WO2017126386A1 - 光偏向デバイスおよびライダー装置 - Google Patents

光偏向デバイスおよびライダー装置 Download PDF

Info

Publication number
WO2017126386A1
WO2017126386A1 PCT/JP2017/000625 JP2017000625W WO2017126386A1 WO 2017126386 A1 WO2017126386 A1 WO 2017126386A1 JP 2017000625 W JP2017000625 W JP 2017000625W WO 2017126386 A1 WO2017126386 A1 WO 2017126386A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
periodic structure
waveguide
optical
refractive index
Prior art date
Application number
PCT/JP2017/000625
Other languages
English (en)
French (fr)
Inventor
馬場 俊彦
小山 二三夫
Original Assignee
国立大学法人横浜国立大学
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学, 国立大学法人東京工業大学 filed Critical 国立大学法人横浜国立大学
Priority to US16/071,895 priority Critical patent/US11079541B2/en
Priority to EP17741266.5A priority patent/EP3407128B1/en
Priority to CN201780012569.1A priority patent/CN108700790B/zh
Priority to JP2017562528A priority patent/JP6879561B2/ja
Publication of WO2017126386A1 publication Critical patent/WO2017126386A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • G02F1/2955Analog deflection from or in an optical waveguide structure] by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating

Definitions

  • the present invention relates to an optical deflection device that controls a traveling direction of light and emits a deflected outgoing beam, and a rider apparatus including the optical deflection device.
  • Light deflection as a beam scan that deflects and sweeps (scans) light in the fields of laser printers, laser displays, lidars used for 3D laser measurements, etc.
  • LIDER Light Detection and Ranging, Laser Imaging Detection and Ranging
  • the device is in use.
  • a configuration using a mechanical mirror As an optical deflection device, a configuration using a mechanical mirror, a configuration using a phase array, a configuration using light leakage from a waveguide, and the like are known.
  • Non-Patent Document 1 The configuration using the phase array utilizes the fact that the direction of the beam changes depending on the phase of the light when a lot of light interferes to form a beam, and a lot of light from the optical waveguide integrated on the substrate is used. And are radiated into the free space from the end face of the waveguide or by a diffraction grating.
  • a waveguide having a multilayer film structure and a waveguide with a diffraction grating As a configuration using light leakage from a waveguide, there are a waveguide having a multilayer film structure and a waveguide with a diffraction grating.
  • a leaky waveguide with a multilayer structure when light propagating through a waveguide sandwiched between multilayer films leaks and is emitted, a light beam is formed by utilizing the fact that the radiation angles at each position are aligned. Yes, the light beam can be scanned by changing the wavelength of light or the refractive index of the waveguide. Further, when the multilayer film is operated at a wavelength close to a condition (slow light condition) where the angular dispersion is large, sensitivity to the wavelength and refractive index is increased, and the beam scan angle can be increased.
  • Non-Patent Document 2 Non-Patent Document 2
  • Patent Document 1 In a waveguide with a diffraction grating, light is gradually leaked from the waveguide by a weak diffraction grating to form a light beam, and the light beam can be scanned by wavelength and waveguide refractive index.
  • the structure using a mechanical mirror generally has a movable part in addition to a large size of several cm square or more.
  • the configuration including the movable part has a problem that the reliability is low and the operation speed is limited to the kHz order.
  • resistance to vibration is necessary, so low reliability is a big problem.
  • the configuration using the phase array and the configuration using light leakage from the waveguide do not have a mechanical movable part, so the problem of the mechanical mirror configuration can be solved. There are points to consider.
  • the phase of each waveguide In the configuration using the phase array, if the phase of each waveguide is slightly disturbed, the formed light beam becomes multi-peak, and the beam quality is greatly deteriorated.
  • the number of waveguides is small, the phase of each waveguide can be corrected.
  • the quality of the light beam is evaluated by the sharpness of the beam, the narrowness of the divergence angle, the number of resolution points, and the like.
  • a large number of waveguides are indispensable for suppressing deterioration of the quality of the light beam, but it is difficult to adjust the phases of the large number of waveguides.
  • Silicon photonics optical integration technology is an optical integration technology that monolithically integrates devices such as optical waveguides, light receiving elements, and optical modulators using Si-based materials on Si (silicon), and III-V group semiconductors are integrated in a hybrid manner. If it does, a light emitting element is also possible. Silicon photonics is an indispensable technology for optical integration technology because of its good compatibility with the Si-CMOS manufacturing process.
  • a leaky waveguide with a multilayer structure makes it easy to adjust the leak rate, so that high beam quality can be obtained and the scan angle can be expanded using Bragg reflection under slow light conditions. There is no consistency with the technology silicon photonics.
  • a waveguide with a diffraction grating can use silicon photonics optical integration technology, but since slow light does not appear, a large beam scan angle cannot be obtained using Bragg reflection under slow light conditions.
  • an optical element such as a lens can be inserted outside to expand the beam scan angle, the beam divergence angle increases at the same time, so the number of resolution points is limited.
  • the number of resolution points is defined by the ratio of the maximum beam scan angle to the beam divergence angle, and is generally used as a figure of merit of the beam deflection device.
  • the beam scan angle is the fluctuation width of the emission angle when the emission beam is swept, and the larger the angle range that the emission angle can take, the larger the beam scan angle can be obtained.
  • the non-mechanical optical deflection device is required to satisfy both the high beam quality and the wide angular range of deflection and the consistency with the optical integration technology of silicon photonics in the light beam.
  • the optical deflection device of the present invention solves the above-mentioned problems, and combines the high beam quality by slow light, the emission angle in a wide angular range of deflection, and the consistency of the optical integration technology by silicon photonics in the device configuration.
  • the purpose is to prepare.
  • the optical deflection device of the present invention is a silicon photonics device having a periodic structure of refractive index, (1) A structure in which the light propagation part where light propagates is a fine structure formed on an optical waveguide layer having a high refractive index medium such as silicon. (2) The fine structure constituting the light propagation part is a slow light.
  • the structure includes two periodic structures, a periodic structure that expresses and a periodic structure that emits light.
  • the micro structure formed on the silicon in (1) makes it possible to form an optical deflection device by applying the optical integration technology of silicon photonics, and emits a periodic structure and light that develops the slow light of (2).
  • the two periodic structures that enable the formation of a light beam with high beam quality and a wide angular range of deflection.
  • the periodic structure of the optical deflection device is (a) A first periodic structure comprising an optical waveguide having a second low refractive index medium with a period a in the first refractive index medium of silicon and having at least one end in the periodic direction as an incident end.
  • the first refractive index medium is provided with a second refractive index medium with a period ⁇ (a ⁇ ⁇ 2a) longer than the period a of the first periodic structure, and an emission part having a side end in the periodic direction as an emission end is configured.
  • Comprising a second periodic structure (c)
  • the arrangement position of the second periodic structure is the peripheral part (tail) of the intensity distribution of light propagating through the optical waveguide part of the first periodic structure.
  • n is an equivalent refractive index of light propagating through the optical waveguide having the first periodic structure
  • is a wavelength near the Bragg wavelength).
  • the emitting part is combined with the spilled component of the slow light of the optical waveguide part to be scattered and diffracted, and gradually radiates upward or obliquely with respect to the traveling direction of the waveguide part.
  • the outgoing beam is radiated from a wide range along the traveling direction of the waveguide, and since the radiation is in phase, it becomes a high-quality sharp light beam.
  • the propagation constant ⁇ greatly changes due to slight changes in the light wavelength ⁇ and the refractive index n of the waveguide.
  • the propagation constant ⁇ of the first periodic structure changes, the coupling condition with the second periodic structure changes, and the angle ⁇ of the outgoing beam changes. Therefore, by changing the propagation constant ⁇ by changing the wavelength ⁇ of light or the refractive index n of the waveguide, the angle ⁇ of the outgoing beam can be changed.
  • the step of the first periodic structure is configured to be larger than the step of the second periodic structure.
  • the step of the periodic structure is the depth direction perpendicular to the traveling direction of the light formed by the periodic structure in the refractive index medium of the periodic structure. Depending on the size of the step, the step of the periodic structure Different in strength of action.
  • the step of the first periodic structure is a hole provided in the photonic crystal when the first periodic structure is formed of a photonic crystal having a periodic hole in the refractive index medium.
  • the step of the second periodic structure is uneven when the second periodic structure is constituted by a diffraction grating in which the refractive index medium is formed with irregularities, and is a photo with periodic holes in the refractive index medium. In the case of a nick crystal, this is the depth of the hole provided in the photonic crystal.
  • step of the first periodic structure By making the step of the first periodic structure larger than the step of the second periodic structure, a slow light is generated in the first periodic structure, and when the leaching component is coupled to the second periodic structure, Light leaks from the second periodic structure at a low speed and is diffracted to be emitted as an outgoing beam.
  • the optical waveguide portion having the first periodic structure is a slow light waveguide
  • the slow light waveguide can be a photonic crystal waveguide composed of a photonic crystal.
  • the diffraction grating of the emission part of the second periodic structure can also be composed of a photonic crystal.
  • the configuration of the photonic crystal waveguide having the first periodic structure can be a plurality of forms.
  • it can be in the form of an air bridge type slow light waveguide having an air layer between it and the clad on the silicon substrate, or in the form of a clad embedded slow light waveguide embedded in the clad.
  • the configuration of the diffraction grating having the second periodic structure can also take a plurality of forms.
  • it may be in the form of a surface diffraction grating, an air bridge type diffraction grating with an air layer, an embedded diffraction grating embedded in a cladding, or a form formed on a silicon substrate.
  • a diffraction grating layer having a different refractive index is provided by sandwiching an air layer between the air bridge type slow light waveguides or between the clad of the clad buried type slow light waveguides.
  • a diffraction grating can be formed.
  • a diffraction grating layer having a different refractive index is embedded in the upper cladding, the upper cladding, or the lower cladding. Can form a diffraction grating.
  • the diffraction grating can be formed by directly engraving the concave-convex shape on the silicon substrate portion in contact with the clad.
  • the arrangement position where the diffraction grating is provided in the photonic crystal can be in a plurality of forms.
  • the diffraction grating may be provided on both sides of the photonic crystal waveguide, or the diffraction grating may be provided on the upper surface of the photonic crystal waveguide.
  • the photonic crystal waveguide that constitutes the slow light waveguide can be composed of a double-period structure having two types of periods, a short period and a long period, in the periodic structure of the photonic crystal.
  • a slow light waveguide having a first periodic structure is formed by increasing the step, and a diffraction grating having a second periodic structure is formed by decreasing the step of the periodic structure having a long period.
  • the first and second periodic structures may be a one-dimensional photonic crystal waveguide having a linear periodic structure, or a two-dimensional photonic crystal waveguide having a linear defect in a planar periodic structure. it can.
  • the reflection unit can increase the amount of light in the outgoing light by reflecting the outgoing light directed in the inner direction out of the outgoing light emitted from the emitting unit toward the outer direction.
  • Another configuration example of the double periodic structure is a double periodic structure in which two types of circular holes having different diameters are repeated along the waveguide in the plane of the photonic crystal.
  • This double periodic structure includes a periodic structure in which large-diameter circular holes are repeated and a periodic structure in which small-diameter circular holes are repeated.
  • the diameter of the large-diameter hole is 2 (r + ⁇ r), and the diameter of the small-diameter circular hole is 2 (r ⁇ r).
  • the optical deflecting device of the present invention is configured to control the emission angle of the outgoing beam, as a wavelength control unit that controls the wavelength of incident light, and / or the refractive index of the first periodic structure and / or the second periodic structure.
  • a refractive index control unit for controlling the above can be provided.
  • the emission angle ⁇ of the outgoing beam is changed by changing the wavelength ⁇ of the incident light by the wavelength control unit and / or changing the refractive index n of the refractive index medium in the periodic structure by the refractive index control unit.
  • a control unit may be provided to control the wavelength change of the wavelength control unit and / or the refractive index change of the refractive index control unit.
  • the control unit can sequentially change the emission angle ⁇ in a time series by time-controlling the wavelength change and / or the refractive index change.
  • the outgoing beam can be swept (scanned) by sequentially changing the outgoing angle ⁇ .
  • An optical system that aligns the outgoing angle of the outgoing beam diffusing from the outgoing part in one direction is provided in front of the outgoing direction of the outgoing part.
  • Two optical paths are switchably connected to both ends of the optical waveguide section via an optical path changeover switch optical path.
  • the incident light is switched and incident on the two optical paths by the optical path switch optical path, and the incident light is switched and incident from both ends of the optical waveguide portion of the optical deflection device. Since the emission angle ⁇ also changes depending on the direction of the propagation constant ⁇ , the angle range of the emission angle ⁇ is widened by changing the direction of the light incident on the optical waveguide portion of the first periodic structure using the optical path switch.
  • the optical deflection device of the present invention is applied not only to a one-dimensional beam sweep in which the direction of the angle change of the outgoing beam is performed in one direction, but also to a two-dimensional beam sweep in which the direction of the angle change of the outgoing beam is performed in two different directions. Can do.
  • incident light is switched and incident on at least one of an array configuration configured by arranging a plurality of optical waveguide portions in parallel and a plurality of optical waveguide portions configured as an array.
  • an optical system such as a cylindrical lens that aligns the outgoing angle of the outgoing beam in one direction in front of the outgoing direction of the array configuration.
  • the two-dimensional beam sweep is performed by a combination of a beam sweep in the first emission direction depending on the direction of the emission part and a beam sweep in the second emission direction depending on the selection of the optical waveguide part by the incident light changeover switch.
  • a second embodiment for performing two-dimensional beam sweep includes an array configuration configured by arranging a plurality of optical waveguide portions in parallel, and a phase adjuster for entering incident light phase-adjusted into the plurality of optical waveguide portions configured as an array.
  • a two-dimensional sweep is performed by adjusting the phase of the incident light of each optical waveguide unit with a phase adjuster.
  • the optical deflection device of the present invention can receive reflected light that is reflected by outgoing light, and can be applied to an apparatus that uses reflected light.
  • a lidar apparatus that uses reflected light can include a light deflection device, a pulse light source that makes pulse light incident on the light deflection device, and a light detection unit that detects light received by the light deflection device. .
  • the light deflection device inputs and outputs light in two directions, that is, emission of emitted light and incidence of reflected light caused by the emitted light.
  • emission of the emitted light and incidence of the reflected light can be performed with a single light deflection device.
  • the rider apparatus may include a switching unit that switches between the pulsed light directed to the optical deflection device and the light received by the optical deflection device.
  • the first form of the switching unit can be constituted by a branch path provided in the optical waveguide between the pulse light source and the optical deflection device and having a light detection unit at one end.
  • the second form of the switching unit can be configured by an optical switch that is provided in an optical waveguide between the pulse light source and the optical deflection device and switches between the pulse light source and the light detection unit.
  • the third form of the switching unit can be configured by a light detection unit provided in an optical waveguide between the pulse light source and the optical deflection device, which can switch between optical waveguide and light detection.
  • the fourth form of the switching unit can be configured with an element that combines a pulse light source and a light detection unit, and can switch between generation and detection of pulsed light. It can be operated as a photodiode by applying a bias.
  • the optical deflecting device of the present invention is a leaky waveguide type optical deflecting device that is compatible with silicon photonics and exhibits a slow light effect, and has a high beam quality and large deflection. It is possible to have both the alignment of the emission direction by the angle and the optical integration technology of silicon photonics.
