセイ。細胞により血清飢餓培地中へ分泌されたIL−8の量を、ELISAアッセイ(R&D Systems, Minneapolis, MN)を用いて分析した。アッセイは全て、製造業者が提供している使用説明書に従って行った。
全RNAの単離。密集状態の産褥由来細胞および繊維芽細胞から、またはIL−8の発現に関しては前記のように処理した細胞から、RNAを抽出した。細胞を、β−メルカプトエタノール(Sigma, St. Louis, MO)を含む350μLのバッファーRLTを用い、製造業者の使用説明書に従って溶解した(RNeasy Mini Kit;Qiagen, Valencia, CA)。RNAを製造業者の使用説明書に従って抽出し(RNeasy Mini Kit;Qiagen, Valencia, CA)、DNアーゼ処理(2.7U/サンプル)(Sigma St. Louis, MO)を施した。RNAを50μLのDEPC処理水で溶出させ、−80℃で保存した。
逆転写。また、ヒト胎盤および臍からもRNAを抽出した。組織(30mg)を、2−メルカプトエタノールを含むバッファーRLT 700μLに懸濁させた。サンプルを機械的にホモジナイズし、製造業者の使用説明書に従い、RNA抽出を進めた。RNAを50μLのDEPC処理水で抽出し、−80℃で保存した。RNAを、TaqMan逆転写試薬(Applied Biosystems, Foster City, CA)とともにランダムヘキサマーを用い、25℃10分間、37℃60分間、および95℃10分間で逆転写させた。サンプルを−20℃で保存した。
cDNAマイクロアレイにより産褥細胞において独特な調節を受けていることが確認された遺伝子(シグネチャー遺伝子−酸化LDL受容体、インターロイキン−8、レンニン(rennin)およびレチクロン)を、リアルタイムPCRおよび従来のPCRを用いてさらに調べた。
リアルタイムPCR。Assays−on−Demand(商標)遺伝子発現産物を用いcDNAサンプルに対してPCRを行った:酸化LDL受容体(Hs00234028);レンニン(Hs00166915);レチクロン(Hs00382515);CXCリガンド3(Hs00171061);GCP−2(Hs00605742);IL−8(Hs00174103);およびGAPDH(Applied Biosystems, Foster City, CA)を、ABI Prism 7000 SDSソフトウエア(Applied Biosystems, Foster City, CA)とともに7000配列検出系を用い、製造業者の使用説明書に従い(Applied Biosystems, Foster City, CA)、cDNAおよびTaqManユニバーサルPCRマスターミックスと混合した。温度サイクル条件は、まず、50℃2分および95℃10分の後、95℃15秒および60℃1分の40サイクルとした。PCRデータは製造業者の使用説明書に従って分析した(ABI Prism 7700配列検出系の場合は、Applied BiosystemsのUser Bulletin #2)。
従来のPCR。リアルタイムPCRからの結果を確認するため、ABI PRISM 7700(Perkin Elmer Applied Biosystems, Boston, Massachusetts, USA)を用いて従来のPCRを行った。PCRは、2μLのcDNA溶液、1×AmpliTaq GoldユニバーサルミックスPCR反応バッファー(Applied Biosystems, Foster City, CA)を用い、初期変性を94℃5分間として行った。各プライマーセットに関して増幅を至適化した。IL−8、CXCリガンド3、およびレチクロンでは、94℃15秒、55℃15秒および72℃30秒の30サイクル);レンニンでは、94℃15秒、53℃15秒および72℃30秒の38サイクル);酸化LDL受容体およびGAPDHでは、94℃15秒、55℃15秒および72℃30秒の33サイクル。増幅に用いたプライマーは表1に一覧化されている。最終的なPCR反応液のプライマー濃度は1μMとした(ただし、GAPDHの場合は0.5μMとした)。GAPDHプライマーでは、製造業者のTaqManプローブを最終的なPCR反応液に加えなかったこと以外はリアルタイムPCRの場合と同様であった。サンプルを2%(w/v)アガロースゲルに流し、臭化エチジウム(Sigma, St. Louis, MO)で染色した。667ユニバーサル・ツインパック・フィルム(VWR International, South Plainfield, NJ)を用い、焦点距離ポラロイドカメラ(VWR International, South Plainfield, NJ)で画像を取り込んだ。
Figure 2008525489
免疫蛍光。PPDCを室温にて10分間、4%(w/v)パラホルムアルデヒド(Sigma- Aldrich, St. Louis, MO)で固定した。継代培養0代目(P0)(単離後に直接)および継代培養11代目(P11)の臍および胎盤由来細胞(胎盤由来細胞単離物2つ、臍由来細胞単離物2つ)ならびに繊維芽細胞(P11)を用いた。免疫組織化学は、次のエピトープ:ビメンチン(1:500;Sigma, St. Louis, MO)、デスミン(1:150;Sigma;ウサギで作製;または1:300;Chemicon, Temecula, CA;マウスで作製)、α−平滑筋アクチン(SMA;1:400;Sigma)、サイトケラチン18(CK18;1:400;Sigma)、フォン・ウィルブランド因子(vWF;1:200;Sigma)、およびCD34(ヒトCD34クラスIII;1:100;DAKOCytomation, Carpinteria, CA)に対する抗体を用いて行った。さらに、次のマーカーも11代目の産褥細胞に対して試験した:抗ヒトGROα−PE(1:100;Becton Dickinson, Franklin Lakes, NJ)、抗ヒトGCP−2(1:100;Santa Cruz Biotech, Santa Cruz, CA)、抗ヒト酸化LDL受容体1(ox−LDL R1;1:100;Santa Cruz Biotech)、および抗ヒトNOGA−A(1:100;Santa Cruz Biotech)。
培養物をリン酸緩衝生理食塩水(PBS)で洗浄し、細胞内抗原に接近するため、PBS、4%(v/v)ヤギ血清(Chemicon, Temecula, CA)、および0.3%(v/v)トリトン(トリトン X−100;Sigma, St. Louis, MO)を含有するタンパク質遮断溶液に30分間曝した。目的のエピトープが細胞表面に存在している場合には(CD34、ox−LDL R1)、エピトープの損失を避けるために、当該手順の全ての工程からトリトン X−100を除いた。さらに、一次抗体がヤギに対して作製された場合には(GCP−2、ox−LDL R1、NOGO−A)、手順全体においてヤギ血清の代わりに3%(v/v)ロバ血清を用いた。遮断溶液に希釈した一次抗体を、次に、室温で1時間、培養物に適用した。一次抗体溶液を除去し、培養物をPBSで洗浄した後、ヤギ抗マウスIgG−テキサスレッド(1:250;Molecular Probes, Eugene, OR)および/またはヤギ抗ウサギIgG−アレキサ(Alexa)488(1:250;Molecular Probes)またはロバ抗ヤギIgG−FITC(1:150;Santa Cruz Biotech)とともにブロックを含む二次抗体溶液を適用した(室温で1時間)。その後、培養物を洗浄し、10μMのDAPI(Molecular Probes)を10分間適用し、細胞核を可視化した。
免疫染色後、オリンパス倒立エピ蛍光顕微鏡(Olympus, Melville, NY)にて、適当な蛍光フィルターを用い、蛍光を可視化した。全ての場合で陽性染色は、対照染色を超える蛍光シグナルを表し、その場合には、一次抗体溶液の適用を除き、前記で概略を示した全手順を続けた。代表的な画像を、デジタルカラービデオカメラとイメージプロ(ImagePro)ソフトウエア(Media Cybernetics, Carlsbad, CA)を用いて取り込んだ。三重染色サンプルについては、1回に放射フィルターを1つだけ用いて各画像を採取した。次に、アドビ・フォトショップ(Adobe Photoshop)ソフトウエア(Adobe, San Jose, CA)を用いて層状モンタージュを作製した。
FACS分析のための細胞の調製。フラスコに接着している細胞をリン酸緩衝生理食塩水(PBS)(Gibco, Carlsbad, CA)で洗浄し、トリプシン/EDTA(Gibco, Carlsbad, CA)で解離させた。細胞を採取し、遠心分離し、PBS中3%(v/v)のFBSに、1×107/mLの細胞濃度で再懸濁させた。100μLアリコートをコニカルチューブに分注した。細胞内抗原が染色された細胞をPerm/洗浄バッファー(BD Pharmingen, San Diego, CA)で透過性とした。製造業者の使用説明書に従い、アリコートに抗体を加え、これらの細胞を暗所にて4℃で30分間インキュベートした。インキュベーション後、細胞をPBSで洗浄し、遠心分離して余分な抗体を除去した。二次抗体を必要とする細胞を100μLの3%FBSに再懸濁させた。二次抗体を製造業者の使用説明書に従って加え、細胞を暗所にて4℃で30分間インキュベートした。インキュベーション後、細胞をPBSで洗浄し、遠心分離して余分な二次抗体を除去した。洗浄した細胞を0.5mL PBSに再懸濁させ、フローサイトメトリーにより分析した。次の抗体を使用した:酸化LDL受容体 1(sc−5813;Santa Cruz, Biotech)、GROa(555042;BD Pharmingen, Bedford, MA)、マウスIgG1κ(P−4685およびM−5284;Sigma)、ロバ抗ヤギIgG(sc−3743;Santa Cruz, Biotech)。フローサイトメトリー分析はFACSCalibur(Becton Dickinson San Jose, CA)を用いて行った。
結果
ヒト胎盤、成体および新生児繊維芽細胞および間葉幹細胞(MSC)由来の細胞のcDNA に対して行った、選択された「シグネチャー」遺伝子に関するリアルタイムPCRの結果は、他の細胞に比べて胎盤由来細胞では、酸化LDL受容体とレンニンの双方が高レベルで発現されたことを示す。リアルタイムPCRから得られたデータをΔΔCT法により分析し、対数スケールで表した。レチクロンおよび酸化LDL受容体の発現レベルは、他の細胞よりも臍由来細胞で高かった。産褥由来細胞と対照の間では、CXCリガンド3およびGCP−2の発現レベルにおいて有意差は見られなかった。リアルタイムPCRの結果を従来のPCRにより確認した。さらに、PCR産物の配列決定によってもこれらの知見が確認された。前記に挙げた従来のPCR CXCリガンド3プライマーを用いたところ、産褥由来細胞と対照の間では、CXCリガンド3に発現レベルに有意差は見られなかった。
産褥におけるサイトカインIL−8の産生を、増殖培地で培養した産褥由来細胞と血清飢餓状態の産褥由来細胞の双方で評価した。リアルタイムPCRの全データを従来のPCRとPCR産物の配列決定で確認した。
血清フリー培地で増殖させた細胞の上清にIL−8が存在しているかどうかを調べたところ、臍帯細胞由来の培地およびいくつかの胎盤細胞単離物で最高量が検出された(表10−1)。ヒト皮膚繊維芽細胞由来の培地では、IL−8は検出されなかった。
Figure 2008525489
胎盤由来細胞はまた、FACS分析により、酸化LDL受容体、GCP−2およびGROαの産生についても調べた。細胞はGCP−2陽性と判定された。酸化LDL受容体およびGROはこの方法では検出されなかった。
胎盤由来細胞はまた、免疫組織化学分析により、選択されたタンパク質の産生に関しても試験した。単離直後(継代培養0代目)、ヒト胎盤由来細胞を4%パラホルムアルデヒドで固定し、6種類のタンパク質:フォン・ウィルブランド因子、CD34、サイトケラチン18、デスミン、α−平滑筋アクチン、およびビメンチンに対する抗体に曝した。細胞はα−平滑筋アクチンとビメンチンの双方に関して陽性染色された。このパターンは継代培養11代目まで保持された。継代培養0代目の数細胞だけ(<5%)がサイトケラチン18に関して陽性染色された。
継代培養0代目のヒト臍帯由来の細胞を、免疫組織化学分析により、選択されたタンパク質の産生に関してプロービングした。単離直後(継代培養0代目)、細胞を4%パラホルムアルデヒドで固定し、6種類のタンパク質:フォン・ウィルブランド因子、CD34、サイトケラチン18、デスミン、α−平滑筋アクチン、およびビメンチンに対する抗体に曝した。臍由来細胞はα−平滑筋アクチンおよびビメンチン陽性であり、継代培養11代目までこの染色パターンは一貫していた。
要約。マイクロアレイおよびPCR(リアルタイム型および従来型の双方)によって測定された遺伝子発現レベル間の一致が4つの遺伝子:酸化LDL受容体1、レンニン、レチクロン、およびIL−8で確立された。これらの遺伝子の発現はPPDCにおいてmRNAレベルでの示差的に調節され、IL−8はまたタンパク質レベルでも示差的に調節された。酸化LDL受容体の存在は、胎盤由来細胞におけるFACS分析では、タンパク質レベルで検出されなかった。GCP−2とCXCリガンド3の示差的発現はmRNAレベルでは確認されなかったが、GCP−2は、胎盤由来細胞においてFACS分析により、タンパク質レベルで検出された。この結果は、マイクロアレイ試験から最初に得られたデータには反映されていないが、これは方法論の感度の違いによるものである可能性がある。
単離直後(継代培養0代目)、ヒト胎盤由来細胞はα−平滑筋アクチンとビメンチンの双方に関して陽性染色された。このパターンは継代培養11代目の細胞でも見られた。これらの結果は、ビメンチンおよびα−平滑筋アクチンの発現は、増殖培地中、これらの手順で用いる条件下で継代培養した場合、細胞に保持され得ることが示唆された。継代培養0代目のヒト臍帯由来細胞をα−平滑筋アクチンおよびビメンチンの発現に関してプロービングしたところ、双方とも陽性であった。この染色パターンは継代培養11代目まで保持された。
実施例11
産褥由来細胞のインビトロ免疫学的評価
産褥由来細胞(PPDC)を、存在すれば、これらの細胞がインビボ移植の際に誘発する免疫応答を推定する試みにおいてそれらの免疫学的特徴に関してインビトロで評価した。PPDCを、HLA−DR、HLA−DP、HLA−DQ、CD80、CD86、およびB7−H2の存在に関してフローサイトメトリーにより評価した。これらのタンパク質は抗原提示細胞(APC)により発現され、ナイーブCD4+T細胞の直接刺激に必要とされる(Abbas & Lichtman, CELLULAR AND MOLECULAR IMMUNOLOGY, 5th Ed. (2003) Saunders, Philadelphia, p. 171)。これらの細胞系統をまた、HLA−G(Abbas & Lichtman, 2003,前掲)、CD178(Coumansら, (1999) Journal of Immunological Methods 224, 185-196)、およびPD−L2(Abbas & Lichtman, 2003,前掲; Brownら (2003) The Journal of Immunology 170, 1257-1266)の発現に関してもフローサイトメトリーにより分析した。胎盤組織に残留する細胞によるこれらのタンパク質の発現は、子宮内の胎盤組織の免疫特権状態を媒介すると考えられる。胎盤由来細胞系統および臍由来細胞系統がインビボで免疫応答を誘発する程度を推定するため、これらの細胞系統を一元配置混合リンパ球反応(MLR)で検定した。
材料および方法
細胞培養。細胞を、2%ゼラチン(Sigma, St. Louis, MO)でコートされたT75フラスコ(Corning, Corning, NY)中、ペニシリン/ストレプトマイシンを含有する増殖培地で、密集するまで培養した。
抗体染色 細胞をリン酸緩衝生理食塩水(PBS)(Gibco, Carlsbad, CA)で洗浄し、トリプシン/EDTA(Gibco, Carlsbad, MO)で解離させた。細胞を採取し、遠心分離し、PBS中3%(v/v)のFBSに、1×107/mLの細胞密度で再懸濁させた。製造業者の使用説明書に従い、100μLの細胞懸濁液に抗体(表11−1)を加え、暗所で4℃にて30分間インキュベートした。インキュベーション後、細胞をPBSで洗浄し、遠心分離して結合していない抗体を除去した。細胞を500μLのPBSに再懸濁させ、FACSCalibur装置(Becton Dickinson, San Jose, CA)を用い、フローサイトメトリーにより分析した。
Figure 2008525489
混合リンパ球反応。CTBR SOP No.CAC−031を用いた混合リンパ球反応を行うため、細胞系統Aと表示される継代培養10代目の臍由来細胞および細胞系統Bと表示される継代培養11代目の胎盤由来細胞の低温保存バイアルをドライアイス上でCTBR(Senneville, Quebec)に送った。末梢血単核細胞(PBMC)を複数の男性および女性ボランティアドナーから採取した。刺激側(ドナー)同種異系PBMC、自己PBMC、および産褥細胞系統をマイトマイシンCで処理した。自己の、マイトマイシンC処理した刺激細胞を応答側(レシピエント)PBMCに加え、4日間培養した。インキュベーション後、[3H]−チミジンを各サンプルに加え、18時間培養した。これらの細胞を採取した後、放射標識されたDNAを抽出し、シンチレーションカウンターを用い、[3H]−チミジンの取り込みを測定した。
同種異系ドナーに対する刺激指数(SIAD)は、受容側+マイトマイシンCで処理した同種異系ドナーの平均増殖を受容側の基本増殖で割って算出した。PPDCの刺激指数は、受容側+マイトマイシンCで処理した産褥細胞系統の平均増殖を受容側の基本増殖で割って算出した。
結果
混合リンパ球反応−胎盤由来細胞。7人のヒトボランティア血液ドナーを、他の6人の血液ドナーとの混合リンパ球反応において旺盛な増殖反応を示す1人の同種異系ドナーを特定するためスクリーニングした。このドナーは同種異系陽性対照ドナーとして選択された。残りの6人の血液ドナーをレシピエントとして選択した。同種異系陽性対照ドナーおよび胎盤由来細胞系統をマイトマイシンCで処理し、6人の個々の同種異系受容者との混合リンパ球反応において培養した。反応は、2枚の細胞培養プレートを用い、プレート1枚当たり3人の受容者として3反復で行った(表11−2)。平均刺激指数は1.3(プレート2)〜3(プレート1)の範囲であり、同種異系ドナー陽性対照は46.25(プレート2)〜279(プレート1)の範囲であった(表11−3)。
Figure 2008525489
Figure 2008525489
Figure 2008525489
Figure 2008525489
混合リンパ球反応−臍由来細胞。6人のヒトボランティア血液ドナーを、他の5人の血液ドナーとの混合リンパ球反応において旺盛な増殖反応を示す1人の同種異系ドナーを特定するためスクリーニングした。このドナーは同種異系陽性対照ドナーとして選択された。残りの5人の血液ドナーをレシピエントとして選択した。同種異系陽性対照ドナーおよび胎盤細胞系統をマイトマイシンCで処理し、5人の個々の同種異系受容者との混合リンパ球反応において培養した。反応は、2枚の細胞培養プレートを用い、プレート1枚当たり3人の受容者として3反復で行った(表11−4)。平均刺激指数は6.5(プレート1)〜9(プレート2)の範囲であり、同種異系ドナー陽性対照は42.75(プレート1)〜70(プレート2)の範囲であった(表11−5)。
Figure 2008525489
Figure 2008525489
Figure 2008525489
抗原提示細胞マーカー−胎盤由来細胞。フローサイトメトリーにより分析された胎盤由来細胞のヒストグラムは、IgG対照と一致した蛍光値により示されるように、HLA−DR、DP、DQ、CD80、CD86、およびB7−H2の陰性発現を示すが、このことは胎盤細胞系統がCD4+T細胞を直接刺激するのに必要な細胞表面分子を欠いていることを示す。
免疫調節マーカー−胎盤由来細胞。フローサイトメトリーにより分析された胎盤由来細胞のヒストグラムは、IgG対照よりも高い蛍光値により示されるように、PD−L2の陽性発現を示し、IgG対照と一致した蛍光値により示されるように、CD178およびHLA−Gの陰性発現を示す。
抗原提示細胞マーカー−臍由来細胞。フローサイトメトリーにより分析された臍由来細胞のヒストグラムは、IgG対照と一致した蛍光値により示されるように、HLA−DR、DP、DQ、CD80、CD86、およびB7−H2の陰性発現を示すが、このことは臍細胞系統がCD4+T細胞を直接刺激するのに必要な細胞表面分子を欠いていることを示す。
免疫調節細胞マーカー−臍由来細胞。フローサイトメトリーにより分析された臍由来細胞のヒストグラムは、IgG対照よりも高い蛍光値により示されるように、PD−L2の陽性発現を示し、IgG対照と一致した蛍光値により示されるように、CD178およびHLA−Gの陰性発現を示す。
要約。胎盤由来細胞系統で行った混合リンパ球反応において、平均刺激指数は1.3〜3の範囲であり、同種異系陽性対照の平均刺激指数は46.25〜279の範囲であった。臍由来細胞系統で行った混合リンパ球反応では、平均刺激指数は6.5〜9の範囲であり、同種異系陽性対照の平均刺激指数は42.75〜70の範囲であった。胎盤および臍由来細胞系統では、フローサイトメトリーにより測定されたように、刺激タンパク質HLA−DR、HLA−DP、HLA−DQ、CD80、CD86、およびB7−H2の発現は陰性であった。胎盤および臍由来細胞系統では、フローサイトメトリーにより測定されたように、免疫調節タンパク質HLA−GおよびCD178の発現は陰性であり、PD−L2の発現は陽性であった。同種異系ドナーPBMCは、HLA−DR、DQ、CD8、CD86、およびB7−H2を発現する抗原提示細胞を含み、それによりナイーブCD4+T細胞の刺激が可能である。ナイーブCD4+T細胞の直接刺激に必要な胎盤由来細胞および臍由来細胞上に抗原提示細胞表面分子が存在しないこと、および免疫調節タンパク質であるPD−L2が存在することは、同種異系対照に比べて、MLRにおいてこれらの細胞により発揮される刺激指数が低いことを説明し得る。
実施例12
産褥由来細胞による栄養因子の分泌
胎盤由来細胞および臍由来細胞からの選択された栄養因子の分泌を測定した。検出のために選択された因子としては、(1)肝細胞増殖因子(HGF)(Rosenら(1997) Ciba Found. Symp. 212:215-26)、単球走化性タンパク質1(MCP−1)(Salcedoら(2000) Blood 96;34-40)、インターロイキン−8(IL−8)(Liら(2003) J. Immunol. 170:3369-76)、ケラチノサイト増殖因子(KGF)、塩基性繊維芽細胞増殖因子(bFGF)、血管内皮増殖因子(VEGF)(Hughesら(2004) Ann. Thorac. Surg. 77:812-8)、マトリックスメタロプロテイナーゼ1(TIMP1)、アンギオポエチン2(ANG2)、血小板由来増殖因子(PDGF−bb)、トロンボポエチン(TPO)、ヘパリン結合上皮細胞増殖因子(HB−EGF)、間質由来因子1α(SDF−1α)などの脈管形成活性を有することが知られているもの;(2)脳由来神経栄養因子(BDNF)(Chengら(2003) Dev. Biol. 258;319-33)、インターロイキン−6(IL−6)、顆粒球走化性タンパク質−2(GCP−2)、トランスフォーミング増殖因子β2(TGFβ2)などの神経栄養/神経保護活性を有することが知られているもの;および(3)マクロファージ炎症性タンパク質1α(MIP1a)、マクロファージ炎症性タンパク質1β(MIP1b)、単球走化性因子−1(MCP−1)、Rantes(regulated on activation, normal T cell expressed and secreted)、I309、胸腺および活性化調節ケモカイン(TARC)、エオタキシン、マクロファージ由来ケモカイン(MDC)、IL−8)などのケモカイン活性を有することが知られているものが含まれた。
方法および材料
細胞培養。胎盤および臍由来のPPDCならびにヒト新生児包皮に由来するヒト繊維芽細胞を、ゼラチンコートT75フラスコ中、ペニシリン/ストレプトマイシンを含む増殖培地で培養した。細胞を継代培養11代目に低温保存し、液体窒素中で保存した。細胞を解凍した後、それらの細胞に増殖培地を加えた後、15mL容の遠沈管に移し、細胞を150xgで5分間遠心分離した。上清を廃棄した。細胞ペレットを4mLの増殖培地に再懸濁させ、細胞を計数した。細胞を、15mLの増殖培地を含有する75cm2容のフラスコにつき375,000細胞で播種し、24時間培養した。この培地を血清フリー培地(DMEM−低グルコース(Gibco)、0.1%(w/v)ウシ血清アルブミン(Sigma)、ペニシリン/ストレプトマイシン(Gibco))と8時間交換した。インキュベーションの終了時に、14,000xgで5分間遠心分離することにより細胞馴化血清フリー培地を回収し、−20℃で保存した。各フラスコ内の細胞数を評価するため、細胞をPBSで洗浄し、2mLトリプシン/EDTAを用いて解離させた。トリプシン活性を、8mLの増殖培地を加えることで阻害した。細胞を150xgで5分間遠心分離した。上清を除去し、細胞を1mLの増殖培地に再懸濁させた。細胞数は血球計を用いて評価した。
ELISAアッセイ。細胞を37℃、5%二酸化炭素および大気酸素下で増殖させた。胎盤由来細胞(バッチ101503)もまた、5%酸素またはβ−メルカプトエタノール(BME)中で増殖させた。各細胞サンプルにより産生されたMCP−1、IL−6、VEGF、SDF−1α、GCP−2、IL−8およびTGF−β2の量をELISAアッセイ(R&D Systems, Minneapolis, MN)により測定した。アッセイは全て、製造業者の使用説明書に従って行った。
SearchLight多重ELISAアッセイ。ケモカイン(MIP1a、MIP1b、MCP−1、Rantes、I309、TARC、エオタキシン、MDC、IL8)、BDNF、および脈管形成因子(HGF、KGF、bFGF、VEGF、TIMP1、ANG2、PDGF−bb、TPO、HB−EGFを、SearchLightプロテオームアレイ(Pierce Biotechnology Inc.)を用いて測定した。プロテオームアレイは、ウェル当たり2〜16のタンパク質の定量測定のための多重サンドイッチELISAである。これらのアレイは、96ウェルプレートの各ウェルに、2×2、3×3、または4×4パターンの4〜16の異なる捕捉抗体をスポットすることにより作製される。サンドイッチELISA法の後、プレートの各ウェル内の各スポットにおいて生成された化学発光シグナルを捕捉するため、プレート全体を画像化する。各スポットにおいて生成されたシグナルの量は、原標品またはサンプル中の標的タンパク質の量に比例する。
結果
ELISAアッセイ。MCP−1およびIL−6は、胎盤由来細胞および臍由来細胞ならびに皮膚繊維芽細胞により分泌された(表12−1)。SDF−1αは、5%O2中で培養された胎盤由来細胞により、および繊維芽細胞により分泌された。GCP−2およびIL−8は、臍由来細胞により、およびBMEまたは5%O2の存在下で培養された胎盤由来細胞により分泌された。また、GCP−2は、ヒト繊維芽細胞により分泌された。TGF−β2はELISAアッセイでは検出できなかった。
Figure 2008525489
SearchLight多重ELISAアッセイ。TIMP1、TPO、KGF、HGF、FGF、HBEGF、BDNF、MIP1b、MCP1、RANTES、I309、TARC、MDC、およびIL−8は、臍由来細胞から分泌された(表12−2および12−3)。TIMP1、TPO、KGF、HGF、HBEGF、BDNF、MIP1a、MCP−1、RANTES、TARC、エオタキシン、およびIL−8は、胎盤由来細胞から分泌された(表12−2および12−3)。Ang2、VEGF、またはPDGF−bbは検出されなかった。
Figure 2008525489
Figure 2008525489
要約。臍由来細胞および胎盤由来細胞は複数の栄養因子を分泌した。HGF、bFGF、MCP−1およびIL−8など、これらの栄養因子のうちいくつかは、脈管形成に重要な役割を果たす。BDNFおよびIL−6などの他の栄養因子は神経再生に重要な役割を持つ。
実施例13
産褥由来細胞の短期的神経分化
胎盤由来細胞および臍由来細胞(ひとまとめにして産褥由来細胞またはPPDC)の、神経系統細胞へ分化する能力を調べた。
材料および方法
産褥細胞の単離および増殖。実施例1に記載のように、胎盤組織および臍帯組織からPPDCを単離し、拡大培養した。
改変ウッドバリー−ブラック(Woodbury-Black)プロトコール。(A)このアッセイは、元は骨髄間質細胞の神経誘導能を試験するために実施されたアッセイから採用したものであった(Woodbury, D.ら(2000) J. Neurosci. Res. 61(4):364-370)。臍由来細胞(022803)P4および胎盤由来細胞(042203)P3を解凍し、密集前(75%)に達するまで、増殖培地中、5,000細胞/cm2で拡大培養した。次に、細胞をトリプシン処理し、Titretek IIスライドガラス(VWR International, Bristol, CT)のウェルあたり6,000細胞として播種した。対照として、間葉幹細胞(P3;1F2155;Cambrex, Walkersville, MD)、骨芽細胞(P5;CC2538;Cambrex)、脂肪由来細胞(Artecel,US6555374 B1)(P6;ドナー2)および新生児ヒト皮膚繊維芽細胞(P6;CC2509;Cambrex)も同じ条件下で播種した。
全ての細胞をまず、15%(v/v)ウシ胎児血清(FBS;Hyclone, Logan, UT)、塩基性繊維芽細胞増殖因子(bFGF;20ng/mL;Peprotech, Rocky Hill, NJ)、上皮細胞増殖因子(EGF;20ng/mL;Peprotech)およびペニシリン/ストレプトマイシン(Invitrogen)を含有するDMEM/F12培地(Invitrogen, Carlsbad, CA)で4日間拡大培養した。4日後、細胞をリン酸緩衝生理食塩水(PBS;Invitrogen)ですすぎ、その後、DMEM/F12培地+20%(v/v)FBS+ペニシリン/ストレプトマイシン中で24時間培養した。24時間後、細胞をPBSですすいだ。次に、細胞を、200mMブチル化ヒドロキシアニソール、10μM塩化カリウム、5mg/mLインスリン、10μMフォルスコリン、4μMバルプロ酸、および2μMヒドロコルチゾン(化学薬品は全てSigma, St. Louis, MOから入手)を含有するDMEM/F12(血清フリー)からなる誘導培地中で1〜6時間培養した。その後、細胞を100%氷冷メタノール中で固定し、免疫細胞化学法を行い(下記方法を参照)、ヒトネスチンタンパク質の発現を評価した。
(B)PPDC(臍(022803)P11;胎盤(042203)P11)および成体ヒト皮膚繊維芽細胞(1F1853,P11)を解凍し、密集前(75%)に達するまで、増殖培地中、5,000細胞/cm2で拡大培養した。次に、細胞をトリプシン処理し、(A)と同様の密度で、ただし、(1)24ウェル組織培養処理プレート(TCP,Falconブランド,VWR International)、(2)TCPウェル+2%(w/v)ゼラチン(室温で1時間吸着)、または(3)TCPウェル+20μg/mLの吸着マウスラミニン(37℃で最低2時間吸着;Invitrogen)に播種した。
