JP2008523721A - 複雑度の低い適応チャネル推定 - Google Patents

複雑度の低い適応チャネル推定 Download PDF

Info

Publication number
JP2008523721A
JP2008523721A JP2007545513A JP2007545513A JP2008523721A JP 2008523721 A JP2008523721 A JP 2008523721A JP 2007545513 A JP2007545513 A JP 2007545513A JP 2007545513 A JP2007545513 A JP 2007545513A JP 2008523721 A JP2008523721 A JP 2008523721A
Authority
JP
Japan
Prior art keywords
channel
filter
wtru
snr
estimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007545513A
Other languages
English (en)
Inventor
ジェイ.ピエトラスキ フィリップ
Original Assignee
インターデイジタル テクノロジー コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターデイジタル テクノロジー コーポレーション filed Critical インターデイジタル テクノロジー コーポレーション
Publication of JP2008523721A publication Critical patent/JP2008523721A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response

Abstract

少なくとも1つの相対的に移動性のワイヤレス送受信ユニット(WTRU)から受信されたワイヤレス通信信号のために、チャネル推定装置および方法が提供される。一意のインデックス値を有する所定のフィルタ係数が、メモリデバイス内で記憶される。インデックスジェネレータは、移動ユニット速度の推定値およびSNRの推定値を、特定のフィルタ係数に突き合わせ、対応するインデックス値を選択し、それにより、メモリは、インデックス値に従ってルックアップ機能を実行し、フィルタ係数ベクトルを出力する。ワイヤレス通信信号のチャネル推定量は、フィルタの出力から取り出される。別法として、連続的に動作する1組の並列フィルタを使用し、いくつかの候補チャネル推定量を生成し、そこから、最終的な推定量が、関連する最も低い平均2乗誤差または最も高いSNRに基づいて選択される。

