WO2019039526A1 - 光偏向デバイス - Google Patents

光偏向デバイス Download PDF

Info

Publication number
WO2019039526A1
WO2019039526A1 PCT/JP2018/031052 JP2018031052W WO2019039526A1 WO 2019039526 A1 WO2019039526 A1 WO 2019039526A1 JP 2018031052 W JP2018031052 W JP 2018031052W WO 2019039526 A1 WO2019039526 A1 WO 2019039526A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrangement
circular holes
periodic
double
waveguide
Prior art date
Application number
PCT/JP2018/031052
Other languages
English (en)
French (fr)
Inventor
馬場 俊彦
萌江 竹内
伊藤 寛之
侑真 楠
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to US16/641,217 priority Critical patent/US11067746B2/en
Priority to EP18848805.0A priority patent/EP3674760B1/en
Priority to JP2019537667A priority patent/JP7134443B2/ja
Priority to CN201880062107.5A priority patent/CN111164477B/zh
Publication of WO2019039526A1 publication Critical patent/WO2019039526A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]

Definitions

  • the present invention relates to a light deflection device that controls the traveling direction of light.
  • the technical field of laser radar or lidar devices (LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging)) using laser measurement that acquires the distance to surrounding objects as a two-dimensional image is the automatic driving of vehicles and three-dimensional It is used for map preparation etc., and the basic technology is applicable also to a laser printer, a laser display, a laser processing machine, etc.
  • a light beam is applied to an object, the reflected light reflected from the object is detected, the distance information is obtained from the time difference and the frequency difference, and the light beam is two-dimensionally scanned. To acquire wide-angle three-dimensional information.
  • a light deflection device is essential for light beam scanning.
  • mechanical mechanisms such as rotation of the entire device, mechanical mirrors such as polygon mirrors (polygon mirrors) and galvano mirrors, and small integrated mirrors using micromachine technology (MEMS technology) have all been used, but large-sized mechanisms are used.
  • MEMS technology micromachine technology
  • phased array type or a diffraction grating type has been proposed which realizes light deflection by changing the wavelength of light or the refractive index of the device.
  • the phased array type light deflection device has a problem that it is very difficult to adjust the phase of a large number of light emitters arranged in an array, and it can not form a high quality sharp light beam.
  • the diffraction grating type light deflection device is easy to form a sharp beam, but has a problem that the light deflection angle is small.
  • the inventor of the present invention proposes a technique for increasing the light deflection angle by coupling a slow light waveguide to a diffraction mechanism such as a diffraction grating (Patent Document 1).
  • a slow light is generated in photonic nanostructures such as photonic crystal waveguides, has a low group velocity, and changes the propagation constant significantly due to slight changes in wavelength and the refractive index of the waveguide.
  • a diffractive mechanism is installed in or near the slow light waveguide, the slow light waveguide is coupled to the diffractive mechanism to form a leak waveguide, which emits light into free space. At this time, a large change in the propagation constant is reflected on the deflection angle of the emitted light, and as a result, a large deflection angle is realized.
  • FIG. 36A A device structure in which a diffractive mechanism is introduced into a photonic crystal waveguide that propagates light having a low group velocity (slow light) and an outline of a light beam emitted therefrom are shown in FIG. 36A.
  • the diffraction mechanism is, for example, a double periodic structure of a circular hole pattern alternately repeating circular holes of two different diameters along a waveguide in a plane of a photonic crystal, or a waveguide in a plane of a photonic crystal It consists of a double periodic structure of a circular hole pattern in which circular holes of long and short lattice pitches are alternately repeated with two types of cycles along, incident light is incident on the slow light waveguide, and slow light propagation light is in radiation conditions. It is converted and emitted into space as a radiation beam.
  • FIG. 36B is a view for explaining the beam intensity distribution of the emitted light beam
  • FIG. 36B shows the beam intensity distribution in the longitudinal direction, and the emitted light beam gradually leaks out along the waveguide, thereby producing a longitudinal beam
  • the intensity distribution is a uniform and sharp beam
  • FIG. 36C shows the beam intensity distribution in the lateral direction, where the beam intensity distribution in the lateral direction has a wide angular distribution.
  • Patent document 1 JP-A-2001-272555 Japanese Patent Application Publication No. 2004-294517
  • the photonic crystal waveguide described above has a symmetrical structure with respect to the thickness direction of the waveguide. Due to the symmetrical structure of the photonic crystal waveguide, the light emission occurs vertically symmetrical with respect to the photonic crystal even when the waveguide side to which the radiated light beam used by the light deflection device is directed upward. .
  • FIGS. 37A to 37E show circular holes formed by arranging large diameter holes and small diameter holes of different diameters in a V shape in the conventional photonic crystal waveguide which is symmetrical with respect to the thickness direction of the waveguide.
  • An example of a double periodic structure is shown.
  • FIG. 37E shows a cross-sectional shape of a waveguide slab, which has a double periodic structure in which the diameter of the large diameter hole is 215 nm, the diameter of the small diameter hole is 205 nm, and the diameter difference ⁇ 2r is 10 nm.
  • the side wall is vertical, and the bore diameter of the hole at the upper and lower ends in the thickness direction is the same diameter and is vertically symmetrical with respect to the thickness direction.
  • FIG. 37D shows the normalized frequency a / ⁇ , the group refractive index, the radiation coefficient (scattering loss), and the radiation ratio Pupper / of the photonic crystal waveguide having the double periodic structure, respectively.
  • Plower is shown.
  • FIG. 37D it is shown that the upper radiation amount is larger than the lower radiation amount as the radiation ratio Pupper / Plower is larger than 1 and the lower radiation amount is larger than the upper radiation amount as the radiation ratio Pupper / Plower is smaller than 1 It shows.
  • the radiation ratio in FIG. 37D is the ratio of the light power of the transmitted light passing through the cladding part sandwiching the waveguide slab in the vertical direction.
  • FIG. 37D shows that the radiation ratio Pupper / Plower when the cross-sectional shape of all the holes is vertically symmetrical with respect to the thickness direction is approximately 1 even in a situation where there is an asymmetry between the air above and below the SiO 2 cladding and the substrate. This means that approximately the same amount of light is emitted upward and downward from the waveguide slab.
  • FIGS. 38A to 38C are diagrams for explaining light emission of photonic crystal waveguides having vertically symmetrical structures.
  • FIGS. 36A to 36C described above only light emission from the upper side to the upper side is drawn for the sake of convenience, but actually, as shown in FIGS. 38A to 38C, emission from the waveguide slab of photonic crystal waveguides of vertically symmetrical structure The emitted light is emitted in the vertical direction through the clads stacked vertically.
  • FIG. 38A schematically illustrates light radiation emitted upward and downward from the vertically symmetrical structure. Since the light emitted from the waveguide slab of the vertically symmetrical photonic crystal waveguide is emitted not only upward but also downward, half of the emitted light is not used.
  • this photonic crystal waveguide is used as a light receiving mechanism, half of the light received as shown in FIG. 38B can not be used.
  • the process of receiving the reflected light is equivalent to the process of returning the radiation light in the opposite direction, and when light is received only in the upward direction, there is no light returning from the lower direction, so the received light is sent to the waveguide
  • In coupling only light from above is coupled into the waveguide and light from below is not coupled. Therefore, only half the amount of light is coupled as compared to the case of receiving light in both upward and downward directions. Therefore, a loss of 3 dB occurs at the time of transmission and at the time of reception respectively, and a total loss of 6 dB occurs in transmission and reception.
  • a cladding such as SiO 2 is formed under the waveguide layer (waveguide slab), and a semiconductor substrate such as Si is further laminated under the cladding. Because of the structure, light emitted downward from the waveguide slab is partially reflected on the surface of the semiconductor substrate and mixed with the light emitted upward from the waveguide slab, resulting in radiation emitted upward. The shape of the light beam is disturbed. For example, even when a single-peaked light beam is emitted from a waveguide slab, the emitted light beam changes to multimodal with multiple peaks due to the mixing of reflected light from the surface of the semiconductor substrate. .
  • the radiation efficiency of the radiation light beam and the light reception efficiency of light reception be high, and that the beam shape of the radiation light beam be good.
  • Patent Documents 2 and 3 there is known a configuration for changing the ratio of the amount of light emitted in the vertical direction with respect to the emitted light.
  • Patent Documents 2 and 3 a configuration for changing the ratio of the amount of light emitted in the vertical direction with respect to the emitted light.
  • Patent Document 2 performs branching and multiplexing by providing point defects separately from the waveguide due to linear defects, and the configuration of Patent Document 3 extracts light of a specific wavelength.
  • the configuration of Patent Document 3 extracts light of a specific wavelength.
  • radiation beams emitted from linear defects are required in the technical field of light beam scanning in which the light deflection device of the present invention is used.
  • the present invention aims at improving the radiation efficiency of a radiation beam in a light deflection device.
  • the light deflection device of the present invention is composed of a photonic crystal waveguide provided with a lattice arrangement in which low refractive index portions are periodically arranged in the plane of the high refractive index member.
  • This lattice arrangement has a double periodic structure in which the first periodic arrangement and the second periodic arrangement differ in the periodic arrangement in the periodic arrangement of the low refractive index parts, and the linear defect in which the low refractive index parts are not arranged is A waveguide core for propagating incident light is configured.
  • the low refractive index portion has a cross-sectional shape asymmetric with respect to the thickness direction. Due to the asymmetric cross-sectional shape, the sizes of both sides in the thickness direction of the low refractive index portion are different, and when the low refractive index portion is a circular hole, one side in the thickness direction has a large diameter and the other side Is a small diameter.
  • the cross-sectional shape asymmetric with respect to the thickness direction can be expressed as a cross-sectional shape asymmetric above and below.
  • the configuration in which the cross-sectional shape in the thickness direction of the low refractive index portion is asymmetric is provided in at least one periodic array of the double periodic structure.
  • the periodic arrangement having an asymmetric cross-sectional shape causes a deviation in the radiation efficiency of the radiation light beam emitted from the linear defect of the photonic crystal, and enhances the radiation efficiency to one side of the upper side or the lower side to one direction. Radiation, which improves the radiation efficiency of the radiation beam in one direction.
  • unidirectional radiation is not necessarily limited to radiation only in the upward direction or radiation only in the downward direction, and radiation efficiency in one direction is greater than radiation efficiency in the other direction. High radiation efficiency bias.
  • Asymmetrical cross-sectional shape can be made into a plurality of forms.
  • the side wall of the asymmetrical cross-sectional shape is an inclined wall form (Aa), an inclined wall, a vertical wall, and a stepped wall composed of at least two of the horizontal walls (Ab) Etc.) can be made into several forms.
  • the wall surface between one end and the other end is formed of an inclined surface in the thickness direction of the low refractive index portion.
  • the cross-sectional shape of the low refractive index portion is trapezoidal.
  • the wall surface between one end and the other end is formed of an inclined surface and a vertical surface
  • the inclined surface and the vertical surface are connected to form a stepped cross section.
  • the second form of the cross-sectional shape of the stepped wall is that in the thickness direction of the low refractive index portion, the wall surface between one end and the other end has two vertical surfaces and one horizontal surface It consists of The diameters of the openings in the two vertical planes are different, and both vertical planes are connected via a horizontal plane to form a stepped cross section.
  • the wall surface between one end and the other end is an inclined surface, a vertical surface, and a horizontal surface in the thickness direction of the low refractive index portion Configured
  • the inclined surface and the vertical surface are connected via a horizontal surface to form a stepped cross section.
  • the fourth form of the cross-sectional shape of the stepped wall is that the wall surface between one end and the other end has two inclined surfaces and one horizontal surface in the thickness direction of the low refractive index portion It consists of One inclined surface and the other inclined surface are connected via a horizontal surface to form a stepped cross section.
  • the vertical wall is constituted by a side wall provided with a cylindrical circular hole, and a part of the surface of the low refractive index portion and the high refractive index member Can be shallowly cut to form a groove, which can be constituted by the side wall of the groove.
  • the double period constituting the lattice arrangement of the photonic crystal waveguide of the present invention comprises a first periodic arrangement and a second periodic arrangement different in periodic arrangement.
  • different periodic arrangements constituting the double period can be constituted in the following forms (Ba) and (Bb) of periodic modulation.
  • (Ba) A form of periodic modulation in which the periodic arrangement between the first periodic arrangement and the second periodic arrangement is made different by making the diameters of the circular holes different.
  • (Bb) A form of periodic modulation in which the periodic arrangement between the first periodic arrangement and the second periodic arrangement is made different by making the lattice pitch of the circular holes different.
  • periodic modulation in which the diameter 2r of the circular hole of (Ba) is made different is represented by “ ⁇ 2r double period modulation”
  • periodic modulation in which the lattice pitch a of the circle of (Bb) is made different is “ ⁇ a double period modulation”
  • r is the radius of the circular hole
  • a is the lattice constant of the lattice arrangement.
  • (C) Asymmetrical form of the cross-sectional shape in the double cycle
  • the asymmetry of the cross-sectional shape in the double cycle has the forms (Ca) and (Cb) according to the above-mentioned periodic modulation (Ba) and (Bb).
  • each low refractive index portion of the first periodic arrangement and the second periodic arrangement are mutually diameter Circular holes different in 2r are arranged.
  • the circular holes are arranged at predetermined intervals with respect to the propagation direction of the waveguides of each periodic arrangement, and the circular holes of the first periodic arrangement and the circular holes of the second periodic arrangement are columns along the propagation direction of the waveguides Are arranged alternately.
  • the predetermined intervals at which the circular holes are arranged are equal intervals for both the circular holes of the first periodical arrangement circular holes and the second periodical arrangement circular holes, and the first periodical arrangement circular holes and the second periodical arrangement
  • the first periodic array and the second periodic array may have different intervals within the respective periodic arrays of the periodic array.
  • the first asymmetric form in ⁇ 2r double period modulation is to make small diameter circular holes into an asymmetric cross sectional shape in large diameter and small diameter circular holes having different diameters.
  • the asymmetric cross-sectional shape causes a difference in the opening diameter at both ends in the thickness direction of the circular hole. According to the first asymmetric form, the radiation efficiency to the side with the larger opening diameter is improved in the asymmetric small diameter circular hole.
  • the first asymmetric form can control the radiation ratio and the radiation rate by adjusting the inclination angle of the inclined surface on the radiation side and the depth of the vertical surface in the cross-sectional shape of the small-diameter circular hole.
  • the radiation ratio is a ratio of light power radiated to both sides in the thickness direction, and exhibits unidirectional radiation.
  • the thickness direction is represented as the vertical direction of the radiation of the light deflection device
  • the radiation ratio is represented by the ratio of the light power Pupper in the upward direction to the light power Plower in the downward direction Pupper / Plower.
  • the radiation rate is a radiation coefficient by which the radiation light beam is emitted along the propagation direction in the slow-ride waveguide, and it is desirable that the light be emitted in a range of, for example, 10 1 dB / cm 2 to 10 2 dB / cm .
  • the large diameter circular holes in the large diameter and small diameter circular holes having different diameters, have an asymmetric cross-sectional shape.
  • the asymmetric cross-sectional shape causes a difference in the opening diameter at both ends in the thickness direction of the circular hole.
  • the directivity of unidirectional radiation can be reversed by adjusting the inclination angle of the inclined surface on the radiation side in the cross-sectional shape of the large diameter circular hole.
  • the inclination angle of the inclined surface is a large angle close to 90 ° of the vertical wall
  • the radiation ratio can be reversed to increase the radiation amount from the small aperture diameter side.
  • both small diameter and large diameter circular holes have an asymmetric cross-sectional shape. According to the third asymmetric form, the radiation ratio from the small aperture diameter side can be increased.
  • Asymmetrical form of cross-sectional shape in double period of ⁇ a double period modulation ⁇ a double period modulation is modulated by a double period structure in which the array spacing of the circular holes is repeated at different grating pitches in the long and short directions with respect to the propagation direction. Be done.
  • the ⁇ a double periodic structure is disposed with the first periodic arrangement and the second periodic arrangement offset from each other with respect to the propagation direction of the waveguide, and the circular holes in the lattice arrangement are relative to the propagation direction of the waveguide It repeats with different grid pitches of long and short.
  • the cross-sectional shape of the circular hole as in the ⁇ 2r double period modulation, by making the cross-sectional shape of the circular hole asymmetric, it is possible to control the radiation ratio and to enhance the unidirectional radiation property.
  • the first arrangement form is a form in which circular holes having an asymmetric cross-sectional shape are applied to a specific row of circular hole arrangements.
  • the circular holes having the asymmetric cross sectional shape are applied to the second row from the linear defects in which the circular holes are not arranged.
  • the wavenumber dependency of the beam shape of the radiation light beam can be reduced to be close to a single peak beam, and high quality with few side lobes in the radiation direction Beam can be formed.
  • the second arrangement form is a form in which the cross-sectional shape is made asymmetric by adjusting the aperture diameter of the circular hole at the specific periodic position.
  • the ratio of radiation can be increased while maintaining the radiation rate by enlarging or reducing the diameter of the circular hole at the above position.
  • the upward or downward radiation efficiency is improved, and the light reception efficiency of light coming from above or below is also simultaneously improved.
  • the light deflection device of the present invention it is possible to suppress the disturbance of the radiation pattern of the light emitted upward by the reflection on the substrate surface.
  • the light deflection device of the present invention can improve the radiation efficiency of the radiation light beam.
  • FIG. 18 is a diagram showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in the same structure as in FIGS. 7A to 7E.
  • FIG. 18 is a diagram showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in the same structure as in FIGS. 7A to 7E.
  • FIG. 18 is a diagram showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in the same structure as in FIGS. 7A to 7E.
  • FIG. 18 is a diagram showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in the same structure as in FIGS. 7A to 7E.
  • FIGS. 7A to 7E are diagram showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in the same structure as in FIGS. 7A to 7E. It is a figure which shows the characteristic data of the embodiment by which the side wall of a large diameter circular hole is an inclined wall in the grating
  • FIG. 13 is a diagram showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in a structure similar to FIG. 12.
  • FIG. 13 is a diagram showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in a structure similar to FIG. 12.
  • FIG. 13 is a diagram showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in a structure similar to FIG. 12.
  • the side wall of 1 to 10 small diameter circular holes is a step-shaped wall in the grating
  • FIG. 16 is a diagram showing an example of asymmetric stepped sidewall and characteristic data in the same structure as FIG. 15;
  • FIG. 16 is a diagram showing an example of asymmetric stepped sidewall and characteristic data in the same structure as FIG. 15;
  • FIG. 16 is a diagram showing an example of asymmetric stepped sidewall and characteristic data in the same structure as FIG. 15;
  • FIG. 16 is a diagram showing an example of a
  • FIG. 16 is a diagram showing an example of asymmetric stepped sidewall and characteristic data in the same structure as FIG. 15;
  • FIG. 16 is a diagram showing an example of asymmetric stepped sidewall and characteristic data in the same structure as FIG. 15;
  • FIG. 16 is a diagram showing an example of asymmetric stepped sidewall and characteristic data in the same structure as FIG. 15;
  • FIG. 16 is a diagram showing an example of asymmetric stepped sidewall and characteristic data in the same structure as FIG. 15;
  • FIG. 7 is a view showing an example in which the side wall of a small diameter circular hole is configured by a combination of an inclined wall and a vertical wall in a side wall having a stepped cross section.
  • FIG. 7 is a view showing an example in which the side wall of a small diameter circular hole is configured by a combination of an inclined wall and a vertical wall in a side wall having a stepped cross section.
  • FIG. 7 is a view showing an example in which the side wall of a small diameter circular hole is configured by a combination of an inclined wall and a vertical wall in a side wall having a stepped cross section.
  • FIG. 7 is a view showing an example in which the side wall of a small diameter circular hole is configured by a combination of an inclined wall and a vertical wall in a side wall having a stepped cross section.
  • FIG. 7 is a view showing an example in which the side wall of a small diameter circular hole is configured by a combination of an inclined wall and a vertical wall in a side wall having a stepped cross section. It is a figure for demonstrating the embodiment by which the side wall of only the 1st row is subjected to ⁇ a double period modulation and the side wall of the small diameter circular hole of the 1st row is an inclined wall in the lattice arrangement of V-shaped arrangement.
  • FIG. 19 is a view showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in a structure similar to FIG. 18; FIG.
  • FIG. 19 is a view showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in a structure similar to FIG. 18;
  • FIG. 19 is a view showing characteristic data in the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in a structure similar to FIG. 18;
  • It is a figure which shows intensity distribution of the radiation component at the time of making a 1 to 10 row
  • the multiple period which makes the side wall of the small diameter circular hole the inclined wall and adjusts the aperture diameter of even numbered lattice row along the propagation direction double periodically It is a figure which shows the example of a modulation
  • the multiple period which makes the side wall of the small diameter circular hole the inclined wall and adjusts the aperture diameter of even numbered lattice row along the propagation direction double periodically It is a figure which shows the example of a modulation
  • the multiple period which makes the side wall of the small diameter circular hole the inclined wall and adjusts the aperture diameter of even numbered lattice row along the propagation direction double periodically It is a figure which shows the example of a modulation
  • multi-period in which the side walls of the small-diameter circular holes are inclined walls and the aperture diameter of even-numbered lattice rows along the propagation direction is doubly periodically adjusted It is a figure which shows the example of a modulation
  • FIGS. 1A and 1B the schematic configuration of the light deflection device of the present invention will be described with reference to FIGS. 1A and 1B, and two constituting the photonic crystal waveguide of the light deflection device of the present invention will be described with reference to FIGS.
  • the heavy periodic structure will be described, and the asymmetric cross-sectional shape of the photonic crystal waveguide of the light deflection device of the present invention will be described using FIGS. 4A to 4H, and each asymmetric cross-sectional shape will be described using FIGS.
  • the form will be described.
  • FIGS. 6 to 21 The radiation ratio of the radiation light beam by the light deflection device of the present invention will be described using FIGS. 6 to 21, and the unimodality of the radiation light beam by the light deflection device will be described using FIGS.
  • a multi-period configuration in which periodicity is further added to the double period will be described with reference to FIG. 32B, and an asymmetric cross-sectional configuration with a groove structure will be described with reference to FIGS. 33A to 35.
  • FIG. 1A to FIG. 1B are diagrams for explaining the schematic configuration of the light deflection device of the present invention.
  • the light deflection device 1 includes a photonic crystal waveguide 2 in which low refractive index portions 11 are periodically grid-arranged in the plane of the high refractive index member 10.
  • the photonic crystal waveguide 2 is formed by a lattice arrangement 3 in which low refractive index portions 11 are periodically arranged on a high refractive index member 10 made of a semiconductor such as Si.
  • the low refractive index portion 11 can be configured, for example, by a circular hole provided in the high refractive index member 10.
  • the photonic crystal waveguide 2 is provided on a cladding 13 of a SiO 2 low refractive index material disposed on a Si substrate 15 via a BOX (buried oxide film) 14.
  • Grating arrangement 3 of photonic crystal waveguide 2 is light by providing a part which does not provide a low refractive index part in a part of Si slab in which low refractive index parts 11 are periodically arranged in Si of high refractive index member 10
  • the waveguide core 12 is formed to propagate the In the configuration in which the low refractive index portion 11 is a circular hole, the waveguide core 12 is formed by providing a linear defect in which the circular hole is not disposed in a part of the lattice arrangement 3. Incident light incident on the waveguide core 12 is radiated from the waveguide core 12 to the outside while propagating in the longitudinal direction of the waveguide core 12.
  • FIG. 1A (b) shows an example of a ⁇ 2r double periodic structure with circular holes of different diameter.
  • circular holes 20 having different diameters embedded in SiO 2 are twice the lattice constant a on both sides of the waveguide core 12 in the Si slab of the photonic crystal waveguide 2.
  • the circular holes 20 periodically arranged are composed of a small diameter circular hole 21 with a diameter of 2r1 and a large diameter circular hole 22 with a diameter of 2r2 (r2> r1), and the small diameter circular hole 21 and the large diameter circular hole 22 are They are arranged at a period twice as long as the lattice constant a.
  • the cross-sectional shape of the conventionally known circular hole is a symmetrical shape that is perpendicular to the thickness direction.
  • the circular hole 20 provided in the light deflection device 1 of the present invention has an asymmetrical shape with respect to the thickness direction, and this asymmetrical cross-sectional shape imparts unidirectional radiation to the radiation ratio.
  • the upper and lower asymmetric cross-sectional shapes bias the ratio of the upper and lower radiations to increase the radiation intensity in one direction.
  • the cross-sectional shape in the upper right circle in (b) of FIG. 1A is an example of an asymmetrical cross-sectional shape, and indicates an inclined surface or the like.
  • the side walls of the non-symmetrical cross-sectional shape can be in the form of inclined walls or in the form of stepped walls, respectively, in the thickness direction.
  • the stepped wall is formed by combining at least two of the inclined wall, the vertical wall, and the horizontal wall.
  • the cross-sectional shape shown in the circle in FIG. 1A shows an example of the combination of the inclined wall, the vertical wall and the horizontal wall, and the combination of the inclined wall and the vertical wall.
  • FIG. 1B shows the ratio of radiation to wavelength for each example of asymmetric cross-sectional shape.
  • the radiation ratio is the ratio Pupper / Plower of the upward radiation power Pupper to the downward radiation power Plower for the radiation light beam, and the radiation ratio over 1 is such that the upward radiation power is higher than the downward radiation power It shows that it is big.
  • the radiation ratio is about 3 times that in the vertically symmetrical case.
  • the light deflection device 1 of the present invention has a double periodic structure of a first periodic arrangement and a second periodic arrangement in which low refractive index portions 11 are periodically arranged in the lattice arrangement 3.
  • the dual periodic structure modulates the emitted light and, with the diffractive function of deflecting the light propagating in the waveguide core 12 to radiate the emitted light beam to the outside, the dependence of the transverse angular distribution of the emitted light beam on the wavelength and refractive index And contribute to the function of making the light beam homogeneous at a wide angle in the lateral direction.
  • the double periodic structure has two types, a double periodic structure relating to misalignment of two periodic arrays, and a double periodic structure relating to the diameter of a circular hole provided in two periodic arrays.
  • the first periodic arrangement and the second periodic arrangement are arranged at equal intervals with respect to the propagation direction of the waveguide, and each low refraction of the first periodic arrangement and the second periodic arrangement
  • the rate sections differ in the diameter of the circular hole.
  • low refractive index portions of small diameter circular holes and large diameter circular holes of different diameter are repeated in the propagation direction of the waveguide.
  • the second double periodic structure has a low refractive index portion in which the first periodic arrangement and the second periodic arrangement are mutually offset with respect to the propagation direction of the waveguide and arranged along the propagation direction of the waveguide.
  • low refractive index portions of the circular holes of the same diameter are repeated at different grating pitches of long and short with respect to the propagation direction of the waveguide.
  • the first double periodic structure is a periodic arrangement in which low refractive index portions of circular holes of different diameters are repeated
  • the second double periodic structure is a low refractive index portion Are circular periodic arrays repeated at different grid pitches of long and short.
  • periodic modulation by the double periodic structure in which the diameter of the circular hole is made different is referred to as “ ⁇ 2r double periodic modulation”
  • periodic modulation by the double periodic structure in which the lattice pitch of the circles is different is referred to as " ⁇ a double periodic modulation” It is called and explained.
  • r is the radius of the circular hole
  • a is the lattice constant of the lattice arrangement.
  • the double-periodic structure of the circular hole pattern has the radiation amount without changing the radiation angle by changing the lattice pitch of the circular holes or the variation of the diameter of the circular holes in the plane in addition to the small number of processing steps. Can be changed, so that the longitudinal distribution (distribution along the waveguide) of the radiated light beam gradually emitted toward the propagation direction of the waveguide can be made Gaussian distribution, Thus, high quality beams with less side lobes can be formed.
  • the ⁇ 2r double period modulation is modulated by a double period structure repeating two circular holes of different diameters.
  • the double periodic structure includes, for example, a periodic structure in which a large diameter circular hole is repeated and a periodic structure in which a small diameter circular hole is repeated.
  • the large diameter and the small diameter of the circular holes forming the double periodic structure show a large and small relationship with respect to the diameter of the reference circular hole or in comparison with each other, and the diameter of each circular hole is, for example, the reference Assuming that the diameter of the circular hole is 2r and the diameter difference between the diameters is 2 ⁇ r, the diameter 2r1 of the large diameter circular hole is 2 (r + ⁇ r) and the diameter 2r2 of the small diameter circular hole is 2 (r ⁇ r) is there.
  • FIGS. 2A-2H show examples of dual period structures with ⁇ 2r double period modulation.
  • an arrangement form is shown in which the periodic portions of the circular holes having different diameters are alternately arranged along the propagation direction of the waveguide and arranged at an acute angle, an obtuse angle or a lateral direction with respect to the propagation direction.
  • the first to sixth arrangement modes will be described below.
  • each periodic portion is arranged in a V shape or an inverted V shape with respect to the propagation direction of the waveguide.
  • FIG. 2A shows a V-shaped arrangement
  • FIG. 2B shows an inverted V-shaped arrangement.
  • the waveguiding mode leaks laterally from the waveguide core, thereby gradually weakening the light confinement in the waveguide core, and the radiation angle For example, the effect of narrowing the distribution to about ⁇ 25 ° is exhibited.
  • the pattern of the periodic portion arranged in the V shape promotes radiation from the electromagnetic field having the same sign in the lateral distribution of the waveguide mode to suppress the interference in the distance and form a unimodal beam. Play an effect.
  • the second arrangement form is a configuration in which the linear arrangement of the circular holes in the low refractive index part of a part of the periodic part in the lattice arrangement is displaced relative to the propagation direction of the waveguide, It is an arrangement form called lattice shift.
  • the second arrangement form makes the deflection angle characteristics of the non-displaced photonic crystal waveguide 2 uniform.
  • the double periodic structure can be provided only in the vicinity of the waveguide core where the waveguide modes mainly concentrate, It has the effect of simplifying the pattern more.
  • (d) Fourth arrangement form In FIG. 2E and FIG. 2F, the fourth arrangement form is arranged in a V-shape or an inverted V-shape similarly to the first arrangement form, and low for two kinds of periodic parts of the double periodic structure. This is a mode in which the sizes of the circular holes of the refractive index portion are arranged in gradation, and the V-shaped or inverted V-shaped and the gradation array are combined.
  • FIG. 2E shows a combination of V-shape and gradation arrangement, in which the lateral distribution of the emitted light beam is made smoother by gradually equalizing the double periodic structure as it gets farther from the waveguide core. Play an effect.
  • FIG. 2F shows a form in which the inverted V-shape and the gradation arrangement are combined, and it is effective to widen the width to which the guided mode is radiated and to narrow the lateral distribution more.
  • the fifth arrangement form is an arrangement form in which the V-shape and the inverted V-shape are mixed
  • the sixth arrangement form is a linear arrangement of two types of circular holes. It is a form alternately arrange
  • the ⁇ a double period modulation is modulated by a double period structure in which the arrangement interval of the circular holes is repeated at different grating pitches of long and short in the propagation direction.
  • the ⁇ a double periodic structure is disposed with the first periodic arrangement and the second periodic arrangement offset from each other with respect to the propagation direction of the waveguide, and the circular holes in the lattice arrangement are relative to the propagation direction of the waveguide It repeats with different grid pitches of long and short.
  • FIG. 3 shows an example of a double period structure in which ⁇ a double period modulation is performed.
  • (A) to (f) of FIG. 3 show an example in which circular holes of the same diameter are arranged at different lattice pitches, and (g) and (h) of FIG. 3 arrange circular holes of different diameters at different lattice pitch An example is shown.
  • first to fourth arrangement forms of ⁇ a double period modulation will be described.
  • the first arrangement form is an arrangement form in which the circular holes are arranged at different lattice pitches in the whole lattice arrangement
  • FIG. 3A shows an example of the lattice arrangement in which the circular holes are arranged in a triangle
  • 3 (b) shows an example in which the circular holes are arranged in a V-shape.
  • the second arrangement form is an arrangement form in which circular holes are arranged at different lattice pitches for a specific lattice row in the lattice arrangement.
  • (C) of FIG. 3 shows an example in which the double period structure of the grating pitch is applied to the first row adjacent to the waveguide in the lattice arrangement of the circular holes arranged in a triangle, and (d) of FIG.
  • positioned round hole the example which applied the double period structure of a grating
  • the third arrangement form is an arrangement form in which circular holes are arranged at different lattice pitches for a specific plurality of lattice rows in the lattice arrangement.
  • FIG. 3 shows an example in which the double period structure of the grating pitch is applied to the first to third columns from the waveguide in the lattice arrangement of the circular holes arranged in a triangle
  • (f) in FIG. Shows an example in which the double periodic structure of the grating pitch is applied to the first to third columns from the waveguide in the lattice arrangement of the circular holes arranged in a V shape.
  • the fourth arrangement form is an arrangement form in which the double period by the lattice pitch and the double period by the diameter of the circular hole are combined in the lattice arrangement.
  • (G) of FIG. 3 applies a double period structure with different grating pitches in the first row from the waveguide to a grating array of circular holes arranged in a triangle, and a double period with different diameters in the second row from the waveguide
  • An example to which the structure is applied is shown
  • (h) in FIG. 3 applies a double period structure with different grating pitches for the first row and the third row from the waveguide in the lattice arrangement of triangular holes.
  • the example which applied the double period structure by a different diameter about 2nd row and 4th row from a waveguide is shown.
  • FIG. 4A to 4G are examples in which the cross-sectional shape of the small-diameter circular hole is asymmetrical in the ⁇ 2r double periodic structure by the circular holes having different diameters
  • FIG. 4H is a circle having different lattice pitches.
  • This is an example in which the cross-sectional shape of the small-diameter circular hole is asymmetric in the ⁇ a double periodic structure by the arrangement of the holes.
  • a cross section of only a part of one row of the lattice arrangement is schematically shown.
  • the asymmetric cross-sectional shape may be in the form of a plurality, and the side wall of the asymmetric cross-sectional shape may be in the form of an inclined wall, an inclined wall, a vertical wall, and at least two of the horizontal walls with respect to the thickness direction It can be in the form of wall in various forms, such as in the form of stepped walls consisting of
  • the first form is a form in which the side wall having an asymmetrical cross-sectional shape is configured by an inclined wall with respect to the thickness direction.
  • the wall surface between one end and the other end is formed by a slope in the thickness direction of the low refractive index portion, and the cross section of the low refractive index portion
  • the shape is trapezoidal.
  • the second and third embodiments are configurations in which the side wall of the asymmetric cross-sectional shape is formed as a stepped wall in the thickness direction, and is a circular hole with a large opening diameter And a circular hole with a small opening diameter in the thickness direction.
  • the second form corresponds to a combination of two circular holes
  • the third form corresponds to a combination of three circular holes.
  • the cross-sectional shape of the stepped wall of the second embodiment is such that the wall surface between one end and the other end is composed of a vertical surface and a horizontal surface in the thickness direction of the low refractive index portion
  • the vertical plane of the large aperture circular hole and the vertical plane of the small aperture circular hole are connected via a horizontal plane.
  • the wall surface between one end and the other end is formed of a vertical surface and a horizontal surface in the thickness direction of the low refractive index portion.
  • the vertical plane having the large opening diameter, the vertical plane having the small opening diameter, and the vertical plane formed in the middle portion are connected via two horizontal planes.
  • a fourth embodiment is an embodiment in which the side wall having an asymmetric cross-sectional shape is formed by a step-like wall in the thickness direction.
  • the wall surface between one end and the other end is formed by an inclined surface and a vertical surface in the thickness direction of the low refractive index portion And the inclined surface having a large opening diameter and the vertical surface having a small opening diameter are connected.
  • a fifth embodiment is an embodiment in which the side wall having an asymmetric cross-sectional shape is formed by a step-like wall in the thickness direction.
  • the cross-sectional shape of the stepped wall of the fifth embodiment is that the wall surface between one end and the other end is an inclined surface, a horizontal surface, and a vertical surface in the thickness direction of the low refractive index portion.
  • the inclined surface having a large opening diameter and the vertical surface having a small opening diameter are connected via a horizontal surface.
  • a sixth embodiment is an embodiment in which the side wall having an asymmetric cross-sectional shape is formed by a step-like wall in the thickness direction.
  • the cross-sectional shape of the stepped wall of the sixth embodiment is that the wall surface between one end and the other end is a vertical plane, a horizontal plane, and an inclined plane in the thickness direction of the low refractive index portion.
  • a vertical plane having a large opening diameter and an inclined plane having a small opening diameter are connected via a horizontal plane.
  • a seventh form is a form in which the side wall having an asymmetric cross-sectional shape is formed by a step-like wall in the thickness direction.
  • the cross-sectional shape of the stepped wall of the seventh embodiment is such that by providing a groove on one side of the slope connecting the upper and lower sides in the thickness direction of the low refractive index portion, one side of the slope It is configured to be asymmetric by increasing the diameter on the side.
  • the side wall of the asymmetric cross-sectional shape is formed by the inclined wall with respect to the thickness direction It is.
  • the wall surface between one end and the other end is an inclined surface
  • the cross-sectional shape of the low refractive index portion is a trapezoidal shape.
  • the wall surface between one end and the other end is a vertical surface in the thickness direction
  • the cross-sectional shape of the low refractive index portion is rectangular.
  • the wall surface between one end and the other end in the thickness direction is constituted by a vertical plane, and the low refractive index portion is cylindrically shaped,
  • the cross-sectional shape is a rectangular shape.
  • FIGS. 4A to 4H show an example in which the cross-sectional shape of the small-diameter circular hole is asymmetrical, the cross-sectional shape of the large-diameter circular hole is asymmetric in the thickness direction, or The cross-sectional shape of the large diameter circular holes may be asymmetric in the thickness direction. In this case, the radiation efficiency is different in one direction radiation.
  • FIG. 5 is a schematic view for explaining a calculation model of the light deflection device of the present invention. Hereinafter, based on this calculation model, the radiation efficiency of the radiation beam, the unimodal beam shape and the like will be shown.
  • FIG. 5D shows a cross section of the light deflection device of the present invention, where the x direction is a direction orthogonal to the propagation direction of the slow light propagating through the waveguide, and the z direction is a lamination forming the light deflection device. Thickness direction.
  • an array 3 is provided on a substrate 15 of Si, in which gratings vertically sandwiched by SiO 2 claddings 13 are arranged.
  • the grating array 3 is configured by arranging low refractive index portions 11 at predetermined intervals in the high refractive index member 10.
  • the low refractive index portion 11 is formed of a small diameter circular hole 21 of 2r1 and a circular hole 22 having different large diameters of 2r2.
  • linear defects in which the low refractive index portion is not disposed constitute a waveguide.
  • the power of the emitted light is calculated by the numerical calculation using the discrete Fourier transform (DFT) and the time domain finite difference (FDTD) method at the locations represented by monitor-A to monitor-E in the figure. Do.
  • DFT discrete Fourier transform
  • FDTD time domain finite difference
  • FIG. 5 are views of the grating array 3 of the light deflection device as viewed in the xy plane, and (a) and (b) of FIG. 5 are ⁇ 2r double period modulation
  • Fig. 5 an example of a usual horizontal single-row arrangement and a V-shaped arrangement is shown, and (c) of Fig. 5 shows an example of double period modulation of ⁇ a.
  • S3 represents the amount of lattice shift applied to the third column in order to make the slow light a wide band and low dispersion. Since this lattice shift amount S3 is not related to the light emission, the effect of the present invention is not greatly affected by the presence or absence of the lattice shift.
  • ⁇ 2r Double-Period Modulation in ⁇ 2r double-period modulation, side walls of an asymmetric cross-sectional shape are shown for inclined walls and stepped walls.
  • the wall surface is inclined with respect to the thickness direction, the opening diameter of one end of the circular hole is larger than the opening diameter of the other end, and exhibits a trapezoidal shape.
  • the stepped wall is composed of a combination of at least two of the inclined wall, the vertical wall, and the horizontal wall.
  • the wall surface In the vertical wall, the wall surface is perpendicular to the thickness direction, and the circular hole has a cylindrical shape.
  • the wall surface in the horizontal wall, the wall surface is horizontal to the thickness direction, and in the case of a circular hole, it has an annular flange shape.
  • ⁇ 2r double period modulation, V-shaped arrangement form of inclined wall
  • asymmetry about the form in which the side wall of the asymmetric cross-sectional shape is an inclined wall The case where the shape is applied to a small diameter circular hole, the case where the shape is applied to a large diameter circular hole, and the case where the shape is applied to both a small diameter and a large diameter circular hole are shown.
  • FIG. 6 shows an embodiment in which the side wall of the small diameter circular hole is an inclined wall in the lattice arrangement of ⁇ 2r double period modulation and V-shaped arrangement .
  • A) of FIG. 6 is a cross-sectional view
  • (b) of FIG. 6 is a schematic perspective view.
  • the embodiment shown in FIG. 6 in the V-shaped grid arrangement, among the circular holes of different diameters, only the small-diameter circular hole has the side wall as the inclined wall and the tq sectional shape is asymmetric.
  • Each characteristic data shown in FIGS. 7A to 7E shows a case where the aperture difference ⁇ 2r of the diameter of the ⁇ 2r double period is 10 nm and the inclination angle ⁇ g of the inclined wall is changed between 65 ° and 90 °.
  • FIG. 7A shows the normalized frequency a / ⁇ with respect to the wave number [2 ⁇ / a]
  • FIG. 7B shows the group index with respect to the wavelength [ ⁇ m]
  • FIG. 7C shows the radiation coefficient (scattering loss) with respect to the wavelength [ ⁇ m] [dB /
  • FIG. 7D shows the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • FIG. 7E shows a cross-sectional shape.
  • a ratio of 2.5: 1 or more is obtained when the inclination angle ⁇ g is 65 ° to 87 °.
  • the radiation beam of the light deflection device is characterized by a high radiation ratio from the requirement of unidirectional radiation, and gradually radiates a slow light propagating in the waveguide to distribute the radiation beam in the longitudinal direction (propagation direction) It needs to be done.
  • the radiation coefficient characteristic of FIG. 7C is required to be in the range of 10 to 100 dB / cm.
  • the radiation ratio is a high ratio of 2.5: 1 or more.
  • a radiation beam having a radiation coefficient in the range of 10 to 100 dB / cm is obtained.
  • FIGS. 7A to 7E show the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in the same structure as that of FIGS. 7A to 7E, and FIG. 8A shows the wavenumber [2 ⁇ / a (B) in FIG. 8 shows the group refractive index for the wavelength [ ⁇ m], and (c) in FIG. 8 shows the radiation coefficient (scattering loss) [dB / for the wavelength [ ⁇ m]. cm], and (d) in FIG. 8 indicates the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • S3 represents the amount of lattice shift applied to the third column in order to make the slow light a wide band and low dispersion. Since this lattice shift amount S3 is not related to the light emission, the effect of the present invention is not greatly affected by the presence or absence of the lattice shift.
  • 9A to 9B show light emission beam pattern analysis (FFP: Far Field Pattern).
  • FFP Far Field Pattern
  • 9A shows the FFP of the aperture distribution in air in monitor-A in (d) of FIG. 5
  • FIG. 9A shows the FFP of the aperture distribution in cladding in monitor-B in (d) of FIG. There is.
  • the emitted light beam in the case of an inclined wall with an inclination angle ⁇ g of 75 to 85 °, the emitted light beam is approximately unimodal, but when the inclination angle ⁇ g is 90 ° (vertical wall), the emitted light It shows that the beam is multimodal. This is because, when the inclination angle ⁇ g is 90 °, the downward radiation is a little stronger and radiation occurs in the vertical direction in the thickness direction, so that the light emitted downward is reflected by the reflected light from the substrate. This is because the radiation beam becomes bimodal and exhibits multimodality.
  • k in FIGS. 9A to 9B represents the wave number of light, and changing this corresponds to changing the wavelength of light or changing the deflection angle of light in the traveling direction. In the light deflector, it is desirable that the change in the wave number k be small.
  • FIGS. 10A to 10E show a form in which the side wall of the large diameter circular hole is an inclined wall in the lattice arrangement of ⁇ 2r double period modulation and V-shaped arrangement. An example is shown.
  • Each characteristic data shown in FIGS. 10A to 10E is the case where the aperture difference ⁇ 2r of the diameter of the ⁇ 2r double period is 10 nm, and the inclination angle ⁇ g of the inclined wall is changed between 60 ° and 90 °.
  • FIG. 10A shows the normalized frequency a / ⁇ with respect to the wave number [2 ⁇ / a]
  • FIG. 10B shows the group index with respect to the wavelength [ ⁇ m]
  • FIG. 10C shows the radiation coefficient (scattering loss) with respect to the wavelength [ ⁇ m] [dB / cm]
  • FIG. 10D shows the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • FIG. 10E shows a cross-sectional shape.
  • the upper and lower radiation can be biased when the inclination angle ⁇ g is 60 ° to 75 °, but the radiation is compared with the case where the small diameter circular hole side wall is inclined. The effect of the bias is small.
  • the inclination angle ⁇ g satisfying the condition that the radiation coefficient is 10 to 100 dB / cm is 75 ° to 80 °.
  • the radiation ratio at an inclination angle of 80 ° is almost 1: 1, and the light power radiated from the top and bottom is almost the same. Therefore, for applications where it is required that the same level of light be emitted from the top and bottom. Is suitable.
  • FIGS. 11A to 11E show side walls of small diameter and large diameter circular holes in the grid arrangement of ⁇ 2r double period modulation and V-shaped array. Shows an example of an inclined wall.
  • Each characteristic data shown in FIGS. 11A to 11E is the case where the aperture difference ⁇ 2r of the diameter of the ⁇ 2r double period is 10 nm and the inclination angle ⁇ g of the inclined wall is changed between 60 ° and 90 °.
  • FIG. 11A shows normalized frequency a / ⁇ with respect to wave number [2 ⁇ / a]
  • FIG. 11B shows group refractive index with respect to wavelength [ ⁇ m]
  • FIG. 11C shows radiation coefficient (scattering loss) [dB / with respect to wavelength [ ⁇ m].
  • FIG. 11D shows the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • FIG. 11E shows a cross-sectional shape.
  • the radiation ratio is 1 or less in the range of the inclination angle ⁇ g of 60 ° to 90 °, and the radiation is mainly emitted downward.
  • the inclination angle ⁇ g satisfying the condition that the radiation coefficient is 10 to 100 dB / cm is 70 ° to 80 °.
  • radiation can be applied to the downward direction since twice as much radiation can be obtained downward to the upward direction.
  • the radiation efficiency with respect to the upper direction can be enhanced by reversing the asymmetrical shape up and down so that the side with the smaller diameter of the opening is directed upward.
  • ⁇ 2r double period modulation, horizontal single row arrangement, inclined wall form In the following, ⁇ 2 r double period modulation and horizontal single row arrangement lattice arrangement, the asymmetric shape is taken for the form in which the side wall of the asymmetric cross section is the inclined wall The example applied to a small diameter circular hole is shown.
  • FIG. 12 shows an embodiment in which the side wall of the small diameter circular hole is an inclined wall in the lattice arrangement of ⁇ 2r double period modulation and the horizontal single row arrangement.
  • the circular holes are arranged in a triangle, and the small diameter and the large diameter are arranged in the lateral direction orthogonal to the propagation direction.
  • FIG. 12 is a cross-sectional view
  • (b) of FIG. 12 is a schematic perspective view.
  • the cross-sectional shape is made asymmetric with the side walls as inclined walls only for the small diameter circular holes among the circular holes of different diameters.
  • FIG. 13 and 14A to 14B show the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in the same structure as FIG. 12, and (a) of FIG. 13 is a standard for the wavenumber [2 ⁇ / a]. Shows the group frequency a / ⁇ , (b) in FIG. 13 shows the group refractive index for the wavelength [ ⁇ m], and (c) in FIG. 13 shows the radiation coefficient (scattering loss) [dB / cm] for the wavelength [ ⁇ m]. FIG. 13 (d) shows the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • FIG. 13 shows the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • S3 represents the amount of lattice shift applied to the third column in order to make the slow light a wide band and low dispersion. Since this lattice shift amount S3 is not related to the light emission, the effect of the present invention is not greatly affected by the presence or absence of the lattice shift.
  • FIGS. 14A to 14B show light emission beam pattern analysis (FFP: Far Field Pattern).
  • 14A shows the FFP of the aperture distribution in air in monitor-A in FIG. 5D
  • FIG. 14B shows the FFP of the aperture distribution in cladding in monitor-B in FIG. 5D. There is.
  • the emitted light beam in the case of an inclined wall with an inclination angle ⁇ g of 75 to 85 °, the emitted light beam is unimodal compared to the case where the inclination angle ⁇ g is 90 ° (vertical wall). It shows a strong tendency.
  • k in FIGS. 14A to 14B represents the wave number of light, and changing the wave number k corresponds to changing the wavelength of light or changing the deflection angle of light in the traveling direction.
  • ⁇ 2r double period modulation, V-shaped array, step-like wall form In the following, ⁇ 2r double-period modulation and V-shaped array lattice arrangement, the side wall of the asymmetric cross-sectional shape is a step-shaped wall An example is shown.
  • FIG. 15 shows an embodiment in which the side walls of one to ten rows of small diameter circular holes are stepped walls in the lattice arrangement of ⁇ 2r double period modulation and V-shaped arrangement.
  • a step-like asymmetric cross-sectional shape in which two vertical walls are connected by a horizontal wall is shown as a stepped wall, and the low refractive index portion combines two cylinders with different diameters in the thickness direction Shape.
  • FIG. 15 is a cross-sectional view
  • (b) of FIG. 15 is a schematic perspective view.
  • the cross-sectional shape is asymmetrical with the side wall as a stepped wall only for the small diameter circular holes among the small diameter and large diameter circular holes having different diameters.
  • 16A to 16E show an example of asymmetric stepped sidewalls and characteristic data in the same structure as FIG.
  • the asymmetric stepped side wall has a diameter of 205 nm on the smaller side of the opening diameter and 215 nm on the side of the larger side of the opening diameter.
  • the depth tg in the thickness direction of the vertical wall on the side with the smaller opening diameter is shown, where tg is 0 nm to 190 nm.
  • FIG. 16A shows the normalized frequency a / ⁇ with respect to the wave number [2 ⁇ / a]
  • FIG. 16B shows the group refractive index with respect to the wavelength [ ⁇ m]
  • FIG. 16C shows the radiation coefficient (scattering loss) with respect to the wavelength [ ⁇ m] [dB / cm]
  • FIG. 16D shows the radiation ratio Pupper / Plower to the wavelength [ ⁇ m].
  • FIG. 16E shows a cross-sectional shape. According to the characteristics of the radiation ratio of FIG. 16D, a ratio of about 2: 1 or more is obtained when the depth tg is 70 nm to 190 nm.
  • FIGS. 17A to 17E show an example in which a small diameter circular hole is formed by a combination of an inclined wall and a vertical wall in a structure having a stepped cross section.
  • a small diameter circular hole is formed by a combination of an inclined wall and a vertical wall in a structure having a stepped cross section.
  • one side (upper side) in the thickness direction is formed as a funnel-shaped inclined wall with an inclination angle ⁇ g, and the other side (lower side) is formed as a cylindrical vertical wall.
  • the depth of the inclined wall is 70 nm is shown.
  • FIG. 17A shows normalized frequency a / ⁇ with respect to wave number [2 ⁇ / a]
  • FIG. 17B shows group refractive index with respect to wavelength [ ⁇ m]
  • FIG. 17C shows radiation coefficient (scattering loss) [dB / with respect to wavelength [ ⁇ m].
  • cm shows the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • FIG. 17E shows a cross-sectional shape.
  • a ratio of approximately 1.5: 1 or more is obtained when the inclination angle ⁇ g is 50 ° to 85 °, and when the inclination angle ⁇ g is 65 ° to 80 °.
  • the ratio is approximately 2: 1 or more.
  • FIG. 18 ⁇ a double period modulation is performed only on the first row close to the waveguide to arrange circular holes by repetition of long and short grating pitches, and in the first row, only circular holes whose positions are shifted or positions The side wall of only the circular hole which did not shift is used as the inclined wall.
  • (A) of FIG. 18 is a cross-sectional view
  • (b) of FIG. 18 is a schematic perspective view.
  • the side walls of the circular holes of one periodic arrangement are made inclined walls only among the circular holes of the same diameter arranged at long and short lattice pitches in the first row.
  • the cross-sectional shape is asymmetric.
  • FIG. 19 and 20A to 20B show the case where the inclination angle ⁇ g is in the range of 75 ° to 90 ° in the same structure as FIG. 18, and (a) of FIG. 19 is a standard for the wavenumber [2 ⁇ / a].
  • 19B shows the group refractive index with respect to the wavelength [ ⁇ m]
  • FIG. 19C shows the radiation coefficient (scattering loss) [dB / cm] with respect to the wavelength [ ⁇ m].
  • FIG. 19 (d) shows the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • FIGS. 20A to 20B show light emission beam pattern analysis (FFP: Far Field Pattern).
  • FFP Far Field Pattern
  • FIG. 20A shows the FFP of the aperture distribution in the air in monitor-A in FIG. 5D
  • FIG. 20B shows the FFP of the aperture distribution in the cladding in monitor-B in FIG. There is.
  • the emitted light beam is unimodal as compared to the case where the inclination angle ⁇ g is 90 ° (vertical wall). Show a tendency of sex.
  • k in FIGS. 20A to 20B represents the wave number of light, and changing this corresponds to changing the wavelength of light or changing the deflection angle of light in the traveling direction.
  • FIG. 21 shows the intensity distribution of the radiation component in the case where the 1 to 10 rows of the lattice arrangement are subjected to double period modulation, and the side wall of the small diameter circular hole is made into an asymmetrical wall with inclined walls.
  • (A) and (b) in FIG. 21 perform the ⁇ 2r double period modulation of 1 to 10 rows in the grid array of V-shaped array, the tilt angle ⁇ g is 90 ° corresponding to the vertical wall, and the tilt angle 21C shows a case where ⁇ g is 80 °, and (c) and (d) in FIG. 21 modulate ⁇ 1 r double period modulation from 1 row to 10 rows in a usual horizontal single row grid arrangement, and the inclination angle ⁇ g is a vertical wall And the case where the inclination angle ⁇ g is 80 °, (e) and (f) in FIG. The case where the angle ⁇ g is 90 ° corresponding to the vertical wall and the case where the inclination angle ⁇ g is 80 ° are shown.
  • the electric field intensity distribution of the radiation component in FIG. 21 is obtained by performing inverse Fourier transform on the intensity of the radiation beam and converting it to a mode pattern on the waveguide.
  • This mode pattern serves as an indicator for determining which of the modes contributes to the radiation beam.
  • the mode pattern exists from the central waveguide to the outer side in a range of about three straight lines of circular holes, and the double period modulation It means to work effectively.
  • the mode patterns having wave numbers k of 0.39 and 0.41 are out of the range of use as an optical deflector, the light deflectors have wave numbers k of 0.43 to 0.49. Mode pattern is significant.
  • the propagation direction from the linear defect forming the waveguide to the third row is independent of the inclination angle ⁇ g of the side wall A linear array along will contribute to the radiation.
  • FIG. 22 shows that in a lattice arrangement of circular holes, ⁇ 2 r double period modulation is introduced to various circular hole rows, and the inclination angle ⁇ g of the small diameter circular hole is 85 ° The beam pattern (intensified radiation intensity) when tilted is shown.
  • FIG. 22 shows (a) only the first row, (b) only the second row, (c) only the third row, and (d) the first to third rows as rows into which ⁇ 2 r double period modulation is introduced.
  • each of the boxed examples (b), (d), (e), and (f) represents a relatively unimodally intense emitted light beam.
  • FIG. 23 shows the radiation ratio Pupper / Plower to the wavelength for each of the examples shown in FIG.
  • FIG. 23 shows that the emission ratio is 2: 1 to 3: 1 for both configurations, and approximately 2 to 3 times higher emission is obtained.
  • the radiation ratio is increased to improve unidirectional radiation while the beam shape is good. be able to.
  • FIG. 24 shows that in the lattice arrangement of circular holes, ⁇ a double periodic modulation is introduced to various circular hole rows, and the inclination angle ⁇ g of the side wall of the small diameter circular hole is 85 ° Shows the beam pattern when the
  • FIGS. 25 and 26A to 26B show the lattice arrangement of ⁇ 2r double period modulation and inverted V shape array, An example of multi-period modulation is shown in which the side wall of the small-diameter circular hole is an inclined wall with an inclination angle ⁇ g of 80 °, and the aperture diameter of even-numbered grating rows along the propagation direction is double periodically adjusted.
  • FIG. 25 shows the normalized frequency a / ⁇ with respect to the wave number [2 ⁇ / a]
  • (b) of FIG. 25 shows the group refractive index with respect to the wavelength [ ⁇ m]
  • (c) of FIG. The radiation coefficient (scattering loss) [dB / cm] for [ ⁇ m] is shown, and (d) in FIG. 25 shows the radiation ratio Pupper / Plower for the wavelength [ ⁇ m].
  • 26A to 26B show light emission beam pattern analysis (FFP: Far Field Pattern).
  • FFP Far Field Pattern
  • 26A shows the FFP of the aperture distribution in air in monitor-A in FIG. 5D
  • FIG. 26B shows the FFP of the aperture distribution in the cladding in monitor-B in FIG. 5D. There is.
  • the period adjustment is performed to double-periodically increase or decrease the aperture diameter of even-numbered grid rows along the propagation direction .
  • the circumference of the circular holes is indicated by thick lines in the arrangement of the small diameter and large diameter circular holes arranged in a single horizontal direction, in which the hole diameter of the circular holes is enlarged or reduced.
  • the number of lattice orientations of even-numbered lattice rows along the propagation direction matches the original lattice constant a of the photonic crystal.
  • the inclination angle ⁇ g is 75 ° to 85 °, similarly to the radiation ratio when the side wall shown in (d) of FIG. At some point a ratio of around 2: 1 is obtained.
  • 26A to 26B show emitted light beams when the diameters of the small diameter and the large diameter before adjustment are 205 nm and 215 nm, respectively, and the diameter 2rg of the large diameter circular hole whose diameter is adjusted is 200 nm to 250 nm. .
  • 26A to 26B show the case where the double periodic hole diameter adjustment of the even numbered grid row is performed, the side wall is an inclined wall, and the even numbered double periodic hole diameter adjustment is not performed (FIG. Compared to the example shown), it shows that the beam shape of the radiation light beam is unimodalized.
  • the radiation coefficient (scattering loss) in (c) of FIG. 25 and the radiation ratio Pupper / Plower in (d) of FIG. 25 adjust the upper and lower radiation ratios while maintaining the radiation coefficient with respect to the wavelength change. It shows that it is possible.
  • FIG. 7b show ⁇ 2r double period modulation, normal horizontal single row arrangement, double period form of aperture diameter of even numbered grid rows
  • FIG. 27, FIG. 28A, FIG. 28B show ⁇ 2r double period modulation and normal horizontal single row arrangement
  • ⁇ 2 r is 10 nm.
  • FIG. 27 (a) shows the normalized frequency a / ⁇ with respect to the wave number [2 ⁇ / a]
  • FIG. 27 (b) shows the group refractive index with respect to the wavelength [ ⁇ m]
  • FIG. 27 (c) with respect to the wavelength [ ⁇ m].
  • the radiation coefficient (scattering loss) [dB / cm] is shown
  • FIG. 27 (d) shows the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • FIG. 28A and 28B show light emission beam pattern analysis (FFP: Far Field Pattern).
  • FIG. 28A shows the FFP of the aperture distribution in air in monitor-A in FIG. 5 (d)
  • FIG. 28B shows the FFP of the aperture distribution in the cladding in monitor-B in FIG. 5 (d).
  • period adjustment in which the aperture diameter of even-numbered grid rows along the propagation direction is double-periodically expanded or reduced in circular holes arranged in a single horizontal row Do is double-periodically expanded or reduced in circular holes arranged in a single horizontal row Do.
  • the circumference of the circular holes is indicated by thick lines for the circular holes of which the hole diameter of the circular holes is enlarged or reduced among the arrangement of the small diameter and large diameter circular holes arranged in a horizontal row.
  • the lattice period of the even-numbered lattice array along the propagation direction coincides with the lattice constant a.
  • the radiation coefficient (scattering loss) in (c) of Fig. 27 and the radiation ratio Pupper / Plower in (d) of Fig. 27 allow adjustment of the upper and lower radiation ratios while maintaining the radiation coefficient with respect to the wavelength change. It shows that there is.
  • 28A to 28B show emitted light beams when the diameters of the small diameter and the large diameter before adjustment are 205 nm and 215 nm, respectively, and the diameter 2rg of the large diameter circular hole for adjusting the diameter is 200 nm to 250 nm. .
  • FIG. 29 shows the normalized frequency a / ⁇ with respect to the wave number [2 ⁇ / a]
  • (b) of FIG. 29 shows the group refractive index with respect to the wavelength [ ⁇ m]
  • (c) of FIG. The radiation coefficient (scattering loss) [dB / cm] with respect to [ ⁇ m] is shown
  • (d) of FIG. 29 shows the radiation ratio Pupper / Plower with respect to the wavelength [ ⁇ m].
  • FIGS. 30A-30B show light emission beam pattern analysis (FFP: Far Field Pattern).
  • FFP Far Field Pattern
  • FIG. 30A shows the FFP of the aperture distribution in air at monitor-A in FIG. 5D
  • FIG. 30B shows the FFP of the aperture distribution in cladding at monitor-B in FIG. There is.
  • multi-period adjustment is further performed on even numbered circular holes along the propagation direction in circularly aligned circular holes.
  • a period adjustment is performed to expand or reduce the aperture diameter of the lattice array in a double cyclic manner.
  • the aperture diameter of even numbered lattice rows along the propagation direction is double-periodically expanded or reduced Perform the third cycle adjustment.
  • the multiple period adjustment is performed to adjust the aperture diameter of the even-numbered grid row along the propagation direction in a double periodic manner.
  • the circumference of the circular holes is indicated by thick lines for the circular holes in which the hole diameter of the circular holes is enlarged or reduced among the arrangement of the small diameter and large diameter circular holes arranged in a horizontal row.
  • the lattice period of even-numbered lattice rows along the propagation direction matches the lattice constant a.
  • the radiation coefficient (scattering loss) in (c) of FIG. 29 and the radiation ratio Pupper / Plower in (d) of FIG. 29 allow adjustment of the upper and lower radiation ratios while maintaining the radiation coefficient with respect to the wavelength change. It shows that there is.
  • 30A to 30B show emitted light beams when the diameters of the small diameter and the large diameter before adjustment are 205 nm and 215 nm, respectively, and the diameter 2rg of the large diameter circular hole to be adjusted is 200 nm to 250 nm. .
  • multi-period modulation is performed by performing periodic adjustment with a shallow trench grating passing through double periodic circular holes of even-numbered grating rows.
  • the shallow trench grating forms a diffraction grating by cutting the upper surfaces of the high refractive index member and the low refractive index portion forming the lattice arrangement shallowly by etching.
  • FIG. 31 shows two models Model-A and Model-B of the shallow trench grating.
  • Model-A the width of one line in the propagation direction of the diffraction grating corresponds to one horizontal line of circular holes, and the lines of the diffraction grating are arranged at doubly periodic intervals.
  • Model-B the width of one row in the propagation direction of the diffraction grating corresponds to two horizontal rows of circular holes, and the rows of the diffraction grating are arranged at doubly periodic intervals.
  • Model-A and Model-B are in a relationship in which the cutting pattern is inverted.
  • the portions shown in thick indicate shallow excavated portions.
  • the depth of cutting is, for example, 70 nm.
  • the shift ⁇ a of the ⁇ a double period adjustment is 10 nm.
  • the multiple period adjustment of the grating arrangement shown in FIG. 31 is an even numbered grating row along the propagation direction, in addition to the double period adjustment in which the linear arrangement of the first circular holes from the waveguide is shifted by ⁇ a.
  • the periodic adjustment is performed by a shallow trench grating passing through a double periodical circular hole of.
  • the multiple period adjustment is performed by the diffraction grating which penetrates the doubly periodic circular holes of the even-numbered grating row along.
  • FIG. 31 (a) shows the normalized frequency a / ⁇ with respect to the wave number [2 ⁇ / a]
  • FIG. 31 (b) shows the group refractive index with respect to the wavelength [ ⁇ m]
  • FIG. The radiation coefficient (scattering loss) [dB / cm] for [ ⁇ m] is shown, and (d) in FIG. 31 shows the radiation ratio Pupper / Plower for the wavelength [ ⁇ m].
  • FIGS. 32A to 32B show light emission beam pattern analysis (FFP: Far Field Pattern).
  • FFP Far Field Pattern
  • 32A shows the FFP of the aperture distribution in air in monitor-A in FIG. 5D
  • FIG. 32B shows the FFP of the aperture distribution in cladding in monitor-B in FIG. 5D.
  • the left side shows the aperture distribution in the air
  • the right side shows the aperture distribution in the cladding.
  • the radiation coefficient (scattering loss) in (c) of FIG. 31 and the radiation ratio Pupper / Plower in (d) of FIG. 31 allow adjustment of the upper and lower radiation ratios while maintaining the radiation coefficient with respect to the wavelength change. It shows that there is.
  • Model-A and Model-B show that the radiation ratio is reversed by reversal of the cutting pattern, and Model-B shows that back surface reflection is performed.
  • FIGS. 32A to 32B it is shown that a good single peak beam can be obtained also in the back surface reflection of Model-B.
  • FIGS. 33A to 33B show shallow trench gratings, and shallow hatching is performed on the surface shown by the hatched portion to form shallow trench portions.
  • the Asabori portion is shown by filled-in pattern characters, and the non-Asabori portion is shown by hatched pattern characters.
  • FIG. 33A and FIG. 33B show a state in which the shallow trench portion is reversed.
  • FIG. 34 is a perspective view of the shallow trench grating of FIG. 33A.
  • FIG. 34 shows a shallow trench grating shallowly cut in the lateral direction orthogonal to the propagation direction
  • FIG. 35 shows a shallow trench grating shallow cut in the oblique direction to the propagation direction.
  • light in the wavelength range of near-infrared light is used assuming that Si is used as the high refractive index member constituting the photonic crystal waveguide of the light deflection device. It can be applied to visible light materials as a refractive index member.
  • the light deflection device of the present invention can be mounted on a car, a drone, a robot, etc., and is mounted on a personal computer or a smartphone to easily capture the surrounding environment, a 3D scanner, a monitoring system, a space for light exchange and data center It can be applied to matrix optical switches and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

光偏向デバイスにおいて、放射光ビームの放射効率を向上させることを目的とする。光偏向デバイスは、高屈折率部材の面内に低屈折率部位が周期的に配列された格子配列を備えたフォトニック結晶導波路で構成され、格子配列は、低屈折率部位の周期配列において、周期配列を異にする第1の周期配列と第2の周期配列の二重周期構造を備え、低屈折率部位が配列されない線状欠陥は入射光を伝搬する導波路コアを構成する。二重周期構造の周期配列の第1の周期配列及び第2の周期配列の少なくとも何れか一方の周期配列は、低屈折率部位の厚さ方向に対する断面形状を非対称とする。

Description

光偏向デバイス
 本発明は、光の進行方向を制御する光偏向デバイスに関する。
 周囲の物体までの距離を2次元画像として取得するレーザ計測を用いたレーザレーダーもしくはライダー装置(LiDAR(Light Detection and Ranging、 Laser Imaging Detection and Ranging))の技術分野は、車の自動運転や3次元地図作製等に利用されており、その基盤技術はレーザプリンタ、レーザディスプレイ、レーザ加工機等にも適用可能である。
 この技術分野では、光ビームを物体に当て、物体で反射して戻ってくる反射光を検出し、その時間差や周波数差から距離の情報を取得すると共に、光ビームを2次元的に走査することによって広角の3次元情報を取得する。
 光ビーム走査には光偏向デバイスが必須である。従来は、機器全体の回転、多角形ミラー(ポリゴンミラー)、ガルバノミラーといった機械式ミラー、マイクロマシーン技術(MEMS技術)による小型集積ミラーなど、いずれも機械式の機構が用いられているが、大型、高価、振動する移動体での不安定性などの問題があり、近年、非機械式の光偏向デバイスの研究が盛んとなっている。
 非機械式の光偏向デバイスとして、光の波長やデバイスの屈折率を変えることで光偏向を実現するフェーズドアレイ型や回折格子型が提案されている。しかしながら、フェーズドアレイ型の光偏向デバイスはアレイ状に並べられた多数の光放射器の位相調整が非常に難しく、高品質な鋭い光ビームを形成することができないという課題がある。一方、回折格子型の光偏向デバイスは鋭いビームの形成が容易であるが、光偏向角が小さいという課題がある。
 小さな光偏向角の課題に対して、本発明の発明者は、スローライト導波路を回折格子等の回折機構に結合させることによって光偏向角を増大させる技術を提案している(特許文献1)。スローライト光はフォトニック結晶導波路のようなフォトニックナノ構造の中で発生し、低群速度を持ち、波長や導波路の屈折率のわずかな変化により、伝搬定数を大きく変化させるという特徴を持つ。このスローライト導波路の内部、もしくは直近に回折機構を設置すると、スローライト導波路が回折機構に結合して漏れ導波路となり、自由空間に光を放射する。このとき伝搬定数の大きな変化は放射光の偏向角に反映し、結果として大きな偏向角が実現される。
 低群速度をもつ光(スローライト)を伝搬するフォトニック結晶導波路に回折機構を導入したデバイス構造と、そこからの放射光ビームの概要を図36Aに示す。回折機構は、例えば、フォトニック結晶の面内に導波路に沿って2種類の異なる直径の円孔を交互に繰り返す円孔パターンの二重周期構造、あるいはフォトニック結晶の面内に導波路に沿って2種類の周期で、長短の格子ピッチの円孔を交互に繰り返す円孔パターンの二重周期構造で構成され、入射光はスローライト導波路に入射され、スローライト伝搬光は放射条件に変換されて放射光ビームとして空間に放射される。
 図36Bは放射光ビームのビーム強度分布を説明するための図であり、図36Bは縦方向のビーム強度分布を示し、放射光ビームは導波路に沿って徐々に漏れ出すことで縦方向のビーム強度分布は揃った鋭いビームとなる。図36Cは横方向のビーム強度分布を示し、横方向のビーム強度分布は広い角度分布を有する。
国際特許公開WO2017/126386 特開2001-272555 特開2004-294517
 従来、光偏向デバイスによる放射光ビームの解析は、図36Aに示したように、フォトニック結晶導波路から光が上方に放射する状況に基づいて行っている。しかしながら、前記したフォトニック結晶導波路は、導波路の厚さ方向に対して対称な構造である。このフォトニック結晶導波路の対称構造により、光偏向デバイスが利用する放射光ビームが放射される導波路側を上方向とした場合においても、光の放射はフォトニック結晶に対して上下対称に起こる。
 図37A~図37Eは、導波路の厚さ方向に対して対称である従来のフォトニック結晶導波路において、異なる径の大径孔と小径孔をV字形状に配置してなる円孔パターンの二重周期構造の例を示している。図37Eは導波路スラブの断面形状を示し、大径孔の口径を215nmとし小径孔の口径を205nmとして、口径差Δ2rを10nmとする二重周期構造である。また、各孔の断面形状は側壁が垂直であって、厚さ方向の上下の端部の孔の口径が同径であって、厚さ方向に対して上下対称である。また、この図では省略しているが、実際に製作されるフォトニック結晶導波路構造では、導波路が形成されるSiスラブを覆っているSiOクラッドの上に空気があり、下にSi基板がある。この計算においても、このような空気と基板を仮定している。
 図37A,図37B,図37C,図37Dは、それぞれ、二重周期構造を備えるフォトニック結晶導波路の規格化周波数a/λ、群屈折率、放射係数(散乱損失)、及び放射比率Pupper/Plowerを示している。図37Dにおいて、放射比率Pupper/Plowerが1より大きいほど上方放射量が下方放射量よりも大きいことを示し、放射比率Pupper/Plowerが1より小さいほど下方放射量が上方放射量よりも大きいことを示している。なお、図37Dの放射比率は、導波路スラブを上下方向で挟むクラッド部分を通過する透過光の光パワーの比率である。
 図37Dは、全孔の断面形状が厚さ方向に対して上下対称である場合の放射比率Pupper/Plowerが、SiOクラッドの上下の空気と基板という非対称性がある状況でもほぼ1であることを示し、このことは導波路スラブからは上方向及び下方向にほぼ同量の光が放射されることを意味している。
 図38A~図38Cは上下対称な構造のフォトニック結晶導波路の光放射を説明するための図である。前記した図36A~図36Cでは、便宜上から上方への光放射しか描いていないが、実際には図38A~図38Cに示す様に、上下対称構造のフォトニック結晶導波路の導波路スラブから放射された光は、上下に積層されたクラッドを介して上下方向に放射される。図38Aは、上下対称な構造から上方向及び下方向に放射される光放射を模式的に示している。上下対称な構造のフォトニック結晶導波路の導波路スラブから放射された光は、上方だけでなく下方にも同じ光が放射されるため、発生した放射光の半分は利用されないことになる。
 また、このフォトニック結晶導波路を受光機構として用いた場合においても、図38Bに示す様に受光される光の半分を利用することができない。反射光を受光する過程は、放射光を逆に戻す過程と等価であり、上方向のみの光を受光した場合には、下方向から戻ってくる光がないため、受光した光を導波路へ結合させる際に、上方向からの光のみが導波路に結合され、下方向からの光は結合されない。そのため、上方向及び下方向の両方向の光を受光する場合と比較して半分の光量しか結合されない。したがって、送信時及び受信時のそれぞれ3dBの損失が発生し、送受信で合わせて6dBの原理損が生じることになる。
 上述し、また図38Cに示す様に、実際のフォトニック結晶導波路は、導波層(導波路スラブ)の下にSiO等のクラッド、その下にさらにSiなどの半導体基板が積層された構造であるため、導波路スラブから下方へ放射された光はその半導体基板の表面で一部が反射され、導波路スラブから上方に放射される光と混合し、結果として上方に放射される放射光ビームの形状が乱れる。例えば、導波路スラブから単峰性の光ビームが放射された場合であっても、半導体基板の表面からの反射光が混合することによって、放射光ビームは複数ピークを有する多峰性に変化する。
 光ビーム走査の技術分野では、光ビームの利用効率の向上が求められている。そのため、光偏向デバイスにおいて、放射光ビームの放射効率、受光の受光効率が高いこと、また、放射光ビームのビーム形状が良好であることが求められている。
 一方、フォトニック結晶導波路において、線状欠陥に加えて点状欠陥を設け、この点状欠陥の断面形状をスラブ面に対して上下非対称とすることによって、線状欠陥から点状欠陥に取り出した放射光について上下方向の放射光量の比率を変える構成が知られている(特許文献2,3)。しかしながら、特許文献2の構成は、線状欠陥による導波路とは別に点状欠陥を設けることによって分波、合波を行うものであり、また、特許文献3の構成は特定波長の光の取り出し効率を高めるものである。つまり、これらの文献には、何れも点状欠陥に係るものであるため、本発明の光偏向デバイスが利用される光ビーム走査の技術分野において求められる、線状欠陥から放射される放射光ビームの放射効率、受光の受光効率の向上、放射光ビームのビーム形状の単峰性等を高めるという技術的な志向性について言及されていない。
 本発明は、光偏向デバイスにおいて、放射光ビームの放射効率を向上させることを目的とする。
 本発明の光偏向デバイスは、高屈折率部材の面内に低屈折率部位が周期的に配列された格子配列を備えたフォトニック結晶導波路で構成される。この格子配列は、低屈折率部位の周期配列において、周期配列を異にする第1の周期配列と第2の周期配列の二重周期構造を備え、低屈折率部位が配列されない線状欠陥は入射光を伝搬する導波路コアを構成する。
 二重周期構造の周期配列が備える第1の周期配列及び第2の周期配列の少なくとも何れか一方の周期配列において、低屈折率部位は厚さ方向に対して非対称な断面形状を有する。非対称な断面形状により、低屈折率部位の厚さ方向の両側のサイズは異なり、低屈折率部位が円孔である場合には、厚さ方向の一方の側は大径であり、他方の側は小径となる。
 なお、光偏向デバイスにおいて、放射光ビームの放射効率を高める放射側を上方向とする場合には、厚さ方向に対して非対称な断面形状は上下非対称な断面形状として表すことができる。
 低屈折率部位の厚さ方向の断面形状が非対称な構成は、二重周期構造の少なくとも何れか一方の周期配列に設ける。非対称な断面形状を備えた周期配列は、フォトニック結晶の線状欠陥から放射される放射光ビームの放射効率に偏りを生じさせ、上方あるいは下方の一方の側への放射効率を高めて一方向性放射とし、これによって、一方向への放射光ビームの放射効率を向上させる。なお、ここで、一方向性放射は、必ずしも、上方向のみへの放射、あるいは下方向のみへの放射に限られるものではなく、一方の方向への放射効率が他方の方向への放射効率よりも高いという放射効率の偏りを含むものである。
 (A)断面形状の形態
 非対称な断面形状は複数の形態とすることができる。非対称な断面形状の側壁は、厚さ方向に対して、傾斜壁である形態(Aa)、傾斜壁、垂直壁、及び水平壁の内少なくとも2つの壁部から成る段状壁である形態(Ab)等の壁形状について複数の形態とすることができる。
 (Aa)傾斜壁の断面形状の形態は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面が傾斜面により構成される。このとき、低屈折率部位の断面形状は台形形状となる。
 (Ab1)段状壁の断面形状の第1の形態は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面が傾斜面と垂直面とで構成され、傾斜面と垂直面は連結されて、段状の断面が構成される。
 (Ab2)段状壁の断面形状の第2の形態は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面が2つの垂直面と1つの水平面とで構成される。2つの垂直面の開口部の径は異なり、両垂直面は水平面を介して連結されて、段状の断面が構成される。
 (Ab3)段状壁の断面形状の第3の形態は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面が傾斜面、垂直面、及び水平面で構成される。傾斜面と垂直面とは水平面を介して連結されて、段状の断面が構成される。
 (Ab4)段状壁の断面形状の第4の形態は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面が2つの傾斜面と1つの水平面とで構成される。一方の傾斜面と、他方の傾斜面は水平面を介して連結されて、段状の断面が構成される。
 段状壁の断面形状の第1~第3の形態の断面形状において、垂直壁面は、円筒形状の円孔が備える側壁で構成する他、低屈折率部位及び高屈折率部材の表面の一部を浅く切削して溝を形成し、この溝部の側壁によって構成することができる。
 溝の側壁による垂直壁面の構成によれば、一つの溝で複数の円孔の垂直壁を形成することができるため、各円孔の孔径の調整を不要とすることができる。
 (B)二重周期
 本発明のフォトニック結晶導波路の格子配列を構成する二重周期は、周期配列を異にする第1の周期配列と第2の周期配列を備える。周期配列される低屈折率部位を円孔によって構成する場合には、二重周期を構成する異なる周期配列は、以下の周期変調の形態(Ba),(Bb)で構成することができる。
(Ba)円孔の直径を異ならせることによって第1の周期配列と第2の周期配列との間の周期配列を異ならせる周期変調の形態。
(Bb)円孔の格子ピッチを異ならせることによって第1の周期配列と第2の周期配列との間の周期配列を異ならせる周期変調の形態。
 以下、(Ba)の円孔の直径2rを異ならせる周期変調を"Δ2r二重周期変調"で表記し、(Bb)の円の格子ピッチaを異ならせる周期変調を"Δa二重周期変調"で表記する。なお、rは円孔の半径であり、aは格子配列の格子定数である。
 (C)二重周期における断面形状の非対称の形態
 二重周期における断面形状の非対称は、上記の周期変調(Ba),(Bb)に応じた形態(Ca),(Cb)を備える。
(Ca)Δ2r二重周期変調の二重周期における断面形状の非対称の形態
 Δ2r二重周期変調による二重周期では、第1の周期配列及び第2の周期配列の各低屈折率部位は互いに直径2rを異にする円孔が配列される。円孔は、各周期配列の導波路の伝搬方向に対して所定間隔で配列され、第1の周期配列の円孔と第2の周期配列の円孔は、導波路の伝搬方向に沿った列において交互に配列される。円孔を配列する所定間隔は、第1の周期配列の円孔と第2の周期配列の円孔の両方の円孔配列について等間隔とする他、第1の周期配列の円孔と第2の周期配列のそれぞれの周期配列内では等間隔とし、第1の周期配列と第2の周期配列とは異なる間隔としてもよい。
(Ca1)Δ2r二重周期変調における第1の非対称の形態は、径を異にする大径と小径の円孔において、小径の円孔を非対称な断面形状とする。非対称な断面形状により、円孔の厚さ方向の両端の開口径に差が生じる。第1の非対称の形態によれば、非対称とした小径の円孔において、開口径が大きい側への放射効率が向上する。
 第1の非対称の形態は、小径の円孔の断面形状において、放射側の傾斜面の傾斜角度、垂直面の深さを調整することによって、放射比率、及び放射レートを制御することができる。ここで、放射比率は、厚さ方向の両側に放射される光パワーの比率であり一方向放射性を示す。厚さ方向を光偏向デバイスの放射光の上下方向として表したとき、放射比率は上方向への光パワーPupperと下方向への光パワーPlowerとの比率 Pupper/Plowerで表される。放射レートは、スローライド導波路において伝搬方向に沿って放射光ビームが放射される放射係数であり、例えば、10 dB/cm から10 dB/cmの範囲で光が放射されることが望ましい。
(Ca2)第2の非対称の形態は、径を異にする大径と小径の円孔において、大径の円孔を非対称な断面形状とする。非対称な断面形状により、円孔の厚さ方向の両端の開口径に差が生じる。第2の非対称の形態によれば、大径の円孔の断面形状において、放射側の傾斜面の傾斜角度を調整することによって、一方向放射性の方向性を反転させることができる。例えば、傾斜面の傾斜角度が小さい角度である場合には大きな開口径側からの放射量が大となる放射比率を、傾斜面の傾斜角度を垂直壁の90°に近い大きな角度とすることによって、放射比率を反転させて、小さな開口径側からの放射量を大とすることができる。
(Ca3)第3の非対称の形態は、径を異にする大径と小径の円孔において、小径及び大径の両方の円孔を非対称な断面形状とする。第3の非対称の形態によれば、小さな開口径側からの放射比率を高めることができる。
(Cb)Δa二重周期変調の二重周期における断面形状の非対称の形態
 Δa二重周期変調は、円孔の配列間隔を伝搬方向に対して長短の異なる格子ピッチで繰り返す二重周期構造により変調される。Δa二重周期構造は、第1の周期配列と第2の周期配列を導波路の伝搬方向に対して互いに位置ずれして配置され、格子配列内の円孔は導波路の伝搬方向に対して長短の異なる格子ピッチで繰り返される。Δa二重周期変調においても、Δ2r二重周期変調と同様に、円孔の断面形状を非対称とすることによって放射比率を制御して一方向放射性を高めることができる。
(D)Δ2r二重周期変調、及びΔa二重周期変調による二重周期における円孔の配置形態
 Δ2r二重周期変調、及びΔa二重周期変調の何れの二重周期においても、円孔配列に対して以下の配列形態を適用することができる。
 (Da)第1の配列形態
 第1の配列形態は、非対称な断面形状を備える円孔を、特定列の円孔配列に適用する形態である。非対称な断面形状を備える円孔を、導波路の伝搬方向に沿って円孔が配列された円孔配列において、円孔が配列されない線状欠陥から2列目の列に適用する。
 2列目に周期配列する第1の配列形態によれば、放射光ビームのビーム形状の波数依存性を低減して単峰ビームに近づけることができ、放射方向に対してサイドローブが少ない高品質なビームを形成することができる。
 (Db)第2の配列形態
 第2の配列形態は、特定の周期位置にある円孔の開口径を調整することによって、断面形状を非対称とする形態である。
 第2の配列形態は、導波路の伝搬方向に沿った、導波路から数えて偶数番目の格子列の位置にある円孔について、他の位置にある円孔と比較して、その開口径を二重周期的な拡大又は縮小を導入する。第2の配列形態によれば、上記の位置にある円孔の径を拡大又は縮小することによって、放射レートを保持したまま放射比率を高めることができる。
 本発明の光偏向デバイスによれば、上方または下方への放射効率を改善し、同様に上方または下方から到来する光の受光効率も同時に改善する。また上方に光を取り出す場合は、基板表面での反射によって上方へ放射する光の放射パターンが乱れることを抑制する。
 以上説明したように、本発明の光偏向デバイスは、放射光ビームの放射効率を向上させることができる。
本発明の光偏向デバイスの概略構成を説明するための図である。 本発明の光偏向デバイスの概略構成を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路を構成するΔ2r二重周期変調を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路を構成するΔ2r二重周期変調を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路を構成するΔ2r二重周期変調を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路を構成するΔ2r二重周期変調を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路を構成するΔ2r二重周期変調を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路を構成するΔ2r二重周期変調を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路を構成するΔ2r二重周期変調を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路を構成するΔ2r二重周期変調を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路を構成するΔa二重周期変調を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路の非対称な断面形状を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路の非対称な断面形状を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路の非対称な断面形状を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路の非対称な断面形状を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路の非対称な断面形状を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路の非対称な断面形状を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路の非対称な断面形状を説明するための図である。 本発明の光偏向デバイスのフォトニック結晶導波路の非対称な断面形状を説明するための図である。 本発明の光偏向デバイスの計算モデルを説明するための概略図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、小径の円孔の側壁が傾斜壁である形態例を説明するための図である。 非対称形状を小径の円孔に適用した形態の特性データを示す図である。 非対称形状を小径の円孔に適用した形態の特性データを示す図である。 非対称形状を小径の円孔に適用した形態の特性データを示す図である。 非対称形状を小径の円孔に適用した形態の特性データを示す図である。 非対称形状を小径の円孔に適用した形態の特性データを示す図である。 図7A~図7Eと同様の構造において、傾斜角θgを75°~90°の範囲とした場合の特性データを示す図である。 図7A~図7Eと同様の構造において、傾斜角θgを75°~90°の範囲とした場合の特性データを示す図である。 図7A~図7Eと同様の構造において、傾斜角θgを75°~90°の範囲とした場合の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、小径と大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、小径と大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、小径と大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、小径と大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、小径と大径の円孔の側壁が傾斜壁である形態例の特性データを示す図である。 Δ2r二重周期変調及び横一列配列の格子配列において、小径の円孔の側壁が傾斜壁である形態例を説明するための図である。 図12と同様の構造において、傾斜角θgを75°~90°の範囲とした場合の特性データを示す図である。 図12と同様の構造において、傾斜角θgを75°~90°の範囲とした場合の特性データを示す図である。 図12と同様の構造において、傾斜角θgを75°~90°の範囲とした場合の特性データを示す図である。 Δ2r二重周期変調及びV字形状配列の格子配列において、1列から10列の小径の円孔の側壁が段状壁である形態例を説明するための図である。 図15と同様の構造において、非対称な段状の側壁の一例及び特性データを示す図である。 図15と同様の構造において、非対称な段状の側壁の一例及び特性データを示す図である。 図15と同様の構造において、非対称な段状の側壁の一例及び特性データを示す図である。 図15と同様の構造において、非対称な段状の側壁の一例及び特性データを示す図である。 図15と同様の構造において、非対称な段状の側壁の一例及び特性データを示す図である。 断面形状が段状の側壁において、小径の円孔の側壁を傾斜壁と垂直壁との組み合わせで構成する例を示す図である。 断面形状が段状の側壁において、小径の円孔の側壁を傾斜壁と垂直壁との組み合わせで構成する例を示す図である。 断面形状が段状の側壁において、小径の円孔の側壁を傾斜壁と垂直壁との組み合わせで構成する例を示す図である。 断面形状が段状の側壁において、小径の円孔の側壁を傾斜壁と垂直壁との組み合わせで構成する例を示す図である。 断面形状が段状の側壁において、小径の円孔の側壁を傾斜壁と垂直壁との組み合わせで構成する例を示す図である。 V字形状配列の格子配列において、1列目のみをΔa二重周期変調し、1列目の小径の円孔の側壁が傾斜壁である形態例を説明するための図である。 図18と同様の構造において、傾斜角θgを75°~90°の範囲とした場合の特性データを示す図である。 図18と同様の構造において、傾斜角θgを75°~90°の範囲とした場合の特性データを示す図である。 図18と同様の構造において、傾斜角θgを75°~90°の範囲とした場合の特性データを示す図である。 格子配列の1列~10列を二重周期変調し、小径の円孔の側壁を傾斜壁として非対称な断面形状とした場合の放射成分の強度分布を示す図である。 格子配列の円孔列をΔ2r二重周期変調し、小径の円孔の側壁の傾斜角θgを85°で傾斜させたときのビームパターンを示す図である。 図22に示した各例について、波長に対する放射比率Pupper/Plowerを示す図である。 格子配列の円孔列をΔa二重周期変調し、小径の円孔の側壁の傾斜角θgを85°で傾斜させたときのビームパターンを示す図である。 Δ2r二重周期変調及び逆V字形状配列の格子配列において、小径の円孔の側壁を傾斜壁とし、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示す図である。 Δ2r二重周期変調及び逆V字形状配列の格子配列において、小径の円孔の側壁を傾斜壁とし、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示す図である。 Δ2r二重周期変調及び逆V字形状配列の格子配列において、小径の円孔の側壁を傾斜壁とし、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示す図である。 Δ2r二重周期変調及び通常の横一列配列の格子配列において、小径の円孔の側壁を傾斜壁とし、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示す図である。 Δ2r二重周期変調及び通常の横一列配列の格子配列において、小径の円孔の側壁を傾斜壁とし、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示す図である。 Δ2r二重周期変調及び通常の横一列配列の格子配列において、小径の円孔の側壁を傾斜壁とし、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示す図である。 Δa二重周期変調及び通常の横一列配列の格子配列において、1列目のみをシフトさせ、円孔の側壁を傾斜壁とし、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示す図である。 Δa二重周期変調及び通常の横一列配列の格子配列において、1列目のみをシフトさせ、円孔の側壁を傾斜壁とし、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示す図である。 Δa二重周期変調及び通常の横一列配列の格子配列において、1列目のみをシフトさせ、円孔の側壁を傾斜壁とし、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示す図である。 Δa二重周期変調及び通常の横一列配列の格子配列において、1列目のみをシフトさせ、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的な円孔を貫く浅堀回折格子によって周期調整する多重周期変調する例を示す図である。 Δa二重周期変調及び通常の横一列配列の格子配列において、1列目のみをシフトさせ、伝搬方向に沿った偶数番目の格子列上にある二重周期的な円孔を貫く浅堀回折格子によって周期調整する多重周期変調する例を示す図である。 Δa二重周期変調及び通常の横一列配列の格子配列において、1列目のみをシフトさせ、伝搬方向に沿った偶数番目の格子列上にある二重周期的な円孔を貫く浅堀回折格子によって周期調整する多重周期変調する例を示す図である。 浅堀回折格子を説明するための図である。 浅堀回折格子を説明するための図である。 伝搬方向に対して直交する横方向に浅堀された浅堀回折格子を示す図である。 伝搬方向に対して斜め方向に浅堀された浅堀回折格子を示す図である。 フォトニック結晶導波路に回折機構を導入したデバイス構造、及び放射光ビームの概要を説明するための図である。 フォトニック結晶導波路に回折機構を導入したデバイス構造、及び放射光ビームの概要を説明するための図である。 フォトニック結晶導波路に回折機構を導入したデバイス構造、及び放射光ビームの概要を説明するための図である。 導波路の厚さ方向に対して断面形状が対称である従来のフォトニック結晶導波路のV字形状配列の二重周期構造の例を示す図である。 導波路の厚さ方向に対して断面形状が対称である従来のフォトニック結晶導波路のV字形状配列の二重周期構造の例を示す図である。 導波路の厚さ方向に対して断面形状が対称である従来のフォトニック結晶導波路のV字形状配列の二重周期構造の例を示す図である。 導波路の厚さ方向に対して断面形状が対称である従来のフォトニック結晶導波路のV字形状配列の二重周期構造の例を示す図である。 導波路の厚さ方向に対して断面形状が対称である従来のフォトニック結晶導波路のV字形状配列の二重周期構造の例を示す図である。 上下対称な構造のフォトニック結晶導波路の光放射を説明するための図である。 上下対称な構造のフォトニック結晶導波路の光放射を説明するための図である。 上下対称な構造のフォトニック結晶導波路の光放射を説明するための図である。
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。以下、図1A,図1Bを用いて本発明の光偏向デバイスの概略構成を説明し、図2A~図2H,図3を用いて本発明の光偏向デバイスのフォトニック結晶導波路を構成する二重周期構造について説明し、図4A~図4Hを用いて本発明の光偏向デバイスのフォトニック結晶導波路の非対称な断面形状について説明し、図5~図35を用いて非対称な断面形状の各形態について説明する。
 図6~図21を用いて本発明の光偏向デバイスによる放射光ビームの放射比率を説明し、図21~図24を用いて光偏向デバイスによる放射光ビームの単峰性を説明し、図25~図32Bを用いて二重周期に更に周期性を追加した多重周期構成について説明し、図33A~図35を用いて溝構造による非対称な断面形状の構成について説明する。
[1.光偏向デバイスの概略構成]
 はじめに、本発明の光偏向デバイスの概略構成について図1A~図1Bを用いて説明する。図1A~図1Bは本発明の光偏向デバイスの概略構成を説明するための図である。図1Aの(a)において、光偏向デバイス1は高屈折率部材10の面内に低屈折率部位11が周期的に格子配列されたフォトニック結晶導波路2を備える。
 フォトニック結晶導波路2は、Si等の半導体からなる高屈折率部材10に低屈折率部位11を周期的に配した格子配列3により形成される。低屈折率部位11は、例えば、高屈折率部材10に設けた円孔により構成することができる。フォトニック結晶導波路2は、Si基板15上にBOX(埋め込み酸化膜)14を介して配されたSiOの低屈折率材のクラッド13の上に設けられる。
 フォトニック結晶導波路2の格子配列3は、高屈折率部材10のSi内に低屈折率部位11を周期配列したSiスラブの一部に、低屈折率部位を設けない部分を設けることによって光を伝搬する導波路コア12が形成される。低屈折率部位11を円孔とする構成では、格子配列3の一部に円孔を配置しない線状欠陥を設けることによって導波路コア12が形成される。導波路コア12に入射された入射光は、導波路コア12を長さ方向に伝搬しながら、導波路コア12から外部に放射される。
 図1Aの(b)は異なる径の円孔によるΔ2r二重周期構造の例を示している。このΔ2r二重周期構造の場合には、フォトニック結晶導波路2のSiスラブにおいて導波路コア12を挟む両側に、SiOに埋め込まれた直径の異なる円孔20が格子定数aの2倍の周期で配置される。周期配列される円孔20は、直径が2r1の小径の円孔21と直径が2r2(r2>r1)の大径の円孔22からなり、小径の円孔21及び大径の円孔22はそれぞれ格子定数aの2倍の周期で配置される。
 従来知られている円孔の断面形状は厚さ方向に対して垂直であり対称な形状である。これに対して、本発明の光偏向デバイス1が備える円孔20は、厚さ方向に対して非対称な形状であり、この非対称な断面形状によって放射比率に一方向放射性を与える。光偏向デバイスが利用する放射光ビームが放射される導波路側を上方向とした場合には、上下非対称な断面形状によって上下の放射比率を偏らせ、一方向への放射強度を高める。
 図1Aの(b)の右上方の円内の断面形状は、非対称な断面形状の一例であり、傾斜面等を示している。
 非対称な断面形状の側壁は、それぞれ厚さ方向に対して、傾斜壁の形態、あるいは段状壁の形態とすることができる。段状壁は傾斜壁、垂直壁、及び水平壁の内少なくとも2つの壁部を組み合わせて構成される。図1A中の円内に示す断面形状は、傾斜壁、垂直壁と水平壁との組み合わせ、傾斜壁と垂直壁との組み合わせの例を示している。
 図1Bは、非対称な断面形状の各例について、波長に対する各放射比率を示している。なお、放射比率は、放射光ビームについて下方への放射パワーPlowerに対する上方への放射パワーPupperの比率Pupper/Plowerであり、1を越える放射比率は上方への放射パワーが下方への放射パワーよりも大きいことを示している。
 図1Bに示す例では、円孔の径を小さく(又は大きく)して、円孔の断面形状を非上下非対称とした場合、上方(又は下方)への照射が強くなることを示している。例えば、傾斜角θg=75°、厚さ方向の深さが70nmで異なる径の円孔を重ねたときには、上下対称な場合と比較して放射比率は約3倍となる。
[2.二重周期変調]
 本発明の光偏向デバイス1は、格子配列3において、低屈折率部位11が周期配列された第1の周期配列と第2の周期配列の二重周期構造を備える。二重周期構造は放射光を変調し、導波路コア12の伝搬光を偏向させて外部に放射光ビームを放射する回折機能と共に、放射光ビームの横方向角度分布の波長や屈折率に対する依存性を低減させ、横方向において広い角度で均質な光ビームとする機能に寄与する。
 二重周期構造は、二つの周期配列の位置ずれに係る二重周期構造と、二つの周期配列が備える円孔の径に係る二重周期構造の2種類がある。
 第1の二重周期構造は、第1の周期配列及び第2の周期配列が導波路の伝搬方向に対して等間隔で配列され、第1の周期配列及び第2の周期配列の各低屈折率部位は円孔の径を異にする。第1の二重周期構造では、異なる径の、小径の円孔と大径の円孔の低屈折率部位が、導波路の伝搬方向に対して繰り返される。
 第2の二重周期構造は、第1の周期配列及び第2の周期配列が導波路の伝搬方向に対して互いに位置ずれし、導波路の伝搬方向に沿って配列された低屈折率部位の列において、同一径の円孔の低屈折率部位が導波路の伝搬方向に対して長短の異なる格子ピッチで繰り返される。
 したがって、2種類の二重周期構造の内、第1の二重周期構造は異なる径の円孔の低屈折率部位が繰り返される周期配列であり、第2の二重周期構造は低屈折率部位の円孔が長短の異なる格子ピッチで繰り返される周期配列である。以下、円孔の直径を異ならせる二重周期構造による周期変調を"Δ2r二重周期変調"と称し、円の格子ピッチを異ならせる二重周期構造による周期変調を"Δa二重周期変調"と称して説明する。なお、rは円孔の半径であり、aは格子配列の格子定数である。
 円孔パターンの二重周期構造は、加工工程が少ないことに加え、円孔の格子ピッチ、あるいは円孔の径の大小の変化量を面内で変えることによって、放射角度を変えることなく放射量を変えることができるため、導波路の伝搬方向に向かって徐々に放射される放射光ビームの縦方向分布(導波路に沿った方向の分布)をガウス分布とすることができ、縦方向に対してサイドローブが少ない高品質なビームを形成できる。
(Δ2r二重周期変調)
 Δ2r二重周期変調は、2種類の異なる直径の円孔を繰り返す二重周期構造により変調される。二重周期構造は、例えば、大径の円孔を繰り返す周期構造と、小径の円孔を繰り返す周期構造とよりなる。二重周期構造を形成する円孔の大径及び小径は、基準の円孔の直径に対して、あるいは互いの直径の比較において、大小の関係を示し、各円孔の直径は、例えば、基準の円孔の直径を2rとし、直径の口径差を2Δrとしたとき、大径の円孔の直径2r1は2(r+Δr)であり、小径の円孔の直径2r2は2(r-Δr)である。
 図2A~図2Hは、Δ2r二重周期変調を行う二重周期構造の例を示している。ここでは、直径を異にする円孔の周期部位を、導波路の伝搬方向に沿って交互に配列し、伝搬方向に対して鋭角、鈍角、あるいは横方向に配置する配置形態を示している。以下、第1の配置形態~第6の配置形態について示す。
 (a)第1の配置形態:
 第1の配置形態は、各周期部位を導波路の伝搬方向に対してV字形状又は逆V字形状に配置する。図2AはV字形状の配置を示し、図2Bは逆V字形状の配置を示している。
 二重周期構造をV字形状又は逆V字形状とする配置形態では、導波モードが導波路コアから横方向に染み出すことによって、導波路コアへの光の閉じ込めを漸次に弱め、放射角度分布を例えば±25°程度まで狭める効果を奏する。また、このV字形状に配置した周期部位のパターンは、導波モードの横方向分布において同符号を持つ電磁界からの放射を促進して遠方での干渉を抑制し、単峰性ビームを形成する効果を奏する。
 (b)第2の配置形態:
 図2Cにおいて、第2の配置形態は、格子配列中の周期部位の一部の低屈折率部位の円孔の直線配列を導波路の伝搬方向に対して位置ずれさせて配置する構成であり、格子シフトと呼ばれる配置形態である。第2の配置形態は、位置ずれしていないフォトニック結晶導波路2の偏向角特性を均一化する。
 (c)第3の配置形態:
 図2Dにおいて、第3の配置形態は、格子配列において、導波路コアの近傍の格子配列については二重周期構造とし、第1の配置形態と同様にV字形状又は逆V字形状の形状に配置し、その他の格子配列については同一の周期構造とする。
 格子配列3の一部を第1の配置形態のV字形状とすることによって、導波モードが主に集中する導波路コアの近傍にだけ二重周期構造を設ける構成とすることができ、放射パターンをより単純化させる効果を奏する。
 (d)第4の配置形態:
 図2E,図2Fにおいて、第4の配置形態は、第1の配置形態と同様にV字形状又は逆V字形状の形状に配置すると共に、二重周期構造の2種類の周期部位について、低屈折率部位の円孔の大きさをグラデーション配列し、V字形状又は逆V字形状とグラデーション配列とを組み合わせた形態である。
 図2EはV字形状とグラデーション配列とを組み合わせた形態を示し、導波路コアから離れるにしたがって二重周期構造を徐々に均一化する構成とすることによって、放射光ビームの横方向分布をより滑らかにする効果を奏する。図2Fは逆V字形状とグラデーション配列とを組み合わせた形態を示し、導波モードが放射される幅を実効的に広げ、横方向分布をより狭くする効果を奏する。
  (e)第5,6の配置形態:
 図2Gにおいて、第5の配置形態はV字形状と逆V字形状の形状とを混合した配置形態であり、図2Hにおいて、第6の配置形態は2種類の円孔の直線配列を、導波路の伝搬方向と直交する横方向に交互に配置する形態である。
(Δa二重周期変調)
 Δa二重周期変調は、円孔の配列間隔を伝搬方向に対して長短の異なる格子ピッチで繰り返す二重周期構造により変調される。Δa二重周期構造は、第1の周期配列と第2の周期配列を導波路の伝搬方向に対して互いに位置ずれして配置され、格子配列内の円孔は導波路の伝搬方向に対して長短の異なる格子ピッチで繰り返される。
 図3は、Δa二重周期変調を行う二重周期構造の例を示している。図3の(a)~(f)は同一径の円孔が異なる格子ピッチで配列される例を示し、図3の(g),(h)は異なる径の円孔が異なる格子ピッチで配列される例を示している。以下、Δa二重周期変調の第1の配置形態~第4の配置形態について示す。
 (a)第1の配置形態:
 第1の配置形態は、格子配列の全体について、円孔が異なる格子ピッチで配列される配置形態であり、図3の(a)は円孔が三角配置された格子配列の例を示し、図3の(b)は円孔がV字形状に配列された例を示している。
  (b)第2の配置形態:
 第2の配置形態は、格子配列の内、特定の一格子列について、円孔が異なる格子ピッチで配列される配置形態である。
 図3の(c)は三角配置された円孔の格子配列において、導波路に隣接する1列目について、格子ピッチの二重周期構造を適用した例を示し、図3の(d)は三角配置された円孔の格子配列において、導波路から2列目について、格子ピッチの二重周期構造を適用した例を示している。
  (c)第3の配置形態:
 第3の配置形態は、格子配列の内、特定の複数の格子列について、円孔が異なる格子ピッチで配列される配置形態である。
 図3の(e)は三角配置された円孔の格子配列において、導波路から1列目~3列目について、格子ピッチの二重周期構造を適用した例を示し、図3の(f)はV字形状に配列された円孔の格子配列において、導波路から1列目~3列目について、格子ピッチの二重周期構造を適用した例を示している。
  (d) 第4の配置形態:
 第4の配置形態は、格子配列について、格子ピッチによる二重周期と、円孔の径による二重周期とを組み合わせた配置形態である。
 図3の(g)は三角配置された円孔の格子配列において、導波路から1列目について異なる格子ピッチによる二重周期構造を適用し、導波路から2列目について異なる径による二重周期構造を適用した例を示し、図3の(h)は三角配置された円孔の格子配列において、導波路から1列目と3列目について異なる格子ピッチによる二重周期構造を適用し、導波路から2列目と4列目について異なる径による二重周期構造を適用した例を示している。
[3.非対称形態]
 本発明の光偏向デバイスの格子配列において、低屈折率部位が厚さ方向について非対称な断面形状の例を、図4A~図4Hを用いて説明する。
 なお、図4A~図4Gは、直径を異にする円孔によるΔ2r二重周期構造において、小径の円孔の断面形状が非対称である例であり、図4Hは、格子ピッチを異にする円孔の配列によるΔa二重周期構造において、小径の円孔の断面形状が非対称である例である。なお、ここでは、格子配列の一列についてその一部のみの断面を模式的に示している。
 非対称な断面形状は複数の形態とすることができ、非対称な断面形状の側壁は、厚さ方向に対して、傾斜壁の形態、傾斜壁、垂直壁、及び水平壁の内少なくとも2つの壁部から成る段状壁の形態等の種々の形態の壁形状とすることができる。
  (a)第1の形態
 第1の形態は、非対称な断面形状の側壁を厚さ方向に対して傾斜壁で構成する形態である。図4Aにおいて、傾斜壁の断面形状の形態は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面が傾斜面で構成され、低屈折率部位の断面形状は台形形状となる。
  (b),(c)第2,3の形態
 第2,3の形態は、非対称な断面形状の側壁を厚さ方向に対して段状壁で構成する形態であり、大きい開口径の円孔と小さい開口径の円孔とを厚さ方向で組み合わせた構成である。第2の形態は2つの円孔の組み合わせに相当し、第3の形態は3つの円孔の組み合わせに相当する。
 図4Bにおいて、第2の形態の段状壁の断面形状は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面は垂直面と水平面とから構成され、大きい開口径の円孔の垂直面と、小さい開口径の円孔の垂直面とが、水平面を介して連結されて構成される。
 図4Cにおいて、第3の形態の段状壁の断面形状は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面は垂直面と水平面とから構成され、大きい開口径の垂直面と、小さい開口径の垂直面と、中間部分において形成された垂直面とが、それぞれ2つの水平面を介して連結されて構成される。
  (d)第4の形態
 第4の形態は、非対称な断面形状の側壁を厚さ方向に対して段状壁で構成する形態である。図4Dにおいて、第4の形態の段状壁の断面形状は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面は傾斜面と垂直面とで構成され、大きい開口径の傾斜面と、小さい開口径の垂直面とが連結されて構成される。
  (e)第5の形態
 第5の形態は、非対称な断面形状の側壁を厚さ方向に対して段状壁で構成する形態である。図4Eにおいて、第5の形態の段状壁の断面形状は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面は傾斜面と水平面と垂直面とで構成され、大きい開口径の傾斜面と、小さい開口径の垂直面とが水平面を介して連結されて構成される。
  (f)第6の形態
 第6の形態は、非対称な断面形状の側壁を厚さ方向に対して段状壁で構成する形態である。図4Fにおいて、第6の形態の段状壁の断面形状は、低屈折率部位の厚さ方向において、一方の端部と他方の端部との間の壁面は垂直面と水平面と傾斜面とで構成され、大きい開口径の垂直面と、小さい開口径の傾斜面とが水平面を介して連結されて構成される。
  (g)第7の形態
 第7の形態は、非対称な断面形状の側壁を厚さ方向に対して段状壁で構成する形態である。図4Gにおいて、第7の形態の段状壁の断面形状は、低屈折率部位の厚さ方向において、上下を連結する傾斜面において、一方の側に溝部を設けることによって、傾斜面の一方の側の径を大きくして非対称とする構成である。
  (h)第8の形態
 第8の形態は、格子ピッチを異にする円孔の配列によるΔa二重周期構造において、非対称な断面形状の側壁を厚さ方向に対して傾斜壁で構成する形態である。図4Hにおいて、小径の円孔は厚さ方向において、一方の端部と他方の端部との間の壁面は傾斜面で構成され、低屈折率部位の断面形状は台形形状である。一方、大径の円孔は厚さ方向において、一方の端部と他方の端部との間の壁面は垂直面で構成され、低屈折率部位の断面形状は矩形形状である。小径の円孔と大径の円孔とは異なる格子ピッチを繰り返して配置される。
 図4A~図4Hにおいて、大径の円孔については、厚さ方向において一方の端部と他方の端部との間の壁面が垂直面で構成され、低屈折率部位は円筒形状であり、断面形状は矩形形状である。
 なお、図4A~図4Hでは小径の円孔の断面形状を非対称とした例を示しているが、大径の円孔の断面形状を厚さ方向に非対称な形状とする構成、あるいは、小径と大径の両方の円孔の断面形状を厚さ方向において非対称形状とする構成としても良い。なお、この場合には、放射効率は異なる一方向放射性となる。
[4.光偏向デバイスの計算モデル]
 図5は本発明の光偏向デバイスの計算モデルを説明するための概略図である。以下、この計算モデルに基づいて、放射光ビームの放射効率、単峰性のビーム形状等について示す。
 図5の(d)は、本発明の光偏向デバイスの断面を示し、x方向は導波路を伝搬するスローライト光の伝搬方向と直交する方向であり、z方向は光偏向デバイスを構成する積層の厚さ方向である。光偏向デバイスは、Siの基板15上に、上下をSiOのクラッド13で挟まれた格子は配列3が設けられる。格子配列3は、高屈折率部材10内に低屈折率部位11が所定間隔で配列されて構成される。Δ2r二重周期変調では、低屈折率部位11は2r1の小径の円孔21と2r2の大径の直径が異なる円孔22により構成される。なお、格子配列3において、低屈折率部位が配置されない直線欠陥は導波路を構成している。
 この計算モデルでは、図中のmonitor-A~monitor-Eで表記される箇所において、離散フーリエ変換(DFT)、及び時間領域有限差分(FDTD)法を用いた数値計算により放射光のパワーを算出する。
 図5の(a)~図5の(c)は、光偏向デバイスの格子配列3をx,y平面で見た図であり、図5の(a),(b)はΔ2r二重周期変調において、通常の横一列配列、及びV字形状配列の例を示し、図5の(c)はΔaの二重周期変調の例を示している。また、DFT解析とモニタを行う箇所、及び計算の際の励振箇所を×印で示している。なお、図5の(a),(b)において、S3はスローライトを広帯域で低分散とするために3列目に施した格子シフト量を表している。この格子シフト量S3は光の放射に関わらないため、格子シフトの有無によって本発明の効果に大きな影響は生じない。
[5.放射比率]
 以下、低屈折率部位の厚さ方向に対する非対称な断面形状による放射比率の寄与をΔ2r二重周期変調、及びΔa二重周期変調について説明する。
 5.1:Δ2r二重周期変調
 以下、Δ2r二重周期変調において、非対称な断面形状の側壁が傾斜壁、及び段状壁の例について示す。傾斜壁は、壁面が厚さ方向に対して傾斜し、円孔の一方の端部の開口径が他方の端部の開口径よりも大径となり、台形形状を呈する。段状壁は、傾斜壁、垂直壁、及び水平壁の内少なくとも2つの壁部の組み合わせから構成される。なお、垂直壁は、壁面が厚さ方向に対して垂直であり、円孔は円筒形状を呈する。また、水平壁は、壁面が厚さ方向に対して水平であり、円孔では環状のフランジ形状を呈する。
 5.1a:Δ2r二重周期変調、V字形状配列、傾斜壁の形態
 以下、Δ2r二重周期変調及びV字形状配列の格子配列において、非対称な断面形状の側壁が傾斜壁である形態について、非対称形状を小径の円孔に適用した場合、大径の円孔に適用した場合、及び小径と大径の両方の円孔に適用した場合の各例を示す。
  (a)非対称形状を小径の円孔に適用した形態例
 図6はΔ2r二重周期変調及びV字形状配列の格子配列において、小径の円孔の側壁が傾斜壁である形態例を示している。図6の(a)は断面図であり、図6の(b)は模式的な斜視図である。図6の形態例では、V字形状配列した格子配列において、異なる直径の円孔の内、小径の円孔のみについて側壁を傾斜壁としtq断面形状を非対称としている。
 図7A~図7Eに示す各特性データは、Δ2r二重周期の直径の口径差Δ2rを10nmとし、傾斜壁の傾斜角θgを65°~90°の間で変えた場合を示している。
 図7Aは波数[2π/a]に対する規格化周波数a/λを示し、図7Bは波長[μm]に対する群屈折率を示し、図7Cは波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図7Dは波長[μm]に対する放射比率Pupper/Plowerを示している。図7Eは断面形状を示している。
 図7Dの放射比率の特性によれば、傾斜角θgが65°~87°であるときに2.5:1以上の比率が得られる。
 光偏向デバイスの放射光ビームは、一方向放射の要請から高い放射比率の特性が求められると共に、導波路を伝搬するスローライトを徐々に放射して、放射ビームが縦方向(伝搬方向)に分布される必要がある。放射ビームが良好な縦方向分布となるためには、図7Cの放射係数の特性において10~100dB/cmの範囲であることが求められる。
 したがって、放射比率の特性と放射係数の特性との両方の特性を考慮すると、円孔の傾斜角θgが75°~85°の範囲であれば、放射比率が2.5:1以上の高比率で、且つ、放射係数が10~100dB/cmの範囲の放射光ビームが得られる。
 図8,図9A~図9Bは、図7A~図7Eと同様の構造において、傾斜角θgを75°~90°の範囲とした場合について示し、図8の(a)は波数[2π/a]に対する規格化周波数a/λを示し、図8の(b)は波長[μm]に対する群屈折率を示し、図8の(c)は波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図8の(d)は波長[μm]に対する放射比率Pupper/Plowerを示している。図8において、S3はスローライトを広帯域で低分散とするために3列目に施した格子シフト量を表している。この格子シフト量S3は光の放射に関わらないため、格子シフトの有無によって本発明の効果に大きな影響は生じない。
 図8の(d)の放射比率の特性によれば、傾斜角θgが75°~85°であるときにほぼ2:1前後の比率が得られる。
 図9A~図9Bは発光ビームパターン解析(FFP:Far Field Pattern)を示している。図9Aは図5の(d)中のmonitor-Aにおける空気中の開口分布のFFPを示し、図9Aは図5の(d)中のmonitor-Bにおけるクラッド中の開口分布のFFPを示している。
 図9A~図9Bは、傾斜角θgが75~85°の傾斜壁の場合には、放射光ビームはおよそ単峰となるが、傾斜角θgが90°の場合(垂直壁)には放射光ビームは多峰性となることを示している。これは、傾斜角θgが90°の場合には、下方への放射がやや強くなり、厚さ方向の上下方向に放射が生じるため、下方に放射された光が基板で反射された反射光によって、放射光ビームが双方性となって多峰性を呈するためである。
 なお、図9A~図9Bのkは光の波数を表し、これを変えるということは光の波長を変えること、あるいは進行方向の光の偏向角度を変えることに相当する。光偏向器では、この波数kの変化が少ないことが望ましい。
  (b)非対称形状を大径の円孔に適用した形態例
 図10A~図10EはΔ2r二重周期変調及びV字形状配列の格子配列において、大径の円孔の側壁が傾斜壁である形態例を示している。図10A~図10Eに示す各特性データは、Δ2r二重周期の直径の口径差Δ2rを10nmとし、傾斜壁の傾斜角θgを60°~90°の間で変えた場合である。
 図10Aは波数[2π/a]に対する規格化周波数a/λを示し、図10Bは波長[μm]に対する群屈折率を示し、図10Cは波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図10Dは波長[μm]に対する放射比率Pupper/Plowerを示している。図10Eは断面形状を示している。
 図10Dの放射比率の特性によれば、傾斜角θgが60°~75°であるときに上下の放射を偏らせることができるが、小径の円孔側壁を傾斜壁した場合と比較して放射の偏りの効果は小さい。
 また、放射係数が10~100dB/cmとなる条件を満たす傾斜角θgは75°~80°である。80°の傾斜角における放射比率はほとんど1:1であり、上下から放射される光パワーは同程度となるため、上下方向から同程度の光が放射されることが求められる用途への適用に適している。
  (c)非対称形状を小径と大径の両方の円孔に適用した形態例
 図11A~図11EはΔ2r二重周期変調及びV字形状配列の格子配列において、小径と大径の円孔の側壁が傾斜壁である形態例を示している。図11A~図11Eに示す各特性データは、Δ2r二重周期の直径の口径差Δ2rを10nmとし、傾斜壁の傾斜角θgを60°~90°の間で変えた場合である。
 図11Aは波数[2π/a]に対する規格化周波数a/λを示し、図11Bは波長[μm]に対する群屈折率を示し、図11Cは波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図11Dは波長[μm]に対する放射比率Pupper/Plowerを示している。図11Eは断面形状を示している。
 図11Dの放射比率の特性によれば、傾斜角θgが60°~90°の範囲において、放射比率は1以下であり、主に下方に向かって放射される。
 また、放射係数が10~100dB/cmとなる条件を満たす傾斜角θgは70°~80°である。この傾斜角では、上方向に対して下方向に2倍の放射が得られることから、下方向に放射に適用することができる。また、非対称形状を上下で反転させ、開口部の径が小さい側を上方に向けた構成とすることによって、上方向に対する放射効率を高めることができる。
 5.1b:Δ2r二重周期変調、横一列配列、傾斜壁の形態
 以下、Δ2r二重周期変調及び横一列配列の格子配列において、非対称な断面形状の側壁が傾斜壁である形態について、非対称形状を小径の円孔に適用した例を示す。
 図12はΔ2r二重周期変調及び横一列配列の格子配列において、小径の円孔の側壁が傾斜壁である形態例を示している。なお、横一列配列では、各円孔を三角配置すると共に、小径及び大径を、伝搬方向と直交する横方向に配置している。
 図12の(a)は断面図であり、図12の(b)は模式的な斜視図である。図12の形態例では、横一列配列した格子配列において、異なる直径の円孔の内、小径の円孔のみについて側壁を傾斜壁として断面形状を非対称としている。
 図13,図14A~図14Bは、図12と同様の構造において、傾斜角θgを75°~90°の範囲とした場合について示し、図13の(a)は波数[2π/a]に対する規格化周波数a/λを示し、図13の(b)は波長[μm]に対する群屈折率を示し、図13の(c)は波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図13の(d)は波長[μm]に対する放射比率Pupper/Plowerを示している。図13において、S3はスローライトを広帯域で低分散とするために3列目に施した格子シフト量を表している。この格子シフト量S3は光の放射に関わらないため、格子シフトの有無によって本発明の効果に大きな影響は生じない。
 図13の(d)の放射比率の特性によれば、傾斜角θgが75°~85°であるときにほぼ2:1前後の比率が得られる。
 図14A~図14Bは発光ビームパターン解析(FFP:Far Field Pattern)を示している。図14Aは図5の(d)中のmonitor-Aにおける空気中の開口分布のFFPを示し、図14Bは図5の(d)中のmonitor-Bにおけるクラッド中の開口分布のFFPを示している。
 図14A~図14Bは、傾斜角θgが75~85°の傾斜壁の場合には、放射光ビームは傾斜角θgが90°の場合(垂直壁)である場合と比較して単峰性が強い傾向を示す。なお、図14A~図14Bのkは光の波数を表し、波数kの変更は、光の波長の変更、あるいは進行方向の光の偏向角度の変更に相当する。
 図7A~図9Bで示したV字形状配列に代えて通常の横一列配列とした形態は、V字形状配列の場合と比較して放射光ビームの単峰性が低く、双峰性の傾向が強くなる。
 5.1c:Δ2r二重周期変調、V字形状配列、段状壁の形態
 以下、Δ2r二重周期変調及びV字形状配列の格子配列において、非対称な断面形状の側壁が段状壁である形態の例を示す。
 図15はΔ2r二重周期変調及びV字形状配列の格子配列において、一列から10列の小径の円孔の側壁が段状壁である形態例を示している。ここでは、段状壁として、2つの垂直壁の間が水平壁で連結された階段状の非対称な断面形状の例を示し、低屈折率部位は直径が異なる2つ円筒を厚さ方向に組み合わせた形状である。
 図15の(a)は断面図であり、図15の(b)は模式的な斜視図である。図15の形態例では、V字形状配列した格子配列において、直径を異にする小径と大径の円孔の内、小径の円孔のみについて側壁を段状壁として断面形状を非対称としている。
 図16A~図16Eは、図15と同様の構造において、非対称な段状の側壁の一例及び特性データを示している。この非対称な段状側壁は、小径の円孔において、開口径が小さい側の直径を205nm、開口径が大きい側の直径を215nmとする。段状の非対称な側壁において、開口径が小さい側の垂直壁の厚さ方向の深さtgとし、tgが0nm~190nmの場合を示している。
 図16Aは波数[2π/a]に対する規格化周波数a/λを示し、図16Bは波長[μm]に対する群屈折率を示し、図16Cは波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図16Dは波長[μm]に対する放射比率Pupper/Plowerを示している。図16Eは断面形状を示している。図16Dの放射比率の特性によれば、深さtgが70nm~190nmであるときほぼ2:1以上の比率が得られる。
 図17A~図17Eは、断面形状が段状な構造において、小径の円孔を傾斜壁と垂直壁との組み合わせで構成する例である。小径の円孔について、厚さ方向の一方の側(上側)を傾斜角θgのロート形状の傾斜壁として、他方の側(下側)を円筒状の垂直壁として段状の断面形状とする。ここでは、傾斜壁の深さを70nmとする場合を示している。
 図17Aは波数[2π/a]に対する規格化周波数a/λを示し、図17Bは波長[μm]に対する群屈折率を示し、図17Cは波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図17Dは波長[μm]に対する放射比率Pupper/Plowerを示している。図17Eは断面形状を示している。
 図17Dの放射比率の特性によれば、傾斜角θgが50°~85°であるときほぼ1.5:1以上の比率が得られ、さらに、傾斜角θgが65°~80°であるときはほぼ2:1以上の比率が得られる。
 5.2:Δa二重周期変調(1列目)、V字形状配列、傾斜壁の形態
 以下、V字形状配列の格子配列において、1列目において一方の周期配列を他方の周期配列に対して位置ずれさせ、長短の格子ピッチを繰り返させてΔa二重周期変調とし、さらに、Δa二重周期変調の一方の周期配列の円孔について、非対称な断面形状の側壁を傾斜壁とする形態例を示す。
 図18は、導波路に近い1列目のみについてΔa二重周期変調を行って長短の格子ピッチの繰り返しにより円孔を配列し、さらに、1列目において、位置をずらした円孔のみ又は位置をずらさなかった円孔のみの側壁を傾斜壁とする。図18の(a)は断面図であり、図18の(b)は模式的な斜視図である。図18の形態例では、V字形状配列した格子配列において、1列目に長短の格子ピッチで配列された同径の円孔の内、一方の周期配列の円孔のみについて側壁を傾斜壁として断面形状を非対称としている。
 図19,図20A~図20Bは、図18と同様の構造において、傾斜角θgを75°~90°の範囲とした場合について示し、図19の(a)は波数[2π/a]に対する規格化周波数a/λを示し、図19の(b)は波長[μm]に対する群屈折率を示し、図19の(c)は波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図19の(d)は波長[μm]に対する放射比率Pupper/Plowerを示している。
 図19の(d)の放射比率の特性によれば、傾斜角θgが75°~85°であるときにほぼ1:1以上の比率が得られる。
 図20A~図20Bは発光ビームパターン解析(FFP:Far Field Pattern)を示している。図20Aは図5の(d)中のmonitor-Aにおける空気中の開口分布のFFPを示し、図20Bは図5の(d)中のmonitor-Bにおけるクラッド中の開口分布のFFPを示している。
 図20A~図20Bによれば、傾斜角θgが75~85°の傾斜壁の場合には、放射光ビームは傾斜角θgが90°の場合(垂直壁)である場合と比較して単峰性の傾向を示す。なお、図20A~図20Bのkは光の波数を表し、これを変えるということは光の波長を変えている、あるいは進行方向の光の偏向角度を変えていることに相当する。
 5.3:非対称による放射の寄与範囲
 次に、二重周期変調したフォトニクス導波路に対して傾斜壁によって非対称な断面形状を設けた構成において、放射に寄与する配列の範囲について説明する。
 図21は、格子配列の1列~10列を二重周期変調し、小径の円孔の側壁を傾斜壁として非対称な断面形状とした場合の放射成分の強度分布を示している。
 図21の(a),(b)は、V字形状配列の格子配列において1列~10列をΔ2r二重周期変調し、傾斜角θgを垂直壁に相当する90°の場合、及び傾斜角θgを80°とした場合を示し、図21の(c),(d)は、通常の横一列配列の格子配列において1列~10列をΔ2r二重周期変調し、傾斜角θgを垂直壁に相当する90°とした場合、及び傾斜角θgを80°とした場合を示し、図21の(e),(f)は、格子配列において1列目だけをΔa二重周期変調し、傾斜角θgを垂直壁に相当する90°とした場合、及び傾斜角θgを80°とした場合を示している。
 図21の放射成分の電界強度分布は、放射ビームの強度を逆フーリエ変換し、導波路上のモードパターンに変換したものである。このモードパターンは、モードの中で放射ビームに寄与する成分が何れにあるかを判定する指標となる。図21の(a)~(f)のいずれの場合も中央の導波路から外側に円孔の直線列で3列程度の範囲までモードパターンが存在しており、その範囲まで二重周期変調が有効に働くことを表している。なお、図21において、波数kが0.39と0.41であるモードパターンは光偏向器として使用範囲外であるため、光偏向器としては、波数kが0.43~と0.49のモードパターンが有意である。
 したがって、図21の(a)~(f)の各放射成分の電界強度分布によれば、側壁の傾斜角θgによらず、導波路を形成する線状欠陥から3列目までの伝搬方向に沿った直線列が放射に寄与する。
[6.単峰性]
 以下、低屈折率部位の厚さ方向に対して非対称な断面形状による放射光ビームのビーム形状について、Δ2r二重周期変調とΔa二重周期変調の各場合について説明する。
 6a:Δ2r二重周期変調
 図22は、円孔の格子配列において、種々の円孔列に対してΔ2r二重周期変調を導入し、かつ小径の円孔の側壁の傾斜角θgを85°で傾斜させたときのビームパターン(規格化された放射光の強度)を示している。図22はΔ2r二重周期変調を導入する列として、(a)1列目のみ、(b)2列目のみ、(c)3列目のみ、(d)1列目~3列目、(e)2列目及び3列目、(f)1列目~5列目、(g)1列目及び3列目、(h)1列目及び2列目、(i)1列目及び3列目~5列目の各例を示している。図22の(a)~(i)において、左方の二つは空気中の開口分布を示し、右方の二つはクラッド中の開口分布を示している。また、図22の(a)~(i)では、規格化された放射光の強度を図5中のz方向とx方向についてそれぞれphi及びthetaで示している。
 なお、図22に示すビームパターンにおいて、上から一つ目及び二つ目の放射条件は光偏向器として使用範囲外であるため、上から3つ目以降のビームパターンが利用可能である。
 これら各例において、枠で囲んだ(b)、(d)、(e)、及び(f)の各例は比較的単峰性が強い放射光ビームを示している。これらの例は、全て2列目の円孔列に二重周期変調を導入した場合である。
 図23は、図22に示した各例について、波長に対する放射比率Pupper/Plowerを示している。図23は、何れの構成についても放射比率は2:1~3:1であり、およそ2倍~3倍の上方への放射が得られることを示している。
 また、図22と図23によれば、2列目の円孔列の二重周期変調を導入することで、ビーム形状を良好としたまま、放射比率を増大して一方向性放射を向上させることができる。
 6b:Δa二重周期変調
 図24は、円孔の格子配列において、種々の円孔列に対してΔa二重周期変調を導入し、かつ小径の円孔の側壁の傾斜角θgを85°としたときのビームパターンを示している。
 図24はΔa二重周期変調を導入する列として、(a)1列目(Δa=-10nm)、(b)1列目(Δa=+10nm)、(c)2列目(Δa=-10nm)、(d)2列目(Δa=+10nm)、(e)3列目(Δa=-10nm)、(f)3列目(Δa=+10nm)、(g)1列目~3列目(Δa=-10nm)、(h)1列目~3列目(Δa=+10nm)、(i)1列目及び2列目(Δa=-10nm)、(j)1列目及び2列目(Δa=+10nm)、(k)1列目及び3列目(Δa=+10nm)、(l)2列目及び3列目(Δa=+10nm)の各例を示している。
 図24の(a)~(l)において、左方の二つは空気中の開口分布を示し、右方の二つはクラッド中の開口分布を示し、Δaのシフト方向は伝搬方向を正としている。また、図24の(a)~(i)では、規格化された放射光の強度を図5中のz方向とx方向についてそれぞれ φ(phi) 及び θ(theta) で示している。なお、図24に示すビームパターンにおいて、上から一つ目及び2つ目の放射条件は光偏向器として使用範囲外であるため、上から3つ目以降のビームパターンが利用可能である。
 これら各例において、枠で囲んだ(c)、及び(d)の2列目のみ二重周期変調を導入した例は波数依存が少ない単峰性の放射光ビームに近いことを示している。
[7.偶数列に導入する二重周期的な調整による多重周期調整]
 以下、前記したΔ2r二重周期調整あるいはΔa二重周期調整に加えて、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期調整について説明する。
 7a.:Δ2r二重周期変調、逆V字形状配列、偶数列に導入する二重周期の形態
 図25,図26A~図26BはΔ2r二重周期変調及び逆V字形状配列の格子配列において、小径の円孔の側壁を傾斜角θgが80°の傾斜壁とし、さらに伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示している。
 図25の(a)は波数[2π/a]に対する規格化周波数a/λを示し、図25の(b)は波長[μm]に対する群屈折率を示し、図25の(c)は波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図25の(d)は波長[μm]に対する放射比率Pupper/Plowerを示している。
 図26A~図26Bは発光ビームパターン解析(FFP:Far Field Pattern)を示している。図26Aは図5の(d)中のmonitor-Aにおける空気中の開口分布のFFPを示し、図26Bは図5の(d)中のmonitor-Bにおけるクラッド中の開口分布のFFPを示している。
 多重周期調整は、二重周期調整に加えて、さらに横一列配列される円孔において、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に拡大又は縮小する周期調整を行う。
 図25に示す格子配列の二重周期調整では、小径の円孔と大径の円孔を逆V字形状配列し、小径の円孔の側壁を傾斜壁として放射光ビームに一方向の放射性を与えている。この格子配列において、伝搬方向に対して直交する横一列方向に並ぶ小径及び大径の円孔の並びについて、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に拡大又は縮小する第3の周期調整を施す。これにより、二重周期調整に加えて、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期調整を行う。
 図25に示す格子配列において、横一列方向に並ぶ小径及び大径の円孔の並びの内、円孔の孔径を拡大又は縮小した円孔について円孔の円周を太線で示している。
 なお、格子配列において、同径の円孔の格子定数をaとしたとき、伝搬方向に沿った偶数番目の格子列の格子定位数はフォトニック結晶のオリジナルな格子定数aと一致する。
 図25の(d)の放射比率の特性によれば、図8の(d)に示した側壁を傾斜壁としたときの放射比率と場合と同様に、傾斜角θgが75°~85°であるときにほぼ2:1前後の比率が得られる。
 図26A~図26Bは、調整前の小径及び大径の直径をそれぞれ205nm、215nmとし、径調整を行う大径の円孔の孔径2rgを200nm~250nmとしたときの放射光ビームを示している。
 図26A~図26Bは、偶数番目の格子列の二重周期的な孔径調整を行う場合は、側壁が傾斜壁であって偶数番目の二重周期的な孔径調整を行わない場合(図8に示す例)と比較して、放射光ビームのビーム形状が単峰化されることを示している。
 また、図25の(c)の放射係数(散乱損失)と、図25の(d)の放射比率Pupper/Plowerは、波長変化に対して放射係数を保持したまま、上下の放射比率の調整が可能であることを示している。
 7b.:Δ2r二重周期変調、通常の横一列配列、偶数番目の格子列の開口径の二重周期の形態
 図27,図28A,図28BはΔ2r二重周期変調及び通常の横一列配列の格子配列において、小径の円孔の側壁を傾斜角θgが80°の傾斜壁としさらに伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期変調の例を示している。Δ2rは10nmとしている。
 図27(a)は波数[2π/a]に対する規格化周波数a/λを示し、図27(b)は波長[μm]に対する群屈折率を示し、図27(c)は波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図27(d)は波長[μm]に対する放射比率Pupper/Plowerを示している。
 図28A,図28Bは発光ビームパターン解析(FFP:Far Field Pattern)を示している。図28Aは図5(d)中のmonitor-Aにおける空気中の開口分布のFFPを示し、図28Bは図5(d)中のmonitor-Bにおけるクラッド中の開口分布のFFPを示している。
 多重周期調整は、二重周期調整に加えて、さらに、横一列配列される円孔において、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に拡大又は縮小する周期調整を行う。
 図27に示す格子配列の二重周期調整では、小径の円孔と大径の円孔を通常の横一列配列し、小径の円孔の側壁を傾斜壁として放射光ビームに一方向の放射性を与えている。この格子配列において、伝搬方向に対して直交する横方向に並ぶ小径及び大径の円孔の並びについて、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に拡大又は縮小する第3の周期調整を施す。これにより、二重周期調整に加えて、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期調整を行う。
 図27に示す格子配列において、横一列に並ぶ小径及び大径の円孔の並びの内、円孔の孔径を拡大又は縮小した円孔について円孔の円周を太線で示している。
 なお、格子配列において、同径の円孔の格子定数をaとしたとき、伝搬方向に沿った偶数番目の格子列の格子周期は格子定数aと一致しする。
 図27の(c)の放射係数(散乱損失)と、図27の(d)の放射比率 Pupper/Plower は、波長変化に対して放射係数を保持したまま、上下の放射比率の調整が可能であることを示している。
 図28A~図28Bは、調整前の小径及び大径の直径をそれぞれ205nm、215nmと、径調整を行う大径の円孔の孔径2rgを200nm~250nmとしたときの放射光ビームを示している。
 7c.:Δa二重周期変調、1列目、偶数番目の格子列の開口径の二重周期的な形態
 図29,図30A~図30BはΔa二重周期変調及び通常の横一列配列の格子配列において、1列目のみをシフトさせ、シフトさせた円孔の側壁を傾斜角θgが80°の傾斜壁とし、さらに伝搬方向に沿った偶数番目の格子列の格子周期を二重周期的に調整する多重周期変調の例を示している。
 図29の(a)は波数[2π/a]に対する規格化周波数a/λを示し、図29の(b)は波長[μm]に対する群屈折率を示し、図29の(c)は波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図29の(d)は波長[μm]に対する放射比率Pupper/Plowerを示している。
 図30A~図30Bは発光ビームパターン解析(FFP:Far Field Pattern)を示している。図30Aは図5の(d)中のmonitor-Aにおける空気中の開口分布のFFPを示し、図30Bは図5の(d)中のmonitor-Bにおけるクラッド中の開口分布のFFPを示している。
 多重周期調整は、導波路から1列目の円孔の直線配列をΔa分だけシフトさせる二重周期調整に加えて、さらに、横一列配列される円孔において、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に拡大又は縮小する周期調整を行う。
 図29に示す格子配列の二重周期調整では、小径の円孔と大径の円孔を配列すると共に通常の横一列配列し、小径の円孔の側壁を傾斜壁として放射光ビームに一方向の放射性を与えている。この格子配列において、伝搬方向に対して直交する横方向に並ぶ小径及び大径の円孔の並びについて、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に拡大又は縮小する第3の周期調整を施す。これにより、二重周期調整に加えて、伝搬方向に沿った偶数番目の格子列の開口径を二重周期的に調整する多重周期調整を行う。
 図29に示す格子配列において、横一列に並ぶ小径及び大径の円孔の並びの内、円孔の孔径を拡大又は縮小した円孔について円孔の円周を太線で示している。
 なお、格子配列において、同径の円孔の格子定数をaとしたとき、伝搬方向沿った偶数番目の格子列の格子周期は格子定数aと一致する。
 図29の(c)の放射係数(散乱損失)と、図29の(d)の放射比率 Pupper/Plower は、波長変化に対して放射係数を保持したまま、上下の放射比率の調整が可能であることを示している。
 図30A~図30Bは、調整前の小径及び大径の直径をそれぞれ205nm、215nmと、径調整を行う大径の円孔の孔径2rgを200nm~250nmとしたときの放射光ビームを示している。
 7d.:Δa二重周期変調、一列目、偶数列の円孔を貫く二重周期的な回折格子(浅堀回折格子)
 図31,図32A~図32BはΔa二重周期変調及び通常の横一列配列の格子配列において、1列目のみをΔa分だけシフトさせることで二重周期調整を行い、さらに伝搬方向に沿った偶数番目の格子列の二重周期的な円孔を貫く浅堀回折格子によって周期調整を行って多重周期変調する例を示している。
 浅堀回折格子は、格子配列を構成する高屈折率部材及び低屈折率部位の上方面をエッチングによって浅く切削することで回折格子を構成する。図31は、浅堀回折格子の2つのモデルModel-A,Model-Bを示している。Model-Aは、回折格子の伝搬方向の一列の幅が円孔の横一列分に相当し、回折格子の各列は二重周期的な間隔で配置される構成である。また、Model-Bは、回折格子の伝搬方向の一列の幅が円孔の横二列分に相当し、回折格子の各列は二重周期的な間隔で配置される構成である。Model-AとModel-Bは切削パターンを反転させた関係にある。
 Model-A及びModel-Bにおいて、濃く示された部分は浅く掘られた部分を示している。切削の深さは、例えば70nmとしている。また、ここでは、Δa二重周期調整のシフトΔaは10nmとしている。
 図31に示す格子配列の多重周期調整は、導波路から1列目の円孔の直線配列をΔa分だけシフトさせる二重周期調整に加えて、さらに、伝搬方向に沿った偶数番目の格子列の二重周期的な円孔を貫く浅堀回折格子によって周期調整を行う。これにより、二重周期調整に加えて、沿った偶数番目の格子列の二重周期的な円孔を貫く回折格子による多重周期調整を行う。
 図31の(a)は波数[2π/a]に対する規格化周波数a/λを示し、図31の(b)は波長[μm]に対する群屈折率を示し、図31の(c)は波長[μm]に対する放射係数(散乱損失)[dB/cm]を示し、図31の(d)は波長[μm]に対する放射比率 Pupper/Plower を示している。
 図32A~図32Bは発光ビームパターン解析(FFP:Far Field Pattern)を示している。図32Aは図5の(d)中のmonitor-Aにおける空気中の開口分布のFFPを示し、図32Bは図5の(d)中のmonitor-Bにおけるクラッド中の開口分布のFFPを示している。図32A,図32Bにおいて、左方は空気中の開口分布を示し、右方はクラッド中の開口分布を示している。
 図31の(c)の放射係数(散乱損失)と、図31の(d)の放射比率 Pupper/Plower は、波長変化に対して放射係数を保持したまま、上下の放射比率の調整が可能であることを示している。
 図31の(d)の放射比率によれば、Model-AとModel-Bとは切削パターンの反転によって放射比率が反転することを示し、Model-Bは裏面反射を行うことを示している。また、図32A~図32Bの発光ビームパターンによれば、Model-Bの裏面反射においても良好な単峰ビームが得られることを示している。
[8.浅堀回折格子]
 図33A~図35を用いて浅堀回折格子の例を説明する。
 図33A~図33Bは、浅堀回折格子を示し、斜線部分で示す表面を浅く切削して浅堀部分が形成される。図33A~図33Bでは、浅堀部分を塗りつぶした模様字で示し、浅堀していない部分を斜線の模様字で示している。図33Aと図33Bとは浅堀部分が反転した状態を示している。図34は図33Aの浅堀回折格子の斜視図である。
 図34は伝搬方向に対して直交する横方向に浅堀された浅堀回折格子を示し、図35は伝搬方向に対して斜め方向に浅堀された浅堀回折格子を示している。
 なお、本発明は前記各実施の形態に限定されるものではない。本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
 上記した実施例では、光偏向デバイスのフォトニック結晶導波路を構成する高屈折率部材としてSiを想定して近赤外光の波長域の光を用いているが、光偏向デバイスを構成する高屈折率部材として可視光材料へ適用することができる。また、本発明の光偏向デバイスは、自動車、ドローン、ロボットなどに搭載することができ、パソコンやスマートフォンに搭載して周囲環境を手軽に取り込む3Dスキャナ、監視システム、光交換やデータセンター用の空間マトリックス光スイッチなどに適用することができる。
 この出願は、2017年8月24日に出願された日本出願特願2017-160825を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 a  格子定数
 k  波数
 Δa  シフト
 Δ2r  口径差
 θg  傾斜角
 1  光偏向デバイス
 2  フォトニック結晶導波路
 2r1  直径
 2r2  直径
 2rg  孔径
 3  格子配列
 10  高屈折率部材
 11  低屈折率部位
 12  導波路コア
 13  クラッド
 14 BOX
 15  基板
 20  円孔
 21  小径の円孔
 22  大径の円孔

Claims (9)

  1.  高屈折率部材の面内に低屈折率部位が周期的に配列され導波路を構成する格子配列を備えるフォトニック結晶導波路において、
     前記格子配列は、前記低屈折率部位の周期配列が異なる第1の周期配列と第2の周期配列の二重周期構造を備え、
     前記二重周期構造の少なくとも何れか一方の周期配列において、前記低屈折率部位は厚さ方向に対して非対称な断面形状を備える、光偏向デバイス。
  2.  前記非対称な断面形状の低屈折率部位の側壁は、それぞれ厚さ方向に対して、
     傾斜壁、又は傾斜壁、垂直壁、及び水平壁の内少なくとも2つの壁部から成る段状壁の何れかの壁形状である、請求項1に記載の光偏向デバイス。
  3.  前記二重周期構造は、
     前記第1の周期配列及び第2の周期配列の各低屈折率部位は互いに径を異にする円孔が配列され、
     前記円孔は、前記各周期配列の導波路の伝搬方向に対して所定間隔で配列され、
     前記第1の周期配列の円孔と前記第2の周期配列の円孔は、導波路の伝搬方向に沿った列において交互に配列され構成であり、
     径を異にする大径と小径の円孔において、小径の円孔は非対称な断面形状を備える、請求項1又は2に記載の光偏向デバイス。
  4.  前記二重周期構造は、
     前記第1の周期配列及び第2の周期配列の各低屈折率部位は互いに径を異にする円孔が配列され、
     前記円孔は、前記各周期配列の導波路の伝搬方向に対して所定間隔で配列され、
     前記第1の周期配列の円孔と前記第2の周期配列の円孔は、導波路の伝搬方向に沿った列において交互に配列され構成であり、
     径を異にする大径と小径の円孔において、大径の円孔は非対称な断面形状を備える、請求項1又は2に記載の光偏向デバイス。
  5.  前記二重周期構造は、
     前記第1の周期配列及び第2の周期配列の各低屈折率部位は互いに径を異にする円孔が配列され、
     前記円孔は、前記各周期配列の導波路の伝搬方向に対して所定間隔で配列され、
     前記第1の周期配列の円孔と前記第2の周期配列の円孔は、導波路の伝搬方向に沿った列において交互に配列され構成であり、
     径を異にする大径と小径の円孔は非対称な断面形状を備える、請求項1又は2に記載の光偏向デバイス。
  6.  前記二重周期構造は、
     前記第1の周期配列及び第2の周期配列の各低屈折率部位は互いに径を異にする円孔が、前記各周期配列の導波路の伝搬方向に対して所定間隔で配列され、
     前記第1の周期配列の円孔と前記第2の周期配列の円孔は、導波路の伝搬方向に沿った同列上において交互に配列され構成であり、
     第1の周期配列及び第2の周期配列の内、何れか一方の周期配列の円孔は非対称な断面形状を備える、請求項1又は2に記載の光偏向デバイス。
  7.  前記非対称な断面形状を備える円孔の周期配列は、導波路の伝搬方向に沿った列において、円孔が配列されない線欠陥から2列目の周期配列である、請求項3又は6に記載の光偏向デバイス。
  8.  前記格子配列が備える円孔において、導波路の伝搬方向に沿った偶数番目の格子列の二重周期的な円孔は、他の位置にある円孔と比較して拡大又は縮小した径を有する、請求項3又は6に記載の光偏向デバイス。
  9.  前記垂直壁面は、非対称な断面形状を有する複数の低屈折率部位及び高屈折率部材の表面の一部が除去された溝の側壁である、請求項2に記載の光偏向デバイス。
PCT/JP2018/031052 2017-08-24 2018-08-22 光偏向デバイス WO2019039526A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/641,217 US11067746B2 (en) 2017-08-24 2018-08-22 Light deflection device
EP18848805.0A EP3674760B1 (en) 2018-08-22 Light deflection device
JP2019537667A JP7134443B2 (ja) 2017-08-24 2018-08-22 光偏向デバイス
CN201880062107.5A CN111164477B (zh) 2017-08-24 2018-08-22 光偏转装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-160825 2017-08-24
JP2017160825 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039526A1 true WO2019039526A1 (ja) 2019-02-28

Family

ID=65439109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031052 WO2019039526A1 (ja) 2017-08-24 2018-08-22 光偏向デバイス

Country Status (4)

Country Link
US (1) US11067746B2 (ja)
JP (1) JP7134443B2 (ja)
CN (1) CN111164477B (ja)
WO (1) WO2019039526A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024073151A1 (en) * 2022-09-30 2024-04-04 Purdue Research Foundation Optical phased array gratings based on extreme skin-depth metamaterial waveguides

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272555A (ja) 2000-03-24 2001-10-05 Kansai Tlo Kk 2次元フォトニック結晶導波路、および波長分波器
WO2003081303A1 (fr) * 2002-03-27 2003-10-02 Mitsubishi Denki Kabushiki Kaisha Procede de fabrication d'element optique
JP2004294517A (ja) 2003-03-25 2004-10-21 Alps Electric Co Ltd 2次元フォトニック結晶スラブ及びこれを用いた光デバイス
JP2005208180A (ja) * 2004-01-21 2005-08-04 Nikon Corp 光学素子の製造方法
JP2006184618A (ja) * 2004-12-28 2006-07-13 Kyoto Univ 2次元フォトニック結晶及びそれを用いた光機能素子
JP2008511861A (ja) * 2004-08-30 2008-04-17 エナージー コンバーション デバイセス インコーポレイテッド 対称なモード場を有する非対称フォトニック結晶導波素子
JP2008310065A (ja) * 2007-06-15 2008-12-25 Ricoh Co Ltd 光制御素子
US20170146738A1 (en) * 2015-11-24 2017-05-25 Omega Optics, Inc. Subwavelength Photonic Crystal Waveguide in Optical Systems
WO2017126386A1 (ja) 2016-01-22 2017-07-27 国立大学法人横浜国立大学 光偏向デバイスおよびライダー装置
JP2017160825A (ja) 2016-03-08 2017-09-14 三菱重工業株式会社 動弁装置及びクロスヘッド式内燃機関

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822784B2 (en) * 2001-03-22 2004-11-23 Matsushita Electric Works, Ltd Light-beam deflecting device with photonic crystal, optical switch using the same, and light-beam deflecting method
JP4219668B2 (ja) * 2001-12-13 2009-02-04 パナソニック株式会社 フォトニック結晶の作製方法及び光デバイス作製方法
JP2004258169A (ja) * 2003-02-25 2004-09-16 Alps Electric Co Ltd 光偏向素子及びそれを用いた光スイッチ
JP4534036B2 (ja) * 2004-09-08 2010-09-01 国立大学法人京都大学 光ヘッド及び光記録再生装置
US7630604B2 (en) * 2006-10-26 2009-12-08 The Board Of Trustees Of The Leland Stanford Junior University Dipole induced transparency drop-filter cavity-waveguide system
US9535308B2 (en) * 2013-09-25 2017-01-03 Oracle International Corporation Enhanced optical modulation using slow light
WO2016008771A1 (en) * 2014-07-14 2016-01-21 University Of Copenhagen Optical device having efficient light-matter interface for quantum simulations
CN104252019B (zh) * 2014-10-15 2017-04-19 山东大学 一种二维组合型光子晶体及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272555A (ja) 2000-03-24 2001-10-05 Kansai Tlo Kk 2次元フォトニック結晶導波路、および波長分波器
WO2003081303A1 (fr) * 2002-03-27 2003-10-02 Mitsubishi Denki Kabushiki Kaisha Procede de fabrication d'element optique
JP2004294517A (ja) 2003-03-25 2004-10-21 Alps Electric Co Ltd 2次元フォトニック結晶スラブ及びこれを用いた光デバイス
JP2005208180A (ja) * 2004-01-21 2005-08-04 Nikon Corp 光学素子の製造方法
JP2008511861A (ja) * 2004-08-30 2008-04-17 エナージー コンバーション デバイセス インコーポレイテッド 対称なモード場を有する非対称フォトニック結晶導波素子
JP2006184618A (ja) * 2004-12-28 2006-07-13 Kyoto Univ 2次元フォトニック結晶及びそれを用いた光機能素子
JP2008310065A (ja) * 2007-06-15 2008-12-25 Ricoh Co Ltd 光制御素子
US20170146738A1 (en) * 2015-11-24 2017-05-25 Omega Optics, Inc. Subwavelength Photonic Crystal Waveguide in Optical Systems
WO2017126386A1 (ja) 2016-01-22 2017-07-27 国立大学法人横浜国立大学 光偏向デバイスおよびライダー装置
JP2017160825A (ja) 2016-03-08 2017-09-14 三菱重工業株式会社 動弁装置及びクロスヘッド式内燃機関

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674760A4

Also Published As

Publication number Publication date
US20200225411A1 (en) 2020-07-16
CN111164477A (zh) 2020-05-15
JPWO2019039526A1 (ja) 2020-10-15
EP3674760A1 (en) 2020-07-01
JP7134443B2 (ja) 2022-09-12
EP3674760A4 (en) 2021-04-21
CN111164477B (zh) 2022-07-05
US11067746B2 (en) 2021-07-20

Similar Documents

Publication Publication Date Title
JP6305056B2 (ja) 2次元フォトニック結晶面発光レーザ
US8467641B2 (en) System and method for using planar device to generate and steer light beam
US9939577B2 (en) Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
JP3809167B2 (ja) モード変換用フォトニック結晶構造
CN111679529B (zh) 可用于光学相控阵发射单元的长距离亚波长光栅结构
KR101826743B1 (ko) 광회절각 음향광학 소자, 및 상기 음향광학 소자를 이용한 광 스캐너, 광 변조기 및 디스플레이 장치
JP7076822B2 (ja) 光受信器アレイ、及びライダー装置
US20220278505A1 (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
JP6942333B2 (ja) 光偏向デバイス、及びライダー装置
JP2002365453A (ja) 導波路
KR102434808B1 (ko) 이중격자 구조를 갖는 광도파로 방식의 광위상 배열 안테나 및 이를 포함하는 라이다
JP2006276388A (ja) フォトニック結晶スラブ及びフォトニック結晶導波路と光デバイス
JP7134443B2 (ja) 光偏向デバイス
US7336879B2 (en) Two-dimensional photonic crystal slab, two-dimensional photonic crystal waveguide, and optical device
JP6883828B2 (ja) 光偏向デバイス
US20230350216A1 (en) Optical device
US20140002876A1 (en) Method of laser illumination with reduced speckling
EP3674760B1 (en) Light deflection device
JP2003156642A (ja) 光導波路およびその製造方法
JP6945816B2 (ja) 光偏向デバイス
KR102223750B1 (ko) 광의 위상을 가변할 수 있는 배열 안테나
WO2020079862A1 (ja) 光合波器、光源モジュール、2次元光走査装置及び画像投影装置
TWI803096B (zh) 具有全域模式混合器的背光件、多視像背光件和其方法
US20220171253A1 (en) Optical scanner
TW202346928A (zh) 光學相位陣列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018848805

Country of ref document: EP

Effective date: 20200324