WO2020223927A1 - 光学相控阵及其相位误差改善方法、激光雷达、智能设备 - Google Patents

光学相控阵及其相位误差改善方法、激光雷达、智能设备 Download PDF

Info

Publication number
WO2020223927A1
WO2020223927A1 PCT/CN2019/086018 CN2019086018W WO2020223927A1 WO 2020223927 A1 WO2020223927 A1 WO 2020223927A1 CN 2019086018 W CN2019086018 W CN 2019086018W WO 2020223927 A1 WO2020223927 A1 WO 2020223927A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
mode converter
wide
unit
output
Prior art date
Application number
PCT/CN2019/086018
Other languages
English (en)
French (fr)
Inventor
汪敬
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2019/086018 priority Critical patent/WO2020223927A1/zh
Priority to CN201980002797.XA priority patent/CN110741280B/zh
Publication of WO2020223927A1 publication Critical patent/WO2020223927A1/zh
Priority to US17/520,601 priority patent/US11953621B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29301Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means based on a phased array of light guides

Definitions

  • the invention relates to the technical field of laser radar, in particular to an optical phased array and a method for improving its phase error, laser radar and intelligent equipment.
  • the optical phased array is an important part of the all-solid-state lidar system. It has the advantages of complete solid-state, high reliability, small size, and convenient control.
  • the optical phased array can be realized by integrated optoelectronic technology.
  • the existing optical antenna units include silicon-on-insulator (SOI) materials, silicon nitride materials, three-five group materials, etc. Since the silicon-based optical phased array based on SOI material can utilize the mature microelectronic complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) process platform, it has received great attention from the industry in recent years.
  • SOI silicon-on-insulator
  • CMOS complementary metal oxide semiconductor
  • the optical phased array is composed of an optical splitter, a tunable phase shifter, a connecting waveguide, and an antenna transmitting unit.
  • the input light can be divided into equal proportions or unequal proportions through the splitter. After these lights pass through the tunable phase shifter, their phase will be changed. After passing through a series of connected waveguides, it is finally launched into free space in the antenna transmitting unit.
  • the inventor of the present invention found that since most antenna transmitting units are currently arranged in parallel at a certain interval, the occupied area often cannot be changed.
  • the phase shifters are usually large in size, especially in large-scale optical phased arrays. Connecting the output ports of these large-size tunable phase shifters to a fixed area antenna transmitting unit one by one will use a large number of straight waveguides. And bend the waveguide. From a functional point of view, these waveguides are not necessary, but in practice a large amount of area in the entire optical phased array is occupied by these connecting waveguides. Take the 64-channel silicon-based optical phased array as an example. The longest connecting waveguide can even reach several millimeters.
  • the embodiments of the present invention provide an optical phased array and a phase error improvement method thereof, a lidar, and a smart device that overcome the above problems or at least partially solve the above problems.
  • an optical phased array including: an optical signal output unit, a waveguide unit, and an antenna transmitting unit; the optical signal output unit is used to output M modulated optical signals, where M Is a positive integer; the waveguide unit includes M waveguide pipes, the waveguide unit includes M waveguide pipes, each waveguide pipe includes at least one connecting waveguide, and the connecting waveguide includes input mode converters connected in sequence , A wide waveguide and an output mode converter, the input mode converter is used to convert a narrow waveguide to a wide waveguide, the output mode converter is used to convert a wide waveguide to a narrow waveguide, one of the input modes of the connected waveguide The input end of the converter is connected to the optical signal output unit, and the output end of one of the output mode converters connected to the waveguide is connected to the antenna transmitting unit; the antenna transmitting unit: connected to the waveguide unit for transmitting M optical signals transmitted by the waveguide unit.
  • each of the waveguide pipes further includes: at least one curved waveguide, the curved waveguide is used to connect the output mode converter of one of the connecting waveguides and the input mode converter of the adjacent connecting waveguides And bend the waveguide pipe.
  • each of the waveguide pipes further includes: an initial mode converter located at the initial end of the waveguide pipe, the input end of the initial mode converter is connected to the optical signal output unit, and the output end is connected to one of the The input mode converter of the connection waveguide is connected.
