JP2004245866A - 2次元フォトニック結晶中の共振器と波長分合波器 - Google Patents

2次元フォトニック結晶中の共振器と波長分合波器 Download PDF

Info

Publication number
JP2004245866A
JP2004245866A JP2003032473A JP2003032473A JP2004245866A JP 2004245866 A JP2004245866 A JP 2004245866A JP 2003032473 A JP2003032473 A JP 2003032473A JP 2003032473 A JP2003032473 A JP 2003032473A JP 2004245866 A JP2004245866 A JP 2004245866A
Authority
JP
Japan
Prior art keywords
resonator
point
lattice
photonic crystal
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003032473A
Other languages
English (en)
Other versions
JP3847261B2 (ja
Inventor
Susumu Noda
進 野田
Taku Asano
卓 浅野
Yoshihiro Akaha
良啓 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Sumitomo Electric Industries Ltd
Original Assignee
Kyoto University
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Sumitomo Electric Industries Ltd filed Critical Kyoto University
Priority to JP2003032473A priority Critical patent/JP3847261B2/ja
Priority to CA002456515A priority patent/CA2456515A1/en
Priority to US10/708,124 priority patent/US7120344B2/en
Priority to DE602004032074T priority patent/DE602004032074D1/de
Priority to EP04002784A priority patent/EP1445630B1/en
Priority to KR1020040008260A priority patent/KR20040073317A/ko
Priority to TW093103045A priority patent/TW200428730A/zh
Priority to CNB2004100048755A priority patent/CN100365453C/zh
Publication of JP2004245866A publication Critical patent/JP2004245866A/ja
Application granted granted Critical
Publication of JP3847261B2 publication Critical patent/JP3847261B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H35/00Baths for specific parts of the body
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/0053Cabins, rooms, chairs or units for treatment with a hot or cold circulating fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H33/063Heaters specifically designed therefor
    • A61H33/065Heaters specifically designed therefor with steam generators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0054Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water
    • A61F2007/0055Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water of gas, e.g. hot air or steam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H2033/068Steam baths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H35/00Baths for specific parts of the body
    • A61H2035/004Baths for specific parts of the body for the whole body except the head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure

Abstract

【課題】2次元フォトニック結晶中において、Q値が高められた共振器を提供し、さらにそのような共振器と導波路とを組合せて高い波長分解能を有する波長分合波器を提供する。
【解決手段】2次元フォトニック結晶中の点状欠陥からなる共振器では、2次元フォトニック結晶は板材(1)内に設定された2次元格子点において板材(1)に比べて小さな屈折率を有しかつ同一の寸法形状の低屈折率物質(2)を配設することによって構成されており、点状欠陥(4)は3以上の互いに隣接する複数の格子点を含んでいてそれらの格子点には低屈折率物質(2)が配設されておらず、点状欠陥(4)に最近接の格子点の少なくとも一つに対応して配設されるべき低屈折率物質(2)がその格子点から所定距離だけ変位させられて配設されていることを特徴としている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明はフォトニック結晶を利用した共振器および波長分合波器に関し、特に2次元フォトニック結晶を利用した共振器および波長分合波器の特性改善に関するものである。なお、本願明細書における「光」の用語の意味は、可視光に比べて波長の長いまたは短い電磁波をも含むものとする。
【0002】
【従来の技術】
近年の波長分割多重通信システムの進展に伴い、大容量化を目指した超小型の分合波器や波長フィルターの重要性が高まっている。そこで、フォトニック結晶を利用して非常に小型の光分合波器を開発することが試みられている。すなわち、フォトニック結晶においては、母材中で結晶格子のように周期的な屈折率分布が人工的に設けられ、その人工的周期構造を利用して新規な光学特性を実現することが可能である。
【0003】
フォトニック結晶が有する重要な特性として、フォトニックバンドギャップの存在がある。3次元的屈折率周期を有するフォトニック結晶(3次元フォトニック結晶)では、全ての方向に対して光の伝搬が禁じられる完全バンドギャップを形成することができる。これにより、局所的な光の閉じ込め、自然放出光の制御、線状欠陥の導入による導波路の形成などが可能となり、微小光回路の実現が期待され得る。
【0004】
他方、2次元的屈折率周期構造を有するフォトニック結晶(2次元フォトニック結晶)は比較的容易に作製され得ることから、その利用が盛んに検討されている。2次元フォトニック結晶の屈折率周期構造は、例えば高屈折率の板材(通常「スラブ」と称される)を貫通する円柱孔を正方格子状または六方格子状に配列することによって形成され得る。または、低屈折率板材中に高屈折率材料の円柱を2次元格子状に配列することにより形成され得る。このような屈折率周期構造からフォトニックバンドギャップが生じ、板材中の面内方向(板材の両主面に平行な方向)において光の伝搬が制御され得る。例えば、屈折率周期構造中に線状の欠陥を導入することによって、導波路を形成することができる(例えば、非特許文献1のPhysical Review B, Vol.62, 2000, pp.4488−4492参照)。
【0005】
図12は、特許文献1の特開2001−272555号公報に開示された波長分合波器を模式的な斜視図で示している。なお、本願の図面において、同一の参照符号は同一または相当部分を示している。図12の波長分合波器は、板材1内に設定された2次元六方格子点に形成された同一径の円筒状貫通穴2(通常、穴内は空気)を有する2次元フォトニック結晶を利用している。このような2次元フォトニック結晶において、光は板材1の面内方向においてはバンドギャップにより伝播が禁じられ、面直方向(板材の両主面に直交する方向)には低屈折率材料(例えば空気)との界面による全反射により閉じこめられる。
【0006】
図12におけるフォトニック結晶は、直線状の欠陥からなる導波路3を含んでいる。この直線状欠陥3は互いに隣接して直線状に配列された複数の格子点を含み、それらの格子点には貫通穴2が形成されていない。光は2次元フォトニック結晶の欠陥内を伝播することができ、直線状欠陥3は直線状導波路として作用し得る。直線状導波路においては、光を低損失で伝搬させ得る波長域が比較的広く、したがって複数チャンネルの信号を含む複数波長帯域の光を伝播させることができる。
【0007】
なお、導波路としての直線状欠陥の幅は、その導波路として求められる特性に応じて、種々に変更することが可能である。最も典型的な導波路は、上述のように、1列の格子点列に貫通穴を形成しないことによって得られる。しかし、導波路は、隣接する複数列の格子点列に貫通穴を形成しないことによっても形成され得る。さらに、導波路の幅は格子定数の整数倍に限られず、任意の幅を有することもできる。例えば、直線状導波路の両側の格子を任意の距離だけ相対的に変位させることによって、任意の幅の導波路を形成することも可能である。
【0008】
図12におけるフォトニック結晶は、点状欠陥からなる共振器4をも含んでいる。この点欠陥4は一つの格子点を含み、その格子点には他の格子点に比べて大きな径の貫通穴が形成されている。このように相対的に大きな径の貫通穴を含む欠陥は、一般にアクセプタ型の点状欠陥と称されている。他方、格子点に貫通穴が形成されていない欠陥は、一般にドナー型の点状欠陥と称されている。共振器4は、導波路3に対して電磁気的に相互作用を及ぼし合い得る範囲内に近接して配置される。
【0009】
図12に示されているような2次元フォトニック結晶において、複数の波長帯域(λ1 ,λ2 ,‥λi ,‥)を含む光5を導波路3内に導入すれば、共振器4の共振周波数に対応する特定波長λiを有する光がその共振器に捕獲され、点状欠陥内部で共振している間に、板材1の有限厚さに起因するQ値の小さな面直方向へ波長λiの光6が放射される。すなわち、図12のフォトニック結晶は波長分波器として作用し得る。逆に、板材1の面直方向に光を点状欠陥4内へ入射することによって、その共振器4内で共振する波長λiの光を導波路3内に導入することができる。すなわち、図12のフォトニック結晶は波長合波器としても作用し得る。なお、導波路3または共振器4と外部との間の光の授受は、その導波路の端面近傍または共振器近傍に光ファイバまたは光電変換素子を近接配置することによって行い得る。もちろん、その場合に、導波路端面または共振器と光ファイバ端面または光電変換素子との間に集光レンズ(コリメータ)が挿入されてもよい。
【0010】
図12に示されているような波長分合波器において、線状欠陥からなる導波路3と点状欠陥からなる共振器4との間隔を適宜に設定することにより、それらの導波路と共振器との間で授受する特定波長の光強度の割合を制御することも可能である。また、図12において点状欠陥4に関して板材1の面直方向に非対称性が導入されていないので、光はその点状欠陥4の上下方向に出力されるが、点状欠陥4において面直方向に非対称性を導入することによって、上下のいずれかのみに光を出力させることも可能である。そのような非対称性の導入方法としては、例えば円形断面の点状欠陥4の径を板材の厚さ方向に連続的または不連続的に変化させる方法を用いることができる。さらに、図12の波長分合波器は単一の共振器のみを含んでいるが、互いに共振波長の異なる複数の共振器を導波路に沿って配置することによって、複数チャネルの光信号を分合波し得ることが容易に理解されよう。
【0011】
【特許文献1】
特開2001−272555号公報
【0012】
【非特許文献1】
Physical Review B, Vol.62, 2000, pp.4488−4492
【0013】
【発明が解決しようとする課題】
特許文献1に開示されているようなアクセプタ型の点状欠陥を利用した共振器のQ値は500程度であり、そのような共振器から出力されるピーク波長の光の半値全幅(FWHM)は3nm程度である。
【0014】
しかし、波長分割多重通信においては、約100GHzの周波数で約0.8nmのピーク波長間隔の多チャネル信号を利用することが検討されている。すなわち、特許文献1に開示されているような共振器ではQ値の大きさが不充分で、3nmの半値全幅では約0.8nmのピーク波長間隔の多チャネル信号を互いに分離するには全く不充分である。すなわち、2次元フォトニック結晶を利用した共振器のQ値を高めて、そこから出力されるピーク波長の光の半値全幅を小さくすることが望まれている。
【0015】
このような従来技術における状況に鑑み、本発明の主要な目的は、2次元フォトニック結晶中において、Q値が高められた共振器を提供し、さらにそのような共振器と導波路とを組合せて高い波長分解能を有する波長分合波器を提供することである。
【0016】
【課題を解決するための手段】
本発明による2次元フォトニック結晶中の点状欠陥からなる共振器では、2次元フォトニック結晶は板材内に設定された2次元格子点において板材に比べて小さな屈折率を有しかつ同一の寸法形状の低屈折率物質を配設することによって構成されており、点状欠陥は3以上の互いに隣接する複数の格子点を含んでいてそれらの格子点には低屈折率物質が配設されておらず、点状欠陥に最近接の格子点の少なくとも一つに対応して配設されるべき低屈折率物質がその格子点から所定距離だけ変位させられて配設されていることを特徴としている。
【0017】
なお、点状欠陥に第2次近接の格子点の少なくとも一つに対応して配設されるべき低屈折率物質も、その格子点から所定量だけ変位させられて配設されていてもよい。また、点状欠陥は、6以下の格子点を含んでいることが好ましい。共振器において共振する光の波長は、点状欠陥の寸法形状に依存して調整され得るし、またフォトニック結晶の格子定数を変えることでも調整され得る。点状欠陥は、線分状に並んだ複数の格子点を含んでいることが好ましい。
【0018】
低屈折率物質は、板材を貫通する円柱内に充填され得る。2次元格子点は六方格子配列されていることが好ましい。板材は、2.0以上の屈折率を有することが好ましい。
【0019】
以上のような共振器を1以上含む本発明による波長分合波器は、2次元フォトニック結晶中の線状欠陥からなる導波路をも1以上含み、共振器は導波路に対して電磁気的に相互作用を生じる距離内に近接して配置されていることを特徴としている。このような波長分合波器は、互いに共振周波数の異なる複数の共振器を含むことによって、マルチチャネル光信号用の波長分合波器として作用し得る。
【0020】
【発明の実施の形態】
まず、本発明者らは、図12におけるような2次元フォトニック結晶中のアクセプタ型の点状欠陥からなる共振器ではなくて、ドナー型の点状欠陥からなる共振器の特性について調べた。前述のように、ドナー型の点状欠陥は1以上の格子点を含み、その格子点には貫通穴が形成されていない。
【0021】
従来では、単一の格子点のみを含む点状欠陥が、その構造の単純性から電磁的解析が容易であり、また最小限のサイズであるという観点から主に検討されてきた。すなわち、ドナー型においても、複数の格子点を含む点状欠陥については、従来ではあまり調べられていなかった。そこで、本発明らは、複数の格子点を含むドナー型点状欠陥の特性について調べた。
【0022】
図13は、複数の格子点を含むドナー型点状欠陥を含む2次元フォトニック結晶の一部を示す模式的な平面図である。この2次元フォトニック結晶において、板材1中に設定された六方格子点に貫通穴2が設けられている。図13(a)の点状欠陥4は線分状に互いに隣接する3つの格子点を含み、それらの格子点には貫通穴2が設けられていない。他方、図13(b)の点状欠陥4は三角形状に互いに隣接する3つの格子点を含み、それらの格子点には貫通穴2が設けられていない。すなわち、点状欠陥4は、1次元的に互いに隣接する複数の格子点を含んで形成され得るし、2次元的に互いに隣接する複数の格子点を含んで形成されてもよい。
【0023】
本発明者らが複数の格子点を含むドナー型点状欠陥について周知の時間領域差分(FDTD)法(特許文献1参照)を用いて電磁的解析を行ったところ、1つまたは2つの格子点を含むドナー型点状欠陥からなる共振器に比べて、3つ以上の格子点を含むドナー型点状欠陥からなる共振器において高いQ値が得られることが分かった。ただし、点状欠陥に含まれる格子点の数が大きくなりすぎれば共振モードの数が多くなって好ましくなく、その格子点の数は6以下であることが好ましい。
【0024】
例えば、図13(a)に示されているような共振器において、その単体ではQ=5200であり、導波路と組合せれば約2600のQ値が得られ、その共振器からの出力光の半値全幅は約0.6nmになり得る。しかし、前述のように約100GHzの周波数で約0.8nmの波長ピーク間隔の多チャネル信号を利用する波長分割多重通信におけるクロストークを考慮すれば、Q値のさらなる向上が望まれる。
【0025】
図1は、本発明による共振器の一例における主要な特徴を説明するための模式的な平面図である。この図1の2次元フォトニック結晶において、板材1内に2次元六方格子点が設定されており、それらの格子点に同一形の円筒状貫通穴2が形成されている。この六方格子における最近接の格子点間隔(格子定数)は、aで表わされている。図1に示されたドナー型点状欠陥は互いに線分状に隣接して配列された3つの格子点を含んでおり、それらの格子点には貫通穴2が形成されていない。
【0026】
本発明によるドナー型点状欠陥における主要な特徴は、その点状欠陥に最近接の貫通穴2の少なくとも一つがその対応する格子点から所定距離だけ変位させられて形成されていることである。図1において、互いに直交するΓ−X軸とΓ−J軸は、貫通穴2がその対応する格子点からずれている方向を表わしている。また、図1中の符号l、m、およびnで示された矢印は、点状欠陥に最近接の格子点に対応して形成される貫通穴2がそれらの格子点から変位させられる方向を表わしている。なお、図1中の変位方向は単なる例示であって、任意の方向に変位させられてもよいことは言うまでもない。
【0027】
以後、点状欠陥に最近接の貫通穴2がそれらの対応する格子点から変位させられている状態が、変位距離=(l,m,n)として表示される。例えば、変位距離=(0.1a,0.2a,0.3a)の表示は、符号lで表わされた矢印に対応する貫通穴がそれらの対応する格子点から0.1aの距離だけ変位させられていることを意味し、同様に符号mで表わされた矢印に対応する貫通穴がそれらの対応する格子点から0.2aの距離だけ変位させられていることを意味し、そして符号nで表わされた矢印に対応する貫通穴がそれらの対応する格子点から0.3aの距離だけ変位させられていることを意味している。
【0028】
図1に示されているようなドナー型点状欠陥4からなる共振器について、Q値と光放射パターンがFDTD法によってシミュレートされた。そのシミュレーション条件において、板材1としてSi、波長λとして一般に光通信で用いられている1.55μm近傍、格子定数aとして0.42μm、板材1の厚さとして0.6a、そして貫通穴2の断面半径rとして0.29aが設定された。
【0029】
これらの条件の下におけるシミュレーションにおいて、(l,m,n)=(0,0,0)の場合にQ値として5200が得られ、図2はその場合において板材1の面直方向から見た共振器4からの光の放射パターンを示している。同様なシミュレーションにおいて、(l,m,n)=(0,0,0.15a)の場合にQ値として43000が得られ、図3はその場合における共振器4からの光の放射パターンを示している。
【0030】
これらのシミュレーションから分かるように、線分状に互いに隣接する3つの格子点を含むドナー型点状欠陥において、その線分の両端に隣接する貫通穴をその対応する格子点から0.15aの距離だけ変位させることによって、Q値が5200から43000へ著しく高められ、また図2と図3の比較から分かるように光の放射角も小さくなっている。
【0031】
さらにnの変位距離を大きくして(l,m,n)=(0,0,0.20a)にした場合、さらに高いQ値=100000が得られ、図4はその場合における共振器からの光の放射パターンを示している。図4においては図3に比べて光の放射角が大きくなっており、図4における中央の主放射光の上下においてサイドローブ(副次光)が顕著になっている。すなわち、点状欠陥4に最近接の貫通穴2をその対応する格子点から変位させる距離を増大させるに伴ってQ値も増大する傾向にあるが、共振器4からの光の放射角の観点からは必ずしもその変位距離が大きい方がよいとは限らない。
【0032】
図5のグラフは、図1に示されているような点状欠陥におけるΓ−J方向のnの変位距離とQ値との関係を示している。このグラフにおいて、横軸はnの変位距離を格子定数aで規格化して示しており、縦軸はQ値を表わしている。図5から、nの変位距離の増大によるQ値の増大にも限界のあることが分かる。すなわち、nの変位距離が0.20aまで増大するに伴ってQ値も指数関数的に増大して極大値の100000に達するが、さらにnの変位距離が増大すればQ値は逆に急減する。
【0033】
図6のグラフにおいては、図4において明瞭に見られるようなサイドローブと主放射光とのパワー比が、nの変位距離との関係で示されている。このグラフにおいて、横軸はnの変位距離を格子定数aで規格化して示しており、縦軸は主放射光に対するサイドローブの放射パワー比を表わしている。図6において、サイドローブを含む放射光の放射角はnの変位距離が0.15aの場合に最も小さく、nの変位距離が0.25aの場合に最も大きくなることが分かる。
【0034】
変位距離が(l,m,n)=(0.11a,0.11a,0)の場合においても、貫通穴が格子点から変位させられていない(l,m,n)=(0,0,0)の場合に比べて高いQ値=11900が得られ、図7はその場合における共振器からの光の放射パターンを示している。図7において、(l,m,n)=(0,0,0)の場合の図3との比較から分かるように、光放射の放射角も小さくなっている。
【0035】
図8の模式的な平面図は、図1に類似しているが、点状欠陥4に最近接の格子点に対応する少なくとも一つの貫通穴2のみならず、第2近接の格子点に対応する少なくとも一つの貫通穴2もその対応する格子点から所定距離だけ変位させられる場合を模式的に示している。共振器のQ値の向上のためには、上述のように点状欠陥4に最近接の格子点に対応する貫通穴をその対応する格子点から所定距離だけ変位させるのが最も効果的であるが、さらに第2近接の格子点に対応する貫通穴2をその対応する格子点から所定距離だけ変位させることもQ値を改善する効果を生じる。
【0036】
図9は、実際に作製された2次元フォトニック結晶の一部を示す走査型電子顕微鏡(SEM)写真である。この2次元フォトニック結晶における板材1の材質、2次元格子定数、貫通穴2の径、点状欠陥4が含む格子点の数および配列などの設定条件は上述のシミュレーションにおける場合と同様であり、変位距離は(l,m,n)=(0,0,0.15a)に設定された。図9のフォトニック結晶は、電子線リソグラフィや反応性イオンエッチングを利用して(特許文献1参照)作製され、点状欠陥4に加えて直線状導波路3をも含んでいる。すなわち、図9における点状欠陥からなる共振器4と直線状導波路3とは所定の波長の光を授受することができ、波長分合波器として作用し得る。
【0037】
図10のグラフは、実際に図9中の導波路3内へ種々の波長を含む光を導入した場合に、共振器4から板材1の面直方向に放射された光の波長と強度の関係を示している。すなわち、このグラフの横軸は波長(nm)を表わし、縦軸は光強度(a.u.:任意単位)を表わしている。図10から分かるように、図9の波長分合波器に含まれる共振器4は導波路3に導入された波長の光から約1578.2nmのピーク波長を有する光を約0.045nmの半値全幅(FWHM)で抽出して放出し、上述のシミュレーションで予想されたように約35100の高いQ値を有している。このように、本発明によれば、高い波長分解能を有する波長分合波器が得られることが分かる。
【0038】
なお、図9の波長分合波器では一つの導波路の近傍に一つの共振器のみが配置されているが、互いに共振周波数の異なる複数の共振器を一つの導波路に沿って近接配置することによって、互いに波長の異なる複数チャネルの光信号を処理し得るマルチチャネル波長分合波器を形成し得ることは言うまでもない。また、共振器4に近接対面させて光ファイバの端面を配置することによって、共振器4から板材1の面直方向に放射される光をその光ファイバ内に導入することができる。さらに、共振器4に近接対面して光電変換素子を配置することによって、共振器からの光の強度変調を受信することができる。もちろん、共振器4と光ファイバ端面または光電変換素子との間に集光レンズ(コリメータ)が挿入されてもよい。
【0039】
図11は、本発明の実施形態の他の例における波長分合波器を模式的な斜視図で示している。図11の波長分合波器は図9のものに類似しているが、図11においては第1の直線状導波路3aに近接して共振器4が配置され、さらにその共振器4に近接して第2の直線状導波路3bが配置されている。この場合、前述のように第1の導波路3aに導入された光信号から特定波長の光信号が共振器4内に抽出され得るが、第2の導波路3bが共振器4に近接して配置されている場合には、その抽出された光信号は共振器4から板材1の面直方向ではなくて第2の導波路3b内へ導入することになる。すなわち、2次元フォトニック結晶を利用する波長分合波器において、一つの導波路を伝播している光信号の内の特定波長の光信号を選択して他の導波路内に導くことができる。
【0040】
フォトニック結晶用の板材1としては、その厚さ方向に光を閉じこめる必要があるので屈折率が大きい材料が望ましい。上述の実施形態ではSiの板材が用いられているが、他にもGe、Sn、C、およびSiCなどのIV族半導体;GaAs、InP、GaN、GaP、AlP、AlAs、GaSb、InAs、AlSb、InSb、InGaAsP、およびAlGaAsなどのIII−V族化合物半導体;ZnS、CdS、ZnSe、HgS、MnSe、CdSe、ZnTe、MnTe、CdTe、およびHgTeなどのII−VI族化合物半導体;SiO、Al、およびTiOなどの酸化物;シリコン窒化物;ソーダ石灰ガラスなどの各種ガラス;さらにはAlq3(C2718AlN)などの有機物を用いることができる。また、それらの板材からなるフォトニック結晶中において、光信号の増幅が望まれる場合には、Erがドープされてもよい。
【0041】
板材1の屈折率は、具体的には空気より大きく、2.0以上であることが好ましく、3.0以上であることがより好ましい。なお、上述の実施形態では貫通穴2内に空気が存在しているが、板材1に比べて低屈折率の物質がそれらの貫通穴2内に充填されてもよいことは言うまでもない。そのような低屈折率の物質として、例えばポリチオフェン誘導体などを用いることができる。また、板材1中に設定される2次元格子は六方格子に限られず、他の規則的な任意の2次元格子を設定することも可能である。さらに、貫通穴2の断面は円形に限られず他の形状でもよく、板厚方向において断面形が変化させられてもよい。
【0042】
【発明の効果】
以上のように、本発明によれば、2次元フォトニック結晶中において、Q値が高められた共振器を提供し、さらにそのような共振器と導波路とを組合せて高い波長分解能を有する波長分合波器を提供することができる。
【図面の簡単な説明】
【図1】本発明による2次元フォトニック結晶中の共振器の一例における主要な特徴を説明するための模式的な平面図である。
【図2】2次元フォトニック結晶中の共振器の一例に関するシミュレーションにおいて板材の面直方向から見た共振器からの光の放射パターンを示す図である。
【図3】本発明による共振器の一例に関するシミュレーションにおいて板材の面直方向から見た共振器からの光の放射パターンを示す図である。
【図4】本発明による共振器の他の例に関するシミュレーションにおいて板材の面直方向から見た共振器からの光の放射パターンを示す図である。
【図5】図1に示されているような点状欠陥におけるΓ−J方向のnの変位距離と共振器のQ値との関係を示す図である。
【図6】共振器からの主放射光に対するサイドローブのパワー比をnの変位距離との関係で示すグラフである。
【図7】本発明による共振器のさらに他の例に関するシミュレーションにおいて板材の面直方向から見た共振器からの光の放射パターンを示している。
【図8】点状欠陥に最近接の格子点に対応する少なくとも一つの貫通穴のみならず、第2近接の格子点に対応する少なくとも一つの貫通穴をもその対応する格子点から所定距離だけ変位させる状況を示す模式的な平面図である。
【図9】本発明によって実際に作製された2次元フォトニック結晶の波長分合波器を示す走査型電子顕微鏡(SEM)写真図である。
【図10】図9中の導波路内へ種々の波長を含む光を導入した場合に共振器から板材の面直方向に放射された光の波長と強度の関係を示すグラフである。
【図11】本発明の実施形態の他の例における波長分合波器を示す模式的な斜視図である。
【図12】先行技術による2次元フォトニック結晶を利用した波長分合波器を示す模式的な斜視図である。
【図13】2次元フォトニック結晶中において複数の格子点を含むドナー型点状欠陥の例を示す模式的な平面図である。
【符号の説明】
1 板材、2 貫通穴、3、3a、3b 導波路、4 点状欠陥からなる共振器、5 導波路ヘ導入される光、6 共振器から放射される光。

Claims (11)

  1. 2次元フォトニック結晶中の点状欠陥からなる共振器であって、
    前記2次元フォトニック結晶は板材内に設定された2次元格子点において前記板材に比べて小さな屈折率を有しかつ同一の寸法形状の低屈折率物質を配設することによって構成されており、
    前記点状欠陥は3以上の互いに隣接する複数の格子点を含んでいて、それらの格子点には前記低屈折率物質が配設されておらず、
    前記点状欠陥に最近接の格子点の少なくとも一つに対応して配設されるべき前記低屈折率物質がその格子点から所定距離だけ変位させられて配設されていることを特徴とする共振器。
  2. 前記点状欠陥に第2次近接の格子点の少なくとも一つに対応して配設されるべき前記低屈折率物質もその格子点から所定量だけ変位させられて配設されていることを特徴とする請求項1に記載の共振器。
  3. 前記点状欠陥は6以下の前記格子点を含んでいることを特徴とする請求項1または2に記載の共振器。
  4. 前記共振器において共振する光の波長は前記点状欠陥の寸法形状に依存して調整され得ることを特徴とする請求項1から3のいずれかに記載の共振器。
  5. 前記点状欠陥は線分状に並んだ前記複数の格子点を含んでいることを特徴とする請求項1から4のいずれかに記載の共振器。
  6. 前記低屈折率物質は前記板材を貫通する円柱内に充填されていることを特徴とする請求項1から5のいずれかに記載の共振器。
  7. 前記2次元格子点は六方格子配列されていることを特徴とする請求項1から6のいずれかに記載の共振器。
  8. 前記板材は2.0以上の屈折率を有することを特徴とする請求項1から7のいずれかに記載の共振器。
  9. 前記低屈折率物質は空気であることを特徴とする請求項1から8のいずれかに記載の共振器。
  10. 請求項1から9のいずれかに記載された共振器を1以上含む波長分合波器であって、
    前記2次元フォトニック結晶中の線状欠陥からなる導波路をも1以上含み、
    前記共振器は前記導波路に対して電磁気的に相互作用を生じる距離内に近接して配置されていることを特徴とする波長分合波器。
  11. 互いに共振周波数の異なる複数の前記共振器を含むことを特徴とする請求項10に記載の波長分合波器。
JP2003032473A 2003-02-10 2003-02-10 2次元フォトニック結晶中の共振器と波長分合波器 Expired - Lifetime JP3847261B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003032473A JP3847261B2 (ja) 2003-02-10 2003-02-10 2次元フォトニック結晶中の共振器と波長分合波器
CA002456515A CA2456515A1 (en) 2003-02-10 2004-01-30 Two-dimensional photonic crystal cavity and channel add/drop filter
DE602004032074T DE602004032074D1 (de) 2003-02-10 2004-02-09 Zweidimensionaler Photonenkristallresonator und Kanalausblende- oder Kanaleinfügefilter
EP04002784A EP1445630B1 (en) 2003-02-10 2004-02-09 Two-dimensional photonic crystal cavity and channel add/drop filter
US10/708,124 US7120344B2 (en) 2003-02-10 2004-02-09 Two-dimensional photonic crystal cavity and channel add/drop filter
KR1020040008260A KR20040073317A (ko) 2003-02-10 2004-02-09 2차원 포토닉 결정 중의 공진기와 파장 분합파기
TW093103045A TW200428730A (en) 2003-02-10 2004-02-10 Two-dimensional photonic crystal cavity and channel add/drop filter
CNB2004100048755A CN100365453C (zh) 2003-02-10 2004-02-10 二维光子晶体腔及通路加/减滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032473A JP3847261B2 (ja) 2003-02-10 2003-02-10 2次元フォトニック結晶中の共振器と波長分合波器

Publications (2)

Publication Number Publication Date
JP2004245866A true JP2004245866A (ja) 2004-09-02
JP3847261B2 JP3847261B2 (ja) 2006-11-22

Family

ID=32653044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032473A Expired - Lifetime JP3847261B2 (ja) 2003-02-10 2003-02-10 2次元フォトニック結晶中の共振器と波長分合波器

Country Status (8)

Country Link
US (1) US7120344B2 (ja)
EP (1) EP1445630B1 (ja)
JP (1) JP3847261B2 (ja)
KR (1) KR20040073317A (ja)
CN (1) CN100365453C (ja)
CA (1) CA2456515A1 (ja)
DE (1) DE602004032074D1 (ja)
TW (1) TW200428730A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022221A1 (ja) * 2003-08-29 2005-03-10 Japan Science And Technology Agency 電磁波周波数フィルタ
JP2006267474A (ja) * 2005-03-23 2006-10-05 Kyoto Univ フォトニック結晶
JP2006267207A (ja) * 2005-03-22 2006-10-05 Nippon Telegr & Teleph Corp <Ntt> 光共振器
JP2007003969A (ja) * 2005-06-27 2007-01-11 Japan Aviation Electronics Industry Ltd 光学素子
JP2007256389A (ja) * 2006-03-20 2007-10-04 Fujitsu Ltd 光回路部品および光素子
JP2008514926A (ja) * 2004-09-27 2008-05-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. フォトニック結晶干渉計
JP2008135591A (ja) * 2006-11-29 2008-06-12 Nec Corp 量子もつれ光子対発生器
JP2008216883A (ja) * 2007-03-07 2008-09-18 Nec Corp フォトニック結晶共振器、光子対発生装置、光子位相変調装置
CN101840024A (zh) * 2010-04-07 2010-09-22 浙江日风电气有限公司 一种基于二维光子晶体偏振通道下路滤波器
JPWO2011083693A1 (ja) * 2010-01-07 2013-05-13 シャープ株式会社 太陽電池、太陽電池パネルおよび太陽電池を備えた装置
JP2015029136A (ja) * 2010-01-07 2015-02-12 シャープ株式会社 光電変換素子
JP2016154164A (ja) * 2015-02-20 2016-08-25 日本電信電話株式会社 フォトニック結晶共振器およびその設計方法
WO2020170795A1 (ja) * 2019-02-18 2020-08-27 日本電信電話株式会社 フォトニック結晶光共振器

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236092B2 (ja) * 2003-01-31 2009-03-11 Tdk株式会社 2次元フォトニック結晶
JP4171326B2 (ja) * 2003-03-17 2008-10-22 国立大学法人京都大学 2次元フォトニック結晶中の共振器と波長分合波器
US6831302B2 (en) * 2003-04-15 2004-12-14 Luminus Devices, Inc. Light emitting devices with improved extraction efficiency
GB2436242B (en) * 2003-10-11 2007-12-05 Hewlett Packard Development Co Photonic interconnect system
US20050205883A1 (en) * 2004-03-19 2005-09-22 Wierer Jonathan J Jr Photonic crystal light emitting device
JP2005275064A (ja) * 2004-03-25 2005-10-06 Nec Corp 白色光パルス生成方法、光パルス波長変換方法、非線形光学素子、白色パルス光源、波長可変パルス光源
US20070153864A1 (en) * 2005-11-02 2007-07-05 Luminus Devices, Inc. Lasers and methods associated with the same
US7664357B2 (en) * 2006-12-07 2010-02-16 Electronics And Telecommunications Research Institute Vertical-type photonic-crystal plate and optical device assembly
CN100582656C (zh) * 2006-12-27 2010-01-20 清华大学 微位移传感器
US7805041B2 (en) * 2007-03-21 2010-09-28 Hewlett-Packard Development Company, L.P. Electromagnetic radiation amplification systems based on photonic gratings
US7991289B2 (en) * 2008-03-28 2011-08-02 Raytheon Company High bandwidth communication system and method
CN101587210B (zh) * 2009-07-06 2011-03-16 中山大学 多通道滤波器及其设计方法
CN102636842A (zh) * 2012-04-19 2012-08-15 中国振华集团云科电子有限公司 三频点光子晶体滤波器
CN102707379B (zh) * 2012-05-15 2014-06-18 中山大学 一种在光子晶体中引入缺陷的方法
EP2787388B1 (en) 2012-08-24 2017-03-29 Japan Science And Technology Agency Raman scattering photoenhancement device, method for manufacturing raman scattering photoenhancement device, and raman laser light source using raman scattering photoenhancement device
JP6281869B2 (ja) * 2014-02-27 2018-02-21 国立大学法人大阪大学 方向性結合器および合分波器デバイス
CN106446493B (zh) * 2016-05-03 2019-04-16 上海大学 单斜相二氧化钒材料点缺陷形成能的高通量模拟方法
CN108873160A (zh) * 2018-08-03 2018-11-23 中国计量大学 输出端可调太赫兹波功分器
JP7139990B2 (ja) * 2019-02-14 2022-09-21 日本電信電話株式会社 フォトニック結晶光共振器
CN110646958B (zh) * 2019-09-27 2023-08-18 南京林业大学 一种基于磁光介质与pt对称结构的多通道信号选择器及其使用方法
US11415744B1 (en) * 2021-02-08 2022-08-16 Globalfoundries U.S. Inc. Perforated wavelength-division multiplexing filters

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023600A1 (en) 1997-11-04 1999-05-14 The Trustees Of Columbia University In The City Of New York Video signal face region detection
JP3925769B2 (ja) 2000-03-24 2007-06-06 関西ティー・エル・オー株式会社 2次元フォトニック結晶及び合分波器
US6891993B2 (en) 2001-06-11 2005-05-10 The University Of Delaware Multi-channel wavelength division multiplexing using photonic crystals
JP3459827B2 (ja) 2002-03-26 2003-10-27 科学技術振興事業団 2次元フォトニック結晶光分合波器

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321707B2 (en) 2003-08-29 2008-01-22 Japan Science And Technology Agency Electromagnetic wave frequency filter
WO2005022221A1 (ja) * 2003-08-29 2005-03-10 Japan Science And Technology Agency 電磁波周波数フィルタ
JP4638498B2 (ja) * 2004-09-27 2011-02-23 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. フォトニック結晶干渉計
JP2008514926A (ja) * 2004-09-27 2008-05-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. フォトニック結晶干渉計
JP2006267207A (ja) * 2005-03-22 2006-10-05 Nippon Telegr & Teleph Corp <Ntt> 光共振器
JP2006267474A (ja) * 2005-03-23 2006-10-05 Kyoto Univ フォトニック結晶
JP2007003969A (ja) * 2005-06-27 2007-01-11 Japan Aviation Electronics Industry Ltd 光学素子
JP2007256389A (ja) * 2006-03-20 2007-10-04 Fujitsu Ltd 光回路部品および光素子
JP2008135591A (ja) * 2006-11-29 2008-06-12 Nec Corp 量子もつれ光子対発生器
JP2008216883A (ja) * 2007-03-07 2008-09-18 Nec Corp フォトニック結晶共振器、光子対発生装置、光子位相変調装置
JPWO2011083693A1 (ja) * 2010-01-07 2013-05-13 シャープ株式会社 太陽電池、太陽電池パネルおよび太陽電池を備えた装置
JP2015026850A (ja) * 2010-01-07 2015-02-05 シャープ株式会社 太陽電池、太陽電池パネルおよび太陽電池を備えた装置
JP2015029136A (ja) * 2010-01-07 2015-02-12 シャープ株式会社 光電変換素子
CN101840024A (zh) * 2010-04-07 2010-09-22 浙江日风电气有限公司 一种基于二维光子晶体偏振通道下路滤波器
JP2016154164A (ja) * 2015-02-20 2016-08-25 日本電信電話株式会社 フォトニック結晶共振器およびその設計方法
WO2020170795A1 (ja) * 2019-02-18 2020-08-27 日本電信電話株式会社 フォトニック結晶光共振器
JP2020134646A (ja) * 2019-02-18 2020-08-31 日本電信電話株式会社 フォトニック結晶光共振器
JP7124752B2 (ja) 2019-02-18 2022-08-24 日本電信電話株式会社 フォトニック結晶光共振器

Also Published As

Publication number Publication date
CA2456515A1 (en) 2004-08-10
US7120344B2 (en) 2006-10-10
TW200428730A (en) 2004-12-16
JP3847261B2 (ja) 2006-11-22
EP1445630B1 (en) 2011-04-06
CN100365453C (zh) 2008-01-30
CN1521524A (zh) 2004-08-18
EP1445630A3 (en) 2004-11-24
EP1445630A2 (en) 2004-08-11
DE602004032074D1 (de) 2011-05-19
US20040165850A1 (en) 2004-08-26
KR20040073317A (ko) 2004-08-19

Similar Documents

Publication Publication Date Title
JP3847261B2 (ja) 2次元フォトニック結晶中の共振器と波長分合波器
JP3925769B2 (ja) 2次元フォトニック結晶及び合分波器
US6873777B2 (en) Two-dimensional photonic crystal device
JP4084075B2 (ja) 共振スタブチューナを備えたスラブ型フォトニック結晶導波路
US6618535B1 (en) Photonic bandgap device using coupled defects
US7450810B2 (en) Two-dimensional photonic crystal cavity and channel add/drop filter
JP3459827B2 (ja) 2次元フォトニック結晶光分合波器
JP5272173B2 (ja) 2次元フォトニック結晶
JP3721142B2 (ja) 2次元フォトニック結晶点欠陥干渉光共振器及び光反射器
Mokhtari et al. Proposal of a new efficient OR/XOR logic gates and all-optical nonlinear switch in 2D photonic crystal lattices
JP3568943B2 (ja) 局所的3次元構造を有する2次元フォトニック結晶スラブ
JP3999152B2 (ja) 2次元フォトニック結晶スラブ及びこれを用いた光デバイス
Dideban et al. Photonic crystal channel drop filters based on circular-shaped cavities
Habibiyan et al. Tunable all-optical photonic crystal channel drop filter for DWDM systems
JP2004045924A (ja) 幾何学的に配列した格子欠陥を有する2次元フォトニック結晶
US20220066068A1 (en) Photonic Crystal Optical Resonator and Method for Fabricating Same
Shinya et al. Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs
JP2003043277A (ja) 波長分波回路
Tetsumoto et al. Design, Fabrication, and Characterization of a High Q Silica Nanobeam Cavity With Orthogonal Resonant Modes
JP4163201B2 (ja) 2次元フォトニック結晶点欠陥干渉光共振器及び光反射器
Moreolo et al. Tailoring the coupling factor and the device length to optimize the frequency response of a photonic crystal add/drop multiplexer
Sugimoto et al. Fabrication and characterization of photonic crystal based symmetric Mach-Zehnder (PC-SMZ) structures toward ultra-small all-optical switching devices

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040806

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3847261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term