Description

本発明は、一般にワイヤレス通信システムに関する。詳細には、本発明は、そのようなシステムにおける適応チャネル推定に関する。
基地局、ワイヤレス送受信ユニット(WTRU)、移動ユニットという用語は、それらの一般的な意味で使用される。本明細書では、ワイヤレス送受信ユニット(WTRU)は、それだけには限らないが、ユーザ機器、移動局固定型もしくは移動型加入者ユニット、ページャ、またはワイヤレス環境内で動作することが可能な任意の他のタイプのデバイスを含む。WTRUは、ネットワーク接続を有する、電話、テレビ電話、インターネット対応電話(Internet ready phone)などパーソナル通信デバイスを含む。さらに、WTRUは、同様のネットワーク機能を有するワイヤレスモデムを備えるPDAおよびノートブックコンピュータなど、可搬型パーソナルコンピューティングデバイスを含む。可搬型である、または他の方法で場所を変えることができるWTRUは、移動ユニットと呼ばれる。以下で参照されるとき、基地局は、それだけには限らないが、基地局、ノードB、サイトコントローラ、アクセスポイント、またはワイヤレス環境内の他のインターフェース用デバイスを含むWTRUである。
ワイヤレス遠隔通信システムは、当技術分野で周知である。ワイヤレスシステムに全世界的な接続性を与えるために、諸標準が開発されており、実施されつつある。広く使用されている1つの現行標準は、GSM(Global System for Mobile Telecommunications)として知られる。これは、いわゆる第2世代移動無線システム標準(2G)と見なされており、その後に、その改訂版(2.5G)が続いていた。GPRSおよびEDGEは、(2G)GSMネットワークの頂部で比較的高速のデータサービスを提供する2.5G技術の例である。これらの標準のそれぞれが、従来の標準上で、追加の機能および強化を用いて向上しようと試みていた。1998年1月には、ETSI SMG(欧州電気通信標準化機構のSpecial Mobile Group)は、ユニバーサル移動通信システム(UMTS)と呼ばれる第3世代無線システムのための無線アクセス方式に対して合意した。UMTS標準をさらに実装するために、第3世代パートナーシッププロジェクト(3GPP)が、1998年12月に形成された。3GPPは、引き続き共通の第3世代移動無線標準に取り組んでいる。
典型的なセルラ構成10が図1Aに示されており、セル20は、基地局25と、移動WTRU35、45とを含む。一般に、ノードBなど基地局の主な機能は、基地局のネットワークとWTRUの間の物理チャネルに沿って無線接続を提供することである。典型的なワイヤレスローカルエリアネットワーク(WLAN)構成が、図1Bに示されている。図1Aのセルラ構成と同様に、WLAN50は、中央アクセスポイントと、移動WTRU56およびWTRU57とを備える。ここで、ワイヤレス通信は、WTRU56とWTRU57の間で、アクセスポイント55を介して、IEEE802.11および関連するWLAN標準に従って続行される。基地局25とWTRU35、45、ならびにアクセスポイント55とWTRU56、57のどちらにおいても、良好な品質のチャネル推定が、高性能受信機の重要な部分である。
典型的なワイヤレスチャネルにおけるチャネル推定に伴う問題の1つは、チャネルの状態が時間と共に変化する、換言すれば、チャネルが減衰することである。フェージング統計(fading statistics)が固定されており、受信機に知られている場合、最適なチャネル推定フィルタ、またはアルゴリズムを導出し、実装をほとんど複雑にすることなく受信機内で使用することができる。しかし、様々な状況では、実際のチャネルフェージング統計は、移動ユニットの速度が変化したときなど、時間と共に変わる。したがって、固定されたフィルタは、そのような場合に最適な性能を発揮することができない。
図2は、チャネル推定フィルタの性能のグラフを示す。曲線11および曲線12は、それぞれ移動WTRU35、45を用いたワイヤレス通信の2つのチャネル110、120について、移動平均タイプのフィルタによって使用される平均化時間(averaging time)の関数としてチャネルスループットを表す。WTRU35は、3km/hの速度を有し、一方、WTRU45は、120km/hの速度で移動中である。図2に示されているように、フィルタを両チャネルについて同時に最適化させることができない。3km/hでは、最適なフィルタ長は1.4スロットを十分に超えるが、120km/h移動ユニットについては、最適な長さが0.6スロットほどと低いものである。3GPPによって必要とされる250km/hチャネルには、さらに短いフィルタ長が必要とされることになる。
少なくとも1つの相対的に移動性のワイヤレス送受信ユニット(WTRU)から受信されたワイヤレス通信信号のために、チャネル推定装置および方法が提供される。好ましくは、基地局など、WTRUのための受信機が、移動受信機速度の推定量、および移動WTRU伝送の信号対雑音比(SNR)の推定量を決定するように構成される。好ましくは、受信機は、相関器と、メモリデバイスと、インデックスジェネレータと、関連するフィルタとを有する。相関器は、通信信号データを受け取り、パイロットシンボルを生成するように構成されることが好ましい。一意のインデックス値を有する所定のフィルタ係数が、メモリデバイス内で記憶されることが好ましい。インデックスジェネレータは、速度推定値およびSNR推定値を、フィルタ係数の特定のセットに突き合わせるように、また対応するインデックス値を選択するように構成されることが好ましい。したがって、メモリは、インデックス値に従ってルックアップ機能を実行するように構成され、フィルタ係数ベクトルを出力することが好ましい。動作時には、パイロットシンボルが濾波され、ワイヤレス通信信号のチャネル推定量が得られる。
代替の実施形態では、複数の候補チャネル推定量を生成するために連続的に動作するように構成される複数のチャネル推定フィルタが提供されることが好ましい。各候補チャネル推定量は、そのチャネル推定量の平均2乗誤差(MSE)を計算させることによってその推定量の品質について自己評価(self assessed)されることが好ましい。最も低いMSE推定値を有する候補チャネル推定量が、最終的なチャネル推定量として選択される。1つの代替形態は、各候補チャネル推定量についてのSNR推定量がMSEから決定され、最も高いSNR値を有する候補チャネル推定量が最終的なチャネル推定量として選択されるように装置を構成することである。
本発明の他の目的および利点は、当業者には、以下の詳細な説明、および添付の図面から明らかになるであろう。