  • each of the waveguide pipes further includes: an end mode converter located at the end of the waveguide pipe, and the input end of the end mode converter is connected to one of the output mode converters connected to the waveguide , The output terminal is connected to the antenna transmitting unit.
  • the input mode converters of at least one of the connecting waveguides have the same structure; the output mode converters of at least one of the connecting waveguides have the same structure; and the structures of the at least one curved waveguide are the same .
  • the wide waveguides in adjacent waveguide pipes that are positioned directly opposite to each other are parallel to each other, and the waveguide spacing is the same.
  • the wide waveguides in adjacent waveguide pipes have the same length difference in positions opposite to each other.
  • a laser radar which includes the aforementioned optical phased array, a light receiving unit, and a ranging unit.
  • a smart device including the aforementioned lidar.
  • a phase error improvement method which is applied to the aforementioned optical phased array.
  • the method includes: outputting M channels of modulated optical signals, where M is a positive integer;
  • the first narrow waveguide mode of the modulated optical signal is converted into a wide waveguide; at least one of the wide waveguides is used to transmit the optical signal; the wide waveguide mode is converted into a second narrow waveguide for transmitting the optical signal;
  • the light signal is emitted.
  • the method further includes: converting the wide waveguide mode into a bent waveguide; applying the bent waveguide to bend a waveguide pipe; and converting the bent waveguide mode into the wide waveguide.
  • the optical phased array includes: an optical signal output unit, a waveguide unit, and an antenna transmitting unit; the optical signal output unit is used to output M modulated optical signals, where M is a positive integer;
  • the waveguide unit includes M waveguide pipes, each of the waveguide pipes includes at least one connecting waveguide, and the connecting waveguide includes an input mode converter, a wide waveguide, and an output mode converter connected in sequence, and the input mode converter is used for The narrow waveguide is converted into a wide waveguide, the output mode converter is used to convert the wide waveguide into a narrow waveguide, and the input end of the input mode converter of one of the connected waveguides is connected to the optical signal output unit, and one of the The output end of the output mode converter connected to the waveguide is connected to the antenna transmitting unit; the antenna transmitting unit is connected to the waveguide unit, and is used to transmit M optical signals transmitted by the waveguide unit.
  • Figure 1 shows a schematic structural diagram of an optical phased array according to an embodiment of the present invention
  • Figure 2 shows a schematic structural diagram of another optical phased array according to an embodiment of the present invention
  • Fig. 3 shows a schematic structural diagram of yet another optical phased array according to an embodiment of the present invention
  • Fig. 4 shows a schematic flowchart of a method for improving a phase error according to an embodiment of the present invention.
  • Fig. 1 shows a schematic structural diagram of an optical phased array according to an embodiment of the present invention.
  • the optical phased array includes: an optical signal output unit 1, a waveguide unit 2 and an antenna transmitting unit 3.
  • the optical signal output unit 1 is used to output M modulated optical signals, where M is a positive integer.
  • the waveguide unit 2 includes M waveguide pipes 200, each of the waveguide pipes 200 includes at least one connecting waveguide 20, and the connecting waveguide 20 includes an input mode converter 21, a wide waveguide 22, and an output mode converter 23 connected in sequence ,
  • the input mode converter 21 is used to convert a narrow waveguide to a wide waveguide
  • the output mode converter 23 is used to convert a wide waveguide to a narrow waveguide
  • the input terminal of is connected to the optical signal output unit 1, and the output terminal of one of the output mode converters 23 of the connecting waveguide 20 is connected to the antenna transmitting unit 3.
  • the antenna transmitting unit 3 is connected to the waveguide unit 2 and is used for transmitting M optical signals transmitted by the waveguide unit 2.
  • the optical signal output unit 1 includes an optical splitter 10 and a phase shifter 11.
  • the beam splitter 10 may first split the input light, and then the phase shifter 11 phase shifts the light split by the beam splitter 10 to obtain and output multiple optical signals with different phases.