厳密に(A)と同様に、細胞をまず培養拡大し、培地を前記の時間枠で切り替えた。前記のように1つの培養物セットを5日と6時間、この場合、室温で10分間、氷冷4%(w/v)パラホルムアルデヒド(Sigma)で固定した。第2の培養物セットでは、培地を除去し、B27(B27サプリメント;Invitrogen)、L−グルタミン(4mM)、およびペニシリン/ストレプトマイシン(Invitrogen)を含有する、Neurobasal−A培地(Invitrogen)からなる神経前駆体拡大培地(NPE)に切り替えた。NPE培地にさらにレチノイン酸(RA;1μM;Sigma)を添加した。4日後、この培地を除去し、培養物を室温にて10分間氷冷4%(w/v)パラホルムアルデヒド(Sigma)で固定し、ネスチン、GFAP、およびTuJ1タンパク質の発現に関して染色した(表N1−1参照)。
Figure 2008525489
二段階分化プロトコール。PPDC(臍(042203)P11、胎盤(022803) P11)、成体ヒト皮膚繊維芽細胞(P11;1F1853;Cambrex)を解凍し、密集前(75%)に達するまで増殖培地中、5,000細胞/cm2で拡大培養した。次に、細胞をトリプシン処理し、2,000細胞/cm2で、bFGF(20ng/mL;Peprotech, Rocky Hill, NJ)およびEGF(20ng/mL;Peprotech)を添加したNPE培地の存在下、ラミニン(BD Biosciences, Franklin Lakes, NJ)でコートした24ウェルプレートに播種した[全培地組成物はNPE+F+Eとも呼ばれる]。同時に、海馬から単離された成体ラット神経前駆体(P4;(062603)を24ウェルラミニンコートプレートのNPE+F+E培地に培養プレーティングした。全ての培養物をこのような条件下で6日間維持し(この間一度細胞に補給した)、さらに7日間表N1−2に挙げられている分化条件に培地を切り替えた。培養物を室温で10分間氷冷4%(w/v)パラホルムアルデヒド(Sigma)で固定し、ヒトまたはラットネスチン、GFAP、およびTuJ1タンパク質の発現に関して染色した。
Figure 2008525489
複数の増殖因子プロトコール。臍由来細胞(P11;(042203))を解凍し、密集前(75%)に達するまで増殖培地中、5,000細胞/cm2で拡大培養した。次に、細胞をトリプシン処理し、NPE+F(20ng/mL)+E(20ng/mL)の存在下、24ウェルラミニンコートプレート(BD Biosciences)に2,000細胞/cm2で播種した。さらに、いくつかのウェルは、NPE+F+E+2%FBSまたは10%FBSを含んだ。予備分化の4日後、全ての培地を除去し、サンプルを、ソニック・ヘッジホッグ(Sonic Hedgehog)(SHH;200ng/mL;Sigma, St. Louis, MO)、FGF8(100ng/mL;Peprotech)、BDNF(40ng/mL;Sigma)、GDNF(20ng/mL;Sigma)、およびレチノイン酸(1μM;Sigma)を添加したNPE培地に切り替えた。培地交換から7日後、培養物を室温で10分間、氷冷4%(w/v)パラホルムアルデヒド(Sigma)で固定し、ヒトネスチン、GFAP、TuJ1,デスミン、およびα−平滑筋アクチンの発現に関して染色した。
神経前駆体共存培養プロトコール。成体ラット海馬前駆体(062603)を、ラミニンコート24ウェルディッシュ(BD Biosciences)のNPE+F(20ng/mL)+E(20ng/mL)中に、ニューロスフェアまたは単細胞(10,000細胞/ウェル)としてプレーティングした。
別に、臍由来細胞(042203)P11および胎盤由来細胞(022803)P11を解凍し、48時間、NPE+F(20ng/mL)+E(20ng/mL)中、5,000細胞/cm2で拡大培養した。次に、細胞をトリプシン処理し、既存の神経前駆体培養物上に2,500細胞/ウェルで播種した。この時、既存の培地を新鮮培地に交換した。4日後、培養物を室温で10分間氷冷4%(w/v)パラホルムアルデヒド(Sigma)で固定し、PPDCを同定するため、ヒト核タンパク質(hNuc;Chemicon)に関して染色した(前記の表NU1−1)。
免疫細胞化学。免疫細胞化学法を、表NU1−1に挙げられた抗体を用いて行った。培養物をリン酸緩衝生理食塩水(PBS)で洗浄し、細胞内抗原に接近するため、PBS、4%(v/v)ヤギ血清(Chemicon, Temecula, CA)、および0.3%(v/v)トリトン(トリトン X−100;Sigma)を含有するタンパク質遮断溶液に30分間曝した。遮断溶液に希釈した一次抗体を、次に、室温で1時間、培養物に適用した。次に、一次抗体溶液を除去し、培養物をPBSで洗浄した後、ヤギ抗マウスIgG−テキサスレッド(1:250;Molecular Probes, Eugene, OR)、およびヤギ抗ウサギIgG−アレキサ(Alexa)488(1:250;Molecular Probes)とともに遮断溶液を含む二次抗体溶液を適用した(室温で1時間)。その後、培養物を洗浄し、10μMのDAPI(Molecular Probes)を10分間適用し、細胞核を可視化した。
免疫染色後、オリンパス倒立エピ蛍光顕微鏡(Olympus, Melville, NY)にて、適当な蛍光フィルターを用い、蛍光を可視化した。全ての場合で陽性染色は、対照染色を超える蛍光シグナルを表し、その場合には、一次抗体溶液の適用を除き、前記で概略を示した全手順を続けた。代表的な画像を、デジタルカラービデオカメラとイメージプロ(ImagePro)ソフトウエア(Media Cybernetics, Carlsbad, CA)を用いて取り込んだ。三重染色サンプルについては、1回に放射フィルターを1つだけ用いて各画像を採取した。次に、アドビ・フォトショップ(Adobe Photoshop)ソフトウエア(Adobe, San Jose, CA)を用いて層状モンタージュを作製した。
結果
ウッドバリー−ブラックプロトコール。(A)この神経誘導組成物中でインキュベーションすると、全ての細胞種が双極性の形態と突起の延長を伴う細胞へ形質転換した。他のより大きな非双極性形態も見られた。さらに、これらの誘導細胞集団は、多分化能性神経幹細胞および前駆体細胞のマーカーであるネスチンに関して陽性染色された。
(B)組織培養プラスチック(TCP)ディッシュ上で繰り返した場合、培養物表面に予めラミニンを吸着していなければ、ネスチンの発現は見られなかった。ネスチン発現細胞が次に成熟ニューロンの生成へ進むことができるかどうかをさらに評価するため、PPDCおよび繊維芽細胞を、神経幹細胞および前駆細胞からこのような細胞への分化を誘導することが知られている培地組成であるNPE+RA(1μM)に曝した(2、3、4)。細胞を、未熟および成熟ニューロンのマーカーであるTuJ1、星状細胞のマーカーであるGFAP、およびネスチンに関して染色した。TuJ1が検出された条件はなく、神経形態を有する細胞も見られなかったが、このことは、ニューロンは短期間には形成されなかったことを示唆する。さらに、免疫細胞化学により決定されたように、ネスチンおよびGFAPはもはやPPDCによっては発現されなかった。
二段階分化。臍および胎盤PPDC単離物(ならびにそれぞれ陰性対照細胞種および陽性対照細胞種としてのヒト繊維芽細胞および齧歯類神経前駆体)をラミニン(神経促進)コートディッシュにプレーティングし、神経前駆体からニューロンおよび星状細胞への分化を促進することが知られている13の異なる増殖条件(および2つの対照条件)に曝した。さらに、PPDC分化に対するGDF5およびBMP7の影響を調べるために2つの条件を加えた。一般に、二段階分化アプローチが採られ、細胞をまず、6日間神経前駆体拡大培養条件に置いた後、7日間完全分化条件に置いた。形態学的には、臍由来細胞および胎盤由来細胞はいずれも、この手順の経過中、細胞形態に基本的な変化を示した。しかし、対照の神経前駆体プレーティング条件を除いては、神経細胞または星状細胞は見られなかった。ヒトネスチン、TuJ1、およびGFAPについて陰性の免疫細胞化学により形態学的所見が確認された。
複数の増殖因子。様々な神経分化剤に1週間曝した後、細胞を神経前駆体(ヒトネスチン)、ニューロン(TuJ1)、および星状細胞(GFAP)の指標となるマーカーに関して染色した。第一段階において非血清含有培地で増殖させた細胞は血清含有(2%または10%)培地の細胞よりも種々の形態を持っていたが、このことは潜在的神経分化を示す。具体的には、臍由来細胞をEGFおよびbFGFに曝し、その後、SHH、FGF8、GDNF、BDNF、およびレチノイン酸に曝すという二段階法の後、細胞は、培養星状細胞の形態と類似の突起の長期延長を示した。第一段階の分化に2%FBSまたは10%FBSが含まれた場合、細胞数が増え、細胞形態は高密度対照培養と変わらなかった。ヒトネスチン、TuJ1、またはGFAPに関する免疫細胞化学分析により、潜在的神経分化の証拠は得られなかった。
神経前駆体とPPDCの共存培養。2日早く神経拡大培養条件(NPE+F+E)に播種したラット神経前駆体の培養物の上にPPDCをプレーティングした。プレーティングしたPPDCの視覚的検査は、これらの細胞が単一細胞としてプレーティングされたことを明らかにしたが、プレーティング4日後(全体で6日目)のヒト特異的な核染色(hNuc)により、それらはもつれ、神経前駆体との接触を避ける傾向があることが示された。さらに、PPDCが接着すると、これらの細胞は拡がり、ラット起源のものであった分化ニューロンにより神経支配されることが明らかになったが、このことはPPDCが筋肉細胞に分化した可能性があることを示唆する。この所見は位相差顕微鏡下の形態に基づくものであった。別の所見として、典型的に大きな細胞体(神経前駆体よりも大きい)は、薄い突起が多方向に拡がっているという神経前駆体に似た形態を持っていた。HNuc染色(細胞核の半分に見られる)は、これらのヒト細胞がラット前駆体と融合し、それらの表現型をとる場合があることを示唆している。神経前駆体のみを含む対照ウェルは前駆体総数が少なく、臍または胎盤PPDCを含むウェルを共存培養した場合よりも明らかに分化した細胞が見られたが、このことは、臍由来細胞および胎盤由来細胞の双方が、ケモカインおよびサイトカインの放出によるか、または接触により媒介される効果により、神経前駆体の分化および挙動に影響を及ぼしたことを示す。
要約。PPDCが神経系統細胞へ分化する短期的能力を調べるため、複数のプロトコールを実施した。これらには、それぞれ多分化能性神経幹細胞および前駆体細胞、未熟および成熟ニューロン、ならびに星状細胞に関連するタンパク質ネスチン、TuJ1、およびGFAPに関する免疫細胞化学と組み合わせた、形態の位相差画像法を含んだ。これらの短期プロトコールのある場合に、神経分化が見られたことを示す証拠が認められた。
PPDCと神経前駆体の共存培養においていくつかの顕著な所見が得られた。異種細胞種とともにヒトPPDCを用いるこのアプローチにより、これらの培養物中の各細胞の起源の絶対的決定が可能となる。第一に、これらの培養物において、細胞質が拡大し、細胞体から神経突起様の構造が伸びており、さらに細胞体の半分だけがhNucタンパク質で染色されたいくつかの細胞を観察した。これらの細胞は、神経系統細胞へ分化したヒトPPDCであった可能性があるか、またはこれらの細胞は神経前駆体と融合したPPDCであった可能性もある。第二に、神経前駆体がPPDCに向かって神経突起を伸ばしているのが見られ、これらの神経前駆体がニューロンへ分化し、PPDCを神経支配したことを示す。第三に、神経前駆体とPPDCの培養物はラット起源の細胞が多く、神経前駆体単独の対照培養物よりも分化が多量であるが、このことは、プレーティングされたPPDCが可溶性因子、および/または神経前駆体の生存、増殖および/または分化を刺激した接触依存性機構を提供したことをさらに示している。
実施例13の参照文献
Figure 2008525489
実施例14
産褥由来細胞の長期神経分化
臍由来細胞および胎盤由来細胞(ひとまとめにして産褥由来細胞またはPPDC)が神経系統細胞へと長期的に分化を受ける能力を評価した。
材料および方法
PPDCの単離および増殖。従前の実施例に記載のように、PPDCを単離し、拡大培養した。
PPDC細胞の解凍およびプレーティング。従前に増殖培地で増殖させたPPDCの冷凍アリコート(臍(022803)P11;(042203)P11;(071003)P12;胎盤(101503)P7)を解凍し、ラミニン(BD, Franklin Lakes, NJ)コートしたT−75フラスコにて、B27(B27サプリメント,Invitrogen)、L−グルタミン(4mM)、およびペニシリン/ストレプトマイシン(10mL)を含有するNeurobasal−A培地(Invitrogen, Carlsbad, CA)(これらの組合せを本明細書では神経前駆体拡大(NPE)培地と呼ぶ)中、5,000細胞/cm2でプレーティングした。NPE培地にはさらにbFGF(20ng/mL,Peprotech, Rocky Hill, NJ)およびEGF(20ng/mL,Peprotech, Rocky Hill, NJ)を添加した(本明細書では、NPE+bFGF+EGFと表す)。
対照細胞のプレーティング。さらに、成体ヒト皮膚繊維芽細胞(P11,Cambrex, Walkersville, MD)および間葉幹細胞(P5,Cambrex)を解凍し、ラミニンコートT−75フラスコのNPE+bFGF+EGF中に、同じ細胞播種密度でプレーティングした。さらなる対照として、繊維芽細胞、臍、および胎盤PPDCを全ての培養物に対して特定の期間増殖培地で増殖させた。
細胞の拡大培養。全ての培養物からの培地を1週間に1回新鮮な培地に置き換え、細胞の拡大を観察した。一般に、NPE+bFGF+EGFでの増殖には限りがあるので、1か月に1回各培養を継代した。
免疫細胞化学。1か月後、全フラスコを室温で10分間冷4%(w/v)パラホルムアルデヒド(Sigma)で固定した。免疫細胞化学法は、TuJ1(βIIIチューブリン;1:500;Sigma, St. Louis, MO)およびGFAP(膠原繊維酸性タンパク質;1:2000;DakoCytomation, Carpinteria, CA)に対する抗体を用いて行った。要するに、培養物をリン酸緩衝生理食塩水(PBS)で洗浄し、細胞内抗原に接近するため、PBS、4%(v/v)ヤギ血清(Chemicon, Temecula, CA)、および0.3%(v/v)トリトン(トリトン X−100;Sigma)を含有するタンパク質遮断溶液に30分間曝した。遮断溶液に希釈した一次抗体を、次に、室温で1時間、培養物に適用した。次に、一次抗体溶液を除去し、培養物をPBSで洗浄した後、ヤギ抗マウスIgG−テキサスレッド(1:250;Molecular Probes, Eugene, OR)、およびヤギ抗ウサギIgG−アレキサ(Alexa)488(1:250;Molecular Probes)とともにブロックを含む二次抗体溶液を適用した(室温で1時間)。その後、培養物を洗浄し、10μMのDAPI(Molecular Probes)を10分間適用し、細胞核を可視化した。
免疫染色後、オリンパス倒立エピ蛍光顕微鏡(Olympus, Melville, NY)にて、適当な蛍光フィルターを用い、蛍光を可視化した。全ての場合で陽性染色は、対照染色を超える蛍光シグナルを表し、その場合には、一次抗体溶液の適用を除き、前記で概略を示した全手順を続けた。代表的な画像を、デジタルカラービデオカメラとイメージプロ(ImagePro)ソフトウエア(Media Cybernetics, Carlsbad, CA)を用いて取り込んだ。三重染色サンプルについては、1回に放射フィルターを1つだけ用いて各画像を採取した。次に、アドビ・フォトショップ(Adobe Photoshop)ソフトウエア(Adobe, San Jose, CA)を用いて層状モンタージュを作製した。
Figure 2008525489
結果
NPE+bFGF+EGF培地はPPDCの増殖を遅くし、形態を変化させる。プレーティング直後、PPDCの一部は、ラミニンコートした培養フラスコに接着した。これは凍結/解凍に関する細胞死のため、または新たな増殖条件のためであると考えられた。接着した細胞は増殖条件中に見られるものとは異なる形態をとっていた。
密集した際、培養を継代培養し、増殖を観察した。継代培養で生存した細胞の拡大は極めて小さかった。この時点で、臍由来細胞の培養物では、拡がった形態を持たず、色相の明るい特徴を有する非常に小さな細胞が見られ始めた。このようなフラスコの領域は経時的に増えた。これらの小細胞から、それらの長手方向に沿って結節状構造とともに出現した分岐突起は、従前に記載されている脳および脊髄由来のPSA−NCAM+神経前駆体およびTuJ1+成熟ニューロンと極めて類似した特徴を有する(1、2)。時間が経つにつれ、これらの細胞はさらにニューロンらしくなり、やはりクローンにおいてのみ見られた。
臍由来細胞のクローンは神経タンパク質を発現する。解凍/プレーティング後1か月で培養物を固定し、神経タンパク質TuJ1および星状細胞で見られる中間体微細繊維であるGFAPに関して染色した。増殖培地で増殖させた全ての対照培養物およびNPE+bFGF+EGF培地で増殖させたヒト繊維芽細胞およびMSCはTuJ1−/GFAP−であることが分かったが、臍および胎盤PPDCではTuJ1が検出された。神経様形態を持つ細胞でも持たない細胞でも拡大が見られた。いずれの培養物でもGFAPの発現は見られなかった。神経様形態を持つTuJ1を発現する細胞のパーセンテージは全集団の1%以下であった(供試した臍由来細胞単離物n=3)。神経様形態を持たないTuJ1+細胞のパーセンテージは、数値化していないが、胎盤由来細胞培養物よりも臍由来細胞培養物で高かった。これらの結果から、増殖培地において特定の年齢適合対照がTuJ1を発現しなかったことが明らかである。
要約。臍由来細胞から分化ニューロン(TuJ1の発現および神経形態学に基づく)を形成する方法が開発された。TuJ1の発現はインビトロでは1か月より早い時点では調べなかったが、臍由来細胞の少なくとも小さな集団は、誤った分化により、またはL−グルタミン、塩基性FGF、およびEGFを添加した最小培地に1か月曝した後の長期誘導により、ニューロンを生じ得ることは明らかである。
実施例14の参照文献
Figure 2008525489
実施例15
神経前駆体支持体のPPDC栄養因子
非接触依存性(栄養性)機構による成体神経幹細胞および前駆細胞の生存および分化に対する臍由来細胞および胎盤由来細胞(ひとまとめにして産褥由来細胞またはPPDC)の影響を調べた。
材料および方法
成体神経幹細胞および前駆細胞の単離。Fisher 344成体ラットをCO2窒息とその後の頸脱臼により犠牲にした。骨鉗子を用いて全脳を無傷な状態で取り出し、脳の運動および体性感覚領域後方の冠状切開により海馬組織を摘出した(Paxinos, G. & Watson, C. 1997. THE RAT BRAIN IN STEREOTAXIC COORDINATES)。組織を、B27(B27サプリメント;Invitrogen)、L−グルタミン(4mM;Invitrogen)、およびペニシリン/ストレプトマイシン(Invitrogen)を含有するNeurobasal−A培地(Invitrogen, Carlsbad, CA) (これらの組合せを本明細書では神経前駆体拡大(NPE)培地と呼ぶ)で洗浄した。NPE培地にはさらにbFGF(20ng/mL,Peprotech, Rocky Hill, NJ)およびEGF(20ng/mL,Peprotech, Rocky Hill, NJ)を添加し、これを本明細書ではNPE+bFGF+EGFと呼ぶ。
洗浄後、覆われている髄膜を除去し、組織をメスで細断した。細断した組織を集め、トリプシン/EDTA(Invitrogen)を全量の75%として添加した。DNアーゼ(100μL/全量8mL,Sigma, St. Louis, MO)も加えた。次に、この組織/培地を18ゲージニードル、20ゲージニードル、最後に25ゲージニードルに各1回順次通した(ニードルは全てBecton Dickinson, Franklin Lakes, NJから)。この混合物を250gで3分間遠心分離した。上清を除去し、新鮮なNPE+bFGF+EGFを加え、ペレットを再懸濁させた。得られた細胞懸濁液を40μm細胞濾過器(Becton Dickinson)に通し、ラミニンコートT−75フラスコ(Becton Dickinson)または低クラスター24ウェルプレート(Becton Dickinson)に入れ、NPE+bFGF+EGF培地中で、概略を示した研究に十分な細胞数が得られるまで増殖させた。
PPDCプレーティング。従前に増殖培地で増殖させた産褥由来細胞(臍(022803)P12、(042103)P12、(071003)P12;胎盤(042203)P12)を5,000細胞/トランスウェルインサート(24ウェルプレートの大きさ)で入れ、インサート中の増殖培地にて、密集するまで1週間増殖させた。
成体神経前駆体のプレーティング。ニューロスフェアとして、または単細胞として増殖させた神経前駆体を、細胞接着を促進するために1日、ラミニンコート24ウェルプレートのNPE+bFGF+EGF中に、およそ密度2,000細胞/ウェルで播種した。1日後、産褥細胞を含むトランスウェルインサートを次のスキームに従って加えた。
(1)トランスウェル(増殖培地200μL中の臍由来細胞)+神経前駆体(NPE+bFGF+EGF,1mL)
(2)トランスウェル(増殖培地200μL中の胎盤由来細胞)+神経前駆体(NPE+bFGF+EGF,1mL)
(3)トランスウェル(成体ヒト皮膚繊維芽細胞[増殖培地200μL中の1F1853;Cambrex, Walkersville, MD]P12)+神経前駆体(NPE+bFGF+EGF,1mL)
(4)対照:神経前駆体単独(NPE+bFGF+EGF,1mL)
(5)対照:神経前駆体単独(NPE単独,1mL)
免疫細胞化学。共存培養7日後、全ての条件を室温で10分間、4%(w/v)パラホルムアルデヒド(Sigma)で固定した。免疫細胞化学法は、表15−1に一覧化されているエピトープに対する抗体を用いて行った。要するに、培養物をリン酸緩衝生理食塩水(PBS)で洗浄し、細胞内抗原に接近するため、PBS、4%(v/v)ヤギ血清(Chemicon, Temecula, CA)、および0.3%(v/v)トリトン(トリトン X−100;Sigma)を含有するタンパク質遮断溶液に30分間曝した。遮断溶液に希釈した一次抗体を、次に、室温で1時間、培養物に適用した。次に、一次抗体溶液を除去し、培養物をPBSで洗浄した後、ヤギ抗マウスIgG−テキサスレッド(1:250;Molecular Probes, Eugene, OR)、およびヤギ抗ウサギIgG−アレキサ(Alexa)488(1:250;Molecular Probes)とともに遮断溶液を含む二次抗体溶液を適用した(室温で1時間)。その後、培養物を洗浄し、10μMのDAPI(Molecular Probes)を10分間適用し、細胞核を可視化した。
免疫染色後、オリンパス倒立エピ蛍光顕微鏡(Olympus, Melville, NY)にて、適当な蛍光フィルターを用い、蛍光を可視化した。全ての場合で陽性染色は、対照染色を超える蛍光シグナルを表し、その場合には、一次抗体溶液の適用を除き、前記で概略を示した全手順を続けた。代表的な画像を、デジタルカラービデオカメラとイメージプロ(ImagePro)ソフトウエア(Media Cybernetics, Carlsbad, CA)を用いて取り込んだ。三重染色サンプルについては、1回に放射フィルターを1つだけ用いて各画像を採取した。次に、アドビ・フォトショップ(Adobe Photoshop)ソフトウエア(Adobe, San Jose, CA)を用いて層状モンタージュを作製した。
Figure 2008525489
神経前駆体分化の定量分析。海馬神経前駆体分化の定量化を検討した。各条件につき最低1000細胞を計数し、少ない場合には、その条件で見られた細胞の総数とした。所与の染色について陽性の細胞のパーセンテージを、陽性細胞数をDAPI(核)染色により判定された細胞総数で割ることにより評価した。
質量分析および2Dゲル電気泳動。共存培養の結果としてユニークな分泌因子を同定するため、細胞馴化培地サンプルを採取した後、培養し、固定物を−80℃で一晩凍結させた。次に、サンプルを限外濾過スピンデバイス(カットオフ分子量30kD)に適用した。保持液を免疫アフィニティークロマトグラフィー(抗Hu−アルブミン;IgY)に適用した(免疫アフィニティーはこれらのサンプルからアルブミンを除去しなかった)。濾液をMALDIで分析した。透過物をCibachron Blueアフィニティークロマトグラフィーに適用した。サンプルをSDS−PAGEおよび2Dゲル電気泳動により分析した。
結果
PPDC共存培養は成体神経前駆体分化を刺激する。臍由来細胞または胎盤由来細胞とともに培養した後、成体ラット海馬由来の共存培養神経前駆細胞は、中枢神経系の主要な3つの系統全てへ有意な分化を示した。この効果は共存培養5日後に明らかに見られ、多くの細胞が複雑な突起を作り出し、分裂中の前駆細胞の特徴である色相の明るさが失われていた。bFGFおよびEGFの不在下で単独で増殖した神経前駆体は健康さを欠き、生存も限られていた。
この手順が完了した後、培養物を未分化幹細胞および前駆細胞(ネスチン)、未熟および成熟ニューロン(TuJ1)、星状細胞(GFAP)、および成熟乏突起神経膠細胞(MBP)の指標となるマーカーに関して染色した。3つ全ての系統への分化が確認されたが、対照条件は、大多数の細胞にネスチン陽性染色が保持されていたことを証拠として、有意な分化を呈していなかった。臍由来細胞および胎盤由来細胞の双方が細胞の分化を誘導したが、3つの全ての系統の分化程度は、臍由来細胞と共存培養した場合よりも胎盤由来細胞と共存培養した場合の方が低かった。
臍由来細胞と共存培養した後の、分化した神経前駆体のパーセンテージを定量化した(表15−2)。臍由来細胞は成熟乏突起神経膠細胞(MBP)の数を有意に増加させた(両対照条件の0%に対し、24.0%)。さらに、共存培養は、培養GFAP+星状細胞およびTuJ1+ニューロンの数を増加させた(それぞれ47.2%および8.7%)。これらの結果はネスチン染色により確認されたが、このことは共存培養後に前駆体状態が失われたことを示す(対照条件4の71.4%に対し、13.4%)。
分化はまた成体ヒト繊維芽細胞によっても影響を受けるものと思われたが、このような細胞は成熟乏突起神経膠細胞の分化を促進することはできず、感知できる量のニューロンを生成することもできなかった。しかしながら、定量しなかったものの、繊維芽細胞は神経前駆体の生存を高めるものと思われた。
Figure 2008525489
ユニークな化合物の同定。臍由来および胎盤由来共存培養からの細胞馴化培地と、適当な対照(NPE培地±1.7%血清、繊維芽細胞との共存培養からの培地)との違いを検討した。潜在的にユニークな化合物が同定され、個々の2Dゲルから切り出した。
要約。成体神経前駆細胞と臍または胎盤PPDCとの共存培養は、これらの細胞の分化をもたらす。本実施例に示されている結果は、臍由来細胞と共存培養した後の成体神経前駆細胞の分化が特に顕著であることを示す。特に、成熟乏突起神経膠細胞の有意なパーセンテージのものが、臍由来細胞分化の共存培養において生じた。臍由来細胞と神経前駆体の間には接触が見られないという点で、この結果は臍由来細胞から放出された可溶性因子の働きであるものと思われる(栄養作用)。
他の所見もいくつか得られた。第一に、EGFおよびbFGFが除かれた対照条件では極めて少数の細胞しか存在しなかった。ほとんどの細胞が死滅し、平均してウェル当たりに約100細胞以下しか存在しなかった。第二に、EGFおよびbFGFが培地に保持された対照条件では、これは通常、拡大培地であることから、ごく少数の分化しか見られないと予測される。約70%の細胞がそれらの前駆体状態(ネスチン+)を保持していることが観察され、約30%がGFAP+(星状細胞の指標)であった。これは、この手順の過程で見られるこのような有意な拡大が前駆体どうしを接触させ、このような分化を誘導したことによるものである可能性がある(Song, H.ら2002. Nature 417:29-32)。
実施例16
産褥由来細胞の移植
産褥臍および胎盤由来の細胞は、再生治療に有用である。SCIDマウスに生分解性材料とともに移植された産褥由来細胞(PPDC)によって産生された組織を評価した。評価した材料は、不織ビクリル(Vicryl non-woven)(VNW)、35/65 PCL/PGA発泡体、およびRAD 16自己集合ペプチドヒドロゲルであった。
方法および材料
細胞培養。胎盤由来細胞および臍由来細胞をゼラチンコートフラスコの増殖培地(DMEM−低グルコース(Gibco, Carlsbad CA)、15%(v/v)ウシ胎児血清(カタログ番号SH30070.03;Hyclone, Logan, UT)、0.001%(v/v)βメルカプトエタノール(Sigma, St. Louis, MO)、ペニシリン/ストレプトマイシン(Gibco))中で増殖させた。
サンプルの調製。1×106個の生細胞を、直径5mm、厚さ2.25mmのVNWスキャフォールド(64.33mg/cc;ロット番号3547−47−1)または直径5mmの35/65 PCL/PGA発泡体(ロット番号3415−53)の15μL増殖培地中に播種した。細胞を2時間接着させた後、スキャフォールドを覆うようにさらなる増殖培地を加えた。細胞をスキャフォールド上で一晩増殖させた。また、細胞を含まないスキャフォールドも培地中でインキュベートした。
RAD16自己集合ペプチド(3Dマトリックス,Cambridge, MA、生物遺伝資源提供同意下)を水中1%(w/v)の無菌溶液として得、これを使用直前にダルベッコの改変イーグル培地(DMEM;Gibco)中、10%(w/v)スクロース(Sigma, St Louis, MO)、10mM HEPES中の1×106細胞と1:1で混合した。RAD16ヒドロゲル中の細胞の終濃度は1×106細胞/100μLとした。
供試材料(N=4/RX)
1.VNW+1×106臍由来細胞
2.35/65 PCL/PGA発泡体+1×106臍由来細胞
3.RAD16自己集合ペプチド+1×106臍由来細胞
4.VNW+1×106胎盤由来細胞
5.35/65 PCL/PGA発泡体+1×106胎盤由来細胞
6.RAD16自己集合ペプチド+1×106胎盤由来細胞
7.35/65 PCL/PGA発泡体
8.VNW
動物の準備。動物福祉法の現行の要件に従って、動物を取扱いおよび維持した。前記公法の応諾は、動物福祉規則(9CFR)を遵守し、動物実験に関する指針(The Care and Use of Laboratory Animals)第7版に公布された現行標準に従うことにより遂行した。
マウス(Mus Musculus)/Fox Chase SCID/雄(Harlan Sprague Dawley, Inc., Indianapolis, Indiana)5週齢。SCIDマウスの取扱いは全てフード内で行った。マウスを個々に秤量し、60mg/kg KETASET(塩酸ケタミン,Aveco Co., Inc., Fort Dodge, Iowa)および10mg/kg ROMPUN(キシラジン,Mobay Corp., Shawnee, Kansas)と生理食塩水の混合物の腹腔内注射により麻酔した。麻酔誘導後、動物用電気バリカンを用い、背側頸部領域から背側腰仙領域まで動物の背全体の毛を刈った。次に、これらの領域を二酢酸クロルヘキシジンでこすり洗いし、アルコールですすぎ、乾燥させ、利用可能ヨウ素1%のヨードフォア水溶液を塗布した。麻酔期間中、組織の乾燥を防ぐため、眼には眼用軟膏を塗布した。
皮下移植技術。マウスの背で各約1.0cm長の4つの皮膚切開部を作った。2つの頭蓋部位を背側部の胸部領域の、触診した肩胛骨の下端より5mm尾側となるように横断し、一方は脊柱の左、もう一方は右になるように置いた。別の2つは、臀筋領域を、尾の仙腰レベルで、触診した腸骨稜より約5mm尾側となるように横断し、各々正中の各側にくるように置いた。実験計画に従い、インプラントをこれらの部位に無作為に置いた。皮膚を下層の結合組織から分離し、小さなポケットを作り、インプラントをその切開部の約1cm尾側に置いた(またはRAD16の場合には注入した)。適当な供試材料を皮下空間に移植した。皮膚の切開部は金属クリップで閉じた。