諸実施形態について、第3世代パートナーシッププロジェクト(3GPP)広帯域符号分割多元接続(W−CDMA)システムに関連して述べられているが、諸実施形態は、任意の混成の符号分割多元接続(CDMA)/時分割多元接続(TDMA)通信システムに適用可能である。さらに、諸実施形態は、一般にCDMA2000、TD−SCDMAなどCDMAシステム、3GPP W−CDMAの提案されている周波数分割デュプレックス(FDD)モード、および直交周波数分割多重(OFDM)にも適用可能である。本発明に従って作製される受信機は、基地局またはUEとして構成されたWTRU用の主な応用例を有するが、別のWTRUから相対的に移動性の状況において信号を受信する任意のタイプのWTRU用に使用することができる。
図3は、本発明による受信機の適応チャネル推定フィルタの、第1の実施形態のブロック図を示す。適応フィルタ構成300は、ルックアップテーブル(LUT)310と、パイロット相関器320と、フィルタ330とを備える。LUT310は、好ましくは有限インパルス応答(FIR)タイプの係数を有する1組の予め計算されたフィルタを含む。使用すべきFIRタイプのフィルタ係数の好ましい例は、FIRウィナーフィルタである。別法として、より複雑度の低い無限インパルス応答(IIR)係数を使用することもできる。少数のフィルタ、たとえば6つほどのフィルタが、典型的なFDD展開において観察されると予想される移動WTRUの速度(3km/hから250km/h)およびSNR(−3dBから16dB)のセットを効果的にカバーするのに好適となる可能性がある。フィルタの数が少ないことは、主に、大抵のマルチパスレイリーチャネルがほぼ従来のドップラースペクトルを示すことになり、必要とされるフィルタの次元(dimension)を大きく制限するという観察に帰すべきものである。ライス(Rician)チャネルは、十分なSNRを有する傾向があり、その結果、チャネル推定のためにどの特別なフィルタも必要としない。好ましくは、LUT310は更新可能であり、その結果、その少数のフィルタが、観察された条件の傾向に従って、移動WTRU速度およびSNRの想定された範囲を拡大する、かつ/または密度を増大するように係数セットを追加することによって、その範囲をカバーするように調節される。
LUT310は、移動WTRU速度推定入力301と、チャネルSNR推定302とを受け取り、これらは、他の場所で、ドップラー分散推定からなど、本発明の範囲外のデバイスによって計算される。
少数のフィルタ係数だけがLUTメモリ内で保存されることが望ましいので、推定された速度301およびSNR302を使用し、最も近い隣接するフィルタ係数セットを選択する。LUT310は、最も近い隣接フィルタを使用することに伴う性能損失を最小限に抑えるのに十分密なフィルタ係数のセットを含むことが好ましい。インデックスジェネレータ350は、現在の移動WTRU速度推定量301およびSNR推定量302を、所定の移動速度推定量およびSNR推定量のセットに比較し、最も近い合致を選択することによって、最適なフィルタ係数をLUT310から選択する。したがって、チャネル推定は、移動WTRU速度推定量およびSNR推定量に対して適応性を示す。
通信信号303がマルチパス信号であり、P個の最も強い信号経路のそれぞれについて別々のSNR推定量302が使用可能である場合には、LUT310は、そのP個の信号経路のそれぞれについて1組の係数311を提供することができる。そうでない場合には、単一のSNR推定量302で係数311の単一のセットを生成することができ、そのセットも、依然として性能損失が最小限に抑えられたチャネル推定量を生成することができる。
パイロット相関器320は、受け取られた通信信号303から、標準的なCDMA信号処理に関連する既知の拡散符号に従って、パイロット信号をパイロットシンボル321に逆拡散するように構成される。好ましくは、パイロット相関器320は、入力信号および出力信号がベクトルフォーマットであるベクトル相関器として働く。また、受け取られた信号303は、パイロット相関器320による逆拡散処理の前に、標準的なCDMA信号処理によってスクランブル解除されることが好ましい。通信信号303がマルチパス信号である場合、パイロット相関器320は、各経路について、好ましくは特定の閾値を超える最も強いマルチパス信号を搬送する所定の数P個の経路について1つ、1組のパイロットシンボル321を生成するように構成されることが好ましい。
フィルタ330は、パイロットシンボル321およびフィルタ係数311(すなわち、FIRフィルタ)の内積関数(すなわち、ベクトル内積)を実行するように構成されることが好ましい。それにより、受信機340のためのチャネル推定量331が得られる。IIRフィルタ、および/または非線形フィルタもまた使用することができる。LUT310によって、P個のマルチパス信号の考慮すべき点により複数の係数セット311およびパイロットシンボル321が使用可能である場合、フィルタ330は、受信機340によってさらに処理するために、P個のチャネル経路推定量Cj(ただしj=1〜P)を生成するように構成されることが好ましい。チャネル経路推定量Cjの複合セットは、集合的にチャネル推定量331と呼ばれる。
図4は、図3に従って述べた適応チャネル推定フィルタについての方法流れ図を示す。方法400は、ステップ410で開始され、所定のフィルタ係数セットが、速度、SNR、および使用すべきドップラースペクトルなど、パラメータの様々な想定を使用して確立される。ステップ420では、フィルタ係数が、メモリ内で、ルックアップテーブル(LUT)310として格納される。次に、インデックスジェネレータ350は、現在の移動速度推定量301およびSNR推定量302を、LUT310内の格納されているフィルタ係数に関連する所定の移動WTRU速度の想定およびSNRの想定のセットに比較し、最も近い合致を選択することによって、最適なフィルタ係数をLUT310から選択する(ステップ430)。別法として、決定境界(decision boundary)が、MSE解析または性能シミュレーションによって予め計算されてもよい。ステップ440では、フィルタ330は、フィルタ係数311によってパイロットシンボル321を濾波し、それにより、受信機340のためのチャネル推定量331が得られる。好ましくは、フィルタ330は、パイロットシンボル321およびフィルタ係数311の内積関数を実行する。