  • the optical splitter 10 and the phase shifter 11 are alternately arranged, that is, the splitting and phase shifting of the input light are performed alternately, and finally multiple optical signals of different phases are output.
  • M optical signals with different phases are output.
  • the waveguide unit 2 receives the M optical signals carrying different phase information after being split and phase-shifted by the optical splitter 10 and the phase shifter 11, and the M output ends of the waveguide unit 2 and the M input of the antenna transmitting unit 3 Connect at the end.
  • each waveguide pipe 200 further includes: at least one curved waveguide 24.
  • the curved waveguide 24 is used to connect the output mode converter 23 of one of the connecting waveguides 20 and the input mode converter 21 of the adjacent connecting waveguide 20 to bend the waveguide pipe 200.
  • the input end of the curved waveguide 24 is connected to the output end of the output mode converter 23 of the previous connection waveguide 20, and the output end of the curved waveguide 24 is connected to the input end of the input mode converter 21 of the next connection waveguide 20.
  • the curved waveguide 24 is bent 90 degrees.
  • the curved waveguide 24 can also be bent at any other angle between 0 and 180.
  • each waveguide pipe 200 in the waveguide unit 2 includes N connecting waveguides 20, and N is an integer. In the embodiment of the present invention, N is preferably 3. In other embodiments of the present invention, N can also be other integers, which is not limited herein.
  • each waveguide pipe 200 in the waveguide unit 2 includes N connecting waveguides 20; N-1 bending waveguides 24, such as the first bending waveguide,..., the N-1th bending waveguide.
  • Each connecting waveguide 20 includes an input mode converter 21, a wide waveguide 22 and an output mode converter 23. Any adjacent connecting waveguides 20 are connected by a curved waveguide 24.
  • the wide waveguide 22 is a straight waveguide transmission part, and a plurality of the optical signals are transmitted through a wider waveguide.
  • the curved waveguide 24 is a curved waveguide transmission part, and the waveguide pipe 200 is bent to transmit a plurality of the optical signals in a narrow waveguide.
  • the waveguide width of the wide waveguide 22 is generally 800 nm to 1 ⁇ m, and the waveguide width of the curved waveguide 24 is generally 150 nm to 500 nm. In this way, all the straight waveguide transmission parts are transmitted by waveguides with larger waveguide widths, so that the change in the width of the waveguide caused by the process error to the width of the wide waveguide is smaller than that of the narrow waveguide in the traditional technology, so the phase error Will drop significantly.
  • the narrow waveguide is still used in the transmission part of the curved waveguide to reduce the bending radius of the narrow waveguide, and the narrow waveguide is equivalent to a mode filter, which will filter out the higher-order modes that may be generated in the wide wave
  • the input mode converter 21 is used to convert the input waveguide width of the optical signal or the first waveguide width w1 of the curved waveguide 24 into the second waveguide width w2 of the wide waveguide 22.
  • the output mode converter 23 is connected between the adjacent wide waveguide 22 and the curved waveguide 24 or between the wide waveguide 22 and the antenna transmitting unit 3.
  • the output mode converter 23 converts the second waveguide width w2 into the first waveguide width w1 of the curved waveguide 24 and into the input-end waveguide width of the antenna transmitting unit 3.
  • the second waveguide width w2 is greater than the first waveguide width w1, and the first waveguide width w1 is preferably the waveguide width w0 of a single-mode waveguide.
  • the input waveguide width of the optical signal and the input end waveguide width of the antenna transmitting unit 3 are between the first waveguide width w1 and the second waveguide width w2, of course, they can also be the same as the first waveguide width w1.
  • Each waveguide pipe 200 further includes an initial mode converter 25 and an end mode converter 26.
  • the initial mode converter 25 is located at the initial end of the waveguide pipe 200, the input end of the initial mode converter 25 is connected to the optical signal output unit 1, and the output end is connected to one of the input modes of the connecting waveguide 20
  • the converter 21 is connected.
  • the end mode converter 26 is located at the end of the waveguide pipe 200, the input end of the end mode converter 26 is connected to one of the output mode converters 23 of the connecting waveguide 20, and the output end is connected to the antenna transmitting unit 3Connect.