  • FIGS. 1 to 3 a schematic configuration example and operation of the optical deflection device of the present invention will be described with reference to FIGS. 1 to 3, an output beam sweep operation will be described with reference to FIG. 4, and a slow motion by a photonic crystal will be described with reference to FIG.
  • the light waveguide is described, the emission conditions of the slow light are described with reference to FIGS. 6 and 7, the configuration example of the optical waveguide is described with reference to FIGS.
  • a configuration example will be described, a configuration example in which the emission angle is enlarged will be described with reference to FIGS. 13 and 14, a configuration example of two-dimensional beam sweep will be described with reference to FIGS. 15 and 16, and an optical deflection device will be described with reference to FIG.
  • the application of the reflected light to the apparatus will be described, and the configuration of the rider apparatus of the present invention will be described with reference to FIG.
  • FIG. 1 is a schematic diagram for explaining the configuration of the optical deflection device.
  • FIG. 1A is a diagram for explaining a schematic configuration
  • FIG. 1B is a diagram for explaining an outline of a periodic structure of an optical deflection device.
  • an optical deflection device 1 includes an optical waveguide 2 that propagates incident light, and an emission part that diffracts the light that has oozed out of the optical waveguide 2 and emits an outgoing beam at an outgoing angle ⁇ . 3.
  • the optical deflection device 1 has a refractive index periodic structure in which the refractive index changes periodically.
  • the periodic structure includes two periodic structures, a first periodic structure and a second periodic structure.
  • the first periodic structure includes the second refractive index medium with a period a with respect to the first refractive index medium of the silicon substrate, and constitutes the optical waveguide section 2 having at least one end in the periodic direction as an incident end.
  • the second periodic structure includes a second refractive index medium having a period ⁇ (a ⁇ ⁇ 2a) longer than the period a of the first periodic structure in the first refractive index medium.
  • An emission part 3 serving as an emission end is configured.
  • the first refractive index medium for example, a refractive index medium having a higher refractive index than that of the second refractive index medium can be selected.
  • the second periodic structure is disposed close to the propagation distance of the propagation light of the optical waveguide unit 2 and is disposed in the periphery of the electric field intensity distribution of the propagation light propagating through the first periodic structure.
  • the periodic structure of the optical deflection device 1 can be formed by silicon photonics optical integration technology.
  • the light that has oozed out of the propagating light propagating through the optical waveguide section 2 is diffracted at the output angle ⁇ in combination with the second periodic structure of the output section 3, and is emitted as an output beam.
  • FIG. 2 shows a configuration example of the optical deflection device 1.
  • the optical waveguide unit 2 of the optical deflection device 1 has a second refractive index medium arranged at a period a between an upper clad 2b and a lower clad 2c of the first refractive index medium.
  • the slow light waveguide 2a comprised is provided.
  • the slow light waveguide 2a is formed by a first periodic structure in which a second refractive index medium is periodically arranged with a period a with respect to a clad having a refractive index of the first refractive index medium.
  • As the first refractive index medium a medium having a higher refractive index than that of the second refractive index medium can be selected.
  • the slow light waveguide 2a propagates incident light incident from one end in a slow light mode with a low group velocity.
  • the emission part 3 of the optical deflection device 1 includes a surface diffraction grating 3a at a position adjacent to the upper cladding 2b.
  • the surface diffraction grating 3a has an irregular shape with a period ⁇ .
  • the concave / convex shape having the period ⁇ forms a second periodic structure having the period ⁇ between the refractive index n of the refractive index medium constituting the surface diffraction grating 3a and the refractive index n out of the external medium such as air.
  • the propagation constant ⁇ greatly changes due to slight changes in the propagation state such as the wavelength ⁇ of light and the refractive index n of the waveguide.
  • Such light propagates while having an electromagnetic field spread (a oozing component) around it.
  • the emitting portion 3 having a periodic structure (second periodic structure) with a small step formed by a material having a small refractive index or shallow etching is disposed at a distance slightly touching the oozing component, the throwing component 3 is slow.
  • the light is combined with this light and scattered and diffracted, and gradually emitted upward and obliquely. Radiation occurs in a wide range along the traveling direction of the waveguide and is in phase. Therefore, when the optical deflection device is viewed from the lateral direction along the propagation direction, the outgoing beam becomes a high-quality sharp light beam.
  • the propagation constant ⁇ of the optical waveguide unit 2 changes, and the coupling condition with the second periodic structure of the emitting unit 3 Changes.
  • the outgoing angle ⁇ of the outgoing beam changes.
  • the light of the diffraction grating is not always emitted not only in the upper oblique direction but also in the lower oblique direction. Since the structure of the optical deflection device is asymmetrical in the vertical direction, light of exactly the same intensity is not emitted, but radiation in a downward oblique direction is also generated.
  • FIG. 2B shows radiation in the upper oblique direction as upward diffracted light and radiation in the lower oblique direction as downward diffracted light.
  • the optical deflection device 1 may be configured to include a reflecting portion below the lower clad 2c.
  • FIG. 2C and FIG. 2D show a configuration example including a reflection unit.
  • the configuration example shown in FIG. 2A shows a case where there is a high refractive index medium such as Si as the substrate of the structure.
  • the downward radiated light is reflected at the boundary surface between the lower clad 2c and the high refractive index substrate 40, and is returned to the upper oblique direction.
  • the radiation in the upward oblique direction can be enhanced as a whole.
  • the configuration example shown in FIG. 2D is a configuration in which a reflection mirror 42 such as a metal reflection mirror or a multilayer film reflection mirror is inserted between the substrate 41 and the lower clad 2 c to further increase the radiation in the upward oblique direction. .
  • the converted propagation constant ⁇ N becomes the wave number in the horizontal direction, and light is emitted into free space.
  • n N ⁇ N / k 0 is set.
  • the sensitivity of the emission angle ⁇ with respect to the wavelength ⁇ and the refractive index n is obtained based on the above formulas (1) and (2).
  • Equation (5) shows that when the group refractive index ng is increased by the slow light waveguide, the wavelength sensitivity of the emission angle ⁇ increases substantially in proportion to the group refractive index ng , and the emission angle with respect to a slight change in the refractive index n. It shows that ⁇ greatly changes.
  • the emission angle ⁇ can be greatly changed by a slight change in the wavelength ⁇ and the refractive index n.
  • FIGS. 3 and 4 are diagrams for explaining the configuration for controlling the exit angle of the optical deflection device of the present invention.
  • FIG. 3A is a schematic diagram of a configuration example for controlling the emission angle of the optical deflection device.
  • the optical deflection device 1 includes a wavelength control unit 4 that controls the wavelength ⁇ of incident light incident on the optical waveguide unit 2 in addition to the optical waveguide unit 2 and the emission unit 3 having two periodic structures.
  • a refractive index control unit 5 that controls the refractive index n of the optical waveguide unit 2 and / or the emission unit 3, and an emission angle control unit 6 that controls the wavelength control unit 4 and the refractive index control unit 5.
  • the emission angle control unit 6 controls one of the wavelength control unit 4 and the refractive index control unit 5 or both control units, and controls the emission angle by controlling the wavelength and / or the refractive index.
  • FIG. 3B is a schematic diagram for explaining a configuration example of an optical waveguide unit and an emission unit that control the emission angle of the optical deflection device.
  • the first refractive index medium is a high refractive index medium
  • the second refractive index medium is a low refractive index medium.
  • the optical waveguide section 2 forms a slow light waveguide by a high refractive index medium 21 composed of upper and lower claddings and a low refractive index medium 22 periodically provided in the cladding.
  • the optical waveguide unit 2 includes a refractive index changing unit 23 that controls the refractive index of the refractive index medium.
  • the emitting unit 3 is constituted by a high refractive index medium 31 and a low refractive index medium 32 periodically provided in the high refractive index medium 31.
  • the emitting unit 3 includes a refractive index changing unit 33 that controls the refractive index of the refractive index medium.
  • the refractive index changing unit 23 and the refractive index changing unit 33 can be configured by, for example, a heater or a pn junction, and the carrier density is changed by temperature control by the heater or voltage application by the pn junction.
  • the refractive index n is changed.
  • the refractive index n is the refractive index of the optical waveguide determined by the refractive index of the high refractive index medium and the refractive index of the low refractive index medium.
  • FIG. 4 (a) schematically shows changes in the emission angle ⁇ depending on the wavelength ⁇ and the refractive index n
  • FIGS. 4 (b), 4 (c), and 4 (d) show the emission angle ⁇ and the wavelength ⁇ .
  • the example of change of the refractive index n is shown.
  • FIG. 4 shows an example in which the wavelength ⁇ and the refractive index n are changed stepwise in a time series. Due to this change, the emission angle ⁇ changes stepwise in a time series, and the outgoing beam is emitted to discrete irradiation points.
  • the number of resolution points of the outgoing beam can be adjusted by adjusting the amount of change in wavelength ⁇ and refractive index n.
  • the number of resolution points of the outgoing beam is the number of points irradiated within a predetermined interval, and corresponds to the irradiation density of discrete irradiation points.
  • the emission angle ⁇ can be changed by the direction of the propagation constant ⁇ of the light propagating through the optical waveguide, and the light incident on the optical waveguide using the optical path switch can be changed.
  • the emission angle ⁇ can also be changed by changing the direction, and the change range of the emission angle ⁇ can be expanded.
  • the first refractive index medium is a high refractive index medium
  • the second refractive index medium is a low refractive index medium.
  • First periodic structure and slow light waveguide As an example of a first periodic structure that generates slow light, a photonic crystal waveguide can be considered.
  • 5A to 5C show a first periodic structure example using a photonic crystal waveguide
  • FIGS. 5A and 5B show a one-dimensional photonic crystal waveguide
  • 5 (c) shows a two-dimensional photonic crystal waveguide.
  • the one-dimensional photonic crystal waveguide 2A in FIG. 5A is a configuration example in which circular holes are periodically arranged in a rectangular channel waveguide (such as a Si wire) made of a high refractive index medium such as a semiconductor.
  • the one-dimensional photonic crystal waveguide 2B of (b) is a configuration example that periodically separates the rectangular channel waveguide of the high refractive index medium.
  • the thickness of Si can be about 200 nm
  • the width can be about 400 nm
  • the diameter of the circular hole can be about 200 nm
  • the period a can be about 400 nm.
  • similar circular holes are arrayed two-dimensionally periodically, for example, in a triangular lattice array in a semiconductor (such as Si) slab having the same thickness. It is the structure which removed the circular hole. Also in the structure of the two-dimensional photonic crystal waveguide 2C, a photonic band gap is generated in the vicinity of the Bragg wavelength, the group refractive index ng is increased, and slow light is generated.
  • the two-dimensional photonic crystal waveguide can maintain a large ng in a wider wavelength range than the one-dimensional photonic crystal waveguide.
  • FIG. 5 (d) is a perspective view showing a two-dimensional photonic crystal waveguide sandwiched between silica clads.
  • a surface diffraction grating having a second periodic structure is formed on the surface of a two-dimensional photonic crystal waveguide formed with a silica cladding.
  • FIG. 6A is a diagram for explaining the radiation conditions by the first periodic structure, and shows a photonic band having only the first periodic structure.
  • the region shown dark is the radiation condition to the air
  • the region shown thin is the radiation condition to the cladding.
  • the thick solid line indicates a photonic band of slow light that is coupled to the first periodic structure and propagates in the positive direction without radiation, and forms a waveguide mode.
  • a thin solid line indicates a photonic band in which slow light cannot propagate due to the radiation because it is coupled to air or the clad only by the first periodic structure.
  • a broken line indicates light propagating in the reverse direction.
  • FIG. 6B shows a photonic band when the period ⁇ of the second periodic structure is 2a.
  • the wave number of the waveguide mode is converted into the radiation condition in the radiation mode region to the air by the band shift by the wave vector 2 ⁇ / ⁇ of the second periodic structure, and obliquely upward in the same direction as the traveling direction. It is converted into light that is emitted.
  • the slow light propagating through the first periodic structure is radiated into the air according to the radiation condition of the second periodic structure.
  • FIG. 7A shows a case where ⁇ ⁇ 4a / 3. In this period ⁇ , some wavelengths do not satisfy the conditions for emitting air.
  • FIG. 7C shows the case of 4a / 3 ⁇ ⁇ 2a. In this period ⁇ , multiple emissions occur.
  • FIG. 7E shows a case where ⁇ > 2a. In this period ⁇ , since the number of times the photonic band is folded back increases, many radiation conditions appear.
  • n c is the refractive index of the upper and lower clad determining the radiation condition.
  • N 1 normally used in slow light
  • ⁇ and n are expressed by the following equations (8) and (9), and the emission angle ⁇ is expressed by the following equation (14).
  • the ⁇ 1 * ⁇ (n c ⁇ 1) k 0 to ⁇ k 0 (12)
  • sin ⁇ 1
  • n 1 sin ⁇ 1 [ ⁇ (n c ⁇ 1)] to ⁇ 1 (14)
  • 0 ° to ⁇ 90 °
  • ⁇ 27 ° to ⁇ 90 °.
  • variable wavelengths are realized in desktop variable wavelength laser devices and variable wavelength laser compact modules.
  • the change of the propagation constant ⁇ when the band is shifted in the frequency direction (this may be called the wavelength direction).
  • the change in the refractive index n corresponding to the wavelength change width of 35 nm is 0.085 when Si is used as a material, for example.
  • This change in refractive index can be realized by heating at about 470 ° C.
  • the change in the refractive index n corresponding to a wavelength change width of 15 nm is 0.036, and this change in refractive index can be realized by heating at about 200 ° C. This heating range is possible using silicon photonics technology.
  • the change in the emission angle ⁇ is small because the group refractive index ng is small on the short wavelength side.
  • the group refractive index ng is large on the long wavelength side, the emission angle ⁇ also changes abruptly. Even when the refractive index n is changed, the same characteristics as in the case of the wavelength ⁇ are exhibited. For example, when the wavelength ⁇ is fixed to the short wavelength side of the slow light propagation band and the refractive index n is increased, the group refractive index ng is initially small and the change in the emission angle ⁇ is small, but the group refractive index n is gradually increased. As g increases, the change in the emission angle ⁇ also increases.
  • the change of the emission angle ⁇ with respect to the wavelength ⁇ and the refractive index n is thus non-linear.
  • the group refractive index ng is constant with respect to the wavelength ⁇ and the refractive index n, the emission angle ⁇ is almost linear.
  • the group refractive index ng can be set to a large and constant value in a specific wavelength range.
  • FIG. 8 shows a configuration example in which the group refractive index ng can be a constant value.
  • the two-dimensional photonic crystal waveguide 2D shows a configuration example in which the circular hole is excessively enlarged
  • the two-dimensional photonic crystal waveguide 2E shows a configuration example in which the width of the core portion of the optical waveguide portion is narrowed.
  • the crystal waveguide 2F shows a configuration example in which the size of a circular hole in a specific circular hole array is changed
  • the two-dimensional photonic crystal waveguide 2G shows a configuration example in which only the refractive index of the core portion is increased.
  • the crystal waveguide 2H shows a configuration example in which a specific circular hole array (lattice) position is shifted.
  • FIG. 9A shows a configuration in which the circular hole row of the silica-clad photonic crystal waveguide is shifted along the waveguide, and the second row lattice is shifted.
  • the group index n g is 12 times the group index n g of the Si wire waveguide.
  • the emission angle ⁇ changes linearly with respect to the wavelength ⁇ and the refractive index n, so that the emission angle ⁇ can be easily controlled.
  • a large deflection angle can be obtained by making the period ⁇ slightly smaller than 4a / 3.
  • the slow light waveguide may be a coupled resonator waveguide in which a large number of photonic crystal resonators and ring resonators are arranged and mutually coupled in addition to the photonic crystal waveguide.
  • the present invention can be applied to a configuration in which a multilayered waveguide is formed in the layer thickness direction and the thickness of one layer is increased to form a waveguide, and a photonic crystal waveguide is fused.
  • the diffraction grating constituting the emission part 3 having the second periodic structure can have another structure.
  • an air bridge type diffraction grating 3B is a configuration example in which a diffraction grating is disposed on an air bridge type slow light waveguide via an air layer
  • the air bridge type diffraction grating 3C is a clad buried type slow light waveguide.
  • the diffraction grating 3D is a configuration example in which a diffraction grating is provided on an upper clad of a slow light waveguide by providing an uneven shape on a layer (such as SiN) having a different refractive index on the upper clad of the slow light waveguide.
  • the diffraction grating 3E is a configuration example in which a diffraction grating having a concavo-convex shape is embedded in a layer (SiN or the like) having a different refractive index in the upper cladding, and the diffraction grating 3F has a refractive index in the lower cladding.