動物の飼育。マウスは実験過程では個々に小型隔離ケージで、温度範囲64°F〜79°F、相対湿度30%〜70%で飼育し、約12時間明期/12時間暗期の周期で維持した。可能性を最大限とするため、温度および相対湿度は記載の範囲内に維持した。食餌はIrradiated Pico Mouse Chow 5058(Purina Co.)からなり、水は自由摂取とした。
マウスを示された期間に二酸化炭素吸入により安楽死させた。皮下移植部位を覆われている皮膚とともに切り取り、組織学のために凍結させた。
組織学。インプラントとともに切り取った皮膚を10%中性緩衝ホルマリン(Richard-Allan Kalamazoo, MI)で固定した。サンプルを覆われている、または隣接する組織とともに中央で二分し、パラフィン処理を施し、情報を用いて切断面に包埋した。ミクロトームにより5μmの組織切片を得、常法を用い、ヘマトキシリンおよびエオジン(Poly Scientific Bay Shore, NY)で染色した。
結果
30日後、SCIDマウスに皮下移植された発泡体(細胞を含まない)には最小の組織内植しか見られなかった。これに対し、臍帯由来細胞または胎盤由来細胞とともに移植された発泡体には著しい組織充填が見られた。VNWスキャフォールドでは、ある程度の組織の内植が見られた。臍由来細胞または胎盤由来細胞を播種した不織スキャフォールドは、高いマトリックス接着と成熟血管を示した。
要約。合成吸収性不織/発泡体ディスク(直径5.0mm×厚さ1.0mm)または自己集合ペプチドヒドロゲルにヒト臍または胎盤いずれかに由来する細胞を播種し、SCIDマウスの背棘領域の両側に皮下移植した。これらの結果は、産褥由来細胞は生分解性スキャフォールドにおける質の良い組織形成を劇的に高め得ることを示した。
実施例17
神経修復における産褥由来細胞の使用
網膜神経節細胞(RGC)病巣は、成体哺乳類CNSにおける様々な修復戦略のモデルとして広く用いられている。成体齧歯類RGC軸策の眼球後切片では、出芽不全が起こり(Zengら, 1995)、親細胞集団の死滅が進行する(Villegas-Perezら, 1993)ことが示されている。多くの研究が、軸策切断されたRGCの生存およびそれらの軸策の再生に対する種々の外因性および内因性因子の刺激作用が証明している(YipおよびSo, 2000; Fischerら, 2001)。さらに、細胞移植を用いて、断裂した神経軸策の再生を促進することができることを実証した研究もある(Liら, 2003; Ramon-Cuetoら, 2000)。よって、これら、および他の研究は、脊髄、末梢神経、陰部神経、視神経に影響を及ぼす神経障害、または神経の損傷が起こり得る傷害による他の疾病/外傷の治療のために、細胞に基づく方法を使用することができることを実証した。
自己集合ペプチド(PuraMatrix(商標),米国特許第5,670,483号、同第5,955,343号、US/PCT出願第US2002/0160471号、国際出願第02/062969号)は、3Dで細胞を接着させるため、2Dコーティングにおいて細胞をプレーティングするためのスキャフォールドとして、または懸濁培養の微小担体として働くように開発されたものである。三次元細胞培養は、固有の再生性と細胞のシグナル伝達問題を伴う動物由来材料(マウス肉腫抽出物)か、または物理的ナノメータースケールおよび天然ECMの化学的特性に近づけることができないはるかに大きな合成スキャフォールドのいずれかを必要とした。RAD16(NH2−(RADA)3−COOH)およびKLD(NH2−(KLDL)3−COOH)は、インビボ細胞外マトリックス(ECM)と同様のスケールでナノ繊維へと自己集合する小さな(RAD16は5nm)オリゴペプチド断片に合成される(3D Matrix, Inc Cambridge, MA)。自己集合は培養培地または生理環境中に見られる一価または二価陽イオンによって開始される。本実施例に記載のプロトコールでは、RAD16は眼の欠損部に産褥細胞の移植を行うための微小担体として使用した。本実施例では、産褥由来細胞PPDCの移植が成体ラット視神経軸策再生モデルにおいて有効性をもたらし得ることが実証される。
方法および材料
細胞。ヒト成体PPDC(臍および胎盤)および繊維芽細胞(継代培養10代目)を1継代の間拡大培養した。まず、全細胞を、ゼラチンコートT75フラスコの、100単位/mLペニシリン、100μg/mLストレプトマイシン、0.25μg/mLアムホテリシンB(Invitrogen, Carlsbad, CA)を含む増殖培地中に5,000細胞/cm2で播種した。継代培養11代目に細胞をトリプシン処理し、トリパンプルー染色を用いて生存率を決定した。要するに、50μLの細胞懸濁液を0.04%w/vのトリパンプルー(Sigma, St. Louis, MO)50μLと合わせ、血球計を用い、生細胞数を評価した。次に、細胞をサプリメントフリーのLeibovitzのL−15培地(Invitrogen, Carlsbad, CA)で3回洗浄した。その後、細胞を、製造業者の奨励に従って緩衝させ、等張とした25μLのRAD−16(3DM Inc., Cambridge, MA)中に200,000細胞の密度で懸濁させた。100μLのサプリメントフリーLeibovitzのL−15培地をこの細胞/マトリックス懸濁液の上に加え、使用まで湿潤状態を維持させた。これらの細胞/マトリックス培養は、移植を行うまで、標準的大気条件下で維持した。移植の時点で余分な培地を除去した。
動物および外科術。Long Evansメスラット(体重220〜240g)を使用した。腹腔内トリブロモエタノール麻酔下(20mg/体重100g)、視神経を露出させ、視神経鞘を視神経円板から約2mmのところで眼内切開し、この神経鞘から神経を引き上げ、鋭利なハサミで完全に分断した(Liら, 2003)。分断が完全であることを、近位端と遠位端が完全に離れていることを目で確かめることにより確認した。対照は移植を行わない傷害ラットとした。移植ラットでは、RAD−16に播種した培養産褥細胞が、一対の微小鉗子を用い、近位端と遠位端の間に挿入された。RAD−16中、約75,000細胞がこの断裂視神経に移植された。一対の微小鉗子を用い、細胞/マトリックスを断裂部に塗布した。この断裂視神経鞘を10/0ブラック単繊維ナイロン(Ethicon, Inc., Edinburgh, UK)で縫合した。よって、ギャップは、この神経の切断された近位端と遠位端を互いに近接して引っ張ることにより閉じた。
細胞注入を行った後、移植後10日間、動物にデキサメタゾン(2mg/kg)を注射した。試験期間、移植2日前から試験終了時まで、経口シクロスポリンA(210mg/L飲料水;この結果として血中濃度250〜300μg/L)(Bedford Labs, Bedford, Ohio)で動物を維持した。食物および水は自由摂取とした。動物を移植後30日または60日に犠牲にした。
CTB適用。動物を犠牲にする3日前に、麻酔下で、30〜50mmチップを有するガラス製マイクロピペットをレンズ後方の強膜から接線に沿って挿入し、1%逆行トレーサー−コレラ毒素B(CTB)水溶液(List Biologic, Campbell, CA)4〜5μLアリコートを2回、硝子体に注射した。動物に固定液を潅流させ、同じ固定液で1時間、指針液を採取した。これらの視神経を一晩スクロース中に移した。20μmのクリオスタット切片を0.1モルグリシン中で30分間インキュベートし、2.5%ウシ血清アルブミン(BSA)(Boeringer Mannheim, Mannheim, Germany)および0.5%トリトンX−100(Sigma, St. Louis, MO)を含有するPBS溶液、その後、PBS中2%正常ウサギ血清(NRS)(Invitrogen, Carlsbad, CA)、2.5%BSA、および2%トリトンX−100(Sigma, St. Louis, MO)を含有するPBSで1:4000希釈したヤギ抗CTB抗体(List Biologic, Campbell, CA)を含有する溶液で遮断し、PBS中2%トリトン−X100で1:200希釈したビオチン化ウサギ抗ヤギIgG抗体(Vector Laboratories, Burlinghame, CA)中、室温で2時間インキュベートした。その後、PBS中、1:200ストレプトアビジン−グリーン(Alexa Flour 438;Molecular Probes, Eugene, OR)中、室温で2時間染色を行った。次に、染色された切片をPBSで洗浄し、共焦顕微鏡用にヨウ化プロピジウムで対比染色した。
組織学的調製物。要するに、CTB注射から5日後に、ラットに4%パラホルムアルデヒドを潅流させた。ラットに4cm3のウレタンを与え、その後、PBS(0.1モル)、次いで4%パラホルムアルデヒドを潅流させた。脊髄を切断し、頭部から骨を除去し、小丘を露出させた。次に、小丘を摘出し、4%パラホルムアルデヒド中に入れた。眼の外周を切り取り、できるだけ後ろへやるようにして眼を摘出した。眼の裏側にある視神経を切断しないように注意した。眼を摘出し、筋肉を切断して視神経を露出させ、次にこれを4%パラホルムアルデヒド中に入れた。
結果
傷害単独。視神経の眼球後(retrotubular)切片後1か月、網膜に付着した神経セグメントにおいて複数のCTB標識された軸策が確認された。切断部に最も近い200μmでは、軸策は、主軸と直角にいくつかの分枝を出しており、切断面は神経腫状の絡み合った状態で終わっているのが見られた。近位端と遠位端の間のこの切断部では、ギャップは、血管化した結合組織の2〜3mmのセグメントにより段階的に架橋されているのが見られたが、この架橋領域への軸策の進展は見られなかった。よって、傷害だけを受けた動物では、遠位端に達するような軸策の成長は見られなかった。
RAD−16の移植。切断部にRAD−16を移植した後、血管化した結合組織の目に見える内植が認められた。しかし、近位端と遠位端の間に内植が見られた軸策は無かった。これらの結果は、このような状況では、RAD−16単独の適用では、軸策の再生を誘導するに十分なものではなかったことを示す。
産褥由来細胞の移植。断裂視神経への産褥由来細胞の移植は、視神経の再成長を刺激した。繊維芽細胞が移植された条件でもある程度の再成長が見られたが、これは移植胎盤由来細胞で見られた再成長に比べると最小のものであった。視神経の再成長は胎盤由来細胞を移植した4/5の動物で、成体皮膚繊維芽細胞を移植した3/6の動物で、また、臍由来細胞を移植した1/4の動物で見られた。再成長が見られた場合、CTB標識により、網膜神経節細胞軸策が確認され、これは移植領域へと浸透することが証明された。また、神経膠細胞の瘢痕化のレベルを決定するため、GFAP標識も行った。このGFAP発現は近位端で増強され、いくらかの免疫染色が神経支配された移植片に見られた。
要約。これらの結果は、移植ヒト成体産褥由来細胞は切断された網膜神経節細胞軸策の再生を刺激し、導くことができる。
実施例17の参照文献
Figure 2008525489
実施例18
ドーパミン作動性神経修復における産褥由来細胞の使用
産褥臍由来細胞および胎盤由来細胞を、パーキンソン病などの神経変性疾患を治療するためのモデルとしての6−ヒドロキシドパミン(6−OHDA)障害齧歯類における機能改善を付与する能力に関して試験した。
方法および材料
動物モデルおよびグループ分け。6−ヒドロキシドパミン(6−OHDA)による線条体、SNc、または黒質線条体経路の実質組織の神経化学的障害が、パーキンソン病の信頼性のある齧歯類モデルとして一般に使用される。6−OHDAはドーパミン作動性ニューロンを破壊し、パーキンソン病の発症をもたらす。内側前脳束に6−OHDAによる障害を与えてパーキンソン症候群の表現型を誘発させた2か月齢の雌Sprague−Dawleyラット(275〜300g)をCharles River Laboratories (Montreal, Canada)から直接購入した。
到着したら、移植を行う前に動物を1週間馴化させ、試験期間中、下記のスキルト・ポー・リーチング試験(skilled paw reaching test)に必要な絶食期間以外は、食餌は自由摂取とした。ラットは1ケージにつき2匹飼育し、毎日体重変動をモニタリングし、12:12時間の明暗周期で試験した。動物の飼育および実験は、カナダ実験動物の管理および使用に関する指針(the Canadian Guide for the Care and Use of Laboratory animals)に従って行い、手順は全て、ラバル大学の施設内動物実験委員会(the Institutional Animal Care Committee of Laval University)が認可したものである。6−OHDA障害に関連する挙動欠陥をアポモルヒネ試験により術後2週間半で評価した。
ローテーションスコアを用い、動物を4群に割り付けた。移植は、本試験に携わる2人の試験者が盲検にて行った。3群には異なる細胞種(細胞種あたりn=18、研究グループには未知)を移植し、1群にはビヒクル(細胞培養培地)を施して対照とした(n=6)。移植後4週間、8週間および16週間でラットを犠牲にした(各時点で細胞種あたりn=6、対照n=2)。各犠牲の前に、アポモルヒネ試験、スキルト・ポー・リーチング試験およびヘッドターンの3つの挙動尺度を用いて定期的にラットを評価した。
細胞移植。ヒト成体臍由来細胞、胎盤由来細胞および繊維芽(元)細胞(継代培養10代目)を1代、拡大培養した。まず、全細胞をゼラチンコートT75フラスコの増殖培地に5,000細胞/cm2で播種した。次の継代培養では、全細胞を次のように処理した。トリプシン処理後、生細胞の生存率をトリパンプルー染色により計数した。要するに、50μLの細胞懸濁液を50μLのトリパンブルー(Sigma, St. Louis MO)と合わせ、血球計を用いて生細胞数を評価した。細胞をトリプシン処理し、DMEM:低グルコース培地(Invitrogen, Carlsbad, CA)(この培地は血清およびサプリメントフリーである)で3回洗浄した。ヒト産褥細胞および繊維芽細胞(継代培養11代目)の培養物をトリプシン処理し、Leibovitz L−15培地で2回洗浄した。細胞(注射1回当たり2×105細胞)を2μLのLeibovitz L−15培地(Invitrogen, Carlsbad, CA)に再懸濁させた。
動物の外科術。手順は全てIACUC認可プロトコール(Centre de Recherche du CHUL, Local RC-9800, 2705 Blvd Laurier, Ste- Foy, Quebec, Canada GlV 4G2)に従って行った。動物をケタミン/キシラジン(75/10mg/kg i.p.)麻酔下、小動物定位固定装置(モデル900,David Kopf Instruments, Tujunga, CA)に固定して移植を行った。各移植は、モーターマイクロインジェクションユニット(モデルUMPII,David Kopf Instruments, Tujunga, CA)注入ポンプに取り付けた5μLマイクロシリンジ(Hamilton Company, Reno, NV)に取り付けた26ゲージステンレス鋼ベベルニードル(45°)から細胞を注入することにより行った。細胞(または培養培地)を線条体に注入し、次の座標に従い、速度1.0μL/分/部位、平均濃度100,000細胞/μL、1個体につき全2μLで注入した(濃度がこれより低い場合には、全動物において同じ細胞数を一貫して移植するために注射容量を調整した):A=前頂に対して0.5mm前方、L=正中に対して3.0mm側方、V=硬膜鉛直下−4.7mm(部位1)および−4.5mm(部位2)、門歯バーは耳のラインの下−2.5mmに設定。細胞の注入が完了した後は、針を抜く前に、針をその位置にさらに3分間刺したまま細胞を拡散させた。ラットは移植1日前に30mg/kgのシクロスポリンA(CsA 25mg/mL、オリーブオイルに希釈、Bedford Laboratories, Bedford, OH)で処置し、残りの試験期間、15mg/kg/日のCsAを皮下(s.c.)注射により与えた。対照とした動物にはCsAを施さなかった。全ての動物に、術前に術前処置として、また、術後3日間、1日2回、(ラクテートは1日1回)10mLのラクテートと0.03mg/kgのブプレノルフィンを施した。
アポモルヒネローテーション挙動試験。ラットに移植2週間半前とその後、犠牲の種々の時点(移植後4週間、8週間および16週間)の2日前に試験を行った。各ラットにi.p.注射によって用量0.05mg/kgを施し、すぐにアポモルヒネ試験装置に置いた(球形のボール)。ラットの胸周りのちょうど肘の後ろに配置したゴムひもからなるハーネスを、ラットが行った体全体のターンの総数および回転の方向のを記録するコンピューターに接続したロタメーター(Rotometer System, San Diego Instruments, San Diego, CA)に取り付けた約16インチのロープベクロフィッティング(Vecro fitting)によって取り付けられている。分析に用いた最終スコアは、ある方向のターンの総数から反対方向のターンの総数を差し引いて得たものである。
ヘッドターン。ベースラインを確定するために移植前に動物に試験を行い、その後、移植後2週間毎に試験した。各ラットを、体に対する頭の位置を、1回の試験につき5分毎に60秒間3回調べた。頭の偏向の総数(10°を超える偏向をヘッドターンとみなした)を左側および右側それぞれについて記録し、両側について3分間の1分当たりの平均ターン回数を算出した。評価は、後足立ちおよびグルーミングを含め、ラットの活動に無関係に評価した。左ターンと右ターンの間の平均数の差を算出して挙動の回復を判定し、アポモルヒネ試験に関して反復測定一元配置分散分析(repeated measures ANOVA)を行った。
スキルト・ポー・リーチング。スキルト・フィアリム・ポー・リーチング(Skilled forelimb paw reaching)能を、移植後4週間、8週間および16週間に、従前に発表されているプロトコール(Mooreら, 2001 Exp Neurol. 2001 172(2):363-76)によって評価した。この装置は2つのコンパートメントを備えた網状ガラス容器からなる。ラットを入れる主要チャンバー(長さ300mm×高さ115mm×幅103mm)は、空気孔を持つもう1つのスライド部材を備えている。このチャンバーから狭い区画(185mm×115mm×60 mm)が仕切られ、長軸沿って高さ62mmに配置された中央22mm幅のプラットフォームを含む。このプラットフォームの両側に19mmの溝があり、そこに7段の螺旋階段(staircase)が配置されている。ラットはこのプラットフォームに登り、各段にある小さな孔から45mgのフードペレットを採取する。ラットが登るプラットフォームは、ラットが方向転換をしたり、右の溝に左肢を乗せたり(またはその逆)するのを防ぐに十分狭いものである。ラットがプラットフォームの側面からフードペレットを簡単にかすめ取ることができないように、各側のプラットフォームの上部には5mmの張出し部分がある(Mooreら, 2001)。この形態の試験は、馴化、訓練、食餌欠乏および試験の4区分に分かれた12日間で行う。馴化:(1〜3日)ラットを毎日20分間空のボックスに入れた後、ボックスから取り出し、ホームケージにもどす。訓練:(4、5日)ラットを、螺旋階段2〜6段に各回の試験で、各段フードペレット6×45mg、各側全30ペレットをおとりに置いたテストケージに入れる。ラットをこの装置に20分間放置し、その後ホームケージに戻す。食餌欠乏:(6、7日)ラットの食餌を絶ち、毎日試験/訓練の直後に4時間摂食させる(水はいつでも置いておいた)。訓練:(8〜12日)各ラットを20分間、5日間試験した。訓練プロトコールと同様に2〜6段におとりを置いた。試験後、ラットをケージから取り出し、ホームケージに戻し、4時間自由に摂食させる。各ラットが採取および摂取したペレットの数を算出し、左肢および右肢それぞれに記録する。最終5日間の試験の比率の平均をとって各ラットの平均確度を求め、反復測定一元配置分散分析を行う。
組織学。犠牲時、ペントバルビタール(60mg/mL,[0.1mL/100g])のi.p.注射により深麻酔し、0.1%ヘパリンを含有する0.9%生理食塩水、その後、0.1Mリン酸緩衝生理食塩水(PBS)pH7.4中、4%のパラホルムアルデヒド(PFA)を心臓内潅流させた。潅流後、脳を回収し、4%PFA中で6時間後固定した後、PBS中20%のスクロース中に置いた。脳をフリージングミクロトーム(Leica Microsystems, Montreal, Canada)で35μm厚の切片とし、連続採取し、凍結防止剤中で保存し、その後、各試験のために、回復させ、PBSで洗浄した。
免疫組織学では、切片をPBS(0.1M pH7.4)中で3回洗浄し、PBS中、0.4%トリトンX−100、5%NGSを含有する溶液中で60分間プレインキュベートした。次に、切片を以下の組合せに従った一次抗体中、4℃で一晩インキュベートした:0.4%トリトンX−100を含むPBSで希釈した、ウサギ抗Iba−1(Wako Pure Chemicals Industries, Richmond, VA; 1:1000)とマウス抗ED1(Serotech, Raleigh, NC; 1:1000)、ウサギ抗膠原繊維酸性タンパク質(GFAP,DakoCytomation, Mississauga, ON; 1:4000)とマウス抗ヒトミトコンドリア(Chemicon, Temecula, CA; 1:500)またはウサギ抗GABA(Chemicon, Temecula, CA; 1:200)(抗ヒトミトコンドリアとも組み合わせる) 。PBSで洗浄後、切片を二次抗体:Alexa Fluor 488ヤギ抗ウサギ高交差吸着型(Molecular Probes, Eugene, OR; 1:200)およびローダミンRed−Xヤギ抗マウス高交差吸着型(Jackson Immunoresearch, West Grove, PA; 1:200)中、室温にて2.5時間PBS中でインキュベートした。洗浄後、切片を、0.022%DAPI(Molecular Probes, Eugene, OR)を含有するPBS中でインキュベートし、洗浄し、ゼラチンコートスライドに展着させ、自家製のDABCO展着媒体(ポリビニルアルコール、DABCO、Tris−HCl 1.0M pH8.0、蒸留水、グリセロール)を用いてカバーガラスをかけ、マニキュア液で封止した。蛍光染色は、Hamamatsu 1394 ORCA−285モノクロカメラに接続し、Simple PCIソフトウエアバージョン5.3.0.1102(Compix Inc Imaging Systems, PA, USA)に採用されているi90ニコン蛍光顕微鏡を用いて評価した。
両方の一次抗体が同じ宿主において産生されている二重免疫蛍光の場合、切片を0.1M PBSで洗浄し、1%ウシ血清アルブミン(BSA)および0.4%トリトンX−100(双方ともSigma, St. Louis, MOから)を含有する0.1M PBS中でプレインキュベートした。室温で1時間、最初の一次抗体:マウス抗ビメンチン(Sigma, St Louis, MO; 1:5000)、抗チューブリンイソ型βIII(Chemicon, Temecula, CA)またはマウス抗ニューロン特異的核タンパク質(NeuN, Chemicon, Temecula, CA; 1:5000)とともにインキュベートした後、切片を洗浄し、PBS0.1M、1%BSAおよび0.4%トリトンX−100中、二次抗体FITC結合ヤギ抗マウスIgG(Santa Cruz Biotechnology, Santa Cruz, CA; 1:400)を含有する溶液中で1時間インキュベートした。PBSで洗浄後、切片を、5%正常マウス血清(Jackson Immunoresearch, West Grove, PA)とともに1時間インキュベートした後、再び洗浄し、その後、一次抗体の宿主種に対する過剰量のFabフラグメント抗体(20μg/mL,Jackson Immunoresearch, West Grove, PA)とともに1時間インキュベートし、さらにPBSですすいだ。次に、切片を、1%BSAおよび0.4%トリトンX−100を含有するPBS中、二次一次抗体:マウス抗ヒトミトコンドリア(Chemicon, Temecula, CA; 1:500)とともに室温で1時間インキュベートした。PBSで数回洗浄した後、切片を最後に、0.1M PBS、1%BSA、0.4%トリトンX−100中、1時間、ローダミンヤギ抗マウスIgG(Santa Cruz Biotechnology, Santa Cruz, CA; 1:400)とともにインキュベートした。その後、切片を洗浄し、7分間DAPI(Molecular Probes, Eugene, OR)とともにインキュベートし、前記のように展着させ、カバーガラスをかけた。
チロシンヒドロキシラーゼ(TH)免疫染色では、切片をPBS 0.1M pH7.4で3回洗浄し、室温で30分間3%過酸化物中に入れた。次に、切片を0.1M PBSで洗浄した後、0.1M PBS、0.1%トリトンX−100(Sigma, St. Louis, MO)および5%正常ヤギ血清(NGS, Wisent Inc., St-Jean-Baptiste de Rouville, QC)を含有する溶液中、室温で30分間プレインキュベートした。切片を、PBS、0.1%トリトンX−100および5%NGS中、4℃で一晩、抗TH(Pel-Freez, Rogers, AR; 1:5000)とともにインキュベートした。一晩インキュベートした後、切片を0.1M PBSで洗浄し、0.1%トリトンX−100、5%NGSおよびビオチン化ヤギ抗ウサギ(Vector Laboratories, Burlington, ON; 1:1500)を含有するPBS溶液中、室温で1時間インキュベートした。0.1M PBSで3回洗浄した後、切片を室温で1時間、アビジン−ビオチンペルオキシダーゼ複合体(ABC Elite kit, Vector Laboratories, Burlington, ON)の溶液中に置いた。これらの切片を、室温の0.05%3.3’−ジアミノベンジジンテトラヒドロクロリド(DAB, Sigma, St. Louis, MO)および0.1%の30%水素ペルオキシダーゼを含有するTrisバッファー溶液中に置くことで抗体を顕現させた。0.05MTrisバッファー洗浄、その後のPBS洗浄により反応を停止させた。切片をゼラチンコートスライドに展着させ、一晩風乾し、エタノール濃度を上昇させて脱水し、DPX展着媒体(Electron Microscopy Science, Hatfield, PA)を用いてカバーガラスをかけた。
結果
体重のモニタリング。動物の体重を毎日モニタリングした。図1に示されるように、ラットは移植2週間後にゆっくりとした安定な体重増加を示した。移植3、4、7および15週間後に記録された体重低下はおそらくは螺旋階段試験に必要な絶食によるものである。最初のアポモルヒネ試験後の若干の体重低下の継続はおそらく、一時的な食欲低下のためである。8週目に犠牲にする予定の細胞種1の2匹の動物(ラット27番、49番)は、体重低下が進行したために4週間後に犠牲にする予定の2匹のラットと入れ替えた。移植8週間後、細胞種1のラット60番は、同じ理由で予定よりも1日早く犠牲にしなければならなかった。移植10週間後、細胞種2のさらにn=2の動物は、下痢を患い、著しい体重低下を示した。これらの動物には毎日ラクテート注射を行ったが、このような付加的な予防措置の24時間後にケージ中での死亡が見られた。第2群の別の2匹のラットも、同様の健康問題が見られ始め、予防的に犠牲にした。第2群の残りのn=2も最終的に犠牲にした(第2群の動物の最後の潅流から24時間後)。また、第3群のラット40番も、第2群で見られたものと同様の健康問題のために試験プロトコール13週中に犠牲にした。第1群のラット66番は、15週目にケージの中で死亡しているのが見つかった。事前の徴候は第2群および第3群の不健康な動物で見られたものに似ていた。まとめると、第2群の動物(残りn=6)を移植10週間後に犠牲にし、第1群および第3群の動物を予定通り移植16週間後に犠牲にした(各群n=5)。
省略形:BB:挙動ベースライン;TP:移植。
アポモルヒネ試験。4群全て(細胞1、2、3、ビヒクル)を反復測定一元配置分散分析(変数:回転数)を用いて分析したところ、唯一「時間」因子が有意であることが明らかとなり(p=0.0048)、全ての群で「時間」の効果が示された。多重比較は、「0」時点(ベースライン)と移植4週間後の間の全群の有意な機能的回復(回転数の減少)を示した(図2)。この減少は4週の時点を超えても維持されていた。移植後16週の終了時には、この時点までに第2群が犠牲にされたことから、反復測定一元配置分散分析を用いた分析はできなかった(図2)。
それぞれ6−OHDAで障害を起こしたが、外科的介入(移植)を受けていない5匹の動物の一群を反復測定一元配置分散分析に加えた。この群を反復測定一元配置分散分析の計算に加えると、相互作用群/時間だけが有意性に対する強い傾向を持っている(p=0.0985)。動物数の有意性が大きいほど、有意性結果に対するこの傾向が強調される可能性がある。この傾向が経時的な機能回復の指標となると考えると、さらなる分析を行ったところ、臍帯細胞(細胞1)だけが経時的に有意な有益効果を誘導すること(p=0.0056)、および頭蓋内の外科的介入を受けなかった障害動物が経時的に機能回復する傾向を示さないこと(この結果はp=0.0655で有意でなかった)が明らかになった。
ヘッドターン。ヘッドターンは、細胞移植後に動物が行う同側性の回転総数を表す。試験した全ての時点(移植後2週、4週、6週、8週、10週、12週、14週および16週)で、細胞を移植した動物またはビヒクル単独を施した動物の間には有意な差は見られなかった(図3)。ヘッドターンは、障害後に頭が左を向く、または右を向くラットの自然の傾向を純粋に対象とし、判定するものである。全ての群を、反復測定一元配置分散分析を用いて分析した(変数:頭が左を向く回数と右を向く回数の間の差)。本試験では時間が経つにつれ、ヘッドターンの偏りがないという点で改善が見られたが、これは全ての群で明らかなものであった。
螺旋階段試験。この試験を用いたところ、移植群または対照群間の有意差は確認されなかった。螺旋階段試験は20分の試験期間内の餌の摂取を測定し、階段で餌を採取するために巧みな動きを必要とする。全群を反復測定一元配置分散分析を用いて分析した(変数:採取したペレットに対する摂取したペレットの割合)。この試験を用い、経時的に摂食挙動の違いが見られたが、各群間に有意な差は見られないと判定された(図4)。
免疫染色。H&E切片は移植1日後に良好な細胞が植え付けられていることを示した。ヒト核抗原染色によれば、細胞は移植後8週までは移植部位に確認されたが、このヒト細胞数は移植片においては経時的に減少した。現在のところ、このモデル系でのインビボ移植後、産褥由来細胞が神経表現型へと分化したことが確認されたデータはない。
細胞移植片を小神経膠マーカーIba−1の存在に関して分析した。図5aに示されるように、Iba−1は、特にビヒクル対照に比べて、各細胞種により豊富に発現された。Iba−1発現は、経時的に低下する傾向が見られた(図5a)。移植動物におけるED−1の評価は、移植後にマクロファージ応答が明らかとなり、繊維芽細胞が移植された動物を除く全ての群において経時的にED−1の染色レベルが低下することを示した(図5b)。DAPI染色は一般に、試験期間中一定を維持していた(図5c)。
同様に、移植後の反応性星状細胞の数を決定するための、移植片における膠原繊維酸性タンパク質(GFAP)レベルの決定は、移植片またはビヒクル投与後に最初の反応性星状細胞が確認されることが示され、効果は経時的に減衰した(図6a)。移植片における細胞の分化を示す他の知見と一致して、ビメンチンは移植4週間後の細胞に豊富に発現されるが、発現は次の12週間では安定して低下することが判明した(図6b)。