  • the initial mode converter 25 is connected to the optical signal output unit 1
  • N connection waveguides 20 are connected between the initial mode converter 25 and the end mode converter 26, and any adjacent connection waveguides 20 are connected.
  • the curved waveguide 24 is connected between.
  • the terminal mode converter 26 is connected to the antenna transmitting unit 3.
  • the input end of the initial mode converter 25 is connected to the optical signal output unit 1, the output end is connected to the first input mode converter 21 connected to the waveguide 20, and the first wide waveguide 22 connected to the waveguide 20 is connected to the first Between the input mode converter 21 and the output mode converter 23 connected to the waveguide 20, the input end of the first curved waveguide 24 is connected to the output mode converter 23 of the first connection waveguide 20, and the output end is connected to the adjacent first Two input mode converters 21 connected to the waveguide 20 are connected, and so on, the output end of the N-1th curved waveguide 24 is connected to the input mode converter 21 of the Nth connected waveguide 20, and the width of the Nth connected waveguide 20 is The waveguide 22 is connected between the input mode converter 21 and the output mode converter 23 of the Nth connecting waveguide 20, and the output mode converter 23 of the Nth connecting waveguide 20 is connected to the input end of the end mode converter 26, and the end mode The output terminal of the converter 26 is connected to the antenna transmitting unit 3.
  • the initial mode converter 25 converts the input waveguide width of the optical signal into the first waveguide width w1
  • the input mode converter 21 converts the first waveguide width w1 into the second waveguide of the wide waveguide 22 Width w2.
  • the output mode converter 23 converts the second waveguide width w2 into the first waveguide width w1 of the curved waveguide 24, and the end mode converter 26 converts the first waveguide width w1 into the The width of the waveguide at the input end of the antenna transmitting unit 3.
  • the connection between the wide straight waveguide transmission part and the narrow curved waveguide transmission part through a mode converter can effectively reduce the loss.
  • the first waveguide width w1 is preferably the waveguide width w0 of a single-mode waveguide. If the input waveguide width of the optical signal is consistent with the waveguide width w0 of the single-mode waveguide, the initial mode converter 25 can be omitted, and the input mode converter 21 directly converts the input waveguide width of the optical signal into the second waveguide width w2 of the wide waveguide 22 .
  • the end mode converter 26 can be omitted, and the output mode converter 23 directly converts the second waveguide width w2 of the wide waveguide 22 into The width of the waveguide at the input end of the antenna transmitting unit 3.
  • At least one of the input mode converters connected to the waveguide has the same structure; at least one output mode converter of the connected waveguide has the same structure; and the at least one curved waveguide has the same structure.
  • the initial mode converter 25 and the output mode converter 23 are tapered waveguides, and the structure remains the same. Specifically, the length and waveguide width of each mode converter are the same.
  • the input mode converter 21 and the end mode converter 26 are tapered waveguides. And the structure remains the same, and at the same time the structure of each curved waveguide 24 also remains the same to ensure that the optical path difference of each waveguide pipe 200 in the entire waveguide unit 2 is consistent.
  • the tapered waveguide of each mode converter can be maintained The length is the same.
  • the two tapered initial mode converters 25 and one of the input mode converters 21 connected to the waveguide 20 can be combined into a parabolic mode converter.
  • one of the two tapered mode converters The output mode converter 23 and the end mode converter 26 connected to the waveguide 20 can also be combined into a parabolic mode converter.
  • the structure of the parabolic mode converter is consistent with the combined structure of the two conical mode converters.
  • multiple mode converters are used to ensure that the waveguide width of the wide waveguide 22 is relatively large, thereby reducing the phase error caused by the change of the waveguide width due to the process error.
  • the wide waveguides in the adjacent waveguide pipes 200 are parallel to each other, and the waveguide spacing is the same.
  • the waveguide spacing is related to the position coordinates of the waveguide unit 2 and the number of antennas in the antenna transmitting unit 3.
  • the waveguide spacing is greater than 5 ⁇ m.