  • This is a configuration example in which a diffractive grating having a concavo-convex shape is embedded in a different layer (SiN, etc.). Is an example configuration it.
  • the diffraction grating 3H is a configuration example in which concave and convex shapes are formed on both sides of the photonic crystal waveguide.
  • a finite number of circular hole arrays are arranged on both wings of the waveguide core.
  • the light can be radiated by forming a diffraction grating at the location where the light oozes.
  • the diffraction grating 3I is a configuration example in which a shallow uneven shape is formed on the surface of the photonic crystal waveguide.
  • the diffraction grating may be arranged with photonic crystals having different circular hole arrangement periods, and shallow irregularities with different periods directly on the photonic crystal waveguide. It is good also as a structure to form.
  • the diffraction grating 3J is a configuration example in which another period is superimposed on the period of the photonic crystal itself to make the photonic crystal itself have a multi-period structure.
  • a photonic crystal waveguide is used as a slow light waveguide, and the waveguide and the light emission mechanism are configured by one mechanism.
  • the photonic crystal waveguide forms a waveguide by reflecting and propagating light by sandwiching the left and right sides of the waveguide with photonic crystals arranged in a circular hole.
  • An optical deflecting device having a multi-periodic structure has a double-periodic structure in which two types of circular holes having different diameters are repeated along the waveguide forming the waveguide in the plane of the photonic crystal.
  • the uneven shape is drawn in a mountain shape, but it is not limited to this mountain shape and may be an arbitrary shape.
  • FIG. 11 is a diagram for explaining the configuration of an optical deflection device having a multi-period structure of 3J in FIG.
  • the optical deflecting device 1 has circular holes 3b and 3c of a low refractive index medium such as SiO 2 arranged two-dimensionally in a slab made of a high refractive index medium such as a semiconductor such as Si in a triangular lattice arrangement, for example.
  • the circular holes in the arrangement of the parts are removed, and the part from which the circular holes are removed constitutes a waveguide part made of a two-dimensional photonic crystal and constitutes an emission part that emits a radiated light beam.
  • Optical deflection device 1 comprises two different diameters 2r 1 and circular hole 3b of 2r 2 with respect to the light propagation direction, the double periodic structure 4 repeating 3c.
  • the double periodic structure 4 the slow light propagation light which is non-radiated in the periodic structure in which circular holes of the same diameter are arranged is converted into radiation conditions and is emitted into space.
  • the double periodic structure included in the optical deflection device includes a periodic structure in which large-diameter circular holes are repeated and a periodic structure in which small-diameter circular holes are repeated.
  • the diameter of the reference circle hole and 2r when the 2 ⁇ r differences width of diameter, the diameter 2r 1 circular hole having a large diameter is 2 (r + ⁇ r), the diameter 2r 2 of the small-diameter circular holes 2 (r- ⁇ r). Further, when the distance between the centers of the adjacent large-diameter circular holes 3b and small-diameter circular holes 3c is a, the interval ⁇ between the circular holes of each periodic structure is 2a.
  • a device using a third row shift type silica clad SiLSPCW or a device using a second row shift type LSPCW can be used.
  • the second-row shift type LSPCW having a large ng an increase in the light deflection angle ⁇ is expected.
  • FIGS. 12A to 12D show a photonic band, a group refractive index ng spectrum, a radiation angle ⁇ with respect to the wavelength ⁇ , and a radiation loss ⁇ with respect to the wavelength ⁇ in the optical deflecting device having the multi-periodic structure of the present invention. ing.
  • the photonic band representing the light propagation characteristic is the diameter of the circular hole even when the diameter r of the circular hole is changed by 2 ⁇ r. Does not change in the same way as when 2 is uniform at 2r.
  • the group refractive index ng does not change with respect to the diameter change ⁇ r, indicating that a slow dispersion with a low dispersion in a wide band with ng of approximately 20 occurs.
  • the characteristic of the light propagation characteristic indicates that the propagation constant ⁇ does not change with respect to the light propagation direction, and the angle ⁇ of the emitted light does not change as shown in FIG.
  • the light radiation loss ⁇ can be changed by changing the diameter 2r of the circular hole by ⁇ r.
  • FIG. 12B shows an example in which ⁇ r is 5 nm, 10 nm, 15 nm, and 20 nm, and shows that the radiation loss ⁇ increases as ⁇ r increases.
  • the radiation loss ⁇ represents the rate at which propagating light leaks out of the plane from the optical transport path. The greater the ⁇ r, the greater the intensity of the radiation beam emitted out of the plane.
  • the radiation loss ⁇ With respect to the wavelength ⁇ shown in FIG. 12D, if the second row shift type LSPCW having a large ng is used, the radiation loss ⁇ is expected to further increase. On the other hand, the radiation loss ⁇ increases as ⁇ r increases. Therefore, by controlling ⁇ r, it is possible to control the amount of light emitted so that other properties such as the radiation angle and the propagation constant in the propagation direction do not change much.
  • FIG. 13 shows a configuration example in which the range of the deflection angle is expanded by switching the incident direction of incident light to the optical deflection device.
  • the deflection angle (exit angle) ⁇ of the exit beam is 0 ° or more. If the incident direction of the incident light with respect to the optical deflection device is introduced in the opposite direction, the emission direction of the emission beam becomes symmetrical. Therefore, by switching the direction in which the incident light is incident with the optical path change-over switch 7, it is possible to enlarge in the range of ⁇ 90 ° or ⁇ 33 ° around 0 °.
  • optical paths 8a and 8b are connected to the optical deflection device 1 at the input ends at both ends.
  • the optical path switch 7 switches incident light to the optical path 8a or the optical path 8b.
  • Lights whose incident directions are switched from the optical path 8a or the optical path 8b are incident on the optical deflection device 1 in opposite directions to the optical deflection device.
  • the deflection angle (outgoing angle) ⁇ of the outgoing beam is a deflection around ⁇ 90 °.
  • the outgoing beam has a deflection angle range in both the positive and negative directions with respect to 0 °.
  • the configuration example shown in FIG. 13C is a configuration in which incident light is incident on the two optical deflection devices 1a and 1b by switching the incident light by the optical path switching switches 7, 7a and 7b.
  • an optical path 8c is connected to one incident end via optical path switching switches 7 and 7a, and an optical path 8e is connected to the other incident end via optical path switching switches 7 and 7b.
  • an optical path 8d is connected to one incident end via optical path switching switches 7 and 7a, and an optical path 8f is connected to the other incident end via optical path switching switches 7 and 7b. Is done.
  • the optical path switching switch 7 and the optical path switching switch 7a are connected by an optical path 8a, and the optical path switching switch 7 and the optical path switching switch 7b are connected by an optical path 8b.
  • the omnidirectional deflection can be performed by switching the incident light to the optical deflection devices 1a and 1b by the optical path switching switches 7, 7a and 7b, respectively.
  • FIG. 14 shows a configuration for suppressing the spread of light emitted from the optical deflection device through an optical system lens.
  • the light beam emitted from the emission unit 3 of the optical deflection device 1 is a sharp beam when the waveguide is viewed from the side along the light propagation direction, but left and right when the waveguide cross section orthogonal to the light propagation direction is viewed. Greatly expands.
  • the cylindrical lens 9 a is arranged at an appropriate distance on the emission side of the emission unit 3 to suppress the spread of light.
  • the cylindrical lens 9a has a uniform thickness in a direction along the waveguide, and has a curved shape in which the thickness is changed in a direction orthogonal to the waveguide. With this shape, the right and left spread of the light emitted from the emission part 3 is suppressed, and thereby a single peak beam is created.
  • the configuration shown in FIG. 14B is a configuration in which the slow light waveguide is embedded in an optical member such as a plastic mold 9b and cylindrical lens processing is performed on the surface of the optical member, and is the same as the cylindrical lens in FIG. The effect is obtained.
  • a thick SiO 2 cladding or a polymer cladding is formed on the top of the optical deflection device, and the surface of the cladding is processed into a lens shape. Also good.
  • FIG. 15 shows a configuration example in which two-dimensional beam sweep is performed by a combination of an array configuration of slow light waveguides and a cylindrical lens.
  • FIG. 15A a large number of slow light waveguides and diffraction gratings are arranged in parallel to constitute an array integrated 13, and a cylindrical lens 9 is disposed in the output direction on the output side of the array integrated 13.
  • An optical amplifier and a phase adjuster 12 are connected to each slow light waveguide.
  • a switching unit 11 is connected to the phase adjuster 12. The switching unit 11 switches the incident light from the incident waveguide 10 to select a slow light waveguide that enters the light, and the phase adjuster 12 adjusts the phase. The light enters the selected slow light waveguide.
  • the switching unit 11 can use an optical path switching optical switch or a wavelength demultiplexer.
  • the incident light incident through the incident waveguide 10 is emitted from any of the slow light waveguides.
  • the angle within the cross section of the outgoing beam that comes out of the cylindrical lens 9a changes.
  • a small cylindrical lens array 9c is arranged on each diffraction grating to suppress the spread of the emitted light, and then the light is applied to the large cylindrical lens 9a.
  • the same function as that in FIG. 15B can be realized by the configuration of incidence.
  • each slow light waveguide is designed so that the outgoing angle ⁇ of the outgoing beam can be changed according to the wavelength.
  • the waveguide is switched by a heater or a pn junction optical switch, and the output angle ⁇ of the outgoing beam from the slow light waveguide is changed by the heater or pn junction. The effect of can be obtained.
  • the slow light waveguide is switched by a wavelength demultiplexer, and the output beam is deflected by a heater or a pn junction, and the slow light waveguide is switched by a heater or a pn junction. It is good also as a structure which performs a deflection
  • FIG. 15A shows a configuration in which one waveguide in the waveguide array is selected.
  • the phase adjuster 12 is connected to the array integration 15 in which the heaters or pn junctions having different lengths are provided in the slow light waveguides arranged in an array, so that the incident light is introduced. Incident light from the waveguide 10 is distributed toward each waveguide through the power distributor 14, and after adjusting the phase of each distribution light, the incident light enters the slow light waveguide.
  • the array integration 15 constitutes a phase array in which light is incident on all slow light waveguides and gradually changes in phase. With this configuration, sharp beam radiation and deflection angle changes due to phase changes are realized.
  • This phase array configuration eliminates the need for a cylindrical lens because an outgoing beam is formed by simultaneously emitting a plurality of lights having different phases.
  • the power distribution of incident light is strong when the central waveguide is strong and gradually weakens as the surrounding waveguides become such that the envelope of the power distribution becomes a Gaussian distribution.
  • the quality of the outgoing beam formed after this is improved.
  • a configuration as used in an arrayed waveguide diffraction grating that is, the light of the incident waveguide is once connected to a wide slab waveguide, and the light is Gaussian distributed inside.
  • a configuration may be adopted in which a desired number of arrayed waveguides are connected to the end of the slab waveguide by free propagation.
  • FIG. 17 is a diagram for explaining application of the optical deflection device to an apparatus using reflected light.
  • FIG. 18 is a view for explaining the form of the rider apparatus.
  • FIG. 18 (a) shows a first form.
  • the rider device 100A according to the first embodiment has a configuration in which the incident waveguide 80 is branched and the light detection unit 60 (photodiode) is disposed at one end of the branch path.
  • the light pulse reflected and returned to the light deflection device 1 is passed through the optical filter 70 and then guided to the light detection unit 60 through the branch path to be detected.
  • FIG. 18B shows a second form.
  • the optical switch 90 is inserted into the incident waveguide 80, and after the optical pulse of the pulse light source 50 passes, it is switched to the photodetection unit 60 (photodiode) side and reflected and returned. The light pulse is guided to the light detection unit 60 (photodiode) with high efficiency.
  • FIG. 18 (c) shows a third form.
  • a photodiode having a pn junction formed in a Si waveguide causes subband gap absorption via crystal defects, and can detect light in a long wavelength band that cannot be detected originally.
  • the photodiode having the pn junction described above is inserted as the light detection unit 60 in the middle of the incident waveguide 80, and the reverse bias is applied after the light pulse of the pulse light source 50 passes. Change to detect the reflected light pulse.
  • FIG. 18 (d) shows a fourth embodiment.
  • the rider apparatus 100D of the fourth embodiment includes a pulse light source / light detection unit 51 that doubles as a pulse light source and a light detection unit.
  • the pulse light source / light detection unit 51 can also operate as a photodiode by applying a reverse bias to a semiconductor laser serving as a pulse light source. According to this configuration, after emitting the light pulse, the pulse light source / light detection unit 51 applies the reverse bias to operate as the photodiode, and detects the light pulse reflected and returned.
  • the optical deflection device is effective in removing an excessive noise component in the above-described lidar (LIDAR) function.
  • an optical filter 70 of a wavelength filter is inserted in the incident waveguide 80.
  • the optical filter 70 is not an essential configuration, and the same function can be realized even if the optical filter 70 is omitted.
  • the optical filter 70 is a filter that can pass the wavelength of the optical pulse of the pulse light source.
  • the wavelength of the pulse light source is changed, it is more preferable to use a variable wavelength filter that can change the passing wavelength in synchronization with the wavelength change. In this case, the light reflected and returned passes through the optical filter 70 and reaches the light detection unit (photodiode).
  • the optical deflection device 1 there are various wavelengths of light in the environment, and light having a wavelength different from the wavelength of the pulsed light source arrives at the diffraction grating of the optical deflection device 1 as a noise component. If the arrival directions of light having different wavelengths are the same as those of the original light beam, noise components having different wavelengths cannot be coupled to the optical waveguide. On the other hand, some noise components that arrive at the diffraction grating from other directions can be coupled back to the optical waveguide.
  • the optical filter can remove noise components coupled to the optical waveguide in this way. This removal of the noise component is effective for improving the S / N ratio when detecting the LIDAR reflected signal.
  • the optical deflection device of the present invention a highly directional light beam can be deflected without using mechanical parts. Therefore, the conventional optical deflector, which is as large as the cm order, can be downsized to the mm order. Further, the reliability can be improved, the power consumption can be reduced, and the operation speed can be increased, and a large change in beam angle and a large number of resolution points can be obtained by a slight change in wavelength or refractive index.
  • the optical deflection device of the present invention can be manufactured by a silicon photonics CMOS compatible process.
  • a silicon photonics CMOS compatible process By using a silicon photonics CMOS compatible process, a photonic crystal slow light waveguide can be formed. According to this slow light waveguide, a large change can be given to the propagation constant ⁇ in a certain wavelength range due to a change in wavelength or a change in refractive index by external control.
  • the refractive index can be changed by various configurations such as a configuration in which a heater is formed on or in the cladding along the slow light waveguide without being hidden, and a configuration in which a pn junction is formed in the Si slab. This refractive index changing structure has been demonstrated in a photonic crystal modulator.
  • the slow light waveguide can be connected to the Si wire waveguide with a low loss of 1 dB or less, and the Si wire waveguide is optically connected to the external optical fiber with a loss of about 1.5 dB via a spot size converter. can do.
  • ⁇ ⁇ ⁇ ⁇ Prepare a fiber output laser light source outside.
  • the optical output can be increased in advance by a semiconductor optical amplifier or an erbium-doped optical fiber amplifier.
  • the input-resistant continuous power of the spot size converter is about 200 mW, and when it is desired to input a higher power, an optical pulse is used. If it is a sufficiently narrow pulse, it is possible to input even with a peak power of 50 W or more.
  • a GaInAsP semiconductor is pasted in the middle of the Si wire waveguide, and the propagating light is coupled to the semiconductor. It is possible to use a configuration that operates as an optical amplifier and increases the optical power inside.
  • the switching mechanism for a large number of waveguides includes a 1 ⁇ N changeover switch in which Mach-Zehnder type optical switches are cascade-connected, a coupled microring resonator type wavelength demultiplexer, an arrayed waveguide diffraction grating, and a grating wavelength demultiplexer Etc. can be used.
  • Si photonic crystal slow light waveguide using CMOS compatible process refractive index change by heater and pn junction, light beam formation by diffraction grating directly formed on Si, and change of beam angle with wavelength have been proven.
  • the light used is not limited to near-infrared light, but the device is made of a Si-related material that is transparent to visible light, such as SiN. There are applications to readers.
  • the optical deflection device of the present invention is a laser radar (LIDER) installed in automobiles, drones, robots, etc., 3D scanners for monitoring the surrounding environment easily installed on personal computers and smartphones, surveillance systems, optical exchanges and data centers. It can be applied to a space matrix optical switch.
  • LIDER laser radar

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

高いビーム品質及び偏向の広い角度範囲を備える光ビームと、シリコンフォトニクスによる光集積技術の整合性とを同時に有する光偏向デバイスは、屈折率の周期構造を備えたシリコンフォトニクスデバイスであり、(1) 光を伝搬する光伝搬部をシリコン上に形成される微細構造で構成し、(2) 光伝搬部を構成する微細構造を、スローライトを発現する周期構造と、光を放射する周期構造の2つの周期構造で構成する。シリコン上に形成される微細構造によって、シリコンフォトニクスの光集積技術を適用して光偏向デバイスを形成することを可能とし、スローライトを発現する周期構造と光を放射する周期構造の2つの周期構造によって、高いビーム品質と偏向の広い角度範囲を備える光ビームの形成を可能とする。

Description

光偏向デバイスおよびライダー装置
 本発明は、光の進行方向を制御し、偏向した出射ビームを出射する光偏向デバイス、および光偏向デバイスを備えたライダー装置に関する。
 レーザープリンタ、レーザディスプレイ、3次元レーザ計測等に用いられるライダー(LIDER(Light Detection and Ranging, Laser Imaging Detection and Ranging))の分野等において、光を偏向し、掃引(スキャン)するビームスキャンとして光偏向デバイスが用いられている。
 光偏向デバイスとして、機械式ミラーを用いる構成、位相アレイを用いる構成、導波路からの光の漏れを利用した構成等が知られている。
 機械式ミラーを用いる構成として、ポリゴンミラーや、MEMS技術による小型集積ミラーが知られている。
 位相アレイを用いる構成は、多数の光が干渉してビームを形成する際、光の位相によってビームの方向が変化することを利用するものであり、基板上に集積された光導波路の光を多数の導波路に分岐させ、それぞれ導波路端面から、もしくは回折格子によって自由空間に放射させる。(非特許文献1)
 導波路からの光の漏れを利用する構成として、多層膜構造の導波路や回折格子付き導波路がある。多層膜構造の漏れ導波路では、多層膜で挟まれた導波路を伝搬する光が漏れ出して放射される際、各位置での放射角が揃うことを利用して光ビームを形成するものであり、光の波長や導波路の屈折率を変えることによって光ビームをスキャンすることができる。また,多層膜の角度分散が大きい条件(スローライト条件)に近い波長で動作させると、波長や屈折率に対する感度が高まり、ビームスキャン角度を大きくすることができる。(非特許文献2)
 回折格子付き導波路では、弱い回折格子によって導波路から光が徐々に漏れ出して光ビームを形成するものであり、波長や導波路屈折率によって光ビームをスキャンすることができる。(特許文献1)
特許第5662266号
"One-Dimensional Off-Chip Beam Steering and Shaping Using Optical Phased Arrays on Silicon-on-Insulator" Karel Van Acoleyen , Katarzyna Komorowska, Wim Bogaerts,Roel Baets JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 29,  NO. 23, DECEMBER 1, 2011 "Giant and high-resolution beam steering using slow-light waveguide amplifier" Xiaodong Gu,Toshikazu Shimada, and Fumio Koyama 7 November 2011 / Vol. 19, No. 23 / OPTICS EXPRESS 22683
 機械式ミラーを用いた構成は、一般に数cm角以上の大型になることに加え、可動部を有する。可動部を備える構成は、信頼性が低く、動作速度はkHzオーダーに制限されるという問題がある。自動車などの移動体に搭載する場合は振動に対する耐性が必要であるため、信頼性の低さは大きな問題になる。
 位相アレイを用いた構成や導波路からの光の漏れを用いる構成は、機械的な可動部を備えないため、機械式ミラーの構成が持つ問題を解消することができるが、それぞれ以下のような考慮すべき点がある。
 位相アレイを用いる構成は、各導波路の位相がわずかでも乱れると、形成される光ビームがマルチピークになり、ビーム品質が大きく劣化する。導波路の数が少ない場合には、各導波路の位相を補正することができるが、少ない数の導波路によって得られる光ビームは遠方で拡がってしまい、品質が劣化するという問題がある。光ビームの品質は、ビームの鋭さ、広がり角の狭さ、解像点数等で評価される。光ビームの品質劣化を抑えるには多数の導波路が必須であるが、多数の導波路の位相調整は非現実的なほど困難である。
 シリコンフォトニクスの光集積技術は、Si(シリコン)上にSi系材料を用いて光導波路や受光素子、光変調器等といったデバイスをモノリシック集積する光集積技術であり、III-V族半導体をハイブリッド集積すれば発光素子も可能である。シリコンフォトニクスは、Si-CMOS製造プロセスとの整合性がよいことから、光集積技術には不可欠な技術となっている。
 導波路からの光の漏れを用いる構成は、光の漏れが低速で、長い領域からの漏れとなれば、遠方でも拡がらないので、高いビーム品質が得られる。しかしながら、多層膜構造の漏れ導波路は、この漏れの速度の調整が容易なので、高いビーム品質が得られ、スローライト条件によるブラッグ反射を利用してスキャン角度を拡大することができるが、光集積技術であるシリコンフォトニクスとの整合性がない。
 一方,回折格子付き導波路は、シリコンフォトニクスの光集積技術を用いることができるが、スローライトが発現しないため、スローライト条件によるブラッグ反射を利用して大きなビームスキャン角度を得ることができない。外部にレンズ等の光素子を挿入して、ビームスキャン角度を拡大することはできるが、同時にビーム拡がり角も増大するため、解像点数が制限される。ここで解像点数とは、最大ビームスキャン角度とビーム拡がり角の比で定義され、ビーム偏向デバイスの性能指数として一般的に用いられる。なお、ビームスキャン角度は出射ビームを掃引した際の出射角度の振れ幅であり、出射角度が取り得る角度範囲が大きいほど、大きなビームスキャン角度を得ることができる。
 したがって、非機械的な光偏向デバイスでは、光ビームにおいて、高いビーム品質及び偏向の広い角度範囲と、シリコンフォトニクスの光集積技術との整合性の両方を満足することが求められる。
 本願発明の光偏向デバイスは、上記の課題を解決して、スローライトによる高いビーム品質、及び偏向の広い角度範囲の出射角度と、デバイスの構成においてシリコンフォトニクスによる光集積技術の整合性とを共に備えることを目的とする。
  本願発明の光偏向デバイスは、屈折率の周期構造を備えたシリコンフォトニクスデバイスであり、
 (1) 光が伝搬する光伝搬部を、シリコン等の高屈折率媒質を有する光導波層上に形成される微細構造とする構成
 (2) 光伝搬部を構成する微細構造を、スローライトを発現する周期構造と、光を放射する周期構造の2つの周期構造とする構成
を備える。
 (1)のシリコン上に形成される微細構造によって、シリコンフォトニクスの光集積技術を適用して光偏向デバイスを形成することを可能とし、(2)のスローライトを発現する周期構造と光を放射する周期構造の2つの周期構造によって、高いビーム品質と偏向の広い角度範囲を備える光ビームの形成を可能とする。
 光偏向デバイスの周期構造は、
 (a) シリコンの第1の屈折率媒質に第2の低屈折率媒質を周期aで備え、周期方向の少なくとも一端を入射端とする光導波部を構成する第1の周期構造
 (b) 第1の屈折率媒質に第2の屈折率媒質を第1の周期構造の周期aよりも長い周期Λ(a<Λ<2a)で備え、周期方向の側端を出射端とする出射部を構成する第2の周期構造
を備え、
 (c) 第2の周期構造の配置位置は、第1の周期構造の光導波部を伝搬する光の強度分布の周辺部(尾部)である構成
 (d) 周期aはa=λ/2nである(nは第1の周期構造の光導波部を伝搬する光の等価屈折率、λはブラッグ波長付近の波長)構成
を備える。
 第1の周期構造によって、光導波部は、a=λ/2nを満たすブラッグ波長付近でフォトニックバンドギャップ(ストップバンド)が生じて、光導波部内の群屈折率nが大きくなり、群速度が小さいスローライトが生じる。スローライトは周囲に電磁界の強度分布の拡がり(浸み出し成分)を持ちながら伝搬する。第2の周期構造によって、出射部は、光導波部のスローライトの浸み出し成分と結合して散乱及び回折させ、導波部進行方向に対して上方や斜め方向に徐々に放射する。出射ビームは、導波部進行方向に沿って広い範囲から放射され、かつ、その放射は位相が揃っているため、高品質な鋭い光ビームとなる。
 また、スローライトは、光の波長λや導波部の屈折率nのわずかな変化によって伝搬定数βが大きく変化する。第1の周期構造の伝搬定数βが変わると、第2の周期構造との結合条件が変わり、出射ビームの角度θが変わる。したがって、光の波長λや導波路の屈折率nを変化させて伝搬定数βを変えることで、出射ビームの角度θを変化させることができる。
 第1の周期構造及び第2の周期構造において、第1の周期構造の刻みは第2の周期構造の刻みよりも大きい構成とする。
 周期構造の刻みは、周期構造の屈折率媒質において、周期構造が形成する光が伝搬する進行方向と直交する深さ方向の大きさであり、刻みの大小によって、その周期構造がもつ光への作用の強さを異ならせる。
 第1の周期構造の刻みは、第1の周期構造を屈折率媒質に周期的な穴を有したフォトニック結晶で構成する場合には、フォトニック結晶に設ける穴である。一方、第2の周期構造の刻みは、第2の周期構造を屈折率媒質に凹凸を形成した回折格子で構成する場合には、凹凸であり、屈折率媒質に周期的な穴を有したフォトニック結晶で構成する場合には、フォトニック結晶に設ける穴の深さである。
 第1の周期構造の刻みを第2の周期構造の刻みよりも大きくすることによって、第1の周期構造にはスローライトを発生させ、その浸み出し成分が第2の周期構造に結合すると、第2の周期構造から低速で光が漏れ出し回折され、出射ビームとして放射される。
 第1の周期構造の光導波部はスローライト導波路であり、スローライト導波路はフォトニック結晶で構成するフォトニック結晶導波路とすることができる。また、第2の周期構造の出射部の回折格子についてもフォトニック結晶で構成することができる。
 第1の周期構造のフォトニック結晶導波路の構成は複数の形態とすることができる。例えば、シリコン基板上のクラッドとの間に空気層を備えるエアブリッジ型スローライト導波路の形態、又は、クラッド内に埋め込まれるクラッド埋込型スローライト導波路の形態とすることができる。
 第2の周期構造の回折格子の構成についても複数の形態とすることができる。例えば、表面回折格子の形態、空気層を備えるエアブリッジ型回折格子の形態、クラッド内に埋め込まれる埋込型回折格子の形態、又はシリコン基板に形成する形態とすることができる。
 エアブリッジ型回折格子の形態では、エアブリッジ型スローライト導波路の間、又はクラッド埋込型スローライト導波路のクラッドの間に空気層を挟んで屈折率を異にする回折格子の層を設けることで回折格子を形成することができる。
 埋込型回折格子の形態では、クラッド埋込型スローライト導波路を埋め込むクラッドにおいて、上クラッドの上部、上クラッド、あるいは下クラッドのクラッド内に屈折率を異にする回折格子の層を埋め込むことで回折格子を形成することができる。
 シリコン基板に形成する形態では、クラッドと接触するシリコン基板部分に凹凸形状を直接に刻むことで回折格子を形成することができる。
 また、フォトニック結晶に回折格子を設ける配置位置についても、複数の形態とすることができる。例えば、回折格子をフォトニック結晶導波路の両側に設ける形態、回折格子をフォトニック結晶導波路の上部表面に設ける形態とすることができる。
 スローライト導波路を構成するフォトニック結晶導波路は、フォトニック結晶の周期構造を短周期と長周期の2種類の周期を備える2重周期構造で構成することができ、短周期の周期構造は刻みを大きくして第1の周期構造のスローライト導波路を構成し、長周期の周期構造は刻みを小さくして第2の周期構造の回折格子を構成する。
 また、第1及び第2の周期構造は、直線状の周期構造を有する1次元フォトニック結晶導波路、あるいは平面状の周期構造に直線欠陥部を有する2次元フォトニック結晶導波路とすることができる。
 第2の周期構造の下方の基板側に、出射部から出射した出射光を反射する反射部を備える構成としてもよい。反射部は、出射部から出射した出射光の内、内部方向に向かう出射光を外部方向に向けて反射することによって、出射光に光量を増すことができる。
 (2重周期構造の他の構成例)
 2重周期構造の他の構成例は、フォトニック結晶の面内に、導波路に沿って2種類の異なる直径の円孔を繰り返す二重周期構造である。この二重周期構造は、大径の円孔を繰り返す周期構造と、小径の円孔を繰り返す周期構造とを備え、基準の円孔の直径を2r、直径の相違幅を2Δrとしたとき、大径の円孔の直径は2(r+Δr)であり、小径の円孔の直径は2(r-Δr)である。
 (出射角度を制御する構成)
 出射ビームの出射角度θの変化において、出射角度θの感度は光の波長λや第1の周期構造を構成する屈折率媒質の屈折率nと関連して変化し、わずかな波長変化や屈折率変化によって出射角度θは大きく変化する。
 本願発明の光偏向デバイスは、出射ビームの出射角度を制御する構成として、入射光の波長を制御する波長制御部、及び/又は、第1の周期構造及び/又は第2の周期構造の屈折率を制御する屈折率制御部を備えることができる。
 波長制御部による入射光の波長λの変化、及び/又は、屈折率制御部による周期構造中の屈折率媒質の屈折率nの変化によって、出射ビームの出射角度θを変化させる。
 また、波長制御部の波長変化、及び/又は屈折率制御部の屈折率変化を制御するために、制御部を備えてもよい。制御部は、波長変化及び/又は屈折率変化を時間制御することによって出射角度θを時間系列で逐次変化させることができる。出射角度θを逐次変化させることによって、出射ビームを掃引(スキャン)することができる。
(出射ビームの出射角度を一方向に揃える構成)
 出射部から拡散する出射ビームの出射角度を一方向に揃える光学系(シリンドリカルレンズ)を、出射部の出射方向の前方に備える。この光学系によって、出射部から拡散する周期ビームの広がりを一方向に揃えて、出射ビームのビーム品質を向上させることができる。
(出射角度の範囲を広げる構成)
 光導波部の両端に、光路切替スイッチ光路を介して2つの光路を切り替え自在に接続する。光路切替スイッチ光路によって2つの光路に入射光を切り替えて入射し、光偏向デバイスの光導波部の両端から入射光を切り替えて入射する。出射角度θは伝搬定数βの向きによっても変わるため、光路切替スイッチを使って第1の周期構造の光導波部に入射する光の向きを変えることによって、出射角度θの角度範囲を広げる。
(2次元ビーム掃引)
 本願発明の光偏向デバイスは、出射ビームの角度変化の方向を一方向で行う1次元ビーム掃引に適用する他、出射ビームの角度変化の方向を異なる二方向で行う2次元ビーム掃引に適用することができる。
 2次元ビーム掃引を行う第1の形態は、複数の光導波部を平行配置して構成されるアレイ構成と、アレイ構成した複数の光導波部の少なくとも何れか一つに入射光を切り替えて入射する入射光切替スイッチとを備え、アレイ構成の出射方向の前方に出射ビームの出射角度を一方向に揃えるシリンドリカルレンズ等の光学系を配置する。
 出射部の方向に依存する第1の出射方向のビーム掃引と、入射光切替スイッチによる光導波部の選択に依存する第2の出射方向のビーム掃引との組み合わせによって2次元ビーム掃引を行う。
 2次元ビーム掃引を行う第2の形態は、複数の光導波部を平行配置して構成されるアレイ構成と、アレイ構成した複数の光導波部に位相調整した入射光を入射する位相調整器とからなる位相アレイを備え、位相調整器で各光導波部の入射光の位相調整を行うことによって2次元掃引を行う。
(反射光を用いる装置)
 本願発明の光偏向デバイスは、出射光が反射して戻る反射光を受光することができ、反射光を用いた装置に適用することができる。反射光を利用するライダー装置は、光偏向デバイスと、光偏向デバイスにパルス光を入射するパルス光源と、光偏向デバイスで受けた光を検出する光検出部とを備えた構成とすることができる。光偏向デバイスは、出射光の出射とこの出射光に起因する反射光の入射の2方向で光を入出力する。ライダー装置では、出射光の出射と反射光の入射とを、一つの光偏向デバイスで行うことができる。ライダー装置は、光偏向デバイスに向かうパルス光と光偏向デバイスで受けた光とを切り替える切替部を備える構成としてもよい。
 切替部の第1の形態は、パルス光源と光偏向デバイスとの間の光導波路に設けられた、一端に光検出部を備えた分岐路で構成することができる。
 切替部の第2の形態は、パルス光源と光偏向デバイスとの間の光導波路に設けられた、パルス光源と光検出部との間を切り替える光スイッチで構成することができる。
 切替部の第3の形態は、パルス光源と光偏向デバイスとの間の光導波路に設けられた、光導波と光検出とを切り替え自在とする光検出部で構成することができる。
 切替部の第4の形態は、パルス光源と光検出部とを兼備し、パルス光の発生と光検出とを切り替え自在とする素子で構成することができ、例えば、パルス光源の半導体レーザに逆バイアスを印加することによってフォトダイオードとして動作させることができる。
 以上説明したように、本願発明の光偏向デバイスは、シリコンフォトニクスとの整合性を有し、スローライト効果を発現する漏れ導波路型の光偏向デバイスであり、光ビームを高いビーム品質および大きな偏向角度で出射方向を偏向させることと、シリコンフォトニクスの光集積技術との整合性を共に有することができる。
本願発明の光偏向デバイスの構成を説明するための概略図である。 本願発明の光偏向デバイスの構成例を示す図である。 本願発明の光偏向デバイスの出射角度を制御する構成を説明するための図である。 本願発明の光偏向デバイスの出射ビームの掃引動作を説明するための図である。 フォトニック結晶によるスローライト導波路を説明するための図である。 スローライトの放射条件を説明するための図である。 スローライトの放射条件を説明するための図である。 本願発明の光偏向デバイスの光導波部の構成例を説明するための図である。 本願発明の光偏向デバイスの光導波部の構成例を説明するための図である。 本願発明の光偏向デバイスの出射部の構成例を説明するための図である。 多重周期構造による本願発明の光偏向デバイスの構成を説明するための図である。 本発明の光偏向デバイスのフォトニックバンド、群屈折率nスペクトル、波長λに対する放射角θ、及び波長λに対する放射損失αを示す図である。 本願発明の光偏向デバイスの出射角度を拡大する構成例を説明ための図である。 本願発明の光偏向デバイスの出射角度を拡大する構成例を説明ための図である。 本願発明の光偏向デバイスの2次元ビーム掃引の構成例を説明するための図である。 本願発明の光偏向デバイスの2次元ビーム掃引の構成例を説明するための図である。 本願発明の光偏向デバイスの反射光を用いた装置への適用を説明するための図である。 本願発明のライダー装置の形態を説明するための図である。
 以下、本願発明の実施の形態について、図を参照しながら詳細に説明する。以下、図1~図3を用いて本願発明の光偏向デバイスの概略構成例及び動作を説明し、図4を用いて出射ビームの掃引動作を説明し、図5を用いてフォトニック結晶によるスローライト導波路を説明し、図6,7を用いてスローライトの放射条件を説明し、図8、9を用いて光導波部の構成例を説明し、図10~12を用いて出射部の構成例を説明し、図13,14を用いて出射角度を拡大する構成例を説明し、図15,16を用いて2次元ビーム掃引の構成例を説明し、図17を用いて光偏向デバイスの反射光を用いた装置への適用を説明し、図18を用いて本願発明のライダー装置の形態を説明する。
 (光偏向デバイスの概要)
・光偏向デバイスの構成
 図1は光偏向デバイスの構成を説明するための概略図である。図1(a)は概略構成を説明するための図であり、図1(b)は光偏向デバイスの周期構造の概略を説明するための図である。
 図1(a)において、光偏向デバイス1は、入射光を伝搬する光導波部2と、光導波部2からの浸み出した光を回折させ、出射角度θで出射ビームを放射する出射部3とを備える。
 図1(b)において、光偏向デバイス1は、屈折率が周期的に変化する屈折率の周期構造を備える。周期構造は第1の周期構造と第2の周期構造の2つの周期構造を備える。
 第1の周期構造は、シリコン基材の第1の屈折率媒質に対して周期aで第2の屈折率媒質を備え、周期方向の少なくとも一端を入射端とする光導波部2を構成する。
 第2の周期構造は、第1の屈折率媒質に第1の周期構造の周期aよりも長い周期Λ(a<Λ<2a)で第2の屈折率媒質を備え、周期方向の側端を出射端とする出射部3を構成する。第1の屈折率媒質は、例えば、第2の屈折率媒質よりも高い屈折率の屈折率媒質を選択することができる。
 第2の周期構造は、光導波部2の伝搬光の浸み出し距離以内に近接して配置され、第1の周期構造を伝搬する伝搬光の電界強度分布の周辺部に配置される。第1の周期構造の周期aは、第1の周期構造を伝搬する伝搬光の等価屈折率をn、ブラッグ波長付近の波長をλとしたとき、a=λ/2nの関係で表される。
 光偏向デバイス1の周期構造は、シリコンフォトニクスの光集積技術によって形成することができる。
 光導波部2を伝搬する伝搬光から浸み出た光は、出射部3の第2の周期構造と結合して出射角度θで回折され、出射ビームとして放射される。
 図2は光偏向デバイス1の構成例を示している。図2(a)において、光偏向デバイス1の光導波部2は、第1の屈折率媒質の上部クラッド2bと下部クラッド2cとの間に、第2の屈折率媒質を周期aで配置して構成されるスローライト導波路2aを備える。スローライト導波路2aは、第1の屈折率媒質の屈折率のクラッドに対して第2の屈折率媒質を周期aで周期配置してなる第1の周期構造で形成される。第1の屈折率媒質は第2の屈折率媒質よりも高屈折率の媒質を選択することができる。屈折率が大きな材料を深くエッチングするなどによって形成した刻みが大きな周期構造に対して、この周期構造を伝搬する方向から光を入射させると、群速度が小さい光(スローライト)が発生する。スローライト導波路2aは、一端から入射した入射光を低群速度のスローライトモードで伝搬する。
 光偏向デバイス1の出射部3は、上部クラッド2bに隣接した位置に表面回折格子3aを備える。表面回折格子3aは周期Λの凹凸形状を備える。周期Λの凹凸形状は、表面回折格子3aを構成する屈折率媒質の屈折率nと空気等の外部媒質の屈折率noutとの間で周期Λの第2の周期構造を構成する。
 第1の周期構造によるスローライト導波路2aのスローライトは、光の波長λや導波路の屈折率nなどの伝搬状況のわずかな変化によって伝搬定数βが大きく変化する。このような光は、周囲に電磁界の拡がり(浸み出し成分)を持ちながら伝搬する。この浸み出し成分にわずかに触れるような距離に、屈折率が小さな材料や浅いエッチングなどによって形成される刻みが小さな周期構造(第2の周期構造)を備えた出射部3を配置すると、スローライトはこれに結合して散乱・回折が行われ、上方や斜め方向に徐々に放射される。放射は、導波路進行方向に沿って広い範囲で起こり、かつ位相が揃っている。そのため、光偏向デバイスを伝搬方向に沿った横方向から見たとき、出射ビームは高品質な鋭い光ビームとなる。
 入射光の波長λや、第1の周期構造を構成する屈折率媒質の屈折率nを変えると、光導波部2の伝搬定数βが変わり、出射部3の第2の周期構造との結合条件が変わる。その結果として、出射ビームの出射角度θが変わる。
 回折格子の光は必ずしも上斜め方向だけでなく、下斜め方向にも放射される。光偏向デバイスの構造は上下非対称であるため、全く同じ強度の光が放射されるわけではないが、下斜め方向の放射も発生する。図2(b)は、上斜め方向の放射を上方向回折光とし、下斜め方向の放射を下方向回折光として示している。
 光偏向デバイス1は、下部クラッド2cの下方に反射部を備える構成としてもよい。図2(c),図2(d)は、反射部を備える構成例を示している。
 図2(a)に示す構成例は、構造の基板としてSiなどの高屈折率媒質がある場合を示している。ここでは下方向の放射光が下部クラッド2cと高屈折率基板40との間の境界面で反射され、上斜め方向に戻される。下部クラッド2cの厚さを最適化し、反射した光とあらかじめ上斜め方向に放射される光が強め合う干渉を起こすようにすれば、全体として上斜め方向への放射を強めることができる。図2(d)に示す構成例は、基板41と下部クラッド2cの間に金属反射鏡や多層膜反射鏡等の反射鏡42を挿入し、上斜め方向への放射をさらに高めた構成である。
(出射角度の制御)
 次に、スローライトによる出射角度θの制御について説明する。
・出射角度の変化
 群速度が小さい光であるスローライトの伝搬定数βは光の波長λや第1の周期構造を構成する屈折率媒質の屈折率nに依存して変化する。このスローライト光が第2の周期構造に結合すると、伝搬定数βがβN=β-(2π/Λ)Nに変換される。ここでNは整数である。
 この変換された伝搬定数βNの値が面水平方向の波数となって、自由空間に光が放射される。自由空間の光の波数をk=2π/λとすると,面垂直方向を0°とする出射角度θは
 θ=sin-1/k)=sin-1             …(1)
となる。ここでn=β/k0としている。
 式(1)から光が放射される条件はn≦1であり、伝搬定数βは以下の式(2)で表される。
 β-(2π/Λ)N≦k                  …(2)
 以下、上記式(1)、(2)に基づいて波長λや屈折率nに対する出射角度θの感度を求める。
[波長λに対する出射角度θの感度]
 波長λに対する出射角度θの感度は以下の式(3)で表される。
dθ/dλ=(β+λdβ/dλ)/[2π√{1-(β/k)}]
      =(n+n)/[λ√(1-n )]        …(3)
ここで、nはスローライト導波路の群屈折率(群速度の低下率)である。
 一般にnは、cを真空中の光速としωを光の角周波数とすると、
 n=c・dβ/dω=(λ/2π)・dβ/dλ 
で与えられるが、スローライト導波路ではnが数十以上の大きな値である。
 一方、結合によって変換された伝搬定数βに係る出射部の屈折率nはn<1であり、n>>nとみなすことができるため、式(3)は以下の式(4)で表すことができる。
Figure JPOXMLDOC01-appb-I000001
 式(4)は、スローライト導波路によって群屈折率nが大きくなると、群屈折率nにほぼ比例して出射角度θの波長感度が高まり、わずかな波長λの変化に対して出射角度θが大きく変化することを示している。
[屈折率nに対する出射角度θの感度]
 屈折率nに対する出射角度θの感度は以下の式(5)で表される。
dθ/dn=*(n/n)/[√(1-n )]・(dλ/dn)/(λ/n)
*/[n√(1-n )]               …(5)
 式(5)は、スローライト導波路によって群屈折率nが大きくなると群屈折率nにほぼ比例して出射角度θの波長感度が高まり、わずかな屈折率nの変化に対して出射角度θが大きく変化することを示している。
 したがって、出射角度θは、波長λ及び屈折率nのわずかな変化によって大きく変化させることができる。
・出射角度制御の構成
 図3,図4は、本願発明の光偏向デバイスの出射角度を制御する構成を説明するための図である。
 図3(a)は、光偏向デバイスの出射角度を制御する構成例の概略図である。図3(a)において、光偏向デバイス1は、2つの周期構造を備える光導波部2及び出射部3に加えて、光導波部2に入射する入射光の波長λを制御する波長制御部4、光導波部2及び/又は出射部3の屈折率nを制御する屈折率制御部5、波長制御部4及び屈折率制御部5を制御する出射角度制御部6を備える。
 出射角度制御部6は、波長制御部4と屈折率制御部5の何れか一方の制御部、あるいは両制御部を制御し、波長及び/又は屈折率を制御することによって出射角度を制御する。
 図3(b)は、光偏向デバイスの出射角度を制御する光導波部と出射部の構成例を説明するための概略図である。なお、ここでは、第1の屈折率媒質を高屈折率媒質とし、第2の屈折率媒質を低屈折率媒質とする例を示している。
 図3(b)において、光導波部2は上下のクラッドで構成される高屈折率媒質21と、クラッド内に周期的に設けられた低屈折率媒質22とによってスローライト導波路を構成する。光導波部2は、屈折率媒質の屈折率を制御する屈折率変更部23を備える。
 出射部3は高屈折率媒質31と、高屈折率媒質31内に周期的に設けられた低屈折率媒質32とによって構成する。出射部3は、屈折率媒質の屈折率を制御する屈折率変更部33を備える。
 屈折率変更部23及び屈折率変更部33は、例えば、ヒーターやp-n接合で構成することができ、ヒーターによる温度制御やp-n接合による電圧印加によってキャリア密度を変えて光導波部の屈折率nを変更する。なお、ここで、屈折率nは、高屈折率媒質の屈折率と低屈折率媒質の屈折率で定まる光導波部の屈折率である。
 図4において、図4(a)は波長λ及び屈折率nによる出射角度θの変化を模式的に示し、図4(b),4(c),4(d)は出射角度θ、波長λ、屈折率nの変化例を示している。
 図4の例では、波長λや屈折率nを時系列的に段階的に変化させる例を示している。この変化によって、出射角度θは時系列的に段階的に変化し、出射ビームは離散的な照射点に放射される。光が漏れ出す長さに加えて、波長λや屈折率nの変化量を調整することによって出射ビームの解像点数を調整することができる。なお、ここで、出射ビームの解像点数は、所定間隔内に照射される点数であり、離散的な照射点の照射密度に相当するものである。
 出射角度θは、波長λや屈折率nの他に、光導波部を伝搬する光の伝搬定数βの向きによっても変化させることができ、光路切替スイッチを使って光導波部に入射する光の向きを変えることによっても出射角度θを変えることができ、出射角度θの角度の変更範囲を拡大することができる。
 (フォトニック結晶によるスローライト構造)
 次に、フォトニック結晶によるスローライト構造について、スローライト導波路及び回折格子の構成例を図5~7を用いて説明する。なお、ここでは、第1の屈折率媒質を高屈折率媒質とし、第2の屈折率媒質を低屈折率媒質とする例を示している。
・第1の周期構造及びスローライト導波路:
 スローライトを発生させる第1の周期構造の例として、フォトニック結晶導波路が考えられる。図5(a)~図5(c)はフォトニック結晶導波路による第1の周期構造例を示し、図5(a),5(b)は1次元のフォトニック結晶導波路を示し、図5(c)は2次元のフォトニック結晶導波路を示している。
 図5(a)の1次元フォトニック結晶導波路2Aは、半導体などの高屈折率媒質からなる矩形チャネル導波路(Si細線など)に円孔を周期的に配列する構成例であり、図5(b)の1次元フォトニック結晶導波路2Bは、高屈折率媒質の矩形チャネル導波路を周期的に分離する構成例である。
 この構成では、a=λ/2nを満たすブラッグ波長付近でフォトニックバンドギャップ(ストップバンド)を生じ、その付近の規格化周波数a/λにおいてdβ/dλ∝nが徐々に大きくなり、スローライトが生じる。
 円孔配列タイプの場合では、例えば、λ=*1550nmに対してSiの厚さは200nm程度,幅は400nm程度,円孔直径は200nm程度,周期a=400nm程度とすることができる。
 図5(c)の2次元フォトニック結晶導波路2Cは、同様の厚さの半導体(Siなど)スラブに同様の円孔を2次元周期的に例えば三角格子配列で配列し、配列の一列の円孔を取り除いた構成である。この2次元フォトニック結晶導波路2Cの構造においても、ブラッグ波長付近ではフォトニックバンドギャップが生じ、群屈折率nが大きくなってスローライトが生じる。
 1次元フォトニック結晶導波路及び2次元フォトニック結晶導波路のいずれの構造においても、ブラッグ波長ではn>100の大きなスローライト効果が生じるが、ブラッグ波長から離れると徐々にnは小さくなる。なお、1次元フォトニック結晶導波路に比べると、2次元フォトニック結晶導波路の方がより広い波長範囲で大きなnを維持することができる。
 図5(d)はシリカクラッドに挟まれた2次元フォトニック結晶導波路を示す斜視図である。この構成例は、シリカクラッドを形成した2次元のフォトニック結晶導波路の表面に、第2の周期構造となる表面回折格子を形成している。2次元フォトニック結晶導波路と表面回折格子の間のクラッドの厚さを調整することによって、両者の結合の度合いを変えることができ、適切な速度の光放射を得ることができる。
・スローライトの放射条件
 以下、周期構造によるスローライトの放射条件について説明する。図6(a)は第1の周期構造による放射条件を説明するための図であり、第1の周期構造のみのフォトニックバンドを示している。
 図6(a)において、濃く示した領域部分は空気への放射条件を示し、薄く示した領域部分はクラッドへの放射条件を示している。また、太い実線は第1の周期構造に結合して非放射で正方向に伝搬するスローライトのフォトニックバンドを示し、導波路モードを形成する。一方、細い実線は第1の周期構造だけで空気あるいはクラッドと結合してしまうので、その放射によってそもそもスローライトが伝搬できないフォトニックバンドを示している。なお、破線は逆方向に伝搬する光を示している。
 図6(a)に示す第1の周期構造のみを備える構成では、図6(a)中で太い実線で示す伝搬定数の範囲では光は放射されることなく伝搬し、濃い領域で示す伝搬定数の範囲では空気中に放射され、薄い領域で示す伝搬定数の範囲ではクラッドに放射される。
・第2の周期構造及び放射モード:
 第2の周期構造の周期Λは様々な値を取り得るが、典型例はΛ=2aである。図6(b)は第2の周期構造の周期Λが2aであるときのフォトニックバンドを示している。この周期構造では、第2の周期構造がもつ波数ベクトル2π/Λによるバンドシフトによって、導波路モードの波数は、空気への放射モード領域の放射条件に変換され、進行方向と同じ方向の斜め上方に放射される光に変換される。
 したがって、第2の周期構造の周期Λが2aである構成では、第1の周期構造を伝搬するスローライトは第2の周期構造の放射条件によって空気中に放射される。
 第2の周期構造の周期ΛがΛ=2aの条件からずれた場合には、放射が起こらないか、あるいは複数の方向に放射する。以下、周期Λと周期aとの関係における放射について説明する。
(a) Λ<aの場合:
  放射条件を満たさないため、光は放射されない。
(b) a<Λ<2aの範囲:
  斜めの方に放射される。
 (b1) Λ<4a/3の場合:
図7(a)はΛ<4a/3の場合を示している。この周期Λでは、一部の波長は空気への放射条件を満たさなくなる。
 (b2) Λ=*4a/3の場合:
図7(b)はΛ=*4a/3の場合を示している。この周期Λでは、全てのスローライトモードが空気への放射条件に入り、複数の放射は起こらない。スローライトモードは負方向の放射条件の縁にあるので、放射は進行方向とは逆方向の水平近い角度で偏向される。
 (b3) 4a/3<Λ<2aの場合:
図7(c)は4a/3<Λ<2aの場合を示している。この周期Λでは、複数の放射が起こる。
 (b4) Λ=2aの場合:
図7(d)はΛ=2aの場合を示している。この周期Λでは、再びスローライトモードが全て放射条件となり、かつ複数の放射は起こらない。
 (b5) Λ>2aの場合:
図7(e)はΛ>2aの場合を示している。この周期Λでは、フォトニックバンドの折り返し回数が多くなるので、放射条件が多数現れる。
 したがって、単一の出射ビームを形成して偏向する場合には、第2の周期構造の周期Λは、a<Λ<2aの範囲:
 Λ=*4a/3、又はΛ=2aの条件を満たすものが好適である。
(出射ビームの偏向角)
 次に、波長λや屈折率nが十分に変えられる状況で得られる最大の偏向角について説明する。
 図6,7のフォトニックバンド特性によれば、Siスラブで構成される2次元フォトニック結晶導波路の場合には、スローライトモードのフォトニックバンドはおよそa/λ=*0.25に現れる。このとき、Siの上下のクラッドの屈折率をnとすると、スローライトのβは以下の値を取り得る。
 β=(2π/a)N-0.25n(2π/a)~(2π/a)N-0.50(2π/a)
*(4N-n)k~(4N-2)k      …(6)
ここで、nは放射条件を決める上下クラッドの屈折率である.
・Λ=2aの場合:
 Λ=2aの場合には、スローライトのβは2π/Λ=2π/2a=*2kによって波数変換されるので、以下の式(7)で表される。
 β*(4N-n)k~(4N-4)k   …(7)
 ここで、スローライトにおいて通常に用いられるN=1とした場合には、β及びnは以下の式(8)、(9)で表され、出射角度θは以下の式(10)で表される。
 β1*(2-N)k~0            …(8)
 n=n=β/k*(2-n)~0          …(9)
 θ=sin-1=sin-1(2-n)~0         …(10)
 空気クラッド(n=1)をもつエアブリッジ構造を採用した場合には、θ=90°~0°が理想状態での偏向できる範囲になる。また、シリカクラッド(n=1.45)を採用した場合には、θ=33°~0°となる。
・Λ=4a/3の場合:
 Λ=4a/3の場合には、スローライトのβが2π/Λ=3π/2a=*3kによって波数変換されるので、以下の式(11)で表される。
 β*(4N―3―n)k~(4N-5)k       …(11)
 ここで、スローライトで通常に用いられるN=1とした場合には、β及びnは以下の式(8)、(9)で表され、出射角度θは以下の式(14)で表される。
 β*-(n-1)k~-k              …(12)
 n=n=β/k*-(n-1)~-1        …(13)
 θ=sin-1=sin-1[-(n-1)]~-1      …(14)
 空気クラッドではθ=0°~-90°となり、シリカクラッドではθ=-27°~-90°となる。
[偏向に必要となる波長や屈折率の変化]]
 スローライトの伝搬条件を満たす波長範囲は、フォトニック結晶導波路がエアブリッジ構造の場合にはλ=*1550nm付近で35nm程度の範囲であり、シリカクラッドの場合では15nm程度である。これらの範囲において、前記したような最大のビーム偏向が得られる。
 これらの可変波長は、デスクトップ型の可変波長レーザ装置や、可変波長レーザ小型モジュールにおいて実現されている。
 一方、波長λを固定して屈折率nを変えることで偏向の角度範囲を変える場合には、バンドが周波数方向(これは波長方向と言ってもよい)にシフトした際の伝搬定数βの変化によって生じる。波長の変化幅35nmに相当する屈折率nの変化は、例えばSiを材料として用いたときには0.085である。この屈折率の変化は約470℃の加熱で実現することできる。また、波長の変化幅15nmに相当する屈折率nの変化は0.036であり、この屈折率の変化は約200℃の加熱で実現することができる。この加熱範囲は、シリコンフォトニクス技術を利用することで可能な範囲である。
 ただし、波長λを変える場合において、短波長側では群屈折率nが小さいため、出射角度θの変化は小さい。一方、長波長側では群屈折率nが大きいため、出射角度θも急激に変化する。屈折率nを変える場合においても、波長λの場合と類似の特性を示す。例えば、波長λをスローライトの伝搬帯域の短波長側に固定し、屈折率nを増大させると、最初は群屈折率nが小さく出射角度θの変化は小さいが、徐々に群屈折率nが大きくなり、出射角度θの変化も増大する。
 波長λや屈折率nに対する出射角度θの変化はこのように非線形であるが、波長λや屈折率nに対して群屈折率nが一定であれば、出射角度θは線形に近い変化となる。2次元フォトニック結晶導波路の場合には、特定の波長範囲において、群屈折率nを大きな値で一定値とすることができる。
 図8は、群屈折率nを一定値とすることができる構成例を示している。2次元フォトニック結晶導波路2Dは円孔を過剰に大きくする構成例を示し、2次元フォトニック結晶導波路2Eは光導波部のコア部の幅を狭くする構成例を示し、2次元フォトニック結晶導波路2Fは特定の円孔列の円孔の大きさを変える構成例を示し、2次元フォトニック結晶導波路2Gはコア部の屈折率のみを高くする構成例を示し、2次元フォトニック結晶導波路2Hは特定の円孔列(格子)位置をシフトさせる構成例を示している。
 図9(a)はシリカクラッドフォトニック結晶導波路の円孔列を導波路に沿ってシフトさせた構成を示し、2列目の格子をシフトさせた構成である。図9(b)は実験的に測定された群屈折率スペクトルを示し、波長1550nm付近の約10nmの範囲で、群屈折率nはn=50でほぼ一定となる波長範囲が得られる。
 この群屈折率nはSi細線導波路の群屈折率nの12倍である。このような一定の群屈折率nを採る区間では、出射角度θは波長λや屈折率nに対して線形変化するので、出射角度θの制御を容易に行うことができる。
 このとき、a/λ、及びβは、それぞれ
 a/λ=*0.258
 β=0.55(2π/a)~0.63(2π/a)=*2.13k~2.44k
で計算される。
 第2の周期構造の周期ΛをΛ=4a/3=*0.344λ=533nm(λ=1550nm)とすると、屈折率n及び出射角度θは以下の値となる。
 n=-0.87~-0.56
 θ=-60°~-34°
 この場合、周期Λを4a/3よりやや小さくすることによって大きな偏向角が得られる。Λ=1.24aとすると、スローライトの伝搬定数βは、
 π/Λ=(2π/λ)(λ/a)(a/Λ)=2.13+1
によって波数変換され、屈折率n及び出射角度θは以下の値となる。
 n=-1~-0.69
 θ=-90°~-44°
この場合、波長1550nm付近で10nmの範囲で波長変化させるだけで偏向角90-44=46°の範囲を実現することができる。
 スローライト導波路はフォトニック結晶導波路のほかに、フォトニック結晶共振器やリング共振器を多数並べて相互結合させた結合共振器導波路としてもよい。また、層厚方向に多層膜を形成し、一つの層の厚みを厚くして導波路とする積層導波路と、フォトニック結晶導波路とを融合した構成に適用することができる。
(回折格子)
 次に、図10を用いて回折格子の構成例について説明する。
 第2の周期構造による出射部3を構成する回折格子は,表面回折格子のほかに、他の構造とすることができる。
 図10において、エアブリッジ型回折格子3Bはエアブリッジ型スローライト導波路の上に空気層を介して回折格子を配置する構成例であり、エアブリッジ型回折格子3Cはクラッド埋め込み型スローライト導波路の上に空気層を介して回折格子を配置する構成例であり、回折格子3Dはスローライト導波路の上部クラッドの上に屈折率が異なる層(SiNなど)に凹凸形状を設けて回折格子を形成する構成例であり、回折格子3Eは上クラッド内に屈折率が異なる層(SiNなど)に凹凸形状を設けた回折格子を埋め込んだ構成例であり、回折格子3Fは下クラッド内に屈折率が異なる層(SiNなど)に凹凸形状を設けた回折格子を埋め込んだ構成例であり、回折格子3Gは下部クラッドの下の層(Si基板など)に凹凸形状を直接刻んだ構成例である。