ヒトチロシンヒドロキシラーゼに対する染色は陰性であった。よって、臍帯細胞も胎盤細胞も、使用する治療条件下でドーパミン作動性細胞へ分化しなかった。
要約
これらの結果は、臍帯細胞の移植が、アポモルヒネ試験に対する挙動応答性により評価されるパーキンソン病の6−OHDAモデルにおいて経時的な機能改善をもたらしたことを証明した。螺旋階段試験およびヘッドターン試験の双方を、種々のニューロン回路および/または機構の活性化に対する効果を判定するために行った。これらのパラメーターを用いた場合、差は確認されず、従って、臍帯移植を受けた動物において4週および8週に見られる決定的な利益に関する機構はまだ解明されていない。
免疫組織化学染色は、細胞移植の後に細胞分化の証拠がないことを示した。これらの試験では、ニューロン分化、またはより具体的にはドーパミン作動性分化は証明できなかった。よって、移植部位における細胞分化の証拠は確認できなかった。このことはさらに、臍帯細胞移植後のアポモルヒネ試験により挙動に見られた改善がおそらくは栄養応答によるものであり、細胞の再生能の結果ではないことが示唆する。
TH−免疫陽性細胞は、いずれの細胞種にもいずれの時点でも見られなかった。しかし、THはドーパミンを産生する唯一の細胞経路というわけではない。ドーパミンは、チロシナーゼ経路により、チロシンヒドロキシラーゼとは独立に産生される。さらに、ドーパミンは、チロシナーゼの存在下、チロシンヒドロキシラーゼを共有結合的に修飾し、不活性化する。さらに、移植細胞は、DOPA食の後、血漿中のDOPA(食物中のアミノ酸)の処理を可能とし得る。
実施例18の参照文献
Figure 2008525489
実施例19
RavBioおよびBD Powerblotサイトカインアレイ
RayBio(登録商標)ヒトサイトカイン抗体アレイCシリーズ1000を用い、産褥由来細胞および溶解物中の120のタンパク質の発現を分析した。この分析により、PPDCが同定され、これらの細胞にとって重要な栄養因子の発現スペクトルが確認された。
材料および方法
細胞増殖および採取。臍由来細胞を、増殖培地を含むゼラチンコートフラスコにて5,000細胞/cm2として播種し、3〜4日間拡大培養した(目標採取密度は25,000細胞/cm2)。細胞を、トリプシンを用いて採取し、集め、300rcfで5分間遠心分離した。トリプシン/培地を吸引除去し、細胞をリン酸緩衝生理食塩水(PBS)で3回洗浄した。
細胞の洗浄および分注。洗浄後、細胞をPBS中、107細胞/mLに再懸濁させ、1.5mLの無菌のシリコーン処理した微小遠沈管に1mLアリコートを分注した。細胞を300rcfで5分間遠心分離し、PBSを吸引除去した。細胞を溶解してアレイ分析するか、または分析のため、溶解および凍結乾燥させた。
凍結乾燥サンプルの調製。3ロットの細胞(PPDCロットL040405、L052505、L050505)を液体窒素(LN2)中に60秒間浸漬することにより、最終的に凍結乾燥されるように調製した。次に、LN2から試験管を取り出し、すぐに37℃の水浴に60秒または解凍されるまで浸漬した(最大インキュベーション時間は3分)。このプロセスをさらに2回繰り返した。これらの凍結−解凍サンプルを4℃、13,000rcfで10分間遠心分離し、氷上に置いた。各試験管から上清液を除去した。全タンパク質含量を決定するため、溶解液をPBSで希釈し、この希釈液をBradfordアッセイにより分析した。
凍結乾燥のため、溶解液で標識した1.5mLの無菌クリオバイアルを、オートクレーブにかけて冷却した熱転移ブロックに入れた。溶解液上清のアリコートを定義された全タンパク質濃度でクリオバイアルに入れた。熱ブロックの入った、蓋をしていないクリオバイアルを、オートクレーブにかけた新しいオートクレーブポーチに無菌的に入れた。このポーチを凍結乾燥機に入れた。
適用した溶解液を含む試験材料をFTS Systems Dura−Stop MP Stoppering Tray Dryerに入れ、次の勾配プログラムを用いて凍結乾燥した。全ての段階で勾配率は2.5℃/分および100−mTバキュームとした。
Figure 2008525489
細胞ペレットの調製。冷凍細胞ペレット(PPDCロット063004B、022803、050604B、072804、120304、071404C、090304)を、RIPAバッファー(50mM Tris Hcl、pH8、150mM NaCl、1% NP−40、0.5%デオキシコール酸ナトリウムおよび0.1%SDS)と、RayBioサイトカインアレイ1000.1キット(Raybiotech Inc.Norcross, GA)中に提供されている細胞溶解バッファーの1:1混合物を用いて溶解した。完全な細胞溶解を達成するため、ガラスビーズ(Sigma, MO)を用いた。タンパク質濃度は、BCAタンパク質アッセイキット(Pierce Biotechnology, Inc. Rockford, IL)を用いて測定した。
RayBioアレイ分析。アレイ1000.1からなるRayBioアレイVIおよびVIIを、各サンプル由来の、同量のタンパク質を用いて一晩プロービングした。残りのプロトコールは製造業者の指示に従って行った。膜上のスポットを定性分析し、目的のタンパク質を同定した。サンプル間の量的比較については、これらのスポットは濃度測定とELISAにより確認される発現の変化により分析することができる。
結果
全部で10の異なるPPDC集団を分析した。48タンパク質を定性的に同定し、表20−1に一覧化している。全てのサンプルで比較的高濃度で発現するタンパク質もあるが、ある特定のサンプルで発現したものものある。
Figure 2008525489
要約
RayBioアレイにより、遺伝子アレイおよび/またはELISA分析によって従前に同定されたタンパク質の発現が確認される。特定の疾病の治療に有益な種々の栄養因子が同定されている。例えば、PPDCにおいてはFGF、TGF−b、およびGCSFが同定され、これらの増殖因子は、急性脳卒中および脳卒中の回復の動物モデルにおける改善とともにこれまでに同定されたものである。さらに、パーキンソン病に明らかに関連しているBDNF、BMP−4、BMP−6、およびTGF−b1がPPDCにおいて同定された。示されているデータは全て定性的に評価し、目的のタンパク質の発現のレベルの定量分析は未決定である。
本発明は、以上に記載および例示された実施形態に限定されない。本発明は、添付の特許請求の範囲内で変更および改変が可能である。
〔実施の態様〕
本発明の実施態様は以下の通りである。
(1)黒質または線条体の神経変性症状を有する患者を治療する方法において、
前記神経変性症状を治療するのに有効な量の産褥由来細胞を前記患者に投与するステップ、
を含み、
前記産褥由来細胞は、実質的に血液を含まないヒト胎盤組織またはヒト臍帯組織に由来し、
前記細胞は、自己再生および拡大培養が可能であり、かつ、少なくとも神経表現型の細胞へと分化する能力を有し、
前記細胞は、増殖にL−バリンを必要とし、かつ、少なくとも約5%の酸素中で増殖可能であり、
前記細胞は、次の特徴:
(a)培養において少なくとも約40回の倍加能;
(b)コートまたは非コート組織培養容器における接着(attachment)および拡大培養(expansion)であって、前記コート組織培養容器は、ゼラチン、ラミニン、コラーゲン、ポリオルニチン、ビトロネクチン、またはフィブロネクチンのコーティングを含む、接着および拡大培養;
(c)組織因子、ビメンチン、およびα−平滑筋アクチンのうち少なくとも1つの産生;
(d)CD10、CD13、CD44、CD73、CD90、PDGFr−α、PD−L2およびHLA−A、B、Cのうち少なくとも1つの産生;
(e)フローサイトメトリーにより検出されるCD31、CD34、CD45、CD80、CD86、CD117、CD141、CD178、B7−H2、HLA−G、およびHLA−DR、DP、DQのうち少なくとも1つの産生の欠如;
(f)繊維芽細胞、間葉幹細胞、または腸骨稜骨髄細胞であるヒト細胞(human cell)に比べ、インターロイキン8;レチクロン1;ケモカイン(C−X−Cモチーフ)リガンド1(黒色腫増殖刺激活性α);ケモカイン(C−X−Cモチーフ)リガンド6(顆粒球走化性タンパク質2);ケモカイン(C−X−Cモチーフ)リガンド3;腫瘍壊死因子α誘導タンパク質3;C型レクチンスーパーファミリーメンバー2;ウィルムス腫瘍1;アルデヒドデヒドロゲナーゼ1ファミリーメンバーA2;レニン;酸化低密度リポタンパク質受容体1;ヒトクローンIMAGE:4179671;プロテインキナーゼCζ;機能未知タンパク質DKFZp564F013;卵巣癌1においてダウンレギュレーション;およびクローンDKFZp547k1113由来のヒト(Homo sapiens)遺伝子、をコードする遺伝子の少なくとも1つが増大(increase)されている遺伝子発現;
(g)繊維芽細胞、間葉幹細胞、または腸骨稜骨髄細胞であるヒト細胞に比べ、低身長ホメオボックス2;熱ショック27kDaタンパク質2;ケモカイン(C−X−Cモチーフ)リガンド12(間質細胞由来因子1);エラスチン(大動脈弁上部狭窄症、ウィリアムス−ビューレン症候群);ヒトmRNA;cDNA DKFZp586M2022(クローンDKFZp586M2022);間充織ホメオボックス2(成長停止特異的ホメオボックス);sine oculisホメオボックスホモログ1(ショウジョウバエ);クリスタリンαB;形態形成のdisheveled関連アクチベーター2;DKFZP586B2420タンパク質;ニューラリン1に類似;テトラネクチン(プラスミノーゲン結合タンパク質);src homology three(SH3)およびシステイン豊富ドメイン;コレステロール25−ヒドロキシラーゼ;runt関連転写因子3;インターロイキン11受容体α;プロコラーゲンC−エンドペプチダーゼエンハンサー;frizzledホモログ7(ショウジョウバエ);機能未知遺伝子BC008967;VIII型コラーゲンα1;テネイシンC;iroquoisホメオボックスタンパク質5;hephaestin;インテグリンβ8;シナプス小胞糖タンパク質2;神経芽腫、腫瘍形成抑制1;インスリン様増殖因子結合タンパク質2、36kDa;ヒトcDNA FLJ12280 fis、クローンMAMMA1001744;サイトカイン受容体様因子1;カリウム中間体/低コンダクタンスカルシウム依存性チャネルサブファミリーNメンバー4;インテグリンβ7;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;sine oculisホメオボックスホモログ2(ショウジョウバエ);KIAA1034タンパク質;小胞関連膜タンパク質5;EGF含有fibulin様細胞外マトリックスタンパク質1;初期成長応答3;distal-lessホメオボックス5;機能未知タンパク質FLJ20373;アルド−ケト還元酵素ファミリー1メンバーC3(3αヒドロキシステロイドデヒドロゲナーゼII);ビグリカン;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;フィブロネクチン1;プロエンケファリン;インテグリンβ様1(EGF様リピートドメイン);ヒトmRNA全長インサートcDNAクローンEUROIMAGE 1968422;EphA3;KIAA0367タンパク質;ナトリウム利尿ペプチド受容体C/グアニル酸シクラーゼC(atrionatriureticペプチド受容体C);機能未知タンパク質FLJ14054;ヒトmRNA;cDNA DKFZp564B222(クローンDKFZp564B222由来);BCL2/アデノウイルスE1B 19kDa相互作用タンパク質3様;AE結合タンパク質1;シトクロムcオキシダーゼサブユニットVIIaポリペプチド1(筋肉);ニューラリン1と類似;B細胞輸送遺伝子1;機能未知タンパク質FLJ23191;およびDKFZp586L151、をコードする遺伝子の少なくとも1つが低減されている遺伝子発現;
(h)MCP−1、IL−6、IL−8、GCP−2、HGF、KGF、FGF、HB−EGF、BDNF、TPO、MIP1a、RANTES、およびTIMP1のうち少なくとも1つの分泌;ならびに、
(i)ELISAにより検出されるTGF−β2、ANG2、PDGFbb、MIP1b、I309、MDC、およびVEGFのうち少なくとも1つの分泌の欠如、
のうち少なくとも1つの特徴をさらに含む、方法。
(2)実施態様1に記載の方法において、
前記神経変性症状は、慢性または進行性神経変性疾患である、方法。
(3)実施態様2に記載の方法において、
前記慢性または進行性神経変性疾患は、パーキンソン病、パーキンソン症候群、またはパーキンソン病もしくはパーキンソン症候群関連の症状である、方法。
(4)実施態様1に記載の方法において、
前記細胞は、投与前にインビトロで神経系統細胞へと分化するように誘導される、方法。
(5)実施態様1に記載の方法において、
前記細胞は、前記神経変性症状の治療を促進する遺伝子産物を産生するように遺伝的に改変されている、方法。
(6)実施態様1に記載の方法において、
前記細胞は、少なくとも1つの他の細胞種とともに投与される、方法。
(7)実施態様6に記載の方法において、
前記他の細胞種は、星状細胞、乏突起神経膠細胞、ニューロン、神経前駆体、神経幹細胞、または他の多分化能性(multipotent)もしくは多能性(pluripotent)幹細胞である、方法。
(8)実施態様6に記載の方法において、
前記少なくとも1つの他の細胞種は、前記産褥由来細胞と同時、または前、または後に投与される、方法。
(9)実施態様1に記載の方法において、
前記細胞は、少なくとも1種類の他の薬剤とともに投与される、方法。
(10)実施態様9に記載の方法において、
前記少なくとも1種類の他の薬剤は、前記産褥由来細胞と同時、または前、または後に投与される、方法。
(11)実施態様1に記載の方法において、
前記細胞は、患者の中枢神経系または末梢神経系の所定の部位に投与される、方法。
(12)実施態様1に記載の方法において、
前記細胞は、注射または注入により投与される、方法。
(13)実施態様1に記載の方法において、
前記細胞は、移植可能なデバイス内に封入されて投与される、方法。
(14)実施態様1に記載の方法において、
前記細胞は、当該細胞を含むマトリックスまたはスキャフォールドの移植により投与される、方法。
(15)実施態様1に記載の方法において、
前記細胞は、患者の神経系に対して栄養作用を示す、方法。
(16)黒質または線条体の神経変性症状を有する患者を治療するための医薬組成物において、
製薬上許容される担体と、
前記神経変性症状を治療するのに有効な産褥由来細胞と、
を含み、
前記産褥由来細胞は、実質的に血液を含まないヒト胎盤組織またはヒト臍帯組織に由来し、
前記細胞は、自己再生および拡大培養が可能であり、かつ、少なくとも神経表現型の細胞へと分化する能力を有し、
前記細胞は、増殖にL−バリンを必要とし、かつ、少なくとも約5%の酸素中で増殖可能であり、
前記細胞は、次の特徴:
(a)培養において少なくとも約40回の倍加能;
(b)コートまたは非コート組織培養容器における接着および拡大培養であって、前記コート組織培養容器は、ゼラチン、ラミニン、コラーゲン、ポリオルニチン、ビトロネクチン、またはフィブロネクチンのコーティングを含む、接着および拡大培養;
(c)組織因子、ビメンチン、およびα−平滑筋アクチンのうち少なくとも1つの産生;
(d)CD10、CD13、CD44、CD73、CD90、PDGFr−α、PD−L2およびHLA−A、B、Cのうち少なくとも1つの産生;
(e)フローサイトメトリーにより検出されるCD31、CD34、CD45、CD80、CD86、CD117、CD141、CD178、B7−H2、HLA−G、およびHLA−DR、DP、DQのうち少なくとも1つの産生の欠如;
(f)繊維芽細胞、間葉幹細胞、または腸骨稜骨髄細胞であるヒト細胞に比べ、インターロイキン8;レチクロン1;ケモカイン(C−X−Cモチーフ)リガンド1(黒色腫増殖刺激活性α);ケモカイン(C−X−Cモチーフ)リガンド6(顆粒球走化性タンパク質2);ケモカイン(C−X−Cモチーフ)リガンド3;腫瘍壊死因子α誘導タンパク質3;C型レクチンスーパーファミリーメンバー2;ウィルムス腫瘍1;アルデヒドデヒドロゲナーゼ1ファミリーメンバーA2;レニン;酸化低密度リポタンパク質受容体1;ヒトクローンIMAGE:4179671;プロテインキナーゼCζ;機能未知タンパク質DKFZp564F013;卵巣癌1においてダウンレギュレーション;およびクローンDKFZp547k1113由来のヒト遺伝子、をコードする遺伝子の少なくとも1つが増大されている遺伝子発現;
(g)繊維芽細胞、間葉幹細胞、または腸骨稜骨髄細胞であるヒト細胞に比べ、低身長ホメオボックス2;熱ショック27kDaタンパク質2;ケモカイン(C−X−Cモチーフ)リガンド12(間質細胞由来因子1);エラスチン(大動脈弁上部狭窄症、ウィリアムス−ビューレン症候群);ヒトmRNA;cDNA DKFZp586M2022(クローンDKFZp586M2022);間充織ホメオボックス2(成長停止特異的ホメオボックス);sine oculisホメオボックスホモログ1(ショウジョウバエ);クリスタリンαB;形態形成のdisheveled関連アクチベーター2;DKFZP586B2420タンパク質;ニューラリン1に類似;テトラネクチン(プラスミノーゲン結合タンパク質);src homology three(SH3)およびシステイン豊富ドメイン;コレステロール25−ヒドロキシラーゼ;runt関連転写因子3;インターロイキン11受容体α;プロコラーゲンC−エンドペプチダーゼエンハンサー;frizzledホモログ7(ショウジョウバエ);機能未知遺伝子BC008967;VIII型コラーゲンα1;テネイシンC(hexabrachion);iroquoisホメオボックスタンパク質5;hephaestin;インテグリンβ8;シナプス小胞糖タンパク質2;神経芽腫、腫瘍形成抑制1;インスリン様増殖因子結合タンパク質2、36kDa;ヒト(Homo sapiens)cDNA FLJ12280 fis、クローンMAMMA1001744;サイトカイン受容体様因子1;カリウム中間体/低コンダクタンスカルシウム依存性チャネルサブファミリーNメンバー4;インテグリンβ7;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;sine oculisホメオボックスホモログ2(ショウジョウバエ);KIAA1034タンパク質;小胞関連膜タンパク質5(myobrevin);EGF含有fibulin様細胞外マトリックスタンパク質1;初期成長応答3;distal-lessホメオボックス5;機能未知タンパク質FLJ20373;アルド−ケト還元酵素ファミリー1メンバーC3(3αヒドロキシステロイドデヒドロゲナーゼII);ビグリカン;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;フィブロネクチン1;プロエンケファリン;インテグリンβ様1(EGF様リピートドメイン);ヒトmRNA全長インサートcDNAクローンEUROIMAGE 1968422;EphA3;KIAA0367タンパク質;ナトリウム利尿ペプチド受容体C/グアニル酸シクラーゼC(atrionatriureticペプチド受容体C);機能未知タンパク質FLJ14054;ヒトmRNA;cDNA DKFZp564B222(クローンDKFZp564B222由来);BCL2/アデノウイルスE1B 19kDa相互作用タンパク質3様;AE結合タンパク質1;シトクロムcオキシダーゼサブユニットVIIaポリペプチド1(筋肉);ニューラリン1と類似;B細胞輸送遺伝子1;機能未知タンパク質FLJ23191;およびDKFZp586L151、をコードする遺伝子の少なくとも1つが低減されている遺伝子発現;
(h)MCP−1、IL−6、IL−8、GCP−2、HGF、KGF、FGF、HB−EGF、BDNF、TPO、MIP1a、RANTES、およびTIMP1のうち少なくとも1つの分泌;ならびに、
(i)ELISAにより検出されるTGF−β2、ANG2、PDGFbb、MIP1b、I309、MDC、およびVEGFのうち少なくとも1つの分泌の欠如、
のうち少なくとも1つの特徴をさらに含む、医療組成物。
(17)実施態様16に記載の医薬組成物において、
前記神経変性症状は、慢性または進行性神経変性疾患である、医薬組成物。
(18)実施態様16に記載の医薬組成物において、
前記細胞は、前記組成物の処方前にインビトロで神経系統細胞へと分化するように誘導される、医薬組成物。
(19)実施態様16に記載の医薬組成物において、
前記細胞は、前記神経変性症状の治療を促進する遺伝子産物を産生するように遺伝的に改変されている、医薬組成物。
(20)実施態様16に記載の医薬組成物において、
少なくとも1つの他の細胞種、
を含む、医薬組成物。
(21)実施態様20に記載の医薬組成物において、
前記他の細胞種は、星状細胞、乏突起神経膠細胞、ニューロン、神経前駆体、神経幹細胞、他の多分化能性(multipotent)もしくは多能性(pluripotent)幹細胞である、医薬組成物。
(22)実施態様16に記載の医薬組成物において、
少なくとも1つの他の薬剤、
を含む、医薬組成物。
(23)実施態様16に記載の医薬組成物において、
注射または注入による投与のために処方される、医薬組成物。
(24)実施態様16に記載の医薬組成物において、
前記細胞は、移植可能なデバイスに封入されている、医薬組成物。
(25)実施態様16に記載の医薬組成物において、
前記細胞は、マトリックスまたはスキャフォールド(scaffold)内に含まれる、医薬組成物。
(26)実施態様16に記載の医薬組成物において、
前記細胞は、患者の神経系において栄養作用を発揮する、医薬組成物。
(27)実施態様16に記載の医薬組成物において、
前記神経変性疾患は、パーキンソン病である、医薬組成物。
(28)黒質または線条体の神経変性症状を有する患者を治療するための方法において、
実施態様1に記載の産褥由来細胞から得られる調製物を、前記神経変性症状の治療上有効な量で前記患者に投与するステップ、
を含み、
前記調製物は、前記産褥由来細胞の細胞溶解物、前記産褥由来細胞の細胞外マトリックス、または前記産褥由来細胞が増殖された細胞馴化培地を含む、方法。
(29)黒質または線条体の神経変性症状を有する患者を治療するための医薬組成物において、
製薬上許容される担体と、
実施態様1に記載の産褥由来細胞から得られた調製物と、
を含み、
前記調製物は、前記産褥由来細胞の細胞溶解物、前記産褥由来細胞の細胞外マトリックス、または前記産褥由来細胞が増殖された細胞馴化培地を含む、医薬組成物。
(30)治療を必要とする患者においてパーキンソン病またはパーキンソン症候群を治療する方法において、
治療上有効な量の細胞調製物を患者に投与するステップ、
を含み、
前記細胞調製物は、実質的に血液を含まないヒト胎盤組織またはヒト臍帯組織に由来する細胞を含む単離された産褥由来細胞を含み、
前記細胞は、自己再生および培養増殖が可能であり、かつ、神経表現型の細胞へと分化する能力を有し、
前記細胞は、増殖にL−バリンを必要とし、かつ、少なくとも約5%の酸素中で増殖可能であり、
前記細胞は、次の特徴:
(a)培養において少なくとも約40回の倍加能;
(b)コートまたは非コート組織培養容器における接着および拡大培養であって、前記コート組織培養容器は、ゼラチン、ラミニン、コラーゲン、ポリオルニチン、ビトロネクチン、またはフィブロネクチンのコーティングを含む、接着および拡大培養;
(c)組織因子、ビメンチン(vimentin)、およびα−平滑筋アクチンのうち少なくとも1つの産生;
(d)CD10、CD13、CD44、CD73、CD90、PDGFr−α、PD−L2およびHLA−A、B、Cのうち少なくとも1つの産生;
(e)フローサイトメトリーにより検出されるCD31、CD34、CD45、CD80、CD86、CD117、CD141、CD178、B7−H2、HLA−G、およびHLA−DR、DP、DQのうち少なくとも1つの産生の欠如;
(f)繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、インターロイキン8;レチクロン(reticulon)1;ケモカイン(C−X−Cモチーフ)リガンド1(黒色腫(melonoma)増殖刺激活性α);ケモカイン(C−X−Cモチーフ)リガンド6(顆粒球走化性タンパク質2);ケモカイン(C−X−Cモチーフ)リガンド3;腫瘍壊死因子α誘導タンパク質3;C型レクチンスーパーファミリーメンバー2;ウィルムス腫瘍1;アルデヒドデヒドロゲナーゼ1ファミリーメンバーA2;レニン(renin);酸化低密度リポタンパク質受容体1;ヒト(Homo sapiens)クローンIMAGE:4179671;プロテインキナーゼCζ;機能未知タンパク質DKFZp564F013;卵巣癌1においてダウンレギュレーション;およびクローンDKFZp547k1113由来のヒト(Homo sapiens)遺伝子、をコードする遺伝子の少なくとも1つが増大されている遺伝子発現;
(g)繊維芽細胞、間葉幹細胞、または腸骨稜(ileac crest)骨髄細胞であるヒト細胞に比べ、低身長ホメオボックス2;熱ショック27kDaタンパク質2;ケモカイン(C−X−Cモチーフ)リガンド12(間質細胞由来因子1);エラスチン(大動脈弁上部狭窄症、ウィリアムス−ビューレン症候群);ヒト(Homo sapiens)mRNA;cDNA DKFZp586M2022(クローンDKFZp586M2022);間充織ホメオボックス2(成長停止特異的ホメオボックス);sine oculisホメオボックスホモログ1(ショウジョウバエ(Drosophila));クリスタリン(crystallin)αB;形態形成のdisheveled関連アクチベーター2;DKFZP586B2420タンパク質;ニューラリン(neuralin)1に類似;テトラネクチン(プラスミノーゲン結合タンパク質);src homology three(SH3)およびシステイン豊富ドメイン;コレステロール25−ヒドロキシラーゼ;runt関連転写因子3;インターロイキン11受容体α;プロコラーゲンC−エンドペプチダーゼエンハンサー;frizzledホモログ7(ショウジョウバエ(Drosophila));機能未知遺伝子BC008967;VIII型コラーゲンα1;テネイシンC(hexabrachion);iroquoisホメオボックスタンパク質5;hephaestin;インテグリンβ8;シナプス小胞糖タンパク質2;神経芽腫、腫瘍形成抑制1;インスリン様増殖因子結合タンパク質2、36kDa;ヒト(Homo sapiens)cDNA FLJ12280 fis、クローンMAMMA1001744;サイトカイン受容体様因子1;カリウム中間体/低コンダクタンスカルシウム依存性チャネルサブファミリーNメンバー4;インテグリンβ7;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;sine oculisホメオボックスホモログ2(ショウジョウバエ(Drosophila));KIAA1034タンパク質;小胞関連膜タンパク質5(myobrevin);EGF含有fibulin様細胞外マトリックスタンパク質1;初期成長応答3;distal-lessホメオボックス5;機能未知タンパク質FLJ20373;アルド−ケト還元酵素ファミリー1メンバーC3(3αヒドロキシステロイドデヒドロゲナーゼII);ビグリカン;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;フィブロネクチン1;プロエンケファリン;インテグリンβ様1(EGF様リピートドメイン);ヒト(Homo sapiens)mRNA全長インサートcDNAクローンEUROIMAGE 1968422;EphA3;KIAA0367タンパク質;ナトリウム利尿ペプチド受容体C/グアニル酸シクラーゼC(atrionatriureticペプチド受容体C);機能未知タンパク質FLJ14054;ヒト(Homo sapiens)mRNA;cDNA DKFZp564B222(クローンDKFZp564B222由来);BCL2/アデノウイルスE1B 19kDa相互作用タンパク質3様;AE結合タンパク質1;シトクロムcオキシダーゼサブユニットVIIaポリペプチド1(筋肉);ニューラリン(neuralin)1と類似;B細胞輸送遺伝子1;機能未知タンパク質FLJ23191;およびDKFZp586L151、をコードする遺伝子の少なくとも1つが低減されている遺伝子発現;
(h)MCP−1、IL−6、IL−8、GCP−2、HGF、KGF、FGF、HB−EGF、BDNF、TPO、MIP1a、RANTES、およびTIMP1のうち少なくとも1つの分泌;ならびに、
(i)ELISAにより検出されるTGF−β2、ANG2、PDGFbb、MIP1b、I309、MDC、およびVEGFのうち少なくとも1つの分泌の欠如、
のうち少なくとも1つの特徴をさらに含む、方法。
(31)実施態様30に記載の方法において、
前記細胞は、前記患者への投与前にインビトロで神経系統細胞へと分化するように誘導される、方法。
(32)実施態様30に記載の方法において、
前記細胞は、パーキンソン病の治療を促進する遺伝子産物を産生するように遺伝的に改変されている、方法。
(33)実施態様30に記載の方法において、
前記細胞調製物は、少なくとも1つの他の細胞種をさらに含む、方法。
(34)実施態様33に記載の方法において、
前記他の細胞種は、星状細胞、乏突起神経膠細胞、ニューロン、神経前駆体、神経幹細胞、または他の多分化能性(multipotent)もしくは多能性(pluripotent)幹細胞である、方法。
(35)実施態様30に記載の方法において、
前記細胞調製物は、少なくとも1種類の他の薬剤をさらに含む、方法。
(36)実施態様30に記載の方法において、
前記細胞調製物は、未分画細胞溶解物を含む、方法。
(37)実施態様30に記載の方法において、
前記細胞調製物は、膜不含細胞溶解物(membrane-free cell lysate)を含む、方法。
(38)実施態様30に記載の方法において、
前記細胞調製物は、注射または注入による投与のために処方される、方法。
(39)実施態様30に記載の方法において、
前記細胞は、移植可能なデバイスに封入される、方法。
(40)実施態様30に記載の方法において、
前記細胞調製物は、マトリックスまたはスキャフォールド内に含まれる、方法。
(41)実施態様30に記載の方法において、
前記細胞調製物は、患者の神経系に対して栄養作用を示す、方法。
試験期間中の動物の体重のモニタリングを示す。 アモルフィン(amorphine)刺激に対する種々の細胞群の応答を示す。 試験期間中の頭が左を向く回数と右を向く回数の差のモニタリングを示す。 螺旋階段を用いた試験中の、動物のフットオーバー消耗のモニタリングを示す。 細胞移植片において行った(a)Iba−1染色、(b)ED−1染色、および(C)DAPI染色の定性的質評価を、次の基準:0=無し(細胞の不在);1=目に見える染色;2=豊富に染色;3=極めて豊富に染色;4=濃く染色、に従って示した棒グラフである。 細胞移植片において行った(a)Iba−1染色、(b)ED−1染色、および(C)DAPI染色の定性的質評価を、次の基準:0=無し(細胞の不在);1=目に見える染色;2=豊富に染色;3=極めて豊富に染色;4=濃く染色、に従って示した棒グラフである。 細胞移植片において行った(a)Iba−1染色、(b)ED−1染色、および(C)DAPI染色の定性的質評価を、次の基準:0=無し(細胞の不在);1=目に見える染色;2=豊富に染色;3=極めて豊富に染色;4=濃く染色、に従って示した棒グラフである。 細胞移植片において行った(a)GFAP染色、および(b)ビメンチン染色の定性的評価を、次の基準:0=無し(細胞の不在);1=目に見える染色;2=豊富に染色;3=極めて豊富に染色;4=濃く染色、に従って示した棒グラフである。 細胞移植片において行った(a)GFAP染色、および(b)ビメンチン染色の定性的評価を、次の基準:0=無し(細胞の不在);1=目に見える染色;2=豊富に染色;3=極めて豊富に染色;4=濃く染色、に従って示した棒グラフである。