  • the length difference of the wide waveguide 22 of one of the connecting waveguides 20 in the adjacent waveguide pipes 200 that is in a position directly opposite to each other is the same.
  • the length difference of the wide waveguide 22 of one of the connecting waveguides 20 in the adjacent waveguide pipes 200 is adjusted by the waveguide pitch of the wide waveguide 22 of the previous connecting waveguide 20.
  • the waveguide length difference of the wide waveguide 22 of the second connecting waveguide 20 in the adjacent waveguide pipes 200 is adjusted by the waveguide distance of the wide waveguide 22 of the first connecting waveguide 20 in the pipe.
  • the waveguide distance of the first wide waveguide 22 connected to the waveguide 20 in the adjacent waveguide pipe 200 and the waveguide distance of the adjacent waveguide output by the optical signal output unit 1 Similarly, the waveguide spacing of the wide waveguide 22 of the Nth connecting waveguide 20 in the adjacent waveguide pipe 200 is the same as the spacing of adjacent antennas in the antenna transmitting unit 3. At other positions in the adjacent waveguide pipes 200, the length difference of any wide waveguide 22 connected to the waveguide 20 is adjusted by the waveguide spacing of the wide waveguide 22 of the last connected waveguide 20.
  • the direction of the wide waveguide 22 of the previous connecting waveguide 20 in the adjacent waveguide pipe 200 is parallel to the direction of the waveguide output by the optical signal output unit 1, the greater the waveguide pitch of the wide waveguide 22 of the previous connecting waveguide 20 , The length difference of the wide waveguide 22 of the latter connecting waveguide 20 is greater. If the direction of the first wide waveguide 22 connected to the waveguide 20 in the adjacent waveguide pipe 200 is perpendicular to the direction of the waveguide output by the optical signal output unit 1, the greater the waveguide spacing of the previous wide waveguide 22 connected to the waveguide 20, the later The length difference of the wide waveguide 22 connecting the waveguide 20 is smaller.
  • the direction of the broad waveguide 22 of the first connecting waveguide 20 is the same as the direction of the waveguide output by the optical signal output unit 1
  • the direction of the broad waveguide 22 of the second connecting waveguide 20 is the same as the direction of the waveguide output by the optical signal output unit 1.
  • the greater the waveguide spacing of the wide waveguide 22 of the first connecting waveguide 20 is, the greater the length difference of the wide waveguide 22 of the second connecting waveguide 20 will be.
  • the end of the first wide waveguide 22 connected to the waveguide 20 closest to the optical signal output unit 1 is located in the same horizontal plane, and the last wide waveguide 22 connected to the waveguide 20 is closest to the antenna transmitting unit 3
  • the first connecting waveguide 20 is the connecting waveguide 20 closest to the optical signal output unit 1
  • the last connecting waveguide 20 is the connecting waveguide 20 closest to the antenna transmitting unit 3.
  • the end of the wide waveguide 22 of the first connecting waveguide 20 closest to the optical signal output unit 1 is located in the same horizontal plane
  • the end of the wide waveguide 22 of the Nth connecting waveguide 20 closest to the antenna transmitting unit 3 is located in the same horizontal plane. Located in the same horizontal plane.
  • the optical path difference between the adjacent waveguide pipes 200 in the optical phased array may be the ratio of an integer multiple of 360 to the number of antennas, and the total length of the waveguides in the adjacent waveguide pipe 200 transmitted from the optical signal output unit 1 to the antenna transmitting unit 3
  • the sum of the differences is the optical path difference. Since the structures of the mode converters and the curved waveguides 24 are completely the same, and there is no difference in waveguide length, the optical path difference of adjacent waveguide pipes 200 in the optical phased array is equal to the width of each connecting waveguide 20 in adjacent waveguide pipes 200 The sum of the length differences of the waveguide 22.
  • the optical phased array of the embodiment of the present invention can be used in silicon-based CMOS process processing, which is beneficial to realize a larger-scale antenna array.
  • the optical phased array includes an optical signal output unit 41, a waveguide unit 42 and an antenna transmitting unit 43 connected in sequence.
  • the optical signal output unit 41 separates and shifts the input light through an optical splitter and a phase shifter, and outputs three optical signals with different phases.
