JP2008511861A - 対称なモード場を有する非対称フォトニック結晶導波素子 - Google Patents

対称なモード場を有する非対称フォトニック結晶導波素子 Download PDF

Info

Publication number
JP2008511861A
JP2008511861A JP2007529874A JP2007529874A JP2008511861A JP 2008511861 A JP2008511861 A JP 2008511861A JP 2007529874 A JP2007529874 A JP 2007529874A JP 2007529874 A JP2007529874 A JP 2007529874A JP 2008511861 A JP2008511861 A JP 2008511861A
Authority
JP
Japan
Prior art keywords
dielectric
photonic crystal
waveguide
mode
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007529874A
Other languages
English (en)
Inventor
ロバート オウ. ミラー、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Conversion Devices Inc
Original Assignee
Energy Conversion Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Conversion Devices Inc filed Critical Energy Conversion Devices Inc
Publication of JP2008511861A publication Critical patent/JP2008511861A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

導波モードのパリティを維持するスラブ型フォトニック結晶導波管。本導波管は、2つの誘電体層の間に挿入されたフォトニック結晶層を含む。フォトニック結晶層は、周囲の誘電体内に非対称的形状の誘電体領域の周期的配列を含む。導波管は、対称なモード電界分布を維持することによって、導入される入力モードのパリティ状態の変換を阻止する。対称なモード電界分布は、フォトニック結晶層内の誘電体領域の非対称な周期的配列に起因する非対称なモードの局在化の傾向を補償する誘電体層の誘電率の変化を通して達成される。
【選択図】図5D