Claims (14)

  1. 黒質または線条体の神経変性症状を有する患者を治療する方法において、
    前記神経変性症状を治療するのに有効な量の産褥由来細胞を前記患者に投与するステップ、
    を含み、
    前記産褥由来細胞は、実質的に血液を含まないヒト胎盤組織またはヒト臍帯組織に由来し、
    前記細胞は、自己再生および拡大培養が可能であり、かつ、少なくとも神経表現型の細胞へと分化する能力を有し、
    前記細胞は、増殖にL−バリンを必要とし、かつ、少なくとも約5%の酸素中で増殖可能であり、
    前記細胞は、次の特徴:
    (a)培養において少なくとも約40回の倍加能;
    (b)コートまたは非コート組織培養容器における接着および拡大培養であって、前記コート組織培養容器は、ゼラチン、ラミニン、コラーゲン、ポリオルニチン、ビトロネクチン、またはフィブロネクチンのコーティングを含む、接着および拡大培養;
    (c)組織因子、ビメンチン、およびα−平滑筋アクチンのうち少なくとも1つの産生;
    (d)CD10、CD13、CD44、CD73、CD90、PDGFr−α、PD−L2およびHLA−A、B、Cのうち少なくとも1つの産生;
    (e)フローサイトメトリーにより検出されるCD31、CD34、CD45、CD80、CD86、CD117、CD141、CD178、B7−H2、HLA−G、およびHLA−DR、DP、DQのうち少なくとも1つの産生の欠如;
    (f)繊維芽細胞、間葉幹細胞、または腸骨稜骨髄細胞であるヒト細胞に比べ、インターロイキン8;レチクロン1;ケモカイン(C−X−Cモチーフ)リガンド1(黒色腫増殖刺激活性α);ケモカイン(C−X−Cモチーフ)リガンド6(顆粒球走化性タンパク質2);ケモカイン(C−X−Cモチーフ)リガンド3;腫瘍壊死因子α誘導タンパク質3;C型レクチンスーパーファミリーメンバー2;ウィルムス腫瘍1;アルデヒドデヒドロゲナーゼ1ファミリーメンバーA2;レニン;酸化低密度リポタンパク質受容体1;ヒトクローンIMAGE:4179671;プロテインキナーゼCζ;機能未知タンパク質DKFZp564F013;卵巣癌1においてダウンレギュレーション;およびクローンDKFZp547k1113由来のヒト遺伝子、をコードする遺伝子の少なくとも1つが増大されている遺伝子発現;
    (g)繊維芽細胞、間葉幹細胞、または腸骨稜骨髄細胞であるヒト細胞に比べ、低身長ホメオボックス2;熱ショック27kDaタンパク質2;ケモカイン(C−X−Cモチーフ)リガンド12(間質細胞由来因子1);エラスチン(大動脈弁上部狭窄症、ウィリアムス−ビューレン症候群);ヒトmRNA;cDNA DKFZp586M2022(クローンDKFZp586M2022);間充織ホメオボックス2(成長停止特異的ホメオボックス);sine oculisホメオボックスホモログ1(ショウジョウバエ);クリスタリンαB;形態形成のdisheveled関連アクチベーター2;DKFZP586B2420タンパク質;ニューラリン1に類似;テトラネクチン(プラスミノーゲン結合タンパク質);src homology three(SH3)およびシステイン豊富ドメイン;コレステロール25−ヒドロキシラーゼ;runt関連転写因子3;インターロイキン11受容体α;プロコラーゲンC−エンドペプチダーゼエンハンサー;frizzledホモログ7(ショウジョウバエ);機能未知遺伝子BC008967;VIII型コラーゲンα1;テネイシンC(hexabrachion);iroquoisホメオボックスタンパク質5;hephaestin;インテグリンβ8;シナプス小胞糖タンパク質2;神経芽腫、腫瘍形成抑制1;インスリン様増殖因子結合タンパク質2、36kDa;ヒトcDNA FLJ12280 fis、クローンMAMMA1001744;サイトカイン受容体様因子1;カリウム中間体/低コンダクタンスカルシウム依存性チャネルサブファミリーNメンバー4;インテグリンβ7;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;sine oculisホメオボックスホモログ2(ショウジョウバエ);KIAA1034タンパク質;小胞関連膜タンパク質5(myobrevin);EGF含有fibulin様細胞外マトリックスタンパク質1;初期成長応答3;distal-lessホメオボックス5;機能未知タンパク質FLJ20373;アルド−ケト還元酵素ファミリー1メンバーC3(3αヒドロキシステロイドデヒドロゲナーゼII);ビグリカン;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;フィブロネクチン1;プロエンケファリン;インテグリンβ様1(EGF様リピートドメイン);ヒトmRNA全長インサートcDNAクローンEUROIMAGE 1968422;EphA3;KIAA0367タンパク質;ナトリウム利尿ペプチド受容体C/グアニル酸シクラーゼC(atrionatriureticペプチド受容体C);機能未知タンパク質FLJ14054;ヒトmRNA;cDNA DKFZp564B222(クローンDKFZp564B222由来);BCL2/アデノウイルスE1B 19kDa相互作用タンパク質3様;AE結合タンパク質1;シトクロムcオキシダーゼサブユニットVIIaポリペプチド1(筋肉);ニューラリン1と類似;B細胞輸送遺伝子1;機能未知タンパク質FLJ23191;およびDKFZp586L151、をコードする遺伝子の少なくとも1つが低減されている遺伝子発現;
    (h)MCP−1、IL−6、IL−8、GCP−2、HGF、KGF、FGF、HB−EGF、BDNF、TPO、MIP1a、RANTES、およびTIMP1のうち少なくとも1つの分泌;ならびに、
    (i)ELISAにより検出されるTGF−β2、ANG2、PDGFbb、MIP1b、I309、MDC、およびVEGFのうち少なくとも1つの分泌の欠如、
    のうち少なくとも1つの特徴をさらに含む、方法。
  2. 黒質または線条体の神経変性症状を有する患者を治療するための医薬組成物において、
    製薬上許容される担体と、
    前記神経変性症状を治療するのに有効な産褥由来細胞と、
    を含み、
    前記産褥由来細胞は、実質的に血液を含まないヒト胎盤組織またはヒト臍帯組織に由来し、
    前記細胞は、自己再生および拡大培養が可能であり、かつ、少なくとも神経表現型の細胞へと分化する能力を有し、
    前記細胞は、増殖にL−バリンを必要とし、かつ、少なくとも約5%の酸素中で増殖可能であり、
    前記細胞は、次の特徴:
    (a)培養において少なくとも約40回の倍加能;
    (b)コートまたは非コート組織培養容器における接着および拡大培養であって、前記コート組織培養容器は、ゼラチン、ラミニン、コラーゲン、ポリオルニチン、ビトロネクチン、またはフィブロネクチンのコーティングを含む、接着および拡大培養;
    (c)組織因子、ビメンチン、およびα−平滑筋アクチンのうち少なくとも1つの産生;
    (d)CD10、CD13、CD44、CD73、CD90、PDGFr−α、PD−L2およびHLA−A、B、Cのうち少なくとも1つの産生;
    (e)フローサイトメトリーにより検出されるCD31、CD34、CD45、CD80、CD86、CD117、CD141、CD178、B7−H2、HLA−G、およびHLA−DR、DP、DQのうち少なくとも1つの産生の欠如;
    (f)繊維芽細胞、間葉幹細胞、または腸骨稜骨髄細胞であるヒト細胞に比べ、インターロイキン8;レチクロン1;ケモカイン(C−X−Cモチーフ)リガンド1(黒色腫増殖刺激活性α);ケモカイン(C−X−Cモチーフ)リガンド6(顆粒球走化性タンパク質2);ケモカイン(C−X−Cモチーフ)リガンド3;腫瘍壊死因子α誘導タンパク質3;C型レクチンスーパーファミリーメンバー2;ウィルムス腫瘍1;アルデヒドデヒドロゲナーゼ1ファミリーメンバーA2;レニン;酸化低密度リポタンパク質受容体1;ヒトクローンIMAGE:4179671;プロテインキナーゼCζ;機能未知タンパク質DKFZp564F013;卵巣癌1においてダウンレギュレーション;およびクローンDKFZp547k1113由来のヒト遺伝子、をコードする遺伝子の少なくとも1つが増大されている遺伝子発現;
    (g)繊維芽細胞、間葉幹細胞、または腸骨稜骨髄細胞であるヒト細胞に比べ、低身長ホメオボックス2;熱ショック27kDaタンパク質2;ケモカイン(C−X−Cモチーフ)リガンド12(間質細胞由来因子1);エラスチン(大動脈弁上部狭窄症、ウィリアムス−ビューレン症候群);ヒトmRNA;cDNA DKFZp586M2022(クローンDKFZp586M2022);間充織ホメオボックス2(成長停止特異的ホメオボックス);sine oculisホメオボックスホモログ1(ショウジョウバエ);クリスタリンαB;形態形成のdisheveled関連アクチベーター2;DKFZP586B2420タンパク質;ニューラリン1に類似;テトラネクチン(プラスミノーゲン結合タンパク質);src homology three(SH3)およびシステイン豊富ドメイン;コレステロール25−ヒドロキシラーゼ;runt関連転写因子3;インターロイキン11受容体α;プロコラーゲンC−エンドペプチダーゼエンハンサー;frizzledホモログ7(ショウジョウバエ);機能未知遺伝子BC008967;VIII型コラーゲンα1;テネイシンC(hexabrachion);iroquoisホメオボックスタンパク質5;hephaestin;インテグリンβ8;シナプス小胞糖タンパク質2;神経芽腫、腫瘍形成抑制1;インスリン様増殖因子結合タンパク質2、36kDa;ヒトcDNA FLJ12280 fis、クローンMAMMA1001744;サイトカイン受容体様因子1;カリウム中間体/低コンダクタンスカルシウム依存性チャネルサブファミリーNメンバー4;インテグリンβ7;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;sine oculisホメオボックスホモログ2(ショウジョウバエ);KIAA1034タンパク質;小胞関連膜タンパク質5(myobrevin);EGF含有fibulin様細胞外マトリックスタンパク質1;初期成長応答3;distal-lessホメオボックス5;機能未知タンパク質FLJ20373;アルド−ケト還元酵素ファミリー1メンバーC3(3αヒドロキシステロイドデヒドロゲナーゼII);ビグリカン;PDZ結合モチーフ(TAZ)を有する転写コアクチベーター;フィブロネクチン1;プロエンケファリン;インテグリンβ様1(EGF様リピートドメイン);ヒトmRNA全長インサートcDNAクローンEUROIMAGE 1968422;EphA3;KIAA0367タンパク質;ナトリウム利尿ペプチド受容体C/グアニル酸シクラーゼC(atrionatriureticペプチド受容体C);機能未知タンパク質FLJ14054;ヒトmRNA;cDNA DKFZp564B222(クローンDKFZp564B222由来);BCL2/アデノウイルスE1B 19kDa相互作用タンパク質3様;AE結合タンパク質1;シトクロムcオキシダーゼサブユニットVIIaポリペプチド1(筋肉);ニューラリン1と類似;B細胞輸送遺伝子1;機能未知タンパク質FLJ23191;およびDKFZp586L151、をコードする遺伝子の少なくとも1つが低減されている遺伝子発現;
    (h)MCP−1、IL−6、IL−8、GCP−2、HGF、KGF、FGF、HB−EGF、BDNF、TPO、MIP1a、RANTES、およびTIMP1のうち少なくとも1つの分泌;ならびに、
    (i)ELISAにより検出されるTGF−β2、ANG2、PDGFbb、MIP1b、I309、MDC、およびVEGFのうち少なくとも1つの分泌の欠如、
    のうち少なくとも1つの特徴をさらに含む、医療組成物。
  3. 請求項2に記載の医薬組成物において、
    前記神経変性症状は、慢性または進行性神経変性疾患である、医薬組成物。
  4. 請求項2に記載の医薬組成物において、
    前記細胞は、前記組成物の処方前にインビトロで神経系統細胞へと分化するように誘導される、医薬組成物。
  5. 請求項2に記載の医薬組成物において、
    前記細胞は、前記神経変性症状の治療を促進する遺伝子産物を産生するように遺伝的に改変されている、医薬組成物。
  6. 請求項2に記載の医薬組成物において、
    少なくとも1つの他の細胞種、
    を含む、医薬組成物。
  7. 請求項6に記載の医薬組成物において、
    前記他の細胞種は、星状細胞、乏突起神経膠細胞、ニューロン、神経前駆体、神経幹細胞、他の多分化能性もしくは多能性幹細胞である、医薬組成物。
  8. 請求項2に記載の医薬組成物において、
    少なくとも1つの他の薬剤、
    を含む、医薬組成物。
  9. 請求項2に記載の医薬組成物において、
    注射または注入による投与のために処方される、医薬組成物。
  10. 請求項2に記載の医薬組成物において、
    前記細胞は、移植可能なデバイスに封入される、医薬組成物。
  11. 請求項2に記載の医薬組成物において、
    前記細胞は、マトリックスまたはスキャフォールド内に含まれる、医薬組成物。
  12. 請求項2に記載の医薬組成物において、
    前記細胞は、患者の神経系において栄養作用を発揮する、医薬組成物。
  13. 請求項2に記載の医薬組成物において、
    前記神経変性疾患は、パーキンソン病である、医薬組成物。
  14. 黒質または線条体の神経変性症状を有する患者を治療するための医薬組成物において、
    製薬上許容される担体と、
    請求項1に記載の産褥由来細胞から得られた調製物と、
    を含み、
    前記調製物は、前記産褥由来細胞の細胞溶解物、前記産褥由来細胞の細胞外マトリックス、または前記産褥由来細胞が増殖された細胞馴化培地を含む、医薬組成物。
JP2007548532A 2004-12-23 2005-12-22 産褥由来細胞を用いたパーキンソン病および関連の障害の治療 Expired - Fee Related JP5425399B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US63896604P 2004-12-23 2004-12-23
US60/638,966 2004-12-23
PCT/US2005/046809 WO2006071778A2 (en) 2004-12-23 2005-12-22 Treatment of parkinson's disease and related disorders using postpartum derived cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013195332A Division JP2014028836A (ja) 2004-12-23 2013-09-20 産褥由来細胞を用いたパーキンソン病および関連の障害の治療