図5は、本発明による適応チャネル推定の第2の実施形態を示す。チャネル推定回路500は、パイロット相関器520と、フィルタ5301〜530nと、加算器5321〜532nと、振幅2乗(magnitude square)ユニット5331〜533nと、ローパスフィルタ5341〜534nと、セレクタ535とを備える。パイロット相関器520は、受け取られた通信信号503から、標準的なCDMA信号処理に関連する既知の拡散符号に従って、スクランブル解除されたパイロットシンボル521を逆拡散するように構成されることが好ましい。第1の実施形態用のチャネル推定回路300で述べたように単一のフィルタ係数セットを選択するのではなく、各フィルタ5301〜530nは、候補のフィルタ係数セットを表しており、すべてが連続的に動作し、候補のチャネル推定量5311〜531nを生成するように構成されることが好ましい。好ましくは、フィルタ5301〜530nのそれぞれについて、ウィナータイプのフィルタが選択される。n個のフィルタのそれぞれは、予め決定されており、予想されるチャネル条件の範囲をなおもカバーしながら有限数のフィルタから選択しなければならないことによる性能損失を最小限に抑えるように選択される。チャネル推定回路300について導出された同じフィルタが、チャネル推定回路500について選択される。しかし、候補のフィルタ5301〜530nすべてが連続的に動作しているため、フィルタに伴うトランジェントが問題とならず、複雑度の低いIIRフィルタが好ましい。しかし、代替として、やはりFIRフィルタをも使用することができる。好ましくは、チャネル推定選択は、以下のような計算構成要素によって各候補のチャネル推定量5311〜531nの信号品質を決定することによって達成される。各フィルタ5301〜530nについて、サマー(summer)5321〜532nは、パイロット相関器520からの出力をチャネル推定量5311〜531nから減算し、それにより、ノイズを含む推定誤差が得られる。次に、振幅2乗ユニット5331〜533nによる振幅2乗およびローパスフィルタ5341〜534nによる平均化により、チャネル推定量5311〜531nに関連する平均2乗誤差(MSE)推定量Q1〜Qnが生じる。したがって、各候補のチャネル推定フィルタ5301〜530nは、チャネル推定量の品質を決定するために、それ自体の自己評価回路を有する。セレクタ535は、候補のチャネル推定量5311〜531nから、最も低い平均2乗誤差推定量Q1〜Qnまたは最良の品質信号を有するチャネル推定量531Fを選択する。別法として、セレクタ535は、各候補のチャネル推定量5311〜531nに関連するSNR値を計算し、最も高いSNRを有するその候補のチャネル推定量5311〜531nをチャネル推定量531Fとして選択する。したがって、セレクタ535は、変化するチャネル条件に対して反応する適応チャネル推定量を、チャネル条件のその範囲をカバーするように選択されたフィルタセットを介して生成する。
通信信号503がマルチパス信号である場合、パイロット相関器520は、各経路について、好ましくは特定の閾値を超えるP個の最も強い信号を搬送するP個の所定の経路について、1組のパイロットシンボル521を生成するように構成されることが好ましい。次いで、各フィルタ5301〜530nは、各チャネル推定量についてP個のチャネル経路推定量Cijを生成し、各候補のチャネル経路推定量5311〜531nについてn個の対応するMSE値がある。ただし、iは、(i=1〜n)の推定量のインデックスであり、jは、(j=1〜P)の経路インデックスである。好ましくは、1つの加算器と、振幅2乗ユニットと、ローパスフィルタとを備える単一のMSE回路が、チャネル経路推定量の複数のベクトルについてMSE演算を実行する。たとえば、フィルタ5301に関連するマルチパスチャネル経路推定量についてMSEを処理するために、加算器5321、振幅2乗ユニット5331、ローパスフィルタ5341が使用され、各ベクトルを連続的に処理する。別法として、複数の並列MSE回路を、特定のフィルタに関連するマルチパスパイロットシンボルおよびチャネル経路推定量の同時ベクトル処理のために使用することができる。
最後に、複合チャネル推定量531Fは、受信機540によって処理しようとするP個のマルチパス値からなる。最も高い品質の経路推定量が、複合チャネル推定量531FのP個のマルチパス成分のそれぞれについて選択される。たとえば、P=8経路、n=6フィルタの場合、チャネル推定量531Fは、チャネル推定量の以下の複合セット、すなわち[Ci1,Ci2,Ci3,Ci4,Ci5,Ci6,Ci7,Ci8]からなり、(i=1〜6)の最良の経路推定量は、8個の経路のそれぞれについて独立に選択される。
チャネル推定回路500とチャネル推定回路300との違いは、いくつかの候補5311〜531nの中からの最良のチャネル推定量が、チャネル推定回路300内でのようにチャネル推定のための最良のフィルタを予測するのではなく、セレクタ535によって選択されることである。別の違いは、チャネル推定回路500の場合、移動ユニットの速度推定、またはSNR推定について精度の懸念がない。というのは、チャネル推定フィルタ5301〜530nの場合、これらのパラメータが依拠されないからである。
図6は、適応チャネル推定回路500のための方法流れ図を示す。ステップ610では、候補のチャネル推定フィルタの所定のセットが確立される。複数の候補のチャネル推定フィルタが連続的に動作され、複数のチャネル推定量を同時に生成する(ステップ620)。受け取られたデータ信号は、パイロット相関器により、既知のCDMA拡散符号に基づく逆拡散プロセスによって処理される(ステップ630)。各チャネル推定の誤差推定量は、チャネル推定値と相関器出力との差として決定される(ステップ640)。次に、誤差推定量の平均2乗誤差(MSE)が計算される(ステップ650)。任意選択で、SNR推定量が、チャネル推定量およびMSE推定量から導出される(ステップ655)。最後に、最良のチャネル推定量は、最も低い関連MSE推定値、または最も高いSNR推定値を有する推定量として選択される(ステップ660)。
第1および第2の実施形態について、基地局と移動WTRUの間のワイヤレス通信によって述べられているが、本発明は、IEEE802.11タイプのシステム内のアクセスユニットを介して、移動ユニット間のWLAN通信に容易に適用可能である。
基地局とワイヤレス送受信ユニットの間のワイヤレス通信の典型的な物理構成の概略図である。 アクセスポイントとワイヤレス送受信ユニットの間のワイヤレスLANの典型的な物理構成の概略図である。 平均化時間の関数としての移動平均フィルタのスループット損失の、シミュレーションされたチャネル推定性能のグラフである。 本発明の第1の実施形態による適応チャネル推定フィルタのブロック図である。 図3のフィルタによって実行される適応チャネル推定についての方法流れ図である。 本発明の第2の実施形態による適応チャネル推定フィルタのブロック図である。 図5のフィルタによって実行される適応チャネル推定についての方法流れ図である。