Description

本発明は、電磁放射を導波するための素子に関する。さらに詳しくは、本発明は、電磁放射を横方向にフォトニック結晶層内に閉じ込め、且つ縦方向には屈折率による導波を通して閉じ込めるスラブ導波素子に関する。最も詳しくは、本発明は、導波モードの対称性を維持する構造的には非対称な導波素子に関する。
背景技術
近年、半導体が電子の伝播を制御するのとほとんど同じように光の伝播を制御することのできる材料の開発が注目を集めてきた。過去10年にこの目標に向けてかなりの進展があり、フォトニック結晶の新しい分野が出現した。フォトニック結晶は、結晶中を1つ又はそれ以上の方向に伝播することのできない電磁周波数の範囲を規定するフォトニック・エネルギ禁止帯を持つという意味で、光の半導体として機能する。
電子の伝播を制御する半導体の能力は、半導体を構成する原子の周期的格子配列に由来する。原子の精密な配列及び間隔は最終的に、半導体のバンド構造、エネルギ禁止帯、及び電子状態の根底にある電子ポテンシャルを決定する。周期性は、フォトニック結晶でフォトニックエネルギ禁止帯を生成し、且つ様々な周波数におけるフォトニック状態密度を制御するためにも使用される。しかし、周期的に配列される原子に由来する周期的電子ポテンシャルではなく、第二の誘電体媒質内に置かれた第一の誘電体媒質の周期的配列に由来する屈折率の周期性が、フォトニックエネルギ禁止帯の形成の根底にある。フォトニック用の電磁放射は、半導体に閉じ込められる電子より波長が長いので、フォトニック結晶中における屈折率変化の周期的間隔は、半導体における原子の周期的間隔より大きい。フォトニックエネルギ禁止帯が形成される場合、エネルギ禁止帯内の電磁放射の波長は、屈折率の周期的間隔に相当する波長である。
フォトニックエネルギ禁止帯幅内のエネルギを有し、フォトニックエネルギ禁止帯によって規定される方向に伝播する電磁放射は遮断され、フォトニック結晶中を伝播することができない。フォトニックエネルギ禁止帯内のエネルギ及び伝播方向を有する外光をフォトニック結晶に入射させたときに、それは結晶中を伝播することが出来づに完全に反射する。他方、フォトニックエネルギ禁止帯外のエネルギ又は伝播方向を持つ光は、結晶中を自由に通過する(言うまでもなく、通常の吸収及び反射過程に影響される)。この特徴はフォトニック結晶を、フォトニックエネルギ禁止帯に含まれる波長範囲内及び伝播方向の範囲内の入射波長の殆ど完全な反射体にする。
実用的なフォトニック結晶の1例として、スラブの厚さ方向に延び且つ横方向の線に沿って整列する空孔の周期的配列を含む扁平な誘電体スラブから構成される材料がある。そのような材料は空気から成る棒状体の周期的配列と見ることができ、空気が巨視的誘電体媒質であり、スラブが周囲の媒質であるフォトニック結晶に対応する。フォトニック結晶の別の例として、基板によって支持された誘電体から作られた円筒形棒状体の周期的配列があり、棒状体間の空間は空気又は棒状体を形成する誘電体以外の誘電体で充填される。この例では、棒状体は周期的に分布された巨視的誘電体媒質であり、棒状体間の空間を充填する材料は周囲のマトリクスに対応する。棒状体の周期的パターン(又は他の形状)正確な詳細、及び周期的な巨視的誘電体媒質とその周囲との間の屈折率のコントラストは、フォトニック結晶の特性に影響を及ぼす。
フォトニック結晶は、周囲の媒質との適切な屈折率コントラストが達成出来れば多種多様な巨視的誘電体媒質から形成することができる。上記の例の空孔又は棒状体の組成は空気に限定されないものが一つの例である。周囲の扁平な誘電体スラブとの充分に大きい屈折率コントラストを提示する他の材料を使用して、棒状体を形成することができる。例えば空孔の周期的格子は、扁平な誘電体スラブに穿孔し、続いて別の材料を充填してフォトニック結晶を形成することができる。棒状体材は、スラブ材より高いか低い屈折率を持つことができる。別の例として、空気を周囲の媒質としたシリコンのような巨視的誘電体媒質から成る棒状体の周期的配列が、フォトニック結晶を形成する。
重要な材料設計上の考慮事項は、周囲の材料内における巨視的誘電体媒質の寸法、間隔、及び配列のみならず、誘電体及び周囲の材料の屈折率をも含む。巨視的誘電体媒質の周期性は、1、2、又は3次元方向に延在することができる。これらの考慮事項は、フォトニックエネルギ禁止帯の大きさ、フォトニックエネルギ禁止帯内に入る光又は他の電磁エネルギ(例えば赤外線、マイクロ波等)の周波数範囲に、及びフォトニックエネルギ禁止帯が完全であるか(この場合、入射光の伝播方向に関係なく、フォトニックエネルギ禁止帯効果が現われる)、それとも部分的であるか(この場合、全ての伝播方向ではなく、一部の伝播方向に対して、フォトニックエネルギ禁止帯効果が現われる)、に影響を及ぼす。棒状体の周期的配列を作製する製造可能性、コスト、能力等のような他の実際的な考慮事項も関係する。
半導体におけるドーピング又は欠陥に類似した効果も、フォトニック結晶に実現することができる。半導体におけるドープ剤又は欠陥の本質的な効果は、半導体を構成する原子の格子の周期性を妨害又は中断することである。ドープ剤又は欠陥によって作られる電子状態は、半導体の格子に付与される周期性の局所的みだれの直接的な結果である。フォトニック結晶は、半導体にドープ剤及び欠陥を導入するのに類似の仕方で同様に乱すことができる。欠陥は、光をフォトニック結晶内に空間的に閉じ込めるために使用することができる。点欠陥は、フォトニックエネルギ禁止帯内に相当する波長を有する電磁波を局在化するために使用することができる。これは、局在化された波長がフォトニックエネルギ禁止帯内にあるために、局在化された電磁波が周囲のフォトニック結晶中を伝播することができないために、欠陥から脱出することができないことから発生する。線状又は面状欠陥は同様に、電磁波をフォトニック結晶内に1次元又は2次元に閉じ込めるために使用することができる。
フォトニック結晶の周期性は、周囲の媒質内の巨視的誘電体媒質の規則的な配列の結果である。巨視的誘電体媒質の配列を中断させる効果は、周期性を破って、フォトニックエネルギ禁止帯内に局在的な又は空間的に広がった欠陥のフォトニック状態を形成するために使用することができる。欠陥は、例えば1つ又は1つ以上の棒状体を配列内の他の棒状体に対して整列を乱すことによって、棒状体配列フォトニック結晶に形成することができる。棒状体を周囲の誘電体スラブ内で整列を乱す方法は例えば、1つ又は1つ以上の棒状体の寸法、位置、光学定数、又は化学組成を変化させるか、あるいは2つ又は2つ以上の材料から棒状体を形成することを含む。単一棒状体の整列の乱れは、光を局在化させるために使用することのできる点欠陥をもたらす。1列の棒状体の整列の乱れは、光をチャネル内に閉じ込めるように働く線状欠陥をもたらす。そのような欠陥は、損失無く光を結晶中に効果的に伝送させるために使用することができる。
フォトニック結晶の分野が発達するにつれて、新しいフォトニックエネルギ禁止帯材料の必要性が増大している。フォトニック結晶の適用の重要な将来性のある領域は導波操作である。理想的な導波管では、電磁波の伝播ビームは、導波管によって決定される方向に完全に閉じ込められる。3次元フォトニック結晶は、光の完全閉込め無損失伝播を達成するための方法を提供する。導波操作は、3次元フォトニック結晶で結晶の内部に線状欠陥を含めることによって達成することができる。欠陥内に局在化された光は、波長が周囲のフォトニック結晶のフォトニックエネルギ禁止帯内にある場合、欠陥に閉じ込められる。これは、光が欠陥から脱出して周囲のフォトニック結晶に入射することができないために発生する。3次元フォトニック結晶は、フォトニックエネルギ禁止帯効果が禁止帯内の波長を有する光の伝播方向に関係なく現われるという意味で、フォトニックエネルギ禁止帯が完全であることから、導波用途に望ましい。伝播方向の全範囲に亘るフォトニックエネルギ禁止帯による完全3次元閉込めが達成可能であり、伝播損失が回避される。したがって、3次元フォトニック結晶は、システムの寸法を最小化するために急な折曲げ部位を必要とする小型の集積光学システムの非常に有益な目標である。3次元フォトニックエネルギ禁止帯が無ければ、伝播光がエネルギ禁止帯外にあたる方向に進むので、曲げ部で過大な損失が発生する。
しかし、現在の未解決の問題は、完全3次元フォトニック結晶を得ることの実際的な難しさである。完全フォトニックエネルギ禁止帯は、3次元フォトニック結晶の形成を必要とする。伝播光の波長程度の寸法を有する巨視的誘電体を周期的に配列しなければならないという厳密な要求は、困難であり且つ費用も掛かることが立証されている。
3次元フォトニック結晶に期待される性能に近い性能を持ち、且つ製造の負担が少ないフォトニック結晶が必要とされている。提案されてきた1つの解決策は、スラブ型のフォトニック結晶である。スラブ型のフォトニック結晶は、有限な厚さを有し且つ1つの誘電体の2次元の周期的配列が異なる組成を有する周囲の誘電体内に含まれるフォトニック結晶層を含む。スラブ型のフォトニック結晶の層構造は、広く利用されている層堆積及び処理技術を利用してそれを形成することを可能にする。
スラブ型のフォトニック結晶の周期性は横方向の2次元で(スラブの面内で)実現されるが、スラブに対し垂直の方向(つまり厚さ方向)には存在しない。この型のフォトニック結晶層は3次元では周期的ではないので、完全なエネルギ禁止帯は欠如している。これは、フォトニックエネルギ禁止帯が特定の範囲の伝播方向のみで特定の波長帯に対して作動することを意味する。エネルギ禁止帯内に数字上含まれている波長でも、エネルギ禁止帯に含まれる伝播方向に該当しない伝播方向ではエネルギ禁止帯から除外される。この意味で、フォトニック結晶層の欠陥による光の閉込めは、限定された範囲の伝播方向に対してのみ有効であるので、閉込めは不完全である。
スラブ型フォトニック結晶では、光の閉込めは、より低い屈折率の2つの誘電体クラッド層間にフォトニック結晶層を介在させることによって完成される。クラッド層の目的は、フォトニック結晶層のフォトニックエネルギ禁止帯外に該当する従来の光の屈折率による閉込めを達成することである。この方法で、光は過大な損失無しに組合せ層の内に維持することができる。スラブ型フォトニック結晶層は横方向の伝播方向(フォトニック結晶層の周期性の方向)の閉込めを達成する一方、クラッド層はスラブの垂直方向の閉込めを達成する。
スラブ型フォトニック結晶の形成において通常直面する実際的な問題は、周期的に配列される誘電体媒質の形状のスラブの垂直方向の非対称性である。典型的な例では、スラブ型フォトニック結晶のフォトニック結晶層は、周囲の第2の誘電体のマトリクス内の第1の誘電体から構成される巨視的棒状体の周期的配列を含む。そのようなフォトニック結晶層の表面からの処理では、第2の(周囲の)誘電体の固体片に孔をエッチングし、その後にこれらの孔に第1の誘電体を充填することによって処理が行なわれる。エッチング処理の性質上、形成される孔は正確に円筒形ではなく、わずかに円錐状になるかテーパを付けられるので、孔の頂部が孔の底部より広くなる。テーパ付けは、エッチング液が孔の上部に接近し易く、孔の下部には接近し難いことの結果である。したがってエッチングは頂面で最も効率的に行なわれ、孔の底部に向かって表面から遠く離れるにつれてエッチング液の接近が阻害されるために、徐々に効率が低下する。
テーパ付けの結果は、周期的に配列される誘電体領域の断面の形状及び/又は面積がスラブの法線方向に不均一になることである。この不均一性は、スラブの中央折半平面に対する鏡面対称性の破壊を意味するので、導波に対して悪影響を及ぼす。対称性のこの喪失は異なるパリティの導波モードの混合を導き、その結果、単一モード導波は妨げられる。代わりに、モード結合及び多モード伝送が行なわれ、それに伴って反射による損失の増大が生じる。スラブ型フォトニック結晶の伝送効率を改善するために、単一モード作動を達成することができるように鏡面対称性を維持するシステムを開発することが望ましい。
発明の概要
本発明は、導波モードの単一モード作動及び効率的な伝送が可能となるようにモードの対称性を維持する、構造的に非対称なスラブ型フォトニック結晶を提供する。該スラブ型フォトニック結晶導波管は、周囲の第2の誘電体内の第1の誘電体の独立した領域の配列を有するフォトニック結晶層を含み、好ましい実施形態では、第1の誘電体の独立した領域は相互に同等であり、各々がスラブの法線方向にテーパを付けられるかその他の不均一な断面を有する。フォトニック結晶層は、誘電率の異なる2つの誘電体クラッド間に介在する。クラッド層はスラブ法線方向の導波モードの閉込めを達成し、クラッド層の誘電率の差は、クラッド層が周期的に配列される誘電体領域の形状の非対称性を補償して、導波モードの対称的閉込めを達成するように選択される。
好ましい実施形態では、フォトニック結晶層は、フォトニック結晶層と整列する平面内に略円形断面を有するテーパ棒状体の2次元の周期的配列を含み、円の直径はスラブ法線方向に変化する。テーパ棒状体は、テーパ棒状体より低い誘電率を有する周囲の誘電体内に配設される。この実施形態では、テーパ棒状体の小さい径の方の端部に隣接するクラッド層が、テーパ棒状体の大きい径の方の端部に隣接するクラッド層より高い誘電率を有する。
例示する実施の形態の詳細な説明
スラブ型フォトニック結晶導波管の側面の略図を図1に提示する。スラブ導波管は上部誘電体層100、下部誘電体層200、及びフォトニック結晶層300を含む。Z方向はフォトニック結晶層300に垂直な方向を示し、ここではスラブ法線方向、法線方向、厚さ方向、又は垂直方向と呼ぶことがある。横方向は、図1の頁の面に垂直なXY面(図示せず)に含まれる。X及びY方向は、スラブ面内水平方向、又はスラブ面内横方向と呼ぶことがある。スラブ方向の導波モードの閉込めはフォトニックエネルギ禁止帯によって達成され、スラブ法線方向の導波モードの閉込めは誘電体層100及び200によって達成される。誘電体層100及び200を本願ではクラッド層と呼ぶこともある。スラブ法線方向の閉込めには、クラッド層の誘電率がフォトニック結晶層の誘電率より低いことが要求される。
理想的なスラブ型フォトニック結晶導波管においては、第1の誘電体の独立した領域が、第2の誘電体の周囲のマトリクス内で2次元に周期的に配列され、周期的に配列される独立した領域は、形状及び寸法が同一である。独立した領域は二つのスラブ内方向に周期的に配列され、上部及び下部クラッド層の間にスラブ法線方向に連続している。モード対称性を維持するために、上部及び下部クラッド層は同一誘電率を有し、周期的に配列される独立した領域はフォトニック結晶層を折半する平面に対して対称な形状を有する。(フォトニック結晶層の折半平面はフォトニック結晶層を貫通する平面であり、フォトニック結晶層の上面と下面との間の中間に位置する。例えば図1に示すスラブ型フォトニック結晶導波管では、フォトニック結晶層の折半平面はフォトニック結晶層を二等分する水平面である。)
図2Aに、理想的なスラブ型フォトニック結晶導波管用のフォトニック結晶層の代表的な実施形態の拡大側面図を示す。この実施形態では、フォトニック結晶層310は、誘電体315によって囲まれる周期的に配列された誘電体領域305を含む。理想的な結晶層の上面図を図2Bに示す。上面図は、周囲の誘電体315内の誘電体領域305の周期的配列を示す。上面図は、XY面(スラブ面;スラブ法線方向に垂直な面)の投影図を表わす。誘電体領域305の底面図は、図2Bに示す上面図と一致する。図2A及び2Bに示す図は、この実施形態では、誘電体領域305がフォトニック結晶層310の折半平面に対して対称な円筒形を有する棒状体であることを示す。
図2Cは、図2A及び2Bに示されたフォトニック結晶層310を含むスラブ型フォトニック結晶導波管320の側面図を示す。周囲の誘電体315内に周期的に配置された対称な棒状体形誘電体領域305を含むフォトニック結晶層310に加えて、スラブ導波管はさらに、上部誘電体層325及び下部誘電体層335を含む。上部及び下部誘電体層325及び335をクラッド層とも呼ぶこともある。折半平面345も示されており、フォトニック結晶層310を水平方向に二等分する平面と一致する。折半平面345は、フォトニック結晶層310と上部誘電体層325との界面と、フォトニック結晶層310と下部誘電体層335との界面との間の中間に位置する。折半平面345は上部誘電体層325及び下部誘電体層335と平行である。棒状体形誘電体領域305が折半平面345に対して対称であることは、図2Cから明らかである。対称性は、棒状体形領域305の折半平面345より上の部分の折半平面345からの反射が棒状体形領域305の下方部分(折半平面345より下の部分)になる鏡面対称の点から見ることができる。折半平面345に対する対称性は、棒状体形領域305の上方部分を棒状体形領域305の下方部分に重ね合わせることができるという点から見ることもできる。折半平面より上の部分と下の部分とを重ね合わせることのできる、周期的に配列された誘電体領域は対称であり、これに反して折半平面に対して重ね合わせることのできない、周期的に配列された誘電体領域は非対称である。
スラブ型フォトニック結晶導波管320内のモードの局在化は、導波管の異なる領域の誘電率の相対値に依存する。原則として、対称な棒状体形領域305、周囲の誘電体315、上部誘電体層325、及び下部誘電体層335にはそれぞれ異なる材料を使用することができる。その結果、異なる領域の相対誘電率は、導波管内のモード電界分布を制御するために多くの方法で変化させることができる。本発明では、フォトニック結晶層310内に導波モードを閉じ込め、フォトニック結晶層310のフォトニックエネルギ禁止帯を通して横方向(水平)閉込めを達成し、且つ上部及び下部誘電体層325及び335によりスラブ法線(垂直)閉込めを達成することが好ましい。
フォトニック結晶層310内で、対称な棒状体形領域305の誘電率は、周囲の誘電体315の誘電率より大きく、又は小さくすることができる。導波モードは、高い誘電率を有する領域に優先的に局在化する。上部及び下部誘電体層325及び335が、モードが局在化するフォトニック結晶層内の領域(対称的な棒状体形領域305と周囲の誘電体領域315)より低い誘電率を有することを確実にすることによって、スラブ法線(垂直)方向の閉込めが達成される。
クラッド層325及び335に同一誘電率を持たせることによって、フォトニック結晶層310内でサポートされる導波モードは、導波管構造の水平な折半平面345と一致する内部の鏡面対称面に対して対称なモード電界分布を有する。対称な棒状体形領域305又は周囲の誘電体領域315のどちらが高い誘電率を有するかによって、サポートされるモードのモード電界分布は、内部対称面に対して偶数(領域315の誘電率>領域305の誘電率)又は奇数(領域305の誘電率>領域315誘電率)パリティを持つことができる。
図2Dは、図2Cに示したスラブ型フォトニック結晶導波管の実施形態420のモード電界分布の側面図を示す。この実施形態では、上部誘電体層425及び下部誘電体層435の誘電率は等しく、εで示される。上部及び下部誘電体層425及び435をクラッド層と呼ぶこともある。周囲の誘電体領域415の誘電率もまた、εとし、対称な棒状体形誘電体領域405の誘電率はεとし、ここでε>εである。モード電界分布455は、スラブ型フォトニック結晶によってサポートされる導波モードの電界強度の空間分布を示す。ε>εであるので、モード電界は棒状体形領域405に集中する。この実施形態に選択される誘電率の相対値内で、モード電界分布は、フォトニック結晶層410を二等分する水平中央対称面445に対して奇数パリティを有する。図2Dに示したモード電界分布455は、スラブ型フォトニック結晶によってサポートされるモードの局在化の主要領域である。モード電界は、誘電体領域405の境界を越えて広がる減衰型寄与を含むことを当業者は理解されたい。
スラブ型フォトニック結晶導波管の実際の製造では、フォトニック結晶層に含まれる周期的に分布される誘電体領域の対称的な形状を維持することは往々にして難しい。典型的な製造工程では、処理は、フォトニック結晶層の周囲の誘電体の層を下部誘電体層の上に堆積又は他の方法で形成することから始まる。周期的に配列される誘電体領域をフォトニック結晶層に導入するために、周囲の誘電体の層の一部分を除去して、周期的に配列される誘電体領域を加える空間を形成する必要がある。周囲の誘電体の層の一部分を除去することの目的は、フォトニック結晶層を生成するために周囲の誘電体内に第二種の材料を追加又は堆積することのできる孔又はキャビティを形成することである。孔は必ず周期的に配置しなければならず、寸法及び形状が同一であることが好ましい。対称的な形状の周期的に配列される誘電体領域を達成するために、周囲の誘電体の層内の孔又はキャビティの形成は、深さ方向に均一である必要がある。
処理の観点からは、孔を形成するための多くのプロセス環境で好適な方法は、エッチングである。周囲の誘電体の層の頂面をマスキングすることによって、周期的に配列されたマスキングの無い領域の分布を表面に設定し、これらのマスキングされていない領域を適切なエッチング液に曝して、周囲の誘電体の層内に孔又はキャビティを形成することができる。マスキングはまた、フォトニック結晶層の周期的に配列される誘電体領域をもたらすために異なる誘電体で充填される孔又はキャビティの断面形状(例えば円形、矩形、溝)を設定するためにも使用することができる。(図2Dに示すようなスラブ型フォトニック結晶導波管を形成するために必要な)対称的に成形された孔を得るために、断面形状及び断面積が深さ方向に一定に維持されるように、エッチングを深さ方向に均一に行なう必要がある。これらの条件が満たされるときに、周期的配列の個々の誘電体領域が、フォトニック結晶層を二等分する水平対称面に対して対称になる。
実際には、深さ方向に均一なエッチングは、深さの関数として発生する露出時間の差のため、達成することが難しい。エッチングは周囲の誘電体の層の頂面から開始され、下部誘電体との界面に向かってその層の内部へと進む。その結果、エッチング液の接触時間は、周囲の誘電体の層の頂面が最大となり、深さ方向に頂面から離れるにつれて徐々に減少し、下部誘電体との界面で最小になる。結果的に生じるエッチング液への露出時間の深さ方向の差は、周囲の誘電体の層の深さの関数として、テーパを付けられるかあるいはその他の非対称又は不均一なキャビティ断面を生じる傾向がある。断面形状及び/又は寸法は深さ方向に変化し、上述した水平面に対する対称性を破ることがある。
典型的な状況では、周期的に配列される誘電体領域に導入されるキャビティはテーパ付けされ、周囲の誘電体の層の頂面(最終的に上部誘電体層との界面を形成する表面)では大きい断面を有し、周囲の誘電体の層の底面(下部誘電体層との界面を形成する表面)では小さい断面を有する。そのようなキャビティ(及びそれを埋める周期的に配列される誘電体)は、フォトニック結晶層の水平な折半平面に対する対称性を欠き、ここでは周期的に配列される誘電体などの非対称キャビティ又は非対称領域と呼ばれる。非対称な形状の周期的に配列された誘電体を含むスラブ型フォトニック結晶をここでは非対称なスラブ型フォトニック結晶と呼ぶことが出来る。
非対称なスラブ型フォトニック結晶の代表的な例を図3Aに側面図で示す。非対称なスラブ型フォトニック結晶520は上部誘電体層525、下部誘電体層535、並びに周囲の誘電体515及び周期的に配列される誘電体領域505を含むフォトニック結晶層510を含む。上部及び下部誘電体層525及び535をクラッド層と呼ぶこともある。周期的に配列された領域505はフォトニック結晶層510の折半平面に対する対称性を欠き、したがって非対称と呼ばれる。上部誘電体層525、下部誘電体層535、及び周囲の誘電体515の誘電率は等しくなるように選択され、図3Aにεと示される。周期的に配列された領域505の誘電率はεと表わされ、図3Aに示す実施形態ではε>εである。周期的に配列された誘電体領域505のテーパ付けされた形状は明瞭であり、通常のエッチングプロセスの結果により得られる形状を例証する。
テーパ付けされた非対称な形状の周期的誘電体領域505は、フォトニック結晶層510によってサポートされる導波モードのモード電界分布に影響を及ぼす。周期的誘電体領域505は周囲の誘電体領域515より高い誘電率を有するので、モードは周期的領域505に優先的に局在化し、周期的領域505は非対称であるので、モード電界分布は非対称である。モード電界は周期的領域505のより幅の広い上方部分に優先的に局在化し、その結果、モード電界分布はフォトニック結晶層510の水平折半平面に対して非対称になる。図3Aに示した実施形態のモード電界の側面の略図を図3Bに示す。モード電界555は周期的領域505の上部の広い部分に優先的に局在化し、水平な折半平面545に対して非対称である。図3Bに示すモード電界分布555は、スラブ型フォトニック結晶によってサポートされるモードの局在化の主要領域を表わす。モード電界は、その他に減衰型寄与を含むことを当業者は理解されたい。
モード電界の非対称性の有害な結果は、導波モードのパリティがもはや、対称なモード電界の場合のように純粋に偶数又は純粋に奇数ではなくなることである。逆に偶数及び奇数パリティモードは両方ともフォトニック結晶層でサポートすることができ、異なるパリティのモードの混合又は結合が可能である。明確なパリティ状態を有するモードが非対称なスラブ型フォトニック結晶に導入されると、結晶はパリティ状態の他のパリティ状態への変換を可能にし、パリティの純粋性又は明確性は失われる。例えば非対称スラブ型フォトニック結晶に導入される偶数パリティモードは、奇数パリティモード又は偶数及び奇数パリティモードの線形組合せに変換することができる。入射モードからの出力が結晶の非対称な状態のため結晶内に維持される多モードに結合されるので、結晶中の単一モードの搬送の代わりに、多モード搬送が生じる。その結果、純粋モード(純粋又は明確なパリティ状態を有するモード)の出力は多モードに再分布され、初期モード状態で伝送された出力は著しく低減される。実際、非対称性の存在は、他のパリティ状態へのモード結合を通して、特定のモードパリティ状態に対する出力損失の原因として働く。
本発明は、フォトニック結晶層内の非対称な周期的配列の誘電体領域の面内のモードパリティを維持するスラブ型フォトニック結晶を提供する。本スラブ型フォトニック結晶は、テーパ付けされるかその他の非対称な周期的配列の誘電体領域のより幅の広い高断面積部分で発生するモード電界の優先的な局在化を相殺するように働く補償機構を提供する。補償は、非対称なスラブ型フォトニック結晶に異なる誘電率を有する上部及び下部誘電体層を含めることによって生じるモード電界の局在化を変化させる独立機構を通して達成される。上部及び下部誘電体層の誘電率の相対値を調整することによって、テーパ付けされているか又はその他の不均一な周期的誘電体領域から生じるモード電界分布の非対称性を相殺するフォトニック結晶層に隣接する誘電率の非対称性が形成される。この補償機構を通して、非対称な周期的配列の誘電体領域を含むスラブ型フォトニック結晶に、対称なモード電界分布を達成することができる。
スラブ型フォトニック結晶の上部及び下部誘電体層の誘電率の相違の効果の例証を、図4Aに側面図で示す。フォトニック結晶620は、上部誘電体層625、下部誘電体層635、並びに周囲の誘電体615及び周期的に配列される誘電体領域605を含むフォトニック結晶層610を含む。上部及び下部誘電体層625及び635をクラッド層と呼ぶこともある。上部誘電体層625及び周囲の誘電体615の誘電率は等しくなるように選択され、εc1と表わされる。周期的に配列された領域605の誘電率はεと表わされる。下部誘電体層635の誘電率はεc2と表わされ、ここで誘電率の相対値は、ε>εc2>εc1である。この相対的順序付けは垂直方向の閉込めを維持し、さらにフォトニック結晶層610内のモード電界分布を制御するまた別の自由度を可能にする。
図4Aの実施形態で、周期的領域605は対称的であるが、上部及び下部誘電体層625及び635の異なる誘電率が、上述した図2Dに示した対称的分布に対するモード電界分布とは相違したものを形成する。図4Aに示すスラブ型フォトニック結晶のモード電界分布655を、図4Bに側面図で示す。そこには、モード電界分布655が非対称になり、下部誘電体層の方向に偏倚することが示されている。図4Bに示すモード電界分布655は、スラブ型フォトニック結晶によってサポートされるモードの局在化した主要領域を表わす。モード電界はまた更に減衰型寄与を含むことは当業者には周知のことである。
上部誘電体層と比較しての下部誘電体層の高い誘電率はモード電界分布655の非対称性を誘発し、周期的領域605の下方部分におけるモード電界の優先的な局在化を引き起こす。上部及び下部誘電体層の誘電率の差が大きければ大きいほど、より高い誘電率を有する誘電体層の近傍にモード電界が局在化する優先傾向が高くなる。モード電界分布の非対称度はしたがって連続的に変化し、スラブ型フォトニック結晶の上部及び下部誘電体層の誘電率の差を調整することによって制御することができる。
図4Bに示すモード電界分布655は、フォトニック結晶層610の内部水平折半面に対する対称性を欠く。その結果、スラブ型フォトニック結晶620のモードパリティは維持されない。代わりに、偶数及び奇数パリティ状態がスラブ型フォトニック結晶620によって混合又は結合され、明確なパリティ状態を有するモードは、モード出力が異なるパリティ又はそれらの線形組合せを有する他のモードに再分布されるので、スラブ型フォトニック結晶620に導入されると、著しい出力損失を免れない。
図4A及び4Bに示した例は、上部及び下部誘電体層の相対誘電率の変化を、モード電界の局在化に影響を及ぼすための独立したメカニズムとして使用することができることを実証する。本発明では、フォトニック結晶層内の非対称な周期的配列の誘電体領域によって生じるモード電界の非対称性が、上部及び下部誘電体層の誘電率の相対値の変化を通して生じるモード電界の非対称性を補償することによって相殺される非対称なスラブ型フォトニック結晶を提供する。
上述した図3Bに示すように、非対称的な形状の周期的配列の誘電体領域の存在は、テーパ付けされた周期的配列の誘電体領域のより幅の広い部分におけるモード電界の優先的な局在化を導く。図4Bに示すスラブ型フォトニック結晶は、モード電界の局在化を誘電率の高い誘電体層の方向に独立に偏倚させることができることを示す。図5Aは、上部及び下部誘電体層の誘電率の差異を利用して、スラブ型フォトニック結晶のフォトニック結晶層における非対称的形状の周期的配列の誘電体領域の結果生じるモード電界分布の非対称性を相殺又は補償する本発明の実施形態の側面図を示す。スラブ型フォトニック結晶720は、上部誘電体層725、下部誘電体層735、並びに周囲の誘電体715及び周期的に配列される誘電体領域705を含むフォトニック結晶層710を含む。上部及び下部誘電体層725及び735をクラッド層と呼ぶこともある。上部誘電体層725及び周囲の誘電体715の誘電率は等しくなるように選択され、εc1と表わされる。周期的に配列された領域705の誘電率はεと表わされる。下部誘電体層735の誘電率はεcと表わされ、ここで誘電率の相対値は、ε>εc2>εc1である。この相対的順序付けは垂直方向の閉込めを維持し、さらにフォトニック結晶層710内のモード電界分布の制御する別の自由度を可能にする。
フォトニック結晶層710の上面図及び底面図を図5B及び5Cにそれぞれ示す。各図は、周期的に配列される誘電体領域705及び周囲の誘電体領域715と共に、フォトニック結晶層710を含む。非対称なテーパ形状の周期的配列の誘電体領域705のため、周期的に配列された領域705の断面は、図5Bに示す上面図の方が図5Cに示す底面図より大きい。
図5A、5B、及び5Cに示した実施形態のモード電界分布を、図5Dに側面図で示す。図5Dは、スラブ型フォトニック結晶720、上部誘電体層725、下部誘電体層735、フォトニック結晶層710、周期的配列の領域705、及び周囲の誘電体領域715を示す。図5Dはさらにモード電界分布755及び水平面745を示す。図5Dに示したモード電界分布755は、スラブ型フォトニック結晶によってサポートされるモードの局在化の主要領域を表わす。モード電界はこの上更に減衰型寄与を含むことは当業者には公知のことである。
モード電界755は水平面745を中心に対称的に分布され、水平面745の上及び下のモード電界755の局在化が等しい。対称面745はフォトニック結晶層710内に含まれるが、折半平面の位置からずれている。図5Dに示すように、この実施形態の対称面745は、上部誘電体層725より下部誘電体層735の近くに位置している。下部誘電体層735の方向への対称面745のずれは、上部誘電体層725に対して下部誘電体層735の方が誘電率が高いためである。
モード電界755は、対称面745を中心に対称的に局在化する。モード電界分布755の対称性は、周期的に配列される誘電体領域705の非対称な形状に関係する効果の均衡化、及び上部誘電体層725と下部誘電体層735との間の誘電率の差の結果である。フォトニック結晶層のテーパ付けられた周期的配列の誘電体領域のより幅の広い部分にモード電界が局在化する傾向は、より高い誘電率の下部誘電体層の近傍にモード電界が局在化する傾向によって相殺される。スラブ型フォトニック結晶の上部及び下部誘電体層の誘電率の差を、周期的に配列される誘電体領域の形状の非対称性に対して適切に調整することによって、スラブ型フォトニック結晶に対称なモード電界をサポートさせることができる。対称面を中心とするモード電界分布の対象性の維持が達成され、モードの混合又は結合が防止される。その結果、非対称な形状の周期的配列の誘電体領域を有するスラブ型フォトニック結晶は、本発明を利用して導波モードのパリティ状態の純粋性を維持することができる。明確なパリティ状態を有するモード(例えば偶数モード又は奇数モード)は、図5A〜5Dに示した実施形態中を誘導されるときにそのパリティを維持し、他のモードへのエネルギの消散によるパワーの損失を受けない。
図5A〜5Dに示した実施形態は、本発明の一般原理を例証する。本発明は、非対称的な形状の周期的配列の誘電体領域を含む一方、上部及び下部誘電体層の誘電率の差によってもたらされるモードの局在効果によって補償し、対称なモード電界分布を達成するスラブ型フォトニック結晶を提供する。モード電界分布の対称性はフォトニック結晶層の内部平面に対する対称性であり、内部平面はフォトニック結晶層の折半平面と一致しても、しなくてもよい。
本発明の好ましい実施形態は、フォトニック結晶層の周囲の誘電体及び周期的に配列される誘電体領域が、固体誘電体から構成される。別の好ましい実施形態では、周囲の誘電体は固体誘電体であり、周期的に配列され領域はガス(例えば空気)から構成されるので、本発明は、フォトニック結晶層が周囲の固体誘電体内に空孔(空気又は別のガスで満たされた誘電体領域)の周期的配列を含む実施形態を含む。本発明の別の実施形態は、周期的に配列された誘電体領域及び/又は周囲の誘電体が液体誘電体である実施形態を含む。
上に示したように、フォトニック結晶層の周期的に配列される誘電体領域及び周囲の誘電体の誘電率の相対値によって、本発明のスラブ型フォトニック結晶導波管によってサポートされる導波モードは、周期的に配列される誘電体領域又は周囲の誘電体のいずれかに優先的に局在化させることができる。周囲の固体誘電体内に空孔の周期的配列を含む実施形態では、モード電界は、周囲の誘電体に優先的に局在化する。そのような実施形態では、空孔が下方にテーパ付けされる(つまり空孔が上部誘電体層との界面で下部誘電体層との界面より大きい断面を有する)場合、周囲の誘電体の領域は、下部誘電体層との界面で上部誘電体層との界面より必然的に大きい断面積を持ち、その結果、サポートされるモードは、周囲の誘電体の部分で下部誘電体層の近傍に優先的に局在化する。この実施形態では、上述したような補償効果は、したがって下部誘電体層の誘電率に比較して上部誘電体層の誘電率を増加することによって達成される。
上述した実施形態は、円形断面を有する周期的配列の誘電体領域を考慮したが、本発明の原理は一般的に、三角形、方形、長方形、楕円形、卵形、及び多角形をはじめ、任意の断面形状を有する非対称な形状の周期的配列の誘電体領域に拡大適用される。本発明の範囲内の非対称な周期的配列の誘電体領域は、フォトニック結晶層の深さ(厚さ)方向に寸法又は形状が変化する断面を有する領域を含む。図5A〜5Dに示した実施形態で記載したように、非対称な誘電体領域の例は、上部及び下部誘電体層の間でフォトニック結晶層の厚さ方向に寸法(直径)が変化する円形断面を有する領域である。非対称な誘電体領域は同様に、他の断面形状からも形成することができる。他の実施形態では、周期的配列の誘電体領域は、深さ方向の断面形状の変化のため、非対称になる。フォトニック結晶層内での1つの断面形状から他の断面形状への変形にともない、周期的配列の誘電体領域の断面形状は、フォトニック結晶層と下部誘電体層との界面では、フォトニック結晶層と上部誘電体層との界面とは異なるかもしれない。
本発明のスラブ型フォトニック結晶の上部及び下部誘電体層は、所望の誘電率を有する均質な材料とするか、あるいは本発明に従って閉込め及びモード電界の局在効果をもたらす平均又は実効誘電率を有する異種又は複合材料とすることができる。上部及び下部誘電体層は誘電体から構成される。誘電体は固体(例えばシリカ、ガラス、チタニア、シリコン等)、液体(例えば水又は他の極性液体、炭化水素又は他の非極性液体等)、又はガス(例えば空気、窒素、アルゴン等)とすることができる。
本発明の更なる実施形態は、モード電界が、上述の選択した例示的実施例で説明したように周期的配列の誘電体領域に優先的に局在化するのではなく、周囲の誘電体に優先的に局在化するものを含む。これらの実施形態は、上部及び下部誘電体層による閉込めを維持しながら、フォトニック結晶層の周期的配列の誘電体領域より高い誘電率を有する周囲の誘電体を含めることによって実現される。
上で考慮した実施形態の中には、本発明のスラブ型フォトニック結晶導波管によってサポートされる奇数パリティモードのパリティが、単一節面に対して定義される実施形態がある。本発明の更なる実施形態は、モードパリティが2つ以上の節面に対して定義される、対称な偶数又は奇数モードをサポートするスラブ型フォトニック結晶導波管を含む。これらの更なる実施形態では、対称な偶数又は奇数パリティのモード電界分布の対称面は節面と一致しても、しなくてもよい。
本発明はさらに、本発明のスラブ型フォトニック結晶導波管に結合された電磁波源を含み、電磁波源がスラブ型フォトニック結晶導波管に電磁波を導入し、導入された電磁波が対称なモード電界分布によって導波管内を誘導される、電磁波を伝送するためのシステムを含む。好ましい実施形態では、スラブ型フォトニック結晶は、特定のパリティ状態及び/又は特定のモード電界分布を有する入射電磁波を受け取り、且つ伝送中に電磁波を誘導しながらパリティ状態及び/又はモード電界分布を維持して、入射電磁波の特性と殆ど一致する特性を有する出力電磁波を生成する。
本書に記載する開示及び考察は例証であって、本発明の実施を限定する意図は無い。本発明の好適な実施形態であると考えられるものを説明したが、本発明の思想から逸脱することなく、その他及び更なる変更及び修正を施すことができ、且つ本発明の完全な範囲内に該当する全てのそのような変更及び修正を請求の範囲に含めるつもりであることを当業者は理解されるであろう。本発明の範囲を定義するのは、上記の開示と当業者が一般的に入手可能な知識とを組み合わせた均等物を含む、特許請求の範囲の記載である。
スラブ型フォトニック結晶導波管の略図である。 フォトニック結晶層の側面図である。 フォトニック結晶層の上面図である。 スラブ型フォトニック結晶導波管の側面図である。 スラブ型フォトニック結晶導波管内のモード電界分布の側面図である。 非対称なスラブ型フォトニック結晶導波管の側面図である。 非対称なスラブ型フォトニック結晶導波管内のモード電界分布の側面図である。 異なる誘電率を有する上部及び下部誘電体層を含むスラブ型フォトニック結晶の側面図である。 異なる誘電率を有する上部及び下部誘電体層を含むスラブ型フォトニック結晶内のモード電界分布の側面図である。 異なる誘電率を有する上部及び下部誘電体層を含む非対称なスラブ型フォトニック結晶の側面図である。 図5Aに示す実施形態のフォトニック結晶層の上面図である。 図5Aに示す実施形態のフォトニック結晶層の底面図である。 異なる誘電率を有する上部及び下部誘電体層を含む非対称なスラブ型フォトニック結晶内のモード電界分布の側面図である。

Claims (18)

  1. 第1のクラッド層と、
    前記第1のクラッド層上に形成されたフォトニック結晶層であって、第2の誘電体内に周期的に配列された第1の誘電体の領域を含むフォトニック結晶層と、
    前記フォトニック結晶層上に形成された第2のクラッド層と、
    を備え、
    前記周期的に配列された誘電体領域の各々が前記フォトニック結晶層の折半平面に対して非対称である、
    スラブ導波管。
  2. 前記第1のクラッド層の誘電率が前記第2のクラッド層の誘電率とは異なる、請求項1に記載の導波管。
  3. 前記周期的に配列された誘電体領域が円形断面を有する、請求項1に記載の導波管。
  4. 前記周期的に配列された領域が多角形断面を有する、請求項1に記載の導波管。
  5. 前記周期的に配列された領域がテーパ付けされる、請求項1に記載の導波管。
  6. 前記周期的に配列される誘電体領域の断面積が前記第1のクラッド層と前記第2のクラッド層との間で変化する、請求項1に記載の導波管。
  7. 前記周期的に配列される誘電体領域の断面形状が前記第1のクラッド層と前記第2のクラッド層との間で変化する、請求項1に記載の導波管。
  8. 前記第1の誘電体の誘電率が前記第2の誘電体の誘電率より大きい、請求項1に記載の導波管。
  9. 前記第2のクラッド層の誘電率が前記第2の誘電体の誘電率と同じである、請求項1に記載の導波管。
  10. 前記周期的に配列された誘電体領域が前記第1のクラッド層から前記第2のクラッド層まで連続的に延在する、請求項1に記載の導波管。
  11. 前記導波管によってサポートされるモード電界分布が対称的である、請求項1に記載の導波管。
  12. 前記モード電界分布の対称面が前記フォトニック結晶層の折半平面と一致する、請求項11に記載の導波管。
  13. 前記対称なモード電界が偶数パリティを有する、請求項11に記載の導波管。
  14. 前記モード電界分布が前記周期的に配列された誘電体領域に優先的に局在化する、請求項11に記載の導波管。
  15. 入力電磁波を生成する電磁波源と、
    請求項1に記載の導波管と、
    を備え、
    前記導波管が前記入力電磁波を受け取り、前記電磁波が前記導波管内で導波モードを形成し、前記導波モードが前記導波管内でモード電界分布を有し、前記導波管が前記導波モードを伝送して出力電磁波を提供するように構成された、
    電磁波伝送システム。
  16. 前記モード電界分布が対称的である、請求項15に記載の伝送システム。
  17. 前記導波モードが偶数パリティを有する、請求項15に記載の伝送システム。
  18. 前記出力電磁波が前記入力電磁波と同じパリティを有する、請求項15に記載の伝送システム。
JP2007529874A 2004-08-30 2005-08-01 対称なモード場を有する非対称フォトニック結晶導波素子 Pending JP2008511861A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/929,930 US7054524B2 (en) 2004-08-30 2004-08-30 Asymmetric photonic crystal waveguide element having symmetric mode fields
PCT/US2005/026971 WO2006026001A1 (en) 2004-08-30 2005-08-01 Asymmetric photonic crystal waveguide element having symmetric mode fields

Publications (1)

Publication Number Publication Date
JP2008511861A true JP2008511861A (ja) 2008-04-17

Family

ID=35943211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007529874A Pending JP2008511861A (ja) 2004-08-30 2005-08-01 対称なモード場を有する非対称フォトニック結晶導波素子

Country Status (7)

Country Link
US (1) US7054524B2 (ja)
EP (1) EP1784668A1 (ja)
JP (1) JP2008511861A (ja)
KR (1) KR20070048785A (ja)
CN (1) CN101052904A (ja)
TW (1) TW200624893A (ja)
WO (1) WO2006026001A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039526A1 (ja) * 2017-08-24 2019-02-28 国立大学法人横浜国立大学 光偏向デバイス

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114391A1 (ja) * 2006-03-31 2007-10-11 Kyocera Corporation 誘電体導波路デバイス、これを備える移相器、高周波スイッチおよび減衰器、ならびに高周波送信器、高周波受信器、高周波送受信器およびレーダ装置、アレイアンテナ装置、誘電体導波路デバイスの製造方法
JP4936313B2 (ja) * 2006-08-25 2012-05-23 日本碍子株式会社 光変調素子
TW201024800A (en) 2008-12-30 2010-07-01 Ind Tech Res Inst Negative refraction photonic crystal lens
JP5520622B2 (ja) * 2010-01-29 2014-06-11 古河電気工業株式会社 フォトニックバンドギャップファイバの製造方法およびフォトニックバンドギャップファイバ
CN102650715B (zh) * 2012-01-13 2015-04-08 深圳大学 光子晶体波导te-偏振分离器
US9888283B2 (en) 2013-03-13 2018-02-06 Nagrastar Llc Systems and methods for performing transport I/O
USD758372S1 (en) 2013-03-13 2016-06-07 Nagrastar Llc Smart card interface
USD864968S1 (en) 2015-04-30 2019-10-29 Echostar Technologies L.L.C. Smart card interface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272557A (ja) * 2000-03-27 2001-10-05 Minolta Co Ltd 光機能素子及びその製造方法
JP2001337236A (ja) * 2000-05-30 2001-12-07 Nippon Telegr & Teleph Corp <Ntt> フォトニック結晶
JP2002341164A (ja) * 2001-04-30 2002-11-27 Agilent Technol Inc 2次元フォトニック結晶スラブ導波路
JP2003043277A (ja) * 2002-06-24 2003-02-13 Nec Corp 波長分波回路
JP2004170935A (ja) * 2002-10-30 2004-06-17 Hitachi Ltd 柱状微小突起群を備えた機能性基板とその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9710062D0 (en) * 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US6898362B2 (en) * 2002-01-17 2005-05-24 Micron Technology Inc. Three-dimensional photonic crystal waveguide structure and method
AU2003243619A1 (en) * 2002-06-18 2003-12-31 Massachusetts Insitute Of Technology Waveguide coupling into photonic crystal waveguides
CA2538750C (en) * 2003-09-12 2012-03-27 The Board Of Trustees Of The Leland Stanford Junior University Method for configuring air-core photonic-bandgap fibers free of surface modes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272557A (ja) * 2000-03-27 2001-10-05 Minolta Co Ltd 光機能素子及びその製造方法
JP2001337236A (ja) * 2000-05-30 2001-12-07 Nippon Telegr & Teleph Corp <Ntt> フォトニック結晶
JP2002341164A (ja) * 2001-04-30 2002-11-27 Agilent Technol Inc 2次元フォトニック結晶スラブ導波路
JP2003043277A (ja) * 2002-06-24 2003-02-13 Nec Corp 波長分波回路
JP2004170935A (ja) * 2002-10-30 2004-06-17 Hitachi Ltd 柱状微小突起群を備えた機能性基板とその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039526A1 (ja) * 2017-08-24 2019-02-28 国立大学法人横浜国立大学 光偏向デバイス
CN111164477A (zh) * 2017-08-24 2020-05-15 国立大学法人横滨国立大学 光偏转装置
JPWO2019039526A1 (ja) * 2017-08-24 2020-10-15 国立大学法人横浜国立大学 光偏向デバイス
US11067746B2 (en) 2017-08-24 2021-07-20 National University Corporation Yokohama National University Light deflection device
JP7134443B2 (ja) 2017-08-24 2022-09-12 国立大学法人横浜国立大学 光偏向デバイス

Also Published As

Publication number Publication date
KR20070048785A (ko) 2007-05-09
TW200624893A (en) 2006-07-16
EP1784668A1 (en) 2007-05-16
CN101052904A (zh) 2007-10-10
US7054524B2 (en) 2006-05-30
US20060045454A1 (en) 2006-03-02
WO2006026001A1 (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP2008511861A (ja) 対称なモード場を有する非対称フォトニック結晶導波素子
US8600204B2 (en) Optical control device
US6618535B1 (en) Photonic bandgap device using coupled defects
JP2004245866A (ja) 2次元フォトニック結晶中の共振器と波長分合波器
JP4208754B2 (ja) 光遅延素子
WO2005064371A1 (en) Optical coupling device
US8478088B2 (en) Optical switch and manufacturing method thereof
AU3026099A (en) A photonic band gap fibre
JPWO2005085921A1 (ja) フォトニック結晶結合欠陥導波路及びフォトニック結晶デバイス
JP2008241891A (ja) 2次元フォトニック結晶
JP6251159B2 (ja) 光素子
US20050213905A1 (en) White light pulse generating method using nonlinear optical device
US7509013B2 (en) Two-dimensional photonic crystal
JP4684861B2 (ja) 導波路及びそれを有するデバイス
US6778749B2 (en) Optimized defects in band-gap waveguides
US7313307B2 (en) Waveguide and device including the same
JP5386254B2 (ja) スポットサイズ変換光導波路部を有する光学素子
Tanaka et al. Analysis of a line-defect waveguide on a silicon-on-insulator two-dimensional photonic-crystal slab
JP5869986B2 (ja) フォトニック結晶光共振器
JP2004352607A (ja) 光子結晶光ファイバ母材及びこれを利用した光子結晶光ファイバ
JP2004191408A (ja) 局所的3次元構造を有する2次元フォトニック結晶スラブ
Kawakami et al. 3-D photonic-crystal heterostructures: fabrication and in-line resonator
JP6162665B2 (ja) フォトニック結晶共振器
CN109038211A (zh) 一种基于声光相互作用的激光光源
US6993234B1 (en) Photonic crystal resonator apparatus with improved out of plane coupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110614

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115