Publications (2)

Publication Number Publication Date
JP2008525489A true JP2008525489A (ja) 2008-07-17
JP5425399B2 JP5425399B2 (ja) 2014-02-26

Family

ID=36480918

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2007548553A Expired - Fee Related JP5425400B2 (ja) 2004-12-23 2005-12-22 産褥由来細胞を用いた脳卒中および他の急性神経変性障害の治療
JP2007548532A Expired - Fee Related JP5425399B2 (ja) 2004-12-23 2005-12-22 産褥由来細胞を用いたパーキンソン病および関連の障害の治療
JP2013195326A Pending JP2014000094A (ja) 2004-12-23 2013-09-20 産褥由来細胞を用いた脳卒中および他の急性神経変性障害の治療
JP2013195332A Pending JP2014028836A (ja) 2004-12-23 2013-09-20 産褥由来細胞を用いたパーキンソン病および関連の障害の治療

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007548553A Expired - Fee Related JP5425400B2 (ja) 2004-12-23 2005-12-22 産褥由来細胞を用いた脳卒中および他の急性神経変性障害の治療

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2013195326A Pending JP2014000094A (ja) 2004-12-23 2013-09-20 産褥由来細胞を用いた脳卒中および他の急性神経変性障害の治療
JP2013195332A Pending JP2014028836A (ja) 2004-12-23 2013-09-20 産褥由来細胞を用いたパーキンソン病および関連の障害の治療

Country Status (10)