Claims (29)

  1. 少なくとも1つの相対的に移動性のワイヤレス送受信ユニット(WTRU)からワイヤレス通信信号を受信するように構成された受信機内のチャネル推定のための装置において、前記受信機が、相対的に移動性の速度の推定量、および相対的に移動性のWTRU伝送の信号対雑音比(SNR)の推定量を決定するように構成される装置であって、
    通信信号データを受け取るように、またパイロットシンボルを生成するように構成された相関器と、
    一意のインデックス値を有する所定のフィルタ係数セットを記憶するように構成されたメモリと、
    速度推定値およびSNR推定値をフィルタ係数の特定のセットに突き合わせるように、また前記メモリと関連して、対応するインデックス値を選択し、選択されたフィルタ係数セットを出力するように構成されたインデックスジェネレータと、
    前記インデックスジェネレータと関連して前記メモリから出力された、選択されたフィルタ係数セットとの、前記パイロットシンボルの内積演算を実行し、チャネル推定量を生じるように構成されたフィルタと
    を具えたことを特徴とする装置。
  2. P個の経路を有するワイヤレス通信信号を処理するように構成され、前記相関器は、パイロットシンボルのP個のセットを生成するように構成され、
    前記インデックスジェネレータは、P個のチャネル経路推定量について、対応するインデックスを選択するように構成され、
    前記フィルタは、P個のチャネル経路推定量を含む複合チャネル推定量を生成するように構成されたことを特徴とする請求項1記載の装置。
  3. 前記メモリは、FIRウィナータイプのフィルタに対応する所定の係数フィルタセットを含むことを特徴とする請求項1記載の装置。
  4. FDD、W−CDMA、TD−SCDMA、OFDM、ワイヤレスLANのうちの1つ、またはそれらの組合せの中からのタイプのワイヤレス通信信号を処理するように構成されることを特徴とする請求項1記載の装置。
  5. 請求項1記載の装置を含む受信機を有することを特徴とするワイヤレス送受信ユニット(WTRU)。
  6. セルラネットワーク用の基地局として構成されることを特徴とする請求項5記載のワイヤレス送受信ユニット(WTRU)。
  7. ワイヤレスローカルエリアネットワーク(WLAN)のアクセスポイント(AP)として構成されることを特徴とする請求項5記載のワイヤレス送受信ユニット(WTRU)。
  8. 移動ユニットとして構成されることを特徴とする請求項5記載のワイヤレス送受信ユニット(WTRU)。
  9. 少なくとも1つの相対的に移動性のワイヤレス送受信ユニット(WTRU)からワイヤレス通信信号を受信するように構成された受信機内のチャネル推定のための装置において、前記受信機が、相対的に移動性の速度の推定量、および相対的に移動性のWTRU伝送の信号対雑音比(SNR)の推定量を決定するように構成される、装置であって、
    通信信号データを受け取るように、また受け取られた信号のパイロットシンボルを生成するように構成された相関器と、
    それぞれが固有のフィルタ係数を用いて、生成されたパイロットシンボルを処理し、第1から第Nの候補のチャネル推定量を順に生成するように構成された複数のN個のフィルタと、
    第1から第Nの候補のチャネル推定量のそれぞれについて信号品質を計算するように構成された計算構成要素と、
    第1から第Nの候補のチャネル推定量、および対応する信号品質値を受け取り、最良の信号品質を有する前記候補のチャネル推定量であるチャネル推定量を選択するように構成されたセレクタと
    を具えたことを特徴とする装置。
  10. 前記計算構成要素は、
    前記パイロットシンボルを前記候補のチャネル推定量から減算するように構成されたサマーと、
    前記サマーの出力の2乗値を計算するように構成された振幅2乗ユニットと、
    前記振幅2乗ユニットの出力から平均2乗誤差を生成するためのローパスフィルタと
    を具え、
    前記セレクタは、最も低い平均2乗誤差ルックアップテーブルを有する前記チャネル推定量を選択するように構成されることを特徴とする請求項9記載の装置。
  11. 前記計算構成要素は、信号対雑音比(SNR)を決定するように構成され、前記セレクタは、最も高いSNRを有する前記チャネル推定量を選択するように構成されたことを特徴とする請求項9記載の装置。
  12. P個の経路を有するワイヤレス通信信号を処理するように構成され、
    前記相関器は、パイロットシンボルのP個のセットを生成するように構成され、
    前記複数のN個のフィルタは、チャネル経路推定量Cijを生成するように構成され、
    ただし、iは、特定のフィルタに対応する(i=1〜N)のチャネル推定インデックスを表し、jは、(j=1〜P)の経路インデックスを表し、
    前記セレクタは、[Ci1,Ci2,...,CiP]によって表される各経路について最良の品質の候補のチャネル推定量を選択することによって複合チャネル推定量を生成するように構成されたフィルタであることを特徴とする請求項9記載の装置。
  13. 前記複数のN個のフィルタは、IIRウィナータイプのフィルタに対応することを特徴とする請求項9記載の装置。
  14. FDD、W−CDMA、TD−SCDMA、OFDM、ワイヤレスLANのうちの1つ、またはそれらの組合せの中からのタイプのワイヤレス通信信号を処理するように構成されることを特徴とする請求項9記載の装置。
  15. 請求項9記載の装置を含む受信機を有することを特徴とするワイヤレス送受信ユニット(WTRU)。
  16. セルラネットワーク用の基地局として構成されることを特徴とする請求項9記載のワイヤレス送受信ユニット(WTRU)。
  17. ワイヤレスローカルエリアネットワーク(WLAN)のアクセスポイント(AP)として構成されることを特徴とする請求項9記載のワイヤレス送受信ユニット(WTRU)。
  18. 移動ユニットとして構成されることを特徴とする請求項9記載のワイヤレス送受信ユニット(WTRU)。
  19. 少なくとも1つの他の相対的に移動性のWTRUから第1のワイヤレス送受信ユニット(WTRU)によって受信されたワイヤレス通信信号のチャネル推定のための方法であって、
    複数の想定された相対的に移動性の速度、および複数の想定された信号対雑音比(SNR)値に基づいて、チャネル推定フィルタ係数の所定のセットを確立する工程と、
    少なくとも1つの送信局の相対的な速度を推定する工程と、
    チャネルのSNRを推定する工程と、および、
    前記推定された速度と想定された速度との、また前記推定されたSNR値と想定されたSNR値との最も近い合致に従ってフィルタセットを選択する工程と
    を具えたことを特徴とする方法。
  20. 前記選択する工程は、平均2乗誤差(MSE)推定解析に基づくことを特徴とする請求項19記載の方法。
  21. 前記選択する工程は、性能シミュレーションに基づくことを特徴とする請求項19記載の方法。
  22. 前記確立する工程は、フィルタ係数セットの密度を維持することによって、最も近い隣接フィルタリングに伴う損失を最小限に抑えることを特徴とする請求項19記載の方法。
  23. フィルタ係数の前記セットをメモリ内で記憶することをさらに具えたことを特徴とする請求項19記載の方法。
  24. 前記メモリは、ルックアップテーブルとして構成されることを特徴とする請求項23記載の方法。
  25. 相対的に移動性の速度およびチャネルSNRの後続の測定に基づいて、前記ルックアップテーブルの係数をフィルタ係数の追加のセットで更新する工程をさらに具えたことを特徴とする請求項24記載の方法。
  26. 少なくとも1つの他の相対的に移動性のWTRUから第1のワイヤレス送受信ユニット(WTRU)によって受信されたワイヤレス通信信号データのチャネル推定のための方法であって、
    受信された前記通信信号データを逆拡散し、前記受信された信号のパイロットシンボルを生成する工程と、
    複数のN個のフィルタによって、各フィルタ固有のフィルタ係数のセットを用いて前記パイロットシンボルを処理し、第1から第Nの候補のチャネル推定量を生成する工程と、
    第1から第Nの候補のチャネル推定量のそれぞれについて信号品質を計算する工程と、および、
    最良の信号品質を有する前記候補のチャネル推定量に従って、第1から第Nの候補のチャネル推定量からチャネル推定量を選択する工程と
    を具えたことを特徴とする方法。
  27. 前記各候補のチャネル推定量について信号品質を計算する工程は、
    前記パイロットシンボルを前記候補のチャネル推定量から減算し、誤差推定値を生成する工程と、
    前記誤差推定量の振幅2乗値を計算する工程と、
    前記振幅2乗ユニットの出力から平均2乗誤差を生成する工程と、および、
    最も低い平均2乗誤差を有する前記チャネル推定量を選択する工程と
    をさらに具えたことを特徴とする請求項26記載の方法。
  28. 前記信号品質を計算する工程は、信号対雑音比(SNR)を決定し、
    前記チャネル推定量を選択する工程は、最も高いSNRを有する前記候補のチャネル推定量によるものであることを特徴とする請求項26記載の方法。
  29. 前記ワイヤレス通信信号はP個の経路を有し、
    前記逆拡散する工程は、パイロットシンボルのP個のセットを生成し、
    前記複数のN個のフィルタによって処理する工程は、チャネル経路推定量Cijを生成し、ただし、iは、特定のフィルタに対応する(i=1〜N)のチャネル推定インデックスを表し、jは、(j=1〜P)の経路インデックスを表し、
    前記選択する工程は、[Ci1,Ci2,...,CiP]によって表される各経路について最良の品質の候補のチャネル推定量を選択することによって複合チャネル推定量を生成することを特徴とする請求項26記載の方法。
JP2007545513A 2004-12-09 2005-11-30 複雑度の低い適応チャネル推定 Withdrawn JP2008523721A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/007,998 US20060128326A1 (en) 2004-12-09 2004-12-09 Low complexity adaptive channel estimation
PCT/US2005/043121 WO2006062767A2 (en) 2004-12-09 2005-11-30 Low complexity adaptive channel estimation

Publications (1)

Publication Number Publication Date
JP2008523721A true JP2008523721A (ja) 2008-07-03

Family

ID=36578400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007545513A Withdrawn JP2008523721A (ja) 2004-12-09 2005-11-30 複雑度の低い適応チャネル推定

Country Status (10)

Country Link
US (1) US20060128326A1 (ja)
EP (1) EP1820282A4 (ja)
JP (1) JP2008523721A (ja)
KR (2) KR20070086995A (ja)
CN (1) CN101065909A (ja)
CA (1) CA2589756A1 (ja)
MX (1) MX2007006719A (ja)
NO (1) NO20073474L (ja)
TW (1) TW200629937A (ja)
WO (1) WO2006062767A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506648A (ja) * 2008-10-21 2012-03-15 エスティー‐エリクソン グレノーブル エスエーエス ドップラー効果を補正する装置を備える受信機

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688510B1 (ko) * 2004-12-20 2007-03-02 삼성전자주식회사 계수 갱신 회로, 이를 포함하는 적응 등화기, 및 적응등화기의 계수 갱신 방법
US8761312B2 (en) * 2005-02-11 2014-06-24 Qualcomm Incorporated Selection of a thresholding parameter for channel estimation
US7848463B2 (en) * 2005-04-07 2010-12-07 Qualcomm Incorporated Adaptive time-filtering for channel estimation in OFDM system
US7822069B2 (en) * 2006-05-22 2010-10-26 Qualcomm Incorporated Phase correction for OFDM and MIMO transmissions
KR100773294B1 (ko) * 2006-08-28 2007-11-05 삼성전자주식회사 광대역 무선접속 시스템에서 채널 추정 장치 및 방법
US8411805B1 (en) 2007-08-14 2013-04-02 Marvell International Ltd. Joint estimation of channel and preamble sequence for orthogonal frequency division multiplexing systems
US8000413B2 (en) * 2007-08-20 2011-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Selective signal demodulation method and apparatus
KR101490342B1 (ko) * 2007-11-26 2015-02-05 삼성전자주식회사 이동통신 시스템의 채널 추정 장치 및 방법
EP2194655A1 (en) * 2008-12-05 2010-06-09 ST Wireless SA Variable path detection length for efficient paging detection procedure
CN101777885B (zh) * 2009-01-14 2012-06-06 华为终端有限公司 滤波器系数的确定方法和装置
SG183306A1 (en) * 2010-02-17 2012-09-27 Ericsson Telefon Ab L M Method and apparatus for enhancing channel estimation
US8761598B2 (en) * 2010-04-08 2014-06-24 Broadcom Corporation Method and system for adaptively setting a transmitter filter for a high speed serial link transmitter
CN102158199B (zh) * 2010-12-31 2014-02-19 意法·爱立信半导体(北京)有限公司 时变系统中预存储滤波器系数组的选择方法及装置
KR101585447B1 (ko) * 2011-02-15 2016-01-18 삼성전자주식회사 무선통신 시스템에서 옵셋 보상을 고려한 엠엠에스이 채널추정 장치 및 방법
US8842789B2 (en) 2012-11-16 2014-09-23 Telefonaktiebolaget Lm Ericsson (Publ) Coefficient-specific filtering of initial channel estimates
US10045032B2 (en) * 2013-01-24 2018-08-07 Intel Corporation Efficient region of interest detection
TWI504169B (zh) * 2013-05-31 2015-10-11 Mstar Semiconductor Inc 加速等化收斂速度的接收裝置與方法
US9071482B2 (en) 2013-09-27 2015-06-30 Telefonaktiebolaget L M Ericsson (Publ) Power estimation for wireless communication devices in code division multiple access systems technical field
US9219629B1 (en) * 2014-08-27 2015-12-22 Zenith Electronics L.L.C. Adaptive low complexity channel estimation for mobile OFDM systems
US9712345B2 (en) * 2015-04-06 2017-07-18 Samsung Electronics Co., Ltd Communication device and method of controlling same
US11146422B1 (en) 2020-07-29 2021-10-12 U-Blox Ag Method and system for adjusting the bandwidth of a frequency domain smoothing filter for channel tracking loop in an OFDM communication system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574747A (en) * 1995-01-04 1996-11-12 Interdigital Technology Corporation Spread spectrum adaptive power control system and method
KR100219643B1 (ko) * 1997-06-26 1999-09-01 윤종용 동일채널 간섭 검출기와 그 구동방법
JP3913879B2 (ja) * 1998-02-03 2007-05-09 富士通株式会社 移動速度に基づく通信制御装置および方法
US6452917B1 (en) * 1999-04-08 2002-09-17 Qualcomm Incorporated Channel estimation in a CDMA wireless communication system
US6493329B1 (en) * 1999-08-23 2002-12-10 Qualcomm Incorporated Adaptive channel estimation in a wireless communication system
US6647055B2 (en) * 2000-08-31 2003-11-11 Wen-Yi Kuo Adaptive channel estimation using continuous pilot signal based on doppler period
KR100630112B1 (ko) * 2002-07-09 2006-09-27 삼성전자주식회사 이동통신시스템의 적응형 채널 추정장치 및 방법
US7454209B2 (en) * 2002-09-05 2008-11-18 Qualcomm Incorporated Adapting operation of a communication filter based on mobile unit velocity
WO2005011226A1 (en) * 2003-07-25 2005-02-03 Matsushita Electric Industrial Co., Ltd. Apparatus and method for multicarrier transmission / reception with transmission quality evaluation
DE10345959B4 (de) * 2003-10-02 2005-12-15 Infineon Technologies Ag Betriebssituationsabhängige Ermittlung und Selektion der Übertragungspfade für die Einrichtung von Rake-Fingern von Rake-Empfängereinheiten in Mobilkommunikations-Endgeräten
DE10350362B4 (de) * 2003-10-29 2008-06-19 Infineon Technologies Ag Verfahren zum Vorhersagen eines Kanalkoeffizienten
US7257171B2 (en) * 2005-04-04 2007-08-14 Motorola, Inc. Method and apparatus for reference symbol aided channel estimation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506648A (ja) * 2008-10-21 2012-03-15 エスティー‐エリクソン グレノーブル エスエーエス ドップラー効果を補正する装置を備える受信機
US8948315B2 (en) 2008-10-21 2015-02-03 Stmicroelectronics International N.V. Receiver comprising a device for correcting doppler effect

Also Published As

Publication number Publication date
WO2006062767A2 (en) 2006-06-15
EP1820282A4 (en) 2008-04-02
CA2589756A1 (en) 2006-06-15
CN101065909A (zh) 2007-10-31
WO2006062767A3 (en) 2006-12-07
US20060128326A1 (en) 2006-06-15
KR20070086995A (ko) 2007-08-27
NO20073474L (no) 2007-09-07
EP1820282A2 (en) 2007-08-22
KR20070087250A (ko) 2007-08-27
TW200629937A (en) 2006-08-16
MX2007006719A (es) 2007-07-09

Similar Documents

Publication Publication Date Title
JP2008523721A (ja) 複雑度の低い適応チャネル推定
JP4375337B2 (ja) 移動通信システム及びそれに用いる無線装置
JP5074544B2 (ja) 無線通信システムにおけるソフト・ハンドオフのための受信された多元信号の等化
EP0849886B1 (en) Multistage interference canceller for a code division multiple access communications system
KR101061743B1 (ko) 채널 추정을 이용하는 적응형 등화기를 구비한 통신 수신기
JP4512138B2 (ja) デュアルモードアクティブタップマスク発生器およびパイロット基準信号振幅制御ユニットを有する適応等化器
JP4701964B2 (ja) マルチユーザ受信装置
EP2074702B1 (en) Doppler frequency control of g-rake receiver
US20060227887A1 (en) Adaptive time-filtering for channel estimation in OFDM system
JP2002523961A (ja) Cdma通信システムにおけるマルチパス伝達のための適応受信機
JP2008539605A (ja) スライディングウィンドウブロック線形等化器を有する改良型受信機
JP2002537675A (ja) 移動通信システムにおける近似mmseベースのチャネル推定器
JP2982797B1 (ja) Cdma受信装置における復調回路
JPH1168700A (ja) スペクトル拡散通信方式
TW200931901A (en) A radio receiver in a wireless communications system
KR101171459B1 (ko) 적응형 파일럿 및 데이터 심벌 추정
US20060262841A1 (en) Signal-to-interference power ratio estimator
JP4205761B2 (ja) 干渉打消方法及び受信器
US8351487B1 (en) Equalizer with adaptive noise loading
WO2006100347A1 (en) Data detection in communication system
JP2006165775A (ja) 無線基地局装置及び無線送受信機、無線通信システム
RU2225073C2 (ru) Способ приема многолучевого широкополосного сигнала и устройство для его осуществления
JP2002353857A (ja) Rake受信機およびrake受信方法
JPH0677771A (ja) 伝送路等化器
JP2002237765A (ja) 受信回路

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081007