  • the waveguide unit 42 includes an initial mode converter 420, a first connection waveguide 421, a curved waveguide 422, a second connection waveguide 423, a curved waveguide 424, a third connection waveguide 425, and an end mode converter 426 connected in sequence.
  • the first connecting waveguide 421 includes an input mode converter 4211 and a wide waveguide 4212, an output mode converter 4213 connected in sequence;
  • the second connecting waveguide 423 includes an input mode converter 4231, a wide waveguide 4232, an output mode converter 4233 connected in sequence;
  • the third connecting waveguide 425 includes an input mode converter 4251, a wide waveguide 4252, and an output mode converter 4253 connected in sequence.
  • the input end of the initial mode converter 420 is connected to the optical signal output unit 41, the output end is connected to the input mode converter 4211, the wide waveguide 4212 is connected between the input mode converter 4211 and the output mode converter 4213, and the curved waveguide 422 is connected to Between the output mode converter 4213 and the input mode converter 4231, the wide waveguide 4232 is connected between the input mode converter 4231 and the output mode converter 4233, and the curved waveguide 424 is connected between the output mode converter 4233 and the input mode converter 4251 between.
  • the wide waveguide 4252 is connected between the input mode converter 4251 and the output mode converter 4253, the input end of the end mode converter 426 is connected to the output mode converter 4253, and the output end is connected to the antenna transmitting unit 43.
  • the waveguide width slowly changes to the first waveguide width w1, and the first waveguide width w1 is preferably the width w0 of a general single-mode waveguide.
  • the input mode converter 4211 performs conversion to convert the waveguide width to the second waveguide width w2.
  • the wide waveguide 4212 transmits the optical signal with the second waveguide width w2, and then the output mode converter 4213 slowly converts the second waveguide width w2 to the first waveguide width w1.
  • a series of waveguides through the curved waveguide 422 are bent to change the direction of the waveguide pipe.
  • the first waveguide width w1 is converted into the second waveguide width w2 by the input mode converter 4231, and the wide waveguide 4232 is entered.
  • the waveguide spacing of the wide waveguides in adjacent waveguide pipes that are located directly opposite to each other will decrease.
  • the waveguide spacing of the wide waveguide 4232 in adjacent waveguide pipes can be adjusted by the length difference of the wide waveguide 4212. Since the waveguide transmission direction of the wide waveguide 4212 is the same as the waveguide direction output by the optical signal output unit 41, the greater the length difference of the wide waveguide 4212 in adjacent waveguide pipes, the larger the waveguide spacing of the wide waveguide 4232 in adjacent waveguide pipes.
  • the wide waveguide 4232 After entering the wide waveguide 4232, the wide waveguide 4232 transmits the optical signal with the second waveguide width w2, and then the output mode converter 4233 slowly converts the second waveguide width w2 to the first waveguide width w1, and a series of waveguides bend through the curved waveguide 424, Change the direction of the waveguide pipe, and then convert the first waveguide width w1 to the second waveguide width w2 through the input mode converter 4251, and enter the wide waveguide 4252.
  • the waveguide spacing of the wide waveguide 4252 in adjacent waveguide pipes will decrease. Specifically, the waveguide spacing of the wide waveguide 4252 in adjacent waveguide pipes can be adjusted by the length difference of the wide waveguide 4232 in the adjacent waveguide pipes.
  • the waveguide transmission direction of the wide waveguide 4232 is the same as the waveguide direction output by the optical signal output unit 41, the greater the length difference of the wide waveguide 4252 in adjacent waveguide pipes, the smaller the waveguide spacing of the wide waveguide 4252 in adjacent waveguide pipes.
  • the wide waveguide 4252 After entering the wide waveguide 4252, the wide waveguide 4252 transmits the optical signal with the second waveguide width w2, and then the output mode converter 4253 slowly converts the second waveguide width w2 to the first waveguide width w1. After passing through a series of tapered mode converters of the end mode converter 426, the waveguide width is slowly converted from the first waveguide width w1 to the input waveguide width of the antenna transmitting unit 43.