Country Link
US (1) US7875273B2 (ja)
EP (2) EP1833496B1 (ja)
JP (4) JP5425400B2 (ja)
AU (2) AU2005322133B2 (ja)
CA (2) CA2589063C (ja)
DK (1) DK1835924T3 (ja)
PL (1) PL1835924T3 (ja)
PT (1) PT1835924E (ja)
SI (1) SI1835924T1 (ja)
WO (2) WO2006071802A2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509319A (ja) * 2011-02-14 2014-04-17 デピュイ・シンセス・プロダクツ・エルエルシー 臍由来細胞を使用する筋萎縮性側索硬化症の治療
JP2018522538A (ja) * 2015-06-01 2018-08-16 メモリアル スローン ケタリング キャンサー センター 中脳ドーパミン(mDA)ニューロンのin vitro分化の方法
WO2018164228A1 (ja) 2017-03-08 2018-09-13 ロート製薬株式会社 Ror1陽性の間葉系幹細胞を含有する、線維症を伴う疾患の予防又は処置のための医薬組成物、及びその調製方法、並びにror1陽性の間葉系幹細胞を用いる線維症を伴う疾患の予防又は処置方法
JP6967308B1 (ja) * 2020-06-30 2021-11-17 国立大学法人高知大学 胎児付属物由来組織細胞培養上清を含む脳神経障害治療剤
US11179420B2 (en) 2016-04-27 2021-11-23 Rohto Pharmaceutical Co., Ltd. Method for treating a disease, comprising administering mesenchymal stem cells or culture supernatant thereof to a subject
US11707488B2 (en) 2015-08-28 2023-07-25 Rohto Pharmaceutical Co., Ltd. ROR1-positive mesenchymal stem cells and method for preparing same, pharmaceutical composition containing ROR1-positive mesenchymal stem cells and method for preparing same, and method for preventing or treating disease using ROR1-positive mesenchymal stem cells

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311905B2 (en) 2002-02-13 2007-12-25 Anthrogenesis Corporation Embryonic-like stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells
EP2322601A1 (en) * 2000-12-06 2011-05-18 Anthrogenesis Corporation Method of collecting placental stem cells
KR101012952B1 (ko) * 2001-02-14 2011-02-08 안트로제네시스 코포레이션 산후 포유류의 태반, 이의 용도 및 태반 줄기세포
JP2004528021A (ja) * 2001-02-14 2004-09-16 アンスロジェネシス コーポレーション 分娩後の哺乳動物の胎盤、その使用およびそれに由来する胎盤幹細胞
US7560276B2 (en) 2003-06-27 2009-07-14 Ethicon, Incorporated Soft tissue repair and regeneration using postpartum-derived cells
US7875272B2 (en) 2003-06-27 2011-01-25 Ethicon, Incorporated Treatment of stroke and other acute neuraldegenerative disorders using postpartum derived cells
US8518390B2 (en) 2003-06-27 2013-08-27 Advanced Technologies And Regenerative Medicine, Llc Treatment of stroke and other acute neural degenerative disorders via intranasal administration of umbilical cord-derived cells
US8790637B2 (en) 2003-06-27 2014-07-29 DePuy Synthes Products, LLC Repair and regeneration of ocular tissue using postpartum-derived cells
US9592258B2 (en) 2003-06-27 2017-03-14 DePuy Synthes Products, Inc. Treatment of neurological injury by administration of human umbilical cord tissue-derived cells
US9572840B2 (en) 2003-06-27 2017-02-21 DePuy Synthes Products, Inc. Regeneration and repair of neural tissue using postpartum-derived cells
ES2621847T3 (es) 2004-12-23 2017-07-05 DePuy Synthes Products, Inc. Células posparto derivadas de tejido de cordón umbilical, y métodos de elaboración y uso de las mismas
PL1835924T3 (pl) * 2004-12-23 2014-01-31 Ethicon Incorporated Leczenie choroby Parkinsona i zaburzeń związanych z tą chorobą z użyciem komórek uzyskiwanych po porodzie
US20060222634A1 (en) 2005-03-31 2006-10-05 Clarke Diana L Amnion-derived cell compositions, methods of making and uses thereof
US8153430B2 (en) * 2005-03-31 2012-04-10 Stemnion, Inc. Methods related to surgery
PE20110020A1 (es) 2005-10-13 2011-01-31 Anthrogenesis Corp Inmunomodulacion mediante el uso de celulas madres de la placenta
PL1971681T3 (pl) 2005-12-16 2018-01-31 Depuy Synthes Products Inc Kompozycje oraz sposoby do hamowania niepożądanej odpowiedzi immunologicznej w przypadku transplantacji z brakiem zgodności tkankowej
WO2007073552A1 (en) 2005-12-19 2007-06-28 Ethicon, Inc. In vitro expansion of postpartum derived cells in roller bottles
AU2006330409B2 (en) * 2005-12-28 2012-07-19 Ethicon, Incorporated Treatment of peripheral vascular disease using postpartum-derived cells
US9125906B2 (en) 2005-12-28 2015-09-08 DePuy Synthes Products, Inc. Treatment of peripheral vascular disease using umbilical cord tissue-derived cells
KR20200123283A (ko) 2005-12-29 2020-10-28 안트로제네시스 코포레이션 태반 줄기 세포 집단
NZ568618A (en) 2005-12-29 2011-10-28 Anthrogenesis Corp Co-culture of placental stem cells and stem cells from a second source
US8475788B2 (en) * 2006-06-14 2013-07-02 Stemnion, Inc. Methods of treating spinal cord injury and minimizing scarring
US7993918B2 (en) 2006-08-04 2011-08-09 Anthrogenesis Corporation Tumor suppression using placental stem cells
ES2432395T3 (es) 2006-10-12 2013-12-03 Ethicon, Inc. Células derivadas de riñon y metodo de uso en la reparación y regeneración tisular
CN104099290A (zh) 2006-10-23 2014-10-15 人类起源公司 用胎盘细胞群治疗骨缺损的方法和组合物
CN101611139B (zh) 2006-11-13 2012-07-04 伊西康公司 利用微载体的产后来源的细胞的体外扩增
US8506949B2 (en) 2007-01-17 2013-08-13 Stemnion, Inc. Methods for modulating inflammatory and/or immune responses
EP2118267B1 (en) 2007-01-17 2017-03-15 Noveome Biotherapeutics, Inc. Novel methods for modulating inflammatory and/or immune responses
KR20150039214A (ko) 2007-02-12 2015-04-09 안트로제네시스 코포레이션 태반 줄기세포를 이용한 염증 질환의 치료
US8545834B2 (en) * 2007-03-15 2013-10-01 The Mclean Hospital Corporation G-substrate for the treatment and prevention of parkinson's disease
WO2009008928A2 (en) 2007-04-13 2009-01-15 Stemnion, Inc. Methods for treating nervous system injury and disease
US20100291042A1 (en) 2007-05-03 2010-11-18 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
US8574567B2 (en) 2007-05-03 2013-11-05 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
JP5597129B2 (ja) 2007-06-18 2014-10-01 チルドレンズ ホスピタル アンド リサーチ センター アット オークランド 胎盤由来の幹細胞および前駆体細胞の単離方法
WO2009037690A1 (en) 2007-09-19 2009-03-26 Pluristem Ltd. Adherent cells from adipose or placenta tissues and use thereof in therapy
ES2530995T3 (es) 2007-09-28 2015-03-09 Anthrogenesis Corp Supresión de tumor usando perfusato placentario humano y células asesinas naturales intermediarias que provienen de placenta humana
JP5323845B2 (ja) * 2007-10-05 2013-10-23 エシコン・インコーポレイテッド ヒト臍帯組織由来細胞を用いた腎組織の修復および再建
US8236538B2 (en) 2007-12-20 2012-08-07 Advanced Technologies And Regenerative Medicine, Llc Methods for sterilizing materials containing biologically active agents
ES2621610T3 (es) * 2007-12-27 2017-07-04 DePuy Synthes Products, Inc. Tratamiento de la degeneración de discos intervertebrales utilizando células derivadas de tejido cordón umbilical humano
US20090220995A1 (en) * 2008-02-28 2009-09-03 Sachs David H Multiple administrations of umbilicus derived cells
US8586558B2 (en) * 2008-05-16 2013-11-19 The Mclean Hospital Corporation RAB3B for treatment and prevention of Parkinson's disease
KR101204894B1 (ko) 2008-07-14 2012-11-26 (주)마리아 바이오텍 줄기세포의 외배엽성 세포로의 분화 방법
US8828376B2 (en) 2008-08-20 2014-09-09 Anthrogenesis Corporation Treatment of stroke using isolated placental cells
RU2662676C1 (ru) 2008-08-20 2018-07-26 Антродженезис Корпорейшн Улучшенная клеточная композиция и способы ее получения
MX2011001992A (es) 2008-08-22 2011-03-29 Anthrogenesis Corp Metodos y composiciones para el tratamiento de defectos oseos con poblaciones de celulas placentarias.
KR20110086176A (ko) 2008-11-19 2011-07-27 안트로제네시스 코포레이션 양막 유래 부착성 세포
US10179900B2 (en) * 2008-12-19 2019-01-15 DePuy Synthes Products, Inc. Conditioned media and methods of making a conditioned media
WO2010071864A1 (en) 2008-12-19 2010-06-24 Ethicon, Incorporated Treatment of lung and pulmonary diseases and disorders
CN102481321B (zh) * 2008-12-19 2017-12-19 德普伊新特斯产品公司 用于治疗神经病性疼痛和痉挛状态的脐带组织来源的细胞
BRPI0923070A2 (pt) * 2008-12-19 2016-06-14 Atrm Llc "usos de composições para regeneração e reparo de tecido neural após lesão, as referidas composições, e kit"
US8771677B2 (en) 2008-12-29 2014-07-08 Vladimir B Serikov Colony-forming unit cell of human chorion and method to obtain and use thereof
EP2405912A2 (en) * 2009-03-12 2012-01-18 University Of South Florida Method of disease-induced and receptor-mediated stem cell neuroprotection
KR101229536B1 (ko) 2009-03-24 2013-02-04 (주)마리아 바이오텍 인간 성체 줄기세포 또는 전구세포를 이용한 흑질 치밀부에서의 도파민 신경세포의 재생방법
EP2411504B1 (en) * 2009-03-26 2017-05-10 DePuy Synthes Products, Inc. Human umbilical cord tissue cells as therapy for alzheimer's disease
WO2011046570A1 (en) * 2009-10-16 2011-04-21 The University Of Medicine And Dentistry Of New Jersey Method for treating chronic nerve tissue injury using a cell therapy strategy
EP2507362A2 (en) 2009-11-30 2012-10-10 Pluristem Ltd. Adherent cells from placenta and use of same in disease treatment
DK3284818T3 (da) 2010-01-26 2022-06-20 Celularity Inc Behandling af knoglerelateret kræft ved hjælp af placenta stamceller
CN102191229A (zh) * 2010-03-16 2011-09-21 侯亚义 一种快速有效获得脐带间充质干细胞(msc)的方法
DK2556145T3 (en) 2010-04-07 2016-11-07 Anthrogenesis Corp Angiogenesis using placental stem cells
NZ602798A (en) 2010-04-08 2014-10-31 Anthrogenesis Corp Treatment of sarcoidosis using placental stem cells
US8883210B1 (en) 2010-05-14 2014-11-11 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US10130736B1 (en) 2010-05-14 2018-11-20 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
US9352003B1 (en) 2010-05-14 2016-05-31 Musculoskeletal Transplant Foundation Tissue-derived tissuegenic implants, and methods of fabricating and using same
NZ605505A (en) 2010-07-13 2015-02-27 Anthrogenesis Corp Methods of generating natural killer cells
US10426740B1 (en) 2010-08-18 2019-10-01 Avm Biotechnology, Llc Compositions and methods to inhibit stem cell and progenitor cell binding to lymphoid tissue and for regenerating germinal centers in lymphatic tissues
JP6096116B2 (ja) * 2010-08-18 2017-03-15 デイシャー、テレサ リンパ組織に幹細胞および前駆細胞が結合することを阻害する組成および方法、ならびにリンパ組織の胚中心を再生させるための組成および方法。
US8574899B2 (en) 2010-12-22 2013-11-05 Vladimir B Serikov Methods for augmentation collection of placental hematopoietic stem cells and uses thereof
AU2011352036A1 (en) 2010-12-31 2013-07-18 Anthrogenesis Corporation Enhancement of placental stem cell potency using modulatory RNA molecules
CN102634500A (zh) * 2011-05-25 2012-08-15 侯亚义 蜕膜、胎盘间充质干细胞(msc)的快速获取以及小分子修饰的基因工程应用
CA2837871C (en) 2011-06-01 2021-12-07 Anthrogenesis Corporation Treatment of pain using placental stem cells
US9925221B2 (en) 2011-09-09 2018-03-27 Celularity, Inc. Treatment of amyotrophic lateral sclerosis using placental stem cells
SG11201403465PA (en) 2011-12-23 2014-10-30 Atrm Llc Detection of human umbilical cord tissue-derived cells
JP2016506968A (ja) 2013-02-05 2016-03-07 アントフロゲネシス コーポレーション 胎盤由来のナチュラルキラー細胞
ES2821658T3 (es) * 2013-03-13 2021-04-27 Noveome Biotherapeutics Inc Dispositivo médico que tiene un revestimiento que comprende ACCS
KR102440051B1 (ko) 2014-03-21 2022-09-06 유니버시티 오브 피츠버그 - 오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 세포외 기질로부터 유래한 최종 멸균된 하이드로겔의 제조 방법
AU2015306811A1 (en) * 2014-08-25 2017-03-09 Hli Cellular Therapeutics, Llc Extracellular matrix compositions
EP3297694A1 (en) 2015-05-21 2018-03-28 Musculoskeletal Transplant Foundation Modified demineralized cortical bone fibers
US10813955B2 (en) * 2015-09-29 2020-10-27 Genani Corporation Methods for treating age-related organ or tissue dysfunction through heterochronic transbiosis using nonviable pluripotent stem cells
WO2017123883A1 (en) 2016-01-13 2017-07-20 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Vascular extracellular matrix hydrogel
JP2019508502A (ja) * 2016-03-09 2019-03-28 エーエーエル サイエンティフィックス,インコーポレイテッド 神経幹細胞およびその使用
US11707491B2 (en) * 2016-11-11 2023-07-25 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Methods of treating neurodegenerative disorders
CA3054443A1 (en) 2017-04-01 2018-10-14 Avm Biotechnology, Llc Replacement of cytotoxic preconditioning before cellular immunotherapy
CL2017002357A1 (es) * 2017-09-16 2018-04-20 Cells For Cells S A Método de obtención de una composición que contiene una población específica de células mesenquimales de cordón umbilical y sus usos
EP3488851A1 (en) 2018-10-03 2019-05-29 AVM Biotechnology, LLC Immunoablative therapies
EP3873496A4 (en) * 2018-11-04 2022-11-09 Figene, LLC TREATMENT OF BRAIN HYPOXIA INCLUDING STROKE, CHRONIC TRAUMATIC ENCEPHALOPATHY AND TRAUMATIC BRAIN INJURY
US11813313B2 (en) 2021-02-25 2023-11-14 Gateway Institute for Brain Research, LLC Method of treating Parkinson's disease with intranasal delivery of insulin and glutathione

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102151A2 (en) * 2002-05-30 2003-12-11 Celgene Corporation Modulating cell differentiation and treating myeloprolifertive disorders with jnk/mkk inhibitors