 また、回折格子3Hはフォトニック結晶導波路の両側に凹凸形状を形成した構成例である。フォトニック結晶導波路では導波路コアの両翼に有限数の円孔配列が配置されている。この構成例では、円孔配列の列数を適度に減らせば光が外側に浸み出すので、光が浸み出る箇所に回折格子を形成することによって光を放射させることができる。
 回折格子3Iはフォトニック結晶導波路の表面に浅い凹凸形状を形成した構成例である。ここで、回折格子は通常の1次元周期構造とする他に,円孔配列周期が異なるフォトニック結晶を配置してもよく、さらに、フォトニック結晶導波路上に直接に異なる周期の浅い凹凸を形成する構成としてもよい。
 回折格子3Jはフォトニック結晶の周期自体に別の周期を重畳させ、フォトニック結晶自体を多重周期構造にする構成例である。
 フォトニック結晶自体を多重周期構造にする構成例は、スローライト導波路としてフォトニック結晶導波路を用いて、導波路と光放射機構とを一つの機構で構成する。フォトニック結晶導波路は、導波路の左右を円孔配列したフォトニック結晶で挟むことにより光を反射させて伝搬させ、導波路を構成する。
 多重周期構造による光偏向デバイスは、フォトニック結晶の面内に、導波路を形成する導波路に沿って2種類の異なる直径の円孔を繰り返す二重周期構造を備える。
 なお、図10に示した回折格子の例では、凹凸形状を山型の形状で描いているが、この山型形状に限らず任意の形状としてよい。
 図11は図10中の3Jの多重周期構造による光偏向デバイスの構成を説明するための図である。
 光偏向デバイス1は、Si等の半導体などの高屈折率媒質からなるスラブに、SiO等の低屈折率媒質の円孔3b,3cを2次元周期的に例えば三角格子配列で配列し、一部の配列の円孔を取り除いた構成であり、円孔を取り除いた部分は2次元フォトニック結晶による導波部を構成すると共に、放射光ビームを放射する出射部を構成する。
 光偏向デバイス1は、光伝搬方向に対して2種類の異なる直径2rと2rの円孔3b,3cを繰り返す二重周期構造4を備える。この二重周期構造4によって、同径の円孔を配列してなる周期構造では非放射となるスローライト伝搬光が放射条件に変換され、空間に放射される。
 光偏向デバイスが備える二重周期構造は、大径の円孔を繰り返す周期構造と、小径の円孔を繰り返す周期構造とを備える。基準の円孔の直径を2rとし、直径の相違幅を2Δrとしたとき、大径の円孔の直径2rは2(r+Δr)であり、小径の円孔の直径2rは2(r-Δr)である。また、隣接する大径の円孔3bと小径の円孔3cとの中心間間隔をaとしたとき、各周期構造の円孔の間隔Λは2aである。
 光偏向デバイス1のサイズ例は、例えば、a=400nm、2r=210nmとし、また隣接する円孔3bと円孔3cとの間隔sは84nmである。なお、このサイズは1例であって、この数値に限られるものではない。
 また、図11に示す光偏向デバイスの構成例において、3列目シフト型シリカクラッドSiLSPCWを用いたデバイスや、2列目シフト型LSPCWを用いたデバイスの構成とすることができる。ngが大きな2列目シフト型LSPCWによれば、光偏向角Δθの増大が期待される。
 図12(a)~(d)は、本発明の多重周期構造による光偏向デバイスにおいて、フォトニックバンド、群屈折率nスペクトル、波長λに対する放射角θ、及び波長λに対する放射損失αを示している。なお、図12(c)の放射角θは、面垂直方向(図11z方向)をθ=0°としている。
 図12(a)において、二重周期構造を備える本発明の光偏向デバイスにおいて、光伝搬特性を表すフォトニックバンドは、円孔の直径rが2Δr分だけ変化した場合においても、円孔の直径が2rで一様である場合と同様に変化しない。また、群屈折率nにおいても、図12(b)に示すように径変化Δrに対して変化せず、nがほぼ20の広帯域で低分散のスローライトが生じることを示している。光伝搬特性の特性は、光の伝搬方向に対して伝搬定数βが変わらず、図12(c)に示す様に、放射される光の角度θが変わらないことを示している。
 一方、図12(b)において、光の放射損失αは、円孔の直径2rをΔr変化させることによって変えることができる。図12(b)では、Δrが5nm,10nm,15nm,20nmである例を示し、Δrが増加すると放射損失αが増加することを示している。放射損失αは、光搬送路から伝搬光が面外に漏れ出す率を表し、Δrが大きい程、面外に放射される放射光ビームの強度が増す。
 図12(c)に示す波長λに対する放射角θにおいて、放射角θはフォトニックバンドを反映するためΔr依存性は小さい。図12(c)には示していないが、スローライト効果とシリカクラッド/空気境界面での屈折により、波長変化Δr=27nmに対して30°近い光偏向角Δθが得られる。
 図12(d)に示す波長λに対する放射損失αにおいて、ngが大きな2列目シフト型LSPCWを使えば、さらに放射損失αの増大が期待される。一方、放射損失αはΔrが大きいほど増加する。したがって、Δrの制御により、放射角度や伝搬方向への伝搬定数等の他の性質はあまり変化しない光放射量の制御が可能である。
(偏向角を調整する構成)
 以下、出射ビームの偏向角を調整する構成について、図13,14を用いて説明する。
・偏向角の範囲を拡大する構成:
 図13は光偏向デバイスに対する入射光の入射方向を切り替えることによって偏向角の範囲を拡大する構成例を示している。
 第1の周期構造の周期aと第2の周期構造の周期Λとの間にΛ=2aの関係があるとき、出射ビームの偏向角(出射角度)θは0°以上である。入射光の光偏向デバイスに対する入射方向を逆方向で導入すると、出射ビームの出射方向は左右対称になる。よって、入射光を入射す方向を光路切り替えスイッチ7で切り換えることによって、0°を中心として±90°、又は±33°の範囲で拡大することができる。
 図13(a)において、光偏向デバイス1には、両端の入力端に光路8a,8bが接続される。光路切り替えスイッチ7は、入射光を光路8a又は光路8bに切り替える。光偏向デバイス1には、光路8a又は光路8bから入射方向を切り替えられた光が、光偏向デバイスに対して互いに逆方向で入射される。
 図13(b)に示す構成例は、図13(a)と同様の構成においてΛ=4a/3である場合を示している。この場合には、出射ビームの偏向角(出射角度)θは-90°付近の偏向となる。逆向きの入射に対しては90°付近となる。したがって、出射ビームは0°に対して正方向と負方向の両方向に偏向角範囲を備えることになる。
 図13(c)に示す構成例は、二つの光偏向デバイス1a,1bに対して光路切り替えスイッチ7,7a,7bによって入射光を切り替えて入射する構成である。
 光偏向デバイス1aに対して、一方の入射端には光路切り替えスイッチ7,7aを介して光路8cが接続され、他方の入射端には光路切り替えスイッチ7,7bを介して光路8eが接続される。また、光偏向デバイス1bに対して、一方の入射端には光路切り替えスイッチ7,7aを介して光路8dが接続され、他方の入射端には光路切り替えスイッチ7,7bを介して光路8fが接続される。なお、光路切り替えスイッチ7と光路切り替えスイッチ7aとの間は光路8aで接続され、光路切り替えスイッチ7と光路切り替えスイッチ7bとの間は光路8bで接続される。
 この構成によれば、光路切り替えスイッチ7,7a,7bによって光偏向デバイス1a,1bへの入射光をそれぞれ切り替えることによって、全方位の偏向が可能になる。
・光の広がりを抑制する構成:
 図14は光偏向デバイスから出射される光の広がりを光学系レンズを介して抑制する構成を示している。
 光偏向デバイス1の出射部3から出射される光ビームは、導波路を光伝搬方向に沿った真横から見たときには鋭いビームとなるが、光伝搬方向に直交する導波路断面を見たときには左右に大きく拡がる。図14(a)は、出射部3の出射側にシリンドリカルレンズ9aを適切な距離をおいて配置し、光の広がりを抑制する。シリンドリカルレンズ9aは、導波路に沿った方向には一様の厚さを備え、導波路と直交する方向には厚さを変えた湾曲形状である。この形状によって、出射部3から出射される光の左右の広がりは抑えられ、これによって単一峰のビームが作り出される。図14(b)に示す構成は、スローライト導波路をプラスチックモールド9bなどの光学部材中に埋め込み、光学部材の表面にシリンドリカルレンズ加工を施す構成であり、図14(a)のシリンドリカルレンズと同様の効果が得られる。
 シリンドリカルレンズについては,光偏向デバイスの上部に配置して実装する形態のほかに、光偏向デバイスの上部に厚いSiOクラッドやポリマークラッドを形成し、そのクラッドの表面をレンズ形状に加工する形態としてもよい。
(2次元掃引の構成)
 以下、出射ビームを2次元的に掃引する構成について、図15,16を用いて説明する。
・アレイ構成とシリンドリカルレンズとの組み合わせ:
 図15はスローライト導波路のアレイ構成とシリンドリカルレンズとの組み合わせによって、2次元的なビーム掃引を行う構成例を示している。
 図15(a)において、スローライト導波路と回折格子とを並行に多数本配置してアレイ集積13を構成し、アレイ集積13の出射側の出射方向にはシリンドリカルレンズ9が配置される。各スローライト導波路には光増幅器や位相調整器12が接続される。この位相調整器12には切り替え部11が接続され、切り替え部11によって入射導波路10からの入射光を切り替えて光を入射するスローライト導波路を選択し、位相調整器12で位相調整した後に選択したスローライト導波路に入射する。切り替え部11は光路切り替え光スイッチ、又は波長分波器を用いることができる。
 切り替え部11によってスローライト導波路の内の1本を選択することによって、入射導波路10により入射した入射光は何れかのスローライト導波路から出射される。このとき、図15(b)に示す様に、シリンドリカルレンズ9aに対する出射ビームの相対位置が変わるため、シリンドリカルレンズ9aから出る出射ビームの断面内の角度が変化する。
 導波路が細いときには放射される光の広がりが特に大きくなる。そのときには、図15(c)に示す様に、それぞれの回折格子の上にまず小さなシリンドリカルレンズアレイ9cを配置して、放射される光の広がりを抑制し、その後に大きなシリンドリカルレンズ9aに光を入射させる構成によって図15(b)と同じ機能を実現することができる。
 この構成において、入射光の波長を広範囲にわたって連続的に掃引すると共に、波長分波器によって導波路を順次切り替えることによって、あるいは、時系列で波長が変化する光を光路切り替えスイッチによって導波路を順次切り替えることによって、各スローライト導波路において出射ビームの出射角度θを波長に応じて変えられるように設計する。この構成によって、2次元的な光ビームの角度の掃引を実現することができる。
 入射光の波長の掃引に代えて、ヒーターやp-n接合による光スイッチによって導波路を切り替えると共に、ヒーターやp-n接合によってスローライト導波路からの出射ビームの出射角度θを変えても同様の効果を得ることができる。
 スローライト導波路の切り替えを波長分波器で行い、出射ビームの偏向をヒーターやp-n接合で行う構成のほか、スローライト導波路の切り替えをヒーターやp-n接合で行い、出射ビームの偏向を波長分波器で行う構成としてもよい。
 図15(a)は導波路アレイの中の一つの導波路を選択する構成である。これに対して、図16に示す構成例は、アレイ状に配置したスローライト導波路に長さが異なるヒーターやp-n接合を設けたアレイ集積15に位相調整器12を接続し、入射導波路10からの入射光をパワー分配器14を介して各導波路に向けて分配し、各分配光をそれぞれ位相調整した後、スローライト導波路に入射する。
 アレイ集積15は、全てのスローライト導波路に光が入射され、徐々に異なる位相変化が与えられる位相アレイを構成している。この構成によって、鋭いビーム放射と位相変化による偏向角の変化とが実現される。この位相アレイ構成は、位相が異なる複数の光が同時に出射されることで出射ビームが形成されるため、シリンドリカルレンズは不要である。
 図16(a)における入射光のパワー分配は、中央の導波路が強く、周囲の導波路になるごとに徐々に弱くなり、そのパワー分布の包絡線がガウシアン分布になるようにすると、放射された後に形成される出射ビームの品質が特に向上する。このような分配の構成例として、アレイ導波路回折格子に用いられるような構成、すなわち入射導波路の光をいったん、幅広いスラブ導波路に接続させて、その内部を光がガウシアン分布になるように自由伝搬させ、スラブ導波路の末端に所望の数のアレイ導波路を接続する構成としてもよい。
(反射光を用いる装置構成)
 上記した光ビームを放射する光偏向デバイスは、反射光を用いた装置に適用することができる。図17は光偏向デバイスの反射光を用いた装置への適用を説明するための図である。
 光偏向デバイス1に短い光パルスを導入して回折格子で光ビームを放射し(図17(a))、放射されたビームが遠方で反射され、同じ回折格子に戻ってきたときには(図17(b))、放射したときと逆の経路をたどって元の導波路の中に戻ることができる。もどって来た導波路の先にSiやGeやハイブリッド集積したIII-V族半導体からなるフォトダイオードの光検出部60を配置すれば、その光を検出することができる。この反射光を受光する構成は、LIDAR(ライダー装置)のように、短パルスの光ビームを偏向させて遠方の物体に照射し、その反射光を検出して物体までの距離を測る応用に有効である。
 反射光を用いるライダー装置の構成は複数の形態とすることができる。図18はライダー装置の形態を説明するための図である。
 図18(a)は第1の形態を示している。第1の形態のライダー装置100Aは、入射導波路80を分岐し、分岐路の一端に光検出部60(フォトダイオード)を配置する構成である。光偏向デバイス1に反射して戻った光パルスを光フィルタ70を通過させ後、分岐路を介して光検出部60に導いて検出する。
 図18(b)は第2の形態を示している。第2の形態のライダー装置100Bは、入射導波路80に光スイッチ90を挿入し、パルス光源50の光パルスが通過した後に光検出部60(フォトダイオード)側に切り換え、反射して戻ってきた光パルスを光検出部60(フォトダイオード)に高効率に導く。
 図18(c)は第3の形態を示している。Si導波路にp-n接合を形成したフォトダイオードは、強い逆バイアスを掛けると、結晶欠陥を介したサブバンドギャップ吸収を起こして、本来は検出できない長波長帯の光が検出できるようになる。第3の形態のライダー装置100Cは、光検出部60として上記したp-n接合を形成したフォトダイオードを入射導波路80の途中に挿入し、パルス光源50の光パルスが通過した後に逆バイアスに変更して、反射された光パルスを検出する。
 図18(d)は第4の形態を示している。第4の形態のライダー装置100Dは、パルス光源と光検出部とを兼ねるパルス光源・光検出部51を備える。パルス光源・光検出部51は、パルス光源となる半導体レーザに逆バイアスを掛けてフォトダイオードとしても動作させることができる。この構成によれば、パルス光源・光検出部51は光パルスを発した後に、逆バイアスを掛けてフォトダイオードとしても動作させ、反射して戻ってきた光パルスを検出する。
 上記した各形態のライダー装置の装置構成によれば、仮にパルス光源と同じ波長の光が別の方向から到来して、回折格子に入射したとしても、光は逆順をたどらないので、元の導波路には結合せず、光検出部(フォトダイオード)に入射することはない。したがって、光偏向デバイスは、上記したライダー(LIDAR)の機能において、余計なノイズ成分を除去するのに有効である。
 図18に示す各形態例は、入射導波路80に波長フィルタの光フィルタ70が挿入されている。ライダー(LIDAR)の機能において、光フィルタ70は必須の構成ではなく、光フィルタ70を省いた構成であっても同じ機能を実現することができる。
 以下、光フィルタ70を挿入した方が有効な場面について説明する。光フィルタ70はパルス光源の光パルスの波長を通過させることができるフィルタである。パルス光源の波長を変えたときは、波長変更と同期して通過波長も変えられる可変波長フィルタとするのがより好ましい。この場合、反射して戻ってきた光はこの光フィルタ70を通過して光検出部(フォトダイオード)に到達する。
 一方、環境中には様々な波長の光があり、パルス光源の波長とは異なる波長の光がノイズ成分として光偏向デバイス1の回折格子に到来する。仮に、異なる波長の光の到来方向がもともとの光ビームと同じであるときには、波長が異なるノイズ成分は光導波路に結合することができない。一方、別の方向から回折格子に到来したノイズ成分の中には、光導波路に結合して戻ることができるものがある。光フィルタは、このように光導波路に結合するノイズ成分を除去することができる。このノイズ成分の除去は、LIDARの反射信号を検出する際のSN比の向上に有効である。
 本願発明の光偏向デバイスによれば、指向性の高い光ビームを機械部品を用いることなく偏向することができる。そのため、従来cmオーダーと大型だった光偏向器をmmオーダーに小型化することができる。また、信頼性を向上させ、消費電力を低減し、動作速度を高めることができ、わずかな波長変化もしくは屈折率変化によって、大きなビーム角度の変化と大きな解像点数が得られる。
 また、本願発明の光偏向デバイスはシリコンフォトニクスCMOS互換プロセスで製作することができる。シリコンフォトニクスCMOS互換プロセスを用いることによって、フォトニック結晶スローライト導波路を形成することができる。このスローライト導波路によれば、波長の変化や外部制御による屈折率変化によって、一定の波長範囲において伝搬定数βに大きな変化を与えることができる。
 このスローライト導波路の周囲を覆うSiOクラッドの上部の表面に回折格子を形成する構成、もしくはクラッドの中に設けたSiN中間層中に回折格子を形成する構成、スローライト導波路の上部を隠さない形でスローライト導波路に沿ってクラッドの上又は内部にヒーターを形成する構成、Siスラブ中にp-n接合を形成する構成等の各種構成によって屈折率変化を与えることができる。この屈折率変化構造は、フォトニック結晶変調器において実証済みである。
 スローライト導波路はSi細線導波路に1dB以下の低損失で接続することができ、Si細線導波路はスポットサイズ変換器を介して、外部光ファイバに対して損失1.5dB程度で光学的に接続することができる。
 外部にはファイバ出力のレーザ光源を用意する。レーザ光源は、デスクトップタイプの可変波長光源や,Cバンド帯(λ=1.53~1.565μm)可変波長レーザダイオードモジュールを利用することができる。
 出射ビームに高い出力が要求されるときは、あらかじめ半導体光増幅器やエルビウム添加光ファイバ増幅器により光出力を高めることができる。通常、スポットサイズ変換器の耐入力連続パワーは200mW程度であり、これより高いパワーを入力したい場合は、光パルスを用いる。十分に狭いパルスであれば、50W以上のピークパワーでも入力可能であり、さらに高いパワーが必要な場合は、Si細線導波路の途中にGaInAsP半導体を貼り付け、伝搬光をこれに結合させて半導体光増幅器として動作させ、内部で光パワーを高める構成を用いることができる。
 多数本の導波路に対する切り替えの機構は、マッハツェンダー型光スイッチを多段従属接続させた1×N切り替えスイッチ、結合マイクロリング共振器型波長分波器、アレイ導波路回折格子、グレーティング波長分波器などを用いることができる。
 CMOS互換プロセスを用いたSiフォトニック結晶スローライト導波路,ヒーターやp-n接合による屈折率変化、Siに直接形成した回折格子による光ビーム形成ならびに波長に対するビーム角度の変化は実証済みである。
 また、使用する光は近赤外光に限らず、デバイスをSiNなど可視光に対して透明なSi関連材料で製作することによって、プロジェクタやレーザディスプレイ、網膜ディスプレイ、2D/3Dプリンタ、POSやカード読み取り装置等への適用がある。
 なお、本発明は前記各実施の形態に限定されるものではない。本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
 本発明の光偏向デバイスは、自動車,ドローン,ロボットなどに搭載されるレーザレーダー(LIDER)、パソコンやスマホに搭載して周囲環境を手軽に取り込む3Dスキャナ、監視システム、光交換やデータセンター用の空間マトリックス光スイッチなどに適用することができる。
 1  光偏向デバイス
 1a,1b  光偏向デバイス
 2  光導波部
 2A  1次元フォトニック結晶導波路
 2B  1次元フォトニック結晶導波路
 2C~2H  2次元フォトニック結晶導波路
 2a  スローライト導波路
 2b  上部クラッド
 2c  下部クラッド
 3  出射部
 3B  エアブリッジ型回折格子
 3C  エアブリッジ型回折格子
 3D~3J  回折格子
 3a  表面回折格子
 3b,3c 円孔
 4  波長制御部
 5  屈折率制御部
 6  出射角度制御部
 7,7a,7b  スイッチ
 8a~8f  光路
 9,9a  シリンドリカルレンズ
 9b  プラスチックモールド
 10  入射導波路
 11  切り替え部
 12  位相調整器
 13  アレイ集積
 14  パワー分配器
 15  アレイ集積
 21  高屈折率媒質
 22  低屈折率媒質
 23  屈折率変更部
 31  高屈折率媒質
 32  低屈折率媒質
 33  屈折率変更部
 40 高屈折率基板
 41 基板
 42 反射鏡
 50 パルス光源
 60 光検出部
 70 光フィルタ
 80 入射導波路
 90 光スイッチ
 100 ライダー装置

Claims (21)

  1.  屈折率の周期構造を備えたシリコンフォトニクスデバイスであり、
     前記周期構造は、
     シリコン基材の第1の屈折率媒質に、周期aで屈折率を異にする第2の屈折率媒質を備え、周期方向の少なくとも一端を入射端とする光導波部を構成する第1の周期構造と、
     第1の屈折率媒質に、前記第1の周期構造の周期aよりも長い周期Λ(a<Λ<2a)で屈折率を異にする第2の屈折率媒質を備え、周期方向の側端を出射端とする出射部を構成する第2の周期構造とを備え、
     前記第2の周期構造の配置位置は、前記第1の周期構造の光導波部を伝搬する光の強度分布の周辺部であり、
     前記周期aはa=λ/2n(nは第1の周期構造の光導波部の伝搬光の等価屈折率、λはブラッグ波長付近の波長)であることを特徴とする、光偏向デバイス。
  2.  前記第1の周期構造及び前記第2の周期構造において、第1の周期構造の刻みは第2の周期構造の刻みよりも大きいことを特徴とする、請求項1に記載の光偏向デバイス。
  3.  前記第1の周期構造の光導波部はスローライト導波路であり、
     前記第2の周期構造の出射部は回折格子であることを特徴とする、請求項1又は2に記載の光偏向デバイス。
  4.  前記スローライト導波路はフォトニック結晶の周期構造で構成されるフォトニック結晶導波路であることを特徴とする請求項3に記載の光偏向デバイス。
  5.  前記フォトニック結晶導波路は、
     シリコン基板上のクラッドとの間に空気層を備えるエアブリッジ型スローライト導波路、
     又は、
     クラッド内に埋め込まれるクラッド埋込型スローライト導波路であることを特徴とする請求項4に記載の光偏向デバイス。
  6.  前記回折格子は、屈折率媒質に周期的に設けた凹凸構造、又はフォトニック結晶の周期構造で構成されることを特徴とする請求項3に記載の光偏向デバイス。
  7.  前記回折格子は、
     前記エアブリッジ型スローライト導波路の間、又はクラッド埋込型スローライト導波路のクラッドとの間に、空気層を備えるエアブリッジ型回折格子、
     又は、
     前記クラッド埋込型スローライト導波路を埋め込むクラッドにおいて、上クラッドの上部、上クラッド、あるいは下クラッドのクラッド内に埋め込まれる埋込型回折格子、
     又は、
     シリコン基板に形成した回折格子の何れか一つであることを特徴とする、請求項6に記載の光偏向デバイス。
  8.  前記回折格子は、
     前記フォトニック結晶導波路の両側、
     又は、
     前記フォトニック結晶導波路の上部表面に設けることを特徴とする、請求項4に記載の光偏向デバイス。
  9.  前記フォトニック結晶導波路は、フォトニック結晶の周期構造を短周期と長周期構造の2種類の周期を備える2重周期構造を備え、
     短周期の周期構造は第1の周期構造のスローライト導波路を構成し、
     長周期の周期構造は第2の周期構造の回折格子を構成することを特徴とする、請求項4に記載の光偏向デバイス。
  10.  前記第1の周期構造は、直線状の周期構造を有する1次元フォトニック結晶導波路、又は、平面状の周期構造に直線欠陥部を有する2次元フォトニック結晶導波路であることを特徴とする、請求項1から9に記載の光偏向デバイス。
  11.  前記第2の周期構造の下方の基板側に、前記出射部から出射した出射光を反射する反射部を備えることを特徴とする、請求項1から10に記載の光偏向デバイス。
  12.  フォトニック結晶の面内に、導波路に沿って2種類の異なる直径の円孔を繰り返す二重周期構造を備えた光偏向デバイス。
  13.  前記二重周期構造は、大径の円孔を繰り返す周期構造と、小径の円孔を繰り返す周期構造とを備え、
     基準の円孔の直径を2r、直径の相違幅を2Δrとしたとき、
     大径の円孔の直径は2(r+Δr)であり、
     小径の円孔の直径は2(r-Δr)であることを特徴とする請求項12に記載の光偏向デバイス。
  14.  入射光の波長変更を制御する波長制御部、及び/又は、第1の周期構造及び/又は第2の周期構造の屈折率変更を制御する屈折率制御部を備え、
     前記波長制御部による入射光の波長変更、及び/又は、前記屈折率制御部による周期構造内の屈折率媒質の屈折率変更によって、出射ビームの出射角度を変更することを特徴とする、請求項1から13に記載の光偏向デバイス。
  15.  前記波長制御部の波長変更及び/又は前記屈折率制御部の屈折率変更を制御する制御部を備え、
     前記制御部は波長変更及び/又は屈折率変更の時間制御による出射角度の逐次変更により、1次元ビーム掃引することを特徴とする、請求項14に記載の光偏向デバイス。
  16.  前記出射部から拡散する出射ビームの出射角度を一方向に揃える光学系を備えることを特徴とする、請求項1から15の何れか一つに記載の光偏向デバイス。
  17.  前記光学系は、前記出射部の出射側に配置されるシリンドリカルレンズ、又は前記出射部の出射側に出射方向に順に配置されるマイクロレンズアレイ及びシリンドリカルレンズであることを特徴とする、請求項16に記載の光偏向デバイス。
  18.  前記光導波部の両端に対して、入射光を入射する光路を切り替える光路切替スイッチを備えることを特徴とする、請求項1から17に記載の光偏向デバイス。
  19.  複数の前記光導波部の平行配置で構成されるアレイ構成と、
     前記複数の光導波部の少なくとも何れか一つに入射光を切り替えて入射する入射光切替スイッチとを備え、
     前記出射部の方向に依存する第1の出射方向のビーム掃引と、前記入射光切替スイッチによる光導波部の選択に依存する第2の出射方向のビーム掃引とにより2次元ビーム掃引することを特徴とする、請求項16又は17に記載の光偏向デバイス。
  20.  複数の前記光導波部の平行配置で構成されるアレイ構成と、
     前記複数の光導波部に位相調整した入射光を入射する位相調整器とからなる位相アレイを備え、
     前記位相調整器の位相調整によって2次元掃引することを特徴とする、請求項15に記載の光偏向デバイス。
  21.  請求項1から20の何れかに記載の光偏向デバイスと、
     前記光偏向デバイスにパルス光を入射するパルス光源と、
     前記光偏向デバイスで受けた光を検出する光検出部と、
     を備えたライダー装置。
PCT/JP2017/000625 2016-01-22 2017-01-11 光偏向デバイスおよびライダー装置 WO2017126386A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/071,895 US11079541B2 (en) 2016-01-22 2017-01-11 Optical deflection device and LIDAR apparatus
EP17741266.5A EP3407128B1 (en) 2016-01-22 2017-01-11 Light-deflecting device and lidar apparatus
CN201780012569.1A CN108700790B (zh) 2016-01-22 2017-01-11 光偏转器及激光雷达装置
JP2017562528A JP6879561B2 (ja) 2016-01-22 2017-01-11 光偏向デバイスおよびライダー装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-010844 2016-01-22
JP2016010844 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017126386A1 true WO2017126386A1 (ja) 2017-07-27

Family

ID=59361721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000625 WO2017126386A1 (ja) 2016-01-22 2017-01-11 光偏向デバイスおよびライダー装置

Country Status (5)

Country Link
US (1) US11079541B2 (ja)
EP (1) EP3407128B1 (ja)
JP (1) JP6879561B2 (ja)
CN (1) CN108700790B (ja)
WO (1) WO2017126386A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003852A1 (ja) * 2016-06-30 2018-01-04 国立大学法人横浜国立大学 光偏向デバイスおよびライダー装置
JP2018180115A (ja) * 2017-04-06 2018-11-15 国立大学法人横浜国立大学 光偏向デバイス
JP2019028438A (ja) * 2017-07-28 2019-02-21 パナソニックIpマネジメント株式会社 光スキャンデバイス、光受信デバイス、および光検出システム
WO2019039526A1 (ja) 2017-08-24 2019-02-28 国立大学法人横浜国立大学 光偏向デバイス
WO2019130721A1 (ja) * 2017-12-28 2019-07-04 パナソニックIpマネジメント株式会社 光デバイス
WO2019187777A1 (ja) * 2018-03-27 2019-10-03 パナソニックIpマネジメント株式会社 光デバイスおよび光検出システム
WO2019225445A1 (ja) * 2018-05-21 2019-11-28 学校法人慶應義塾 ナノカーボン材料を用いた光デバイス
WO2020090487A1 (ja) 2018-10-30 2020-05-07 国立大学法人横浜国立大学 プリズムレンズ、光偏向デバイス及びライダ装置
CN111712723A (zh) * 2017-12-15 2020-09-25 罗伯特·博世有限公司 用于偏转激光射束的设备
WO2021059757A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 光デバイス
WO2022019143A1 (ja) * 2020-07-20 2022-01-27 日本碍子株式会社 光走査素子
US11353561B2 (en) 2017-11-17 2022-06-07 Denso Corporation Distance measuring sensor
WO2022124066A1 (ja) * 2020-12-08 2022-06-16 ソニーセミコンダクタソリューションズ株式会社 測距装置、および測距方法、並びにプログラム
CN114815056A (zh) * 2022-04-18 2022-07-29 扬州大学 一种基于交错偏移的夹层高效发射光栅天线及其制作方法
WO2022162981A1 (ja) * 2021-02-01 2022-08-04 日本碍子株式会社 光走査素子
US11486979B2 (en) 2017-05-30 2022-11-01 National University Corporation Yokohama National University Light receiving array and LiDAR device
JP7187623B1 (ja) 2021-06-30 2022-12-12 ジュニパー ネットワークス, インコーポレーテッド エタロン補償を備えた高帯域幅フォトニック集積回路
WO2023286408A1 (ja) * 2021-07-14 2023-01-19 日本碍子株式会社 導波素子、光走査素子および光変調素子
WO2023062957A1 (ja) * 2021-10-13 2023-04-20 ソニーセミコンダクタソリューションズ株式会社 光偏向装置、及び測距装置
US11906667B2 (en) 2020-11-23 2024-02-20 Aurora Operations, Inc. Optical coupler for LIDAR sensor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816941B2 (en) * 2016-03-28 2017-11-14 Saudi Arabian Oil Company Systems and methods for constructing and testing composite photonic structures
DE102017116598A1 (de) * 2017-07-24 2019-01-24 Valeo Schalter Und Sensoren Gmbh Sendevorrichtung für ein abtastendes optisches Detektionssystem eines Fahrzeugs, Detektionssystem, Fahrerassistenzsystem und Verfahren zum optischen Abtasten eines Überwachungsbereichs
CN109541744B (zh) * 2017-09-22 2020-08-25 北京万集科技股份有限公司 一种基于反射层的硅基光学天线及制备方法
CN109490865B (zh) * 2018-12-11 2021-03-05 锐驰智光(北京)科技有限公司 一种面阵激光雷达
CN109856049A (zh) * 2018-12-14 2019-06-07 杭州元色科技有限公司 透明板材瑕疵检测全内反射光导入装置及载片方法
CN111366909B (zh) * 2019-04-12 2022-12-02 上海禾赛科技有限公司 激光雷达
CN110187440B (zh) * 2019-04-15 2021-02-19 王强 光栅器件、光发射模块及光探测方法
WO2020223927A1 (zh) * 2019-05-08 2020-11-12 深圳市速腾聚创科技有限公司 光学相控阵及其相位误差改善方法、激光雷达、智能设备
CN110376592B (zh) * 2019-07-23 2022-02-11 吉林大学 一种声光调控的光学相控阵激光雷达
KR20210022816A (ko) * 2019-08-20 2021-03-04 삼성전자주식회사 광 변조 소자 및 이를 포함하는 전자 장치
CN110967680B (zh) * 2019-12-18 2022-09-27 中国科学院半导体研究所 用于三维扫描的复合结构转镜及应用其的激光雷达
KR20210088047A (ko) * 2020-01-03 2021-07-14 삼성전자주식회사 공간 광변조기 및 이를 포함한 빔 스티어링 장치
CN111856481B (zh) * 2020-07-29 2021-07-06 杭州视光半导体科技有限公司 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统
CN112098975B (zh) * 2020-09-28 2024-05-07 杭州视光半导体科技有限公司 一种用于spad方案的线扫描光源发生装置
CN112630884B (zh) * 2020-12-22 2023-09-08 联合微电子中心有限责任公司 用于光学相控阵的波导光栅天线阵列及其制备方法
US20220350096A1 (en) * 2021-04-30 2022-11-03 Huawei Technologies Co., Ltd. Optical power distribution system
CN113376743B (zh) * 2021-06-22 2022-12-13 电子科技大学 一种基于长周期光栅的模斑转换器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091925A (ja) * 2003-09-18 2005-04-07 Ricoh Co Ltd 光制御素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822784B2 (en) * 2001-03-22 2004-11-23 Matsushita Electric Works, Ltd Light-beam deflecting device with photonic crystal, optical switch using the same, and light-beam deflecting method
US6999669B2 (en) * 2002-08-19 2006-02-14 Georgia Tech Research Corporation Photonic crystals
CN102959464B (zh) * 2011-04-15 2016-04-27 松下电器产业株式会社 光偏转器、光偏转装置以及使用这些的液晶显示装置
JP5662266B2 (ja) 2011-07-01 2015-01-28 株式会社デンソー 光偏向モジュール
JP2014085398A (ja) * 2012-10-19 2014-05-12 Toyota Central R&D Labs Inc 光変調器及び光偏向器
EP2887110A1 (en) * 2013-12-20 2015-06-24 IMEC vzw Integrated photonic coupler
WO2018155535A1 (ja) * 2017-02-24 2018-08-30 国立大学法人横浜国立大学 光偏向デバイス

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091925A (ja) * 2003-09-18 2005-04-07 Ricoh Co Ltd 光制御素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KWONG,D. ET AL.: "On-chip silicon optical phased array for two-dimensional beam steering", OPTICS LETTERS, vol. 39, no. 4, 15 February 2014 (2014-02-15), pages 941 - 944, XP001587903 *
NEFF,C.W. ET AL.: "Photonic Crystal Superlattices", LEOS 2004, vol. 2, 2004, pages 841 - 842, XP010749009 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11448729B2 (en) 2016-06-30 2022-09-20 National University Corporation Yokohama National University Optical deflection device and LIDAR apparatus
WO2018003852A1 (ja) * 2016-06-30 2018-01-04 国立大学法人横浜国立大学 光偏向デバイスおよびライダー装置
JP2018180115A (ja) * 2017-04-06 2018-11-15 国立大学法人横浜国立大学 光偏向デバイス
US11486979B2 (en) 2017-05-30 2022-11-01 National University Corporation Yokohama National University Light receiving array and LiDAR device
JP2019028438A (ja) * 2017-07-28 2019-02-21 パナソニックIpマネジメント株式会社 光スキャンデバイス、光受信デバイス、および光検出システム
CN111164477A (zh) * 2017-08-24 2020-05-15 国立大学法人横滨国立大学 光偏转装置
JP7134443B2 (ja) 2017-08-24 2022-09-12 国立大学法人横浜国立大学 光偏向デバイス
US11067746B2 (en) 2017-08-24 2021-07-20 National University Corporation Yokohama National University Light deflection device
JPWO2019039526A1 (ja) * 2017-08-24 2020-10-15 国立大学法人横浜国立大学 光偏向デバイス
WO2019039526A1 (ja) 2017-08-24 2019-02-28 国立大学法人横浜国立大学 光偏向デバイス
EP3674760A4 (en) * 2017-08-24 2021-04-21 National University Corporation Yokohama National University LIGHT DEFLECTOR
US11353561B2 (en) 2017-11-17 2022-06-07 Denso Corporation Distance measuring sensor
JP2021507282A (ja) * 2017-12-15 2021-02-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh レーザビーム偏向装置
CN111712723A (zh) * 2017-12-15 2020-09-25 罗伯特·博世有限公司 用于偏转激光射束的设备
JPWO2019130721A1 (ja) * 2017-12-28 2020-11-19 パナソニックIpマネジメント株式会社 光デバイス
JP7162269B2 (ja) 2017-12-28 2022-10-28 パナソニックIpマネジメント株式会社 光デバイス
WO2019130721A1 (ja) * 2017-12-28 2019-07-04 パナソニックIpマネジメント株式会社 光デバイス
US20200408884A1 (en) * 2018-03-27 2020-12-31 Panasonic Intellectual Property Management Co., Ltd. Optical device and photodetection system
CN110537143A (zh) * 2018-03-27 2019-12-03 松下知识产权经营株式会社 光设备及光检测系统
WO2019187777A1 (ja) * 2018-03-27 2019-10-03 パナソニックIpマネジメント株式会社 光デバイスおよび光検出システム
JP7454852B2 (ja) 2018-05-21 2024-03-25 慶應義塾 ナノカーボン材料を用いた光デバイス
WO2019225445A1 (ja) * 2018-05-21 2019-11-28 学校法人慶應義塾 ナノカーボン材料を用いた光デバイス
CN113039462A (zh) * 2018-10-30 2021-06-25 国立大学法人横滨国立大学 棱镜透镜、光偏转设备和LiDAR装置
WO2020090487A1 (ja) 2018-10-30 2020-05-07 国立大学法人横浜国立大学 プリズムレンズ、光偏向デバイス及びライダ装置
JP7352295B2 (ja) 2018-10-30 2023-09-28 国立大学法人横浜国立大学 プリズムレンズ、光偏向デバイス及びライダ装置
WO2021059757A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 光デバイス
JPWO2022019143A1 (ja) * 2020-07-20 2022-01-27
DE112021002832T5 (de) 2020-07-20 2023-03-02 Ngk Insulators, Ltd. Optisches Abtastelement
WO2022019143A1 (ja) * 2020-07-20 2022-01-27 日本碍子株式会社 光走査素子
JP7274608B2 (ja) 2020-07-20 2023-05-16 日本碍子株式会社 光走査素子
JP7473083B2 (ja) 2020-11-23 2024-04-23 オーロラ・オペレイションズ・インコーポレイティッド Lidarセンサーのための光カプラ
US11906667B2 (en) 2020-11-23 2024-02-20 Aurora Operations, Inc. Optical coupler for LIDAR sensor
WO2022124066A1 (ja) * 2020-12-08 2022-06-16 ソニーセミコンダクタソリューションズ株式会社 測距装置、および測距方法、並びにプログラム
WO2022162981A1 (ja) * 2021-02-01 2022-08-04 日本碍子株式会社 光走査素子
DE112021006089T5 (de) 2021-02-01 2023-09-28 Ngk Insulators, Ltd. Optisches Abtastelement
JP7187623B1 (ja) 2021-06-30 2022-12-12 ジュニパー ネットワークス, インコーポレーテッド エタロン補償を備えた高帯域幅フォトニック集積回路
JP2023007264A (ja) * 2021-06-30 2023-01-18 ジュニパー ネットワークス, インコーポレーテッド エタロン補償を備えた高帯域幅フォトニック集積回路
WO2023286408A1 (ja) * 2021-07-14 2023-01-19 日本碍子株式会社 導波素子、光走査素子および光変調素子
JP7389263B2 (ja) 2021-07-14 2023-11-29 日本碍子株式会社 光走査素子
DE112022002553T5 (de) 2021-07-14 2024-04-11 Ngk Insulators, Ltd. Wellenleitervorrichtung, optische abtastvorrichtung und optische modulationsvorrichtung
WO2023062957A1 (ja) * 2021-10-13 2023-04-20 ソニーセミコンダクタソリューションズ株式会社 光偏向装置、及び測距装置
CN114815056B (zh) * 2022-04-18 2023-06-27 扬州大学 一种基于交错偏移的夹层高效发射光栅天线及其制作方法
CN114815056A (zh) * 2022-04-18 2022-07-29 扬州大学 一种基于交错偏移的夹层高效发射光栅天线及其制作方法

Also Published As

Publication number Publication date
US20190033522A1 (en) 2019-01-31
CN108700790B (zh) 2021-10-22
JPWO2017126386A1 (ja) 2018-11-29
CN108700790A (zh) 2018-10-23
EP3407128A4 (en) 2019-09-18
US11079541B2 (en) 2021-08-03
JP6879561B2 (ja) 2021-06-02
EP3407128B1 (en) 2021-03-03
EP3407128A1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2017126386A1 (ja) 光偏向デバイスおよびライダー装置
WO2018003852A1 (ja) 光偏向デバイスおよびライダー装置
Abe et al. Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide
KR20130143666A (ko) 서브-파장 그레이팅-기초 광학 엘리먼트
JP7076822B2 (ja) 光受信器アレイ、及びライダー装置
JP7134441B2 (ja) 光偏向デバイス
CN103999303A (zh) 集成亚波长光栅系统
Ito et al. Wavelength-division multiplexing Si photonic crystal beam steering device for high-throughput parallel sensing
Tamanuki et al. Thermo-optic beam scanner employing silicon photonic crystal slow-light waveguides
CN113608305A (zh) 波束控制器及波束控制方法
JP2011085916A (ja) 複数ビーム偏向器、二次元スキャナ及び複数ビーム偏向モジュール
US20230026564A1 (en) Optoelectronic transmitter with phased array antenna comprising an integrated control device
EP3929640A1 (fr) Dispositif integre de couplage optique entre une source laser evasee et un guide d'onde
JP6931237B2 (ja) 光偏向デバイス、及びライダー装置
KR20230022147A (ko) 광학 장치
US20230020133A1 (en) Optical device for controlling light from an external light source
Doerr et al. Linear 2D beam steering with a large focusing grating via focal point movement and wavelength
KR102223750B1 (ko) 광의 위상을 가변할 수 있는 배열 안테나
Ito et al. Enhanced light emission from a Si photonics beam steering device consisting of asymmetric photonic crystal waveguide
US20240004261A1 (en) Single-Beam Side Deflector, Multiplexer/Demultiplexer And Optical Antenna Feeder Incorporating The Deflector, And Methods That Use Same
Xin Silicon-Based Polarization-Insensitive Optical Antenna Design and Experimental Characterization of Optical Phased Arrays
JP2006078989A (ja) 発光デバイス、光書込み装置、および光通信装置
Abe et al. Two-dimensional beam steering device using double periodic Si photonic crystal waveguide
JP2002169048A (ja) 自己導波光回路
WO2023110684A9 (fr) Emetteur optoelectronique a antenne reseau a commande de phase ou chaque antenne optique presente une large surface d'emission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741266

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017562528

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017741266

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741266

Country of ref document: EP

Effective date: 20180822