  • the wide waveguides 4212, 4232, and 4252 are straight waveguide transmission parts, and all the wide waveguides with larger widths are used to transmit optical signals.
  • the change in the width of the waveguide caused by the process error is compared with that of the wide waveguide.
  • the narrow waveguide in the traditional technology is small, so it can reduce the phase error caused by the process error on the change of the waveguide width.
  • the curved waveguides 422 and 424 are the transmission parts of the curved guide. Narrow single-mode waveguides are still used to reduce the radius of the curved waveguides, and the narrow curved waveguides are equivalent to a mode filter, which will filter out higher-order modes that may be generated in the wide waveguides. .
  • the initial mode converter 420 and the input mode converter 4211 are used to realize the conversion between the waveguide width output by the optical signal output unit 41 and the waveguide width of the wide waveguide 4212, and the input mode converters 4231, 4251 and the output mode converters 4213, 4233 are used. Realize the conversion between the wide waveguide 4212, 4232, 4252 and the curved waveguide 422, 424, and use the output mode converter 4253 and the end mode converter 426 to realize the width of the wide waveguide 4252 and the input end waveguide width of the antenna transmitting unit 43 The conversion can effectively reduce the loss.
  • the waveguide spacing of the wide waveguides in positions directly opposite to each other in the adjacent waveguide pipes along the waveguide transmission direction decreases sequentially.
  • the waveguide spacing of the wide waveguide 4232 in adjacent waveguide pipes is smaller than the waveguide spacing of the wide waveguide 4212 in adjacent waveguide pipes
  • the waveguide spacing of the wide waveguide 4252 in adjacent waveguide pipes is smaller than the waveguide spacing of the wide waveguide 4232 in adjacent waveguide pipes.
  • the waveguide spacing of the wide waveguide 4212 in adjacent waveguide pipes is the same as the waveguide spacing output by the optical signal output unit 41
  • the waveguide spacing of the wide waveguide 4252 in adjacent waveguide pipes is the same as the antenna spacing of the antenna transmitting unit 43.
  • the waveguide spacing of the wide waveguide 4232 in adjacent waveguide pipes is adjusted by the difference in the length of the wide waveguide 4212 in adjacent waveguide pipes.
  • the waveguide spacing of the wide waveguide 4252 in adjacent waveguide pipes is adjusted by the length difference of the wide waveguide 4232 in adjacent waveguide pipes.
  • the optical path difference between adjacent waveguide pipes in the optical phased array is equal to the sum of the length difference of the wide waveguide 4212, the length difference of the wide waveguide 4232, and the length difference of the wide waveguide 4252 in the adjacent waveguide pipes.
  • the optical phased array includes: an optical signal output unit, a waveguide unit, and an antenna transmitting unit; the optical signal output unit is used to output M modulated optical signals, where M is a positive integer;
  • the waveguide unit includes M waveguide pipes, each of the waveguide pipes includes at least one connecting waveguide, and the connecting waveguide includes an input mode converter, a wide waveguide, and an output mode converter connected in sequence, and the input mode converter is used to connect
  • the narrow waveguide is converted into a wide waveguide
  • the output mode converter is used to convert the wide waveguide into a narrow waveguide
  • the input end of the input mode converter of one of the connected waveguides is connected to the optical signal output unit
  • one of the The output end of the output mode converter connected to the waveguide is connected to the antenna transmitting unit
  • the antenna transmitting unit is connected to the waveguide unit, and is used for transmitting M optical signals transmitted by the waveguide unit.
  • the embodiment of the invention also discloses a laser radar, which includes an optical phased array, a light receiving unit and a distance measuring unit.
  • the optical phased array is used to emit laser light
  • the light receiving unit is used to receive the laser signal returned by the object
  • the ranging unit is used to perform distance measurement based on the laser signal received by the I receiving unit.
  • the specific structure and working principle of the optical phased array in the embodiment of the present invention are the same as the optical phased array in the foregoing embodiment, and will not be repeated here.
  • the embodiment of the invention also discloses a smart device, including a lidar.
  • a smart device including a lidar.
  