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352883A (en) 1979-03-28 1982-10-05 Damon Corporation Encapsulation of biological material
US5266480A (en) 1986-04-18 1993-11-30 Advanced Tissue Sciences, Inc. Three-dimensional skin culture system
US5902741A (en) 1986-04-18 1999-05-11 Advanced Tissue Sciences, Inc. Three-dimensional cartilage cultures
US5863531A (en) 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
US4963489A (en) 1987-04-14 1990-10-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
CA1322262C (en) 1987-06-26 1993-09-21 Yoshito Ikada Artificial skin
NZ226750A (en) 1987-10-29 1990-09-26 Amrad Corp Ltd Immortalisation of neural precursor cells by introducing a retrovirus vector containing a myc-oncogene
US5192553A (en) 1987-11-12 1993-03-09 Biocyte Corporation Isolation and preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood and methods of therapeutic use
US5004681B1 (en) 1987-11-12 2000-04-11 Biocyte Corp Preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood
GB8803697D0 (en) 1988-02-17 1988-03-16 Deltanine Research Ltd Clinical developments using amniotic membrane cells
FR2646438B1 (fr) 1989-03-20 2007-11-02 Pasteur Institut Procede de remplacement specifique d'une copie d'un gene present dans le genome receveur par l'integration d'un gene different de celui ou se fait l'integration
US5437994A (en) 1989-06-15 1995-08-01 Regents Of The University Of Michigan Method for the ex vivo replication of stem cells, for the optimization of hematopoietic progenitor cell cultures, and for increasing the metabolism, GM-CSF secretion and/or IL-6 secretion of human stromal cells
US5574205A (en) 1989-07-25 1996-11-12 Cell Genesys Homologous recombination for universal donor cells and chimeric mammalian hosts
US5840580A (en) 1990-05-01 1998-11-24 Becton Dickinson And Company Phenotypic characterization of the hematopoietic stem cell
ATE352612T1 (de) 1990-08-29 2007-02-15 Pharming Intellectual Pty Bv Homologe rekombination in säugetier-zellen
US5342761A (en) 1990-10-01 1994-08-30 Research Development Foundation Oncofetal gene, gene product and uses therefor
US5486359A (en) 1990-11-16 1996-01-23 Osiris Therapeutics, Inc. Human mesenchymal stem cells
US5811094A (en) 1990-11-16 1998-09-22 Osiris Therapeutics, Inc. Connective tissue regeneration using human mesenchymal stem cell preparations
US5286632A (en) 1991-01-09 1994-02-15 Jones Douglas H Method for in vivo recombination and mutagenesis
US6399369B1 (en) 1991-07-08 2002-06-04 Neurospheres Holdings Ltd. Multipotent neural stem cell cDNA libraries
WO1993004169A1 (en) 1991-08-20 1993-03-04 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
WO1994000484A1 (en) 1992-06-22 1994-01-06 Young Henry E Scar inhibitory factor and use thereof
US5320962A (en) 1992-07-22 1994-06-14 Duke University DNA encoding the human A1 adenosine receptor
US5589376A (en) 1992-07-27 1996-12-31 California Institute Of Technology Mammalian neural crest stem cells
US20040224409A1 (en) * 1992-09-25 2004-11-11 Laurent Pradier Recombinant adenoviruses coding for brain-derived neurotrophic factor (BDNF)
DE69333209T2 (de) 1992-10-29 2004-07-01 The Australian National University, Acton Angiogenese-inhibierende antikörper
US5670483A (en) 1992-12-28 1997-09-23 Massachusetts Insititute Of Technology Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor
US5955343A (en) 1992-12-28 1999-09-21 Massachusetts Institute Of Technology Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor
US5707643A (en) 1993-02-26 1998-01-13 Santen Pharmaceutical Co., Ltd. Biodegradable scleral plug
WO1994025584A1 (en) 1993-04-28 1994-11-10 Johns Hopkins University School Of Medicine Chronic endothelial cell culture under flow
IL110589A0 (en) 1993-08-10 1994-11-11 Bioph Biotech Entw Pharm Gmbh Growth/differentiation factor of the TGF- beta family
US6686198B1 (en) 1993-10-14 2004-02-03 President And Fellows Of Harvard College Method of inducing and maintaining neuronal cells
US6432711B1 (en) 1993-11-03 2002-08-13 Diacrin, Inc. Embryonic stem cells capable of differentiating into desired cell lines
US5698518A (en) 1994-03-30 1997-12-16 Oklahoma Medical Research Foundation Method for regulating inflammation and tumor growth with calmodulin, calmodulin analogues or calmodulin antagonists
US5466233A (en) 1994-04-25 1995-11-14 Escalon Ophthalmics, Inc. Tack for intraocular drug delivery and method for inserting and removing same
US6001647A (en) 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US5834308A (en) 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6703017B1 (en) 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
IL114397A0 (en) 1994-07-01 1995-10-31 Bioph Biotech Entw Pharm Gmbh Growth/differentiation factor of the TGF-beta-family
US6309853B1 (en) 1994-08-17 2001-10-30 The Rockfeller University Modulators of body weight, corresponding nucleic acids and proteins, and diagnostic and therapeutic uses thereof
US5725493A (en) 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5736396A (en) 1995-01-24 1998-04-07 Case Western Reserve University Lineage-directed induction of human mesenchymal stem cell differentiation
US5906934A (en) 1995-03-14 1999-05-25 Morphogen Pharmaceuticals, Inc. Mesenchymal stem cells for cartilage repair
US5718922A (en) 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5869079A (en) 1995-06-02 1999-02-09 Oculex Pharmaceuticals, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US5693332C1 (en) 1995-08-11 2001-01-09 Univ California Human keratinocytes supported on a hydrophilic membrane and methods of using same to effect wound closure
US5641750A (en) 1995-11-29 1997-06-24 Amgen Inc. Methods for treating photoreceptors using glial cell line-derived neurotrophic factor (GDNF) protein product
US6200606B1 (en) 1996-01-16 2001-03-13 Depuy Orthopaedics, Inc. Isolation of precursor cells from hematopoietic and nonhematopoietic tissues and their use in vivo bone and cartilage regeneration
JP4307552B2 (ja) 1996-03-15 2009-08-05 ミューニン コーポレイション 細胞外マトリックスシグナリング分子
CA2253724A1 (en) 1996-04-26 1997-11-06 Case Western Reserve University Skin regeneration using mesenchymal stem cells
US6358737B1 (en) 1996-07-31 2002-03-19 Board Of Regents, The University Of Texas System Osteocyte cell lines
US6787355B1 (en) 1996-08-26 2004-09-07 Mcgill University Multipotent neural stem cells from peripheral tissues and uses thereof
US5919702A (en) 1996-10-23 1999-07-06 Advanced Tissue Science, Inc. Production of cartilage tissue using cells isolated from Wharton's jelly
DE69840171D1 (de) 1997-05-30 2008-12-11 Osteobiologics Inc Faserverstärkte,poröse,biologisch abbaubare implantatvorrichtung
US5902598A (en) 1997-08-28 1999-05-11 Control Delivery Systems, Inc. Sustained release drug delivery devices
US6391297B1 (en) 1997-12-02 2002-05-21 Artecel Sciences, Inc. Differentiation of adipose stromal cells into osteoblasts and uses thereof
US6291240B1 (en) 1998-01-29 2001-09-18 Advanced Tissue Sciences, Inc. Cells or tissues with increased protein factors and methods of making and using same
DE69922933T2 (de) 1998-03-13 2005-12-29 Osiris Therapeutics, Inc. Anwendungen für humane nicht autologe, mesenchymale stammzellen
US6179872B1 (en) 1998-03-17 2001-01-30 Tissue Engineering Biopolymer matt for use in tissue repair and reconstruction
US6171610B1 (en) 1998-04-24 2001-01-09 University Of Massachusetts Guided development and support of hydrogel-cell compositions
WO1999056759A1 (en) 1998-05-07 1999-11-11 University Of South Florida Bone marrow cells as a source of neurons for brain and spinal cord repair
WO1999061587A1 (en) 1998-05-29 1999-12-02 Osiris Therapeutics, Inc. Human cd45+ and/or fibroblast + mesenchymal stem cells
US6323188B1 (en) 1998-07-01 2001-11-27 Donald L. Weissman Treatment and prevention of cardiovascular diseases, heart attack, and stroke, primary and subsequent, with help of aspirin and certain vitamins
US20040037818A1 (en) 1998-07-30 2004-02-26 Brand Stephen J. Treatment for diabetes
US5958767A (en) 1998-08-14 1999-09-28 The Children's Medical Center Corp. Engraftable human neural stem cells
US6284245B1 (en) 1998-08-25 2001-09-04 Diacrin, Inc. Neural retinal cells and retinal pigment epithelium cells and their use in treatment of retinal disorders
US6610540B1 (en) 1998-11-18 2003-08-26 California Institute Of Technology Low oxygen culturing of central nervous system progenitor cells
EP1144595A2 (en) 1999-02-04 2001-10-17 McGILL UNIVERSITY Platform for the differentiation of cells
US6326201B1 (en) 1999-02-10 2001-12-04 Curis, Inc. Pancreatic progenitor cells, methods and uses related thereto
US6592623B1 (en) 1999-08-31 2003-07-15 Virginia Commonwealth University Intellectual Property Foundation Engineered muscle
US20030007954A1 (en) 1999-04-12 2003-01-09 Gail K. Naughton Methods for using a three-dimensional stromal tissue to promote angiogenesis
KR100696407B1 (ko) 1999-04-16 2007-03-19 더블유엠. 마쉬 라이스 유니버시티 폴리(프로필렌 푸마레이트)-디아크릴레이트 마크로머와가교결합된 생분해성 폴리(프로필렌 푸마레이트) 네트워크
US6287340B1 (en) 1999-05-14 2001-09-11 Trustees Of Tufts College Bioengineered anterior cruciate ligament
US6372494B1 (en) 1999-05-14 2002-04-16 Advanced Tissue Sciences, Inc. Methods of making conditioned cell culture medium compositions
WO2000073421A2 (en) 1999-06-02 2000-12-07 Lifebank Services, L.L.C. Methods of isolation, cryopreservation, and therapeutic use of human amniotic epithelial cells
US6355699B1 (en) 1999-06-30 2002-03-12 Ethicon, Inc. Process for manufacturing biomedical foams
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
NZ517002A (en) 1999-08-05 2004-06-25 Mcl Llc Multipotent adult stem cells and methods for isolation
US6429013B1 (en) 1999-08-19 2002-08-06 Artecel Science, Inc. Use of adipose tissue-derived stromal cells for chondrocyte differentiation and cartilage repair
US6555374B1 (en) 1999-08-19 2003-04-29 Artecel Sciences, Inc. Multiple mesodermal lineage differentiation potentials for adipose tissue-derived stromal cells and uses thereof
JP2003509374A (ja) 1999-09-14 2003-03-11 チルドレンズ メディカル センター コーポレーション 骨髄細胞を用いる筋ジストロフィーの治療方法
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US20030129745A1 (en) 1999-10-28 2003-07-10 Robl James M. Gynogenetic or androgenetic production of pluripotent cells and cell lines, and use thereof to produce differentiated cells and tissues
EP1099754A1 (en) 1999-11-10 2001-05-16 Universiteit Leiden Mesenchymal stem cells and/or progenitor cells, their isolation and use
WO2001039784A1 (en) 1999-12-06 2001-06-07 The General Hospital Corporation Pancreatic stem cells and their use in transplantation
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
US20020164307A1 (en) 1999-12-06 2002-11-07 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
WO2001053503A1 (en) 2000-01-18 2001-07-26 Cornell Research Foundation, Inc. Neural progenitor cells from hippocampal tissue and a method for isolating and purifying them
US7544509B2 (en) 2000-01-24 2009-06-09 Mcgill University Method for preparing stem cell preparations
US6610535B1 (en) 2000-02-10 2003-08-26 Es Cell International Pte Ltd. Progenitor cells and methods and uses related thereto
ATE473751T1 (de) 2000-02-11 2010-07-15 Schepens Eye Res Inst Isolierung und transplantation von retinalen stammzellen
JP2003521935A (ja) 2000-02-11 2003-07-22 フイラデルフイア・ヘルス・アンド・エデユケーシヨン・コーポレーシヨン 骨髄細胞のニューロン細胞への分化およびそのための使用
AU4346401A (en) 2000-03-09 2001-09-17 Cryo Cell Int Human cord blood as a source of neural tissue for repair of the brain and spinalcord
US6436704B1 (en) 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6673606B1 (en) 2000-04-12 2004-01-06 The Children's Hospital Of Philadelphia Therapeutic uses for mesenchymal stromal cells
US6375972B1 (en) 2000-04-26 2002-04-23 Control Delivery Systems, Inc. Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
CA2408701A1 (en) 2000-05-12 2001-11-22 University Of Utah Research Foundation Compositions and methods for tissue dedifferentiation and regeneration
US8273570B2 (en) 2000-05-16 2012-09-25 Riken Process of inducing differentiation of embryonic cell to cell expressing neural surface marker using OP9 or PA6 cells
US7049072B2 (en) 2000-06-05 2006-05-23 University Of South Florida Gene expression analysis of pluri-differentiated mesenchymal progenitor cells and methods for diagnosing a leukemic disease state
US6759039B2 (en) 2000-06-30 2004-07-06 Amcyte, Inc. Culturing pancreatic stem cells having a specified, intermediate stage of development
US6984522B2 (en) 2000-08-03 2006-01-10 Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
WO2002026941A2 (en) 2000-09-29 2002-04-04 Kooy Derek V D Primitive neural stem cells and method for differentiation of stem cells to neural cells
US6639470B1 (en) 2000-10-06 2003-10-28 Skyworks Solutions, Inc. Constant current biasing circuit for linear power amplifiers
WO2002036749A2 (en) 2000-11-06 2002-05-10 The Salk Institute For Biological Studies Postmortem stem cells
NZ526243A (en) 2000-11-30 2006-02-24 Stemron Inc Isolated homozygous stem cells, differentiated cells derived therefrom, and materials and methods for making and using same
EP2322601A1 (en) 2000-12-06 2011-05-18 Anthrogenesis Corporation Method of collecting placental stem cells
US7311905B2 (en) 2002-02-13 2007-12-25 Anthrogenesis Corporation Embryonic-like stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells
CA2365376C (en) 2000-12-21 2006-03-28 Ethicon, Inc. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
WO2002059278A2 (en) 2001-01-24 2002-08-01 The Government Of The United States Of America, As Represented By The Secretary Of Department Of Health & Human Services Differentiation of stem cells to pancreatic endocrine cells
ATE419333T1 (de) 2001-02-06 2009-01-15 Massachusetts Inst Technology Peptidgerüstverkapselung von gewebszellen und verwendungen davon
US7449180B2 (en) 2001-02-06 2008-11-11 John Kisiday Macroscopic scaffold containing amphiphilic peptides encapsulating cells
KR101012952B1 (ko) * 2001-02-14 2011-02-08 안트로제네시스 코포레이션 산후 포유류의 태반, 이의 용도 및 태반 줄기세포
JP2004529621A (ja) 2001-02-14 2004-09-30 ティー ファークト,レオ 多能性成体幹細胞、その起源、それを得る方法および維持する方法、それを分化させる方法、その使用法、ならびにそれ由来の細胞
JP2004528021A (ja) 2001-02-14 2004-09-16 アンスロジェネシス コーポレーション 分娩後の哺乳動物の胎盤、その使用およびそれに由来する胎盤幹細胞
CA2442177A1 (en) 2001-03-29 2002-10-10 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic differentiation pathway
US7838292B1 (en) 2001-03-29 2010-11-23 University Of Louisville Research Foundation, Inc. Methods for obtaining adult human olfactory progenitor cells
JP2004527249A (ja) 2001-04-19 2004-09-09 デヴェロゲン アクチエンゲゼルシャフト フュア エントヴィックルングスビオローギッシェ フォルシュング 幹細胞をインスリン産生細胞に分化する方法
US20030211605A1 (en) 2001-05-01 2003-11-13 Lee Sang-Hun Derivation of midbrain dopaminergic neurons from embryonic stem cells
US20030022369A1 (en) 2001-05-18 2003-01-30 Helen Fillmore Differentiation of specialized dermal and epidermal cells into neuronal cells
WO2002096203A1 (en) 2001-05-25 2002-12-05 Cythera, Inc. Stem cell differentiation
US6402263B1 (en) 2001-07-24 2002-06-11 Robert Bosch Corporation Dual actuation master cylinder
WO2003014317A2 (en) 2001-08-08 2003-02-20 Celmed Biosciences Usa Compositions and methods for isolation, propagation, and differentiation of human stem cells and uses thereof
US20030211603A1 (en) 2001-08-14 2003-11-13 Earp David J. Reprogramming cells for enhanced differentiation capacity using pluripotent stem cells
AU2002313817A1 (en) 2001-08-27 2003-03-10 Advanced Cell Technology, Inc. Trans-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
US20030104997A1 (en) 2001-09-05 2003-06-05 Black Ira B. Multi-lineage directed induction of bone marrow stromal cell differentiation
US20050064587A1 (en) 2001-09-07 2005-03-24 Lawrence Rosenberg Pancreatic small cells and uses thereof
US9969980B2 (en) 2001-09-21 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
EP1298201A1 (en) 2001-09-27 2003-04-02 Cardion AG Process for the production of cells exhibiting an islet-beta-cell-like state
GB2396623B (en) 2001-09-28 2006-04-05 Es Cell Int Pte Ltd Methods of derivation and propagation of undifferentiated human embryonic stem (hes) cells on feeder-free matrices and human feeder layers
EP1444345A4 (en) 2001-10-18 2004-12-08 Ixion Biotechnology Inc TRANSFORMATION OF STEM CELLS AND LIVER PROGENITORS INTO FUNCTIONAL CELLS OF PANCREAS
US7129034B2 (en) 2001-10-25 2006-10-31 Cedars-Sinai Medical Center Differentiation of whole bone marrow
MXPA04004311A (es) 2001-11-09 2005-03-31 Artecel Sciences Inc DIFERENCIACION DEL PáNCREAS ENDOCRINOS DE CELULAS ESTROMALES DERIVADAS DEL TEJIDO ADIPOSO Y USOS DE LAS MISMAS.
JP4330995B2 (ja) 2001-11-15 2009-09-16 チルドレンズ メディカル センター コーポレーション 絨毛膜絨毛、羊水、および胎盤からの胎児性幹細胞を単離、増殖、および分化させる方法、ならびにその治療的使用方法
JP3728750B2 (ja) 2001-11-22 2005-12-21 ニプロ株式会社 培養皮膚及びその製造方法
AU2002349583B2 (en) * 2001-11-28 2007-11-22 Anges Mg, Inc. Genetic remedies for neurodegenerative diseases
US6712850B2 (en) 2001-11-30 2004-03-30 Ethicon, Inc. Porous tissue scaffolds for the repair and regeneration of dermal tissue
WO2003048336A2 (en) 2001-12-04 2003-06-12 Organogenesis Inc. Cultured cells from pancreatic islets
US20030109036A1 (en) 2001-12-06 2003-06-12 The Regents Of The University Of California Method for differentiating islet precursor cells into beta cells
EP2264146A1 (en) 2001-12-07 2010-12-22 Geron Corporation Islet cells from human embryonic stem cells
JP3934539B2 (ja) 2001-12-12 2007-06-20 独立行政法人科学技術振興機構 胎盤等由来の成体又は生後組織の前駆細胞
US20030113910A1 (en) 2001-12-18 2003-06-19 Mike Levanduski Pluripotent stem cells derived without the use of embryos or fetal tissue
US7101546B2 (en) 2001-12-21 2006-09-05 Amcyte, Inc. In situ maturation of cultured pancreatic stem cells having a specified, intermediate stage of development
WO2003055989A2 (en) 2001-12-21 2003-07-10 Mount Sinai Hospital Cellular compositions and methods of making and using them
US20050095703A1 (en) 2001-12-28 2005-05-05 Henrik Semb Method for the establishment of a pluripotent human blastocyst - derived stem cell line
WO2003060085A2 (en) 2002-01-14 2003-07-24 The Board Of Trustees Of The University Of Illinois Mammalian neural stem cells, compositions and uses thereof
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
WO2003066832A2 (en) 2002-02-07 2003-08-14 The Research Foundation Of The State University Of New York Generation of new insulin cells from progenitor cells present in adult pancreatic islets
EP1482787A4 (en) 2002-02-13 2006-02-15 Anthrogenesis Corp EMBRYONIC TYPE DERIVED STEM CELLS DERIVED FROM MAMMALIAN POST-PARTUM PLACENTA, USES THEREOF, AND METHODS OF TREATMENT BASED ON CELLS OF THIS TYPE
WO2003070189A2 (en) 2002-02-15 2003-08-28 Cornell Research Foundation, Inc. Enhancing neurotrophin-induced neurogenesis by endogenous neural progenitor cells by concurrent overexpression of brain derived neurotrophic factor and an inhibitor of a pro-gliogenic bone morphogenetic protein
JP2005517441A (ja) 2002-02-19 2005-06-16 メディポスト・カンパニー・リミテッド 臍帯血由来の間葉幹細胞・前駆細胞の分離培養方法及び間葉組織への分化誘導方法
WO2003072728A2 (en) 2002-02-22 2003-09-04 University Of Florida Cellular trans-differentiation
US20030161818A1 (en) 2002-02-25 2003-08-28 Kansas State University Research Foundation Cultures, products and methods using stem cells
US7736892B2 (en) * 2002-02-25 2010-06-15 Kansas State University Research Foundation Cultures, products and methods using umbilical cord matrix cells
US7150990B2 (en) 2002-03-06 2006-12-19 Reprocell, Inc. Self-renewing pluripotent hepatic stem cells
JPWO2003080822A1 (ja) 2002-03-27 2005-07-28 ニプロ株式会社 胎盤由来の間葉系細胞およびその医学的用途
US7498171B2 (en) 2002-04-12 2009-03-03 Anthrogenesis Corporation Modulation of stem and progenitor cell differentiation, assays, and uses thereof
WO2003087333A2 (en) 2002-04-12 2003-10-23 Celgene Corporation Modulation of stem and progenitor cell differentiation, assays, and uses thereof
JP4136434B2 (ja) 2002-04-17 2008-08-20 進 清野 インスリン産生細胞の誘導
US20040161419A1 (en) 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
AU2003239159A1 (en) 2002-04-19 2003-11-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Placental derived stem cells and uses thereof
JP2005526838A (ja) 2002-04-25 2005-09-08 ウイスコンシン アラムナイ リサーチ フオンデーシヨン パーキンソン病および他の神経変性疾患を治療するためのgdnf分泌ヒト神経幹細胞の使用
US20040029269A1 (en) 2002-05-07 2004-02-12 Goldman Steven A Promoter-based isolation, purification, expansion, and transplantation of neuronal progenitor cells, oligodendrocyte progenitor cells, or neural stem cells from a population of embryonic stem cells
US20040014662A1 (en) 2002-05-08 2004-01-22 Per Lindquist Modulation of neural stem cells and neural progenitor cells
CA2487094A1 (en) 2002-05-28 2003-12-11 Becton, Dickinson And Company Methods for in vitro expansion and transdifferentiation of human pancreatic acinar cells into insulin-producing cells
EP1511838A4 (en) 2002-06-07 2007-01-10 Es Cell Int Pte Ltd METHOD FOR CONTROLLING DIFFERENTIATION IN STEM CELLS
AU2003247514A1 (en) 2002-06-11 2003-12-22 Roy Ogle Meningeal-derived stem cells
US7285415B2 (en) 2002-07-11 2007-10-23 The Regents Of The University Of California Oligodendrocytes derived from human embryonic stem cells for remyelination and treatment of spinal cord injury
US20050249731A1 (en) 2002-07-16 2005-11-10 Hadi Aslan Methods of implating mesenchymal stem cells for tissue repair and formation
US7390659B2 (en) 2002-07-16 2008-06-24 The Trustees Of Columbia University In The City Of New York Methods for inducing differentiation of embryonic stem cells and uses thereof
US20040110287A1 (en) 2002-07-29 2004-06-10 Es Cell International Pte Ltd. Multi-step method for the differentiation of insulin positive, glucose responsive cells
AU2003250666A1 (en) 2002-07-29 2004-02-16 Asahi Kasei Kabushiki Kaisha Stem cells for treating pancreatic damage
WO2004016747A2 (en) 2002-08-14 2004-02-26 University Of Florida Bone marrow cell differentiation
US20040063202A1 (en) 2002-08-28 2004-04-01 Petersen Bryon E. Neurogenesis from hepatic stem cells
US7371576B2 (en) 2002-09-06 2008-05-13 Reneuron, Inc. CD56 positive human adult pancreatic endocrine progenitor cells
US9969977B2 (en) 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
US7560276B2 (en) 2003-06-27 2009-07-14 Ethicon, Incorporated Soft tissue repair and regeneration using postpartum-derived cells
JP4790592B2 (ja) 2003-02-11 2011-10-12 ダビース,ジヨン・イー ヒト臍帯のウォートンジェリーからの前駆細胞
US7875272B2 (en) 2003-06-27 2011-01-25 Ethicon, Incorporated Treatment of stroke and other acute neuraldegenerative disorders using postpartum derived cells
AU2004253541B2 (en) * 2003-06-27 2010-10-28 Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Amphiphilic pyridinium compounds, method of making and use thereof
DE102004043256B4 (de) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension
US8039258B2 (en) 2004-09-28 2011-10-18 Ethicon, Inc. Tissue-engineering scaffolds containing self-assembled-peptide hydrogels
US20060166361A1 (en) 2004-12-21 2006-07-27 Agnieszka Seyda Postpartum cells derived from placental tissue, and methods of making, culturing, and using the same
US20060171930A1 (en) 2004-12-21 2006-08-03 Agnieszka Seyda Postpartum cells derived from umbilical cord tissue, and methods of making, culturing, and using the same
US20060153815A1 (en) 2004-12-21 2006-07-13 Agnieszka Seyda Tissue engineering devices for the repair and regeneration of tissue
WO2006071777A2 (en) 2004-12-23 2006-07-06 Ethicon Incorporated Soft tissue repair and regeneration using postpartum-derived cells and cell products
ES2621847T3 (es) 2004-12-23 2017-07-05 DePuy Synthes Products, Inc. Células posparto derivadas de tejido de cordón umbilical, y métodos de elaboración y uso de las mismas
PL1835924T3 (pl) * 2004-12-23 2014-01-31 Ethicon Incorporated Leczenie choroby Parkinsona i zaburzeń związanych z tą chorobą z użyciem komórek uzyskiwanych po porodzie
EP1838842A2 (en) 2004-12-23 2007-10-03 Ethicon, Incorporated Treatment of osteochondral diseases using postpartum-derived cells and products thereof
PL1971681T3 (pl) 2005-12-16 2018-01-31 Depuy Synthes Products Inc Kompozycje oraz sposoby do hamowania niepożądanej odpowiedzi immunologicznej w przypadku transplantacji z brakiem zgodności tkankowej
WO2007073552A1 (en) 2005-12-19 2007-06-28 Ethicon, Inc. In vitro expansion of postpartum derived cells in roller bottles
AU2006330409B2 (en) 2005-12-28 2012-07-19 Ethicon, Incorporated Treatment of peripheral vascular disease using postpartum-derived cells
KR20200123283A (ko) 2005-12-29 2020-10-28 안트로제네시스 코포레이션 태반 줄기 세포 집단
ES2432395T3 (es) 2006-10-12 2013-12-03 Ethicon, Inc. Células derivadas de riñon y metodo de uso en la reparación y regeneración tisular
CN101611139B (zh) 2006-11-13 2012-07-04 伊西康公司 利用微载体的产后来源的细胞的体外扩增

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102151A2 (en) * 2002-05-30 2003-12-11 Celgene Corporation Modulating cell differentiation and treating myeloprolifertive disorders with jnk/mkk inhibitors

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
JPN6010029976; Stem Cells vol. 21, 200301, 105-110 *
JPN6010029978; Stem Cells vol. 21, 200301, 50-60 *
JPN6010030190; Exp. Neurol. vol. 182, 20030611, 288-299 *
JPN6010030198; Blood vol. 100, no. 11, 2002, p. 517a (Abstract #2021) *
JPN6011038901; XU, Y-M. et al.: Chinese Journal of Clinical Rehabilitation Vol.8, No.5, 200409, pp.5460-5462 *
JPN6011038902; MEDICETTY, S. et al.: Experimental Neurology Vol.187, 200405, p.226 *
JPN6011038903; ENDE, N. et al.: Journal of Medicine Vol.33, Nos.1-4, 2002, pp.173-180 *
JPN7011002709; MEDICETTY, S. et al.: Society for Neuroscience Abstract , 2003, Presentation No.300.14 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509319A (ja) * 2011-02-14 2014-04-17 デピュイ・シンセス・プロダクツ・エルエルシー 臍由来細胞を使用する筋萎縮性側索硬化症の治療
JP2018522538A (ja) * 2015-06-01 2018-08-16 メモリアル スローン ケタリング キャンサー センター 中脳ドーパミン(mDA)ニューロンのin vitro分化の方法
JP2020146060A (ja) * 2015-06-01 2020-09-17 メモリアル スローン ケタリング キャンサー センター 中脳ドーパミン(mDA)ニューロンのin vitro分化の方法
US11707488B2 (en) 2015-08-28 2023-07-25 Rohto Pharmaceutical Co., Ltd. ROR1-positive mesenchymal stem cells and method for preparing same, pharmaceutical composition containing ROR1-positive mesenchymal stem cells and method for preparing same, and method for preventing or treating disease using ROR1-positive mesenchymal stem cells
US11179420B2 (en) 2016-04-27 2021-11-23 Rohto Pharmaceutical Co., Ltd. Method for treating a disease, comprising administering mesenchymal stem cells or culture supernatant thereof to a subject
WO2018164228A1 (ja) 2017-03-08 2018-09-13 ロート製薬株式会社 Ror1陽性の間葉系幹細胞を含有する、線維症を伴う疾患の予防又は処置のための医薬組成物、及びその調製方法、並びにror1陽性の間葉系幹細胞を用いる線維症を伴う疾患の予防又は処置方法
JP6967308B1 (ja) * 2020-06-30 2021-11-17 国立大学法人高知大学 胎児付属物由来組織細胞培養上清を含む脳神経障害治療剤
JP2022016722A (ja) * 2020-06-30 2022-01-24 国立大学法人高知大学 胎児付属物由来組織細胞培養上清を含む脳神経障害治療剤

Also Published As

Publication number Publication date
CA2592435C (en) 2017-03-28
AU2005322133A1 (en) 2006-07-06
US7875273B2 (en) 2011-01-25
JP5425400B2 (ja) 2014-02-26
EP1833496A2 (en) 2007-09-19
PL1835924T3 (pl) 2014-01-31
PT1835924E (pt) 2013-11-19
CA2589063C (en) 2016-08-09
EP1835924B1 (en) 2013-08-21
JP2014000094A (ja) 2014-01-09
EP1835924A2 (en) 2007-09-26
WO2006071778A3 (en) 2006-08-17
AU2005322133B2 (en) 2011-06-30
CA2592435A1 (en) 2006-07-06
JP5425399B2 (ja) 2014-02-26
EP1833496B1 (en) 2013-07-31
CA2589063A1 (en) 2006-07-06
AU2005322068B2 (en) 2011-09-01
DK1835924T3 (da) 2013-11-04
JP2014028836A (ja) 2014-02-13
WO2006071778A2 (en) 2006-07-06
JP2008525492A (ja) 2008-07-17
US20060233766A1 (en) 2006-10-19
AU2005322068A1 (en) 2006-07-06
WO2006071802A3 (en) 2006-08-24
SI1835924T1 (sl) 2013-12-31
WO2006071802A2 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP5425399B2 (ja) 産褥由来細胞を用いたパーキンソン病および関連の障害の治療
JP4950661B2 (ja) 分娩後由来細胞類を使用する、神経組織の再生および修復
US7875272B2 (en) Treatment of stroke and other acute neuraldegenerative disorders using postpartum derived cells
AU2009327383B2 (en) Regeneration and repair of neural tissue following injury
US8518390B2 (en) Treatment of stroke and other acute neural degenerative disorders via intranasal administration of umbilical cord-derived cells
JP6000982B2 (ja) 臍由来細胞を使用する筋萎縮性側索硬化症の治療
US9592258B2 (en) Treatment of neurological injury by administration of human umbilical cord tissue-derived cells
AU2011226836B2 (en) Treatment of parkinson's disease and related disorders using postpartum derived cells
AU2011226961B2 (en) Regeneration and repair of neural tissue using postpartum-derived cells

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111228

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121003

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121011

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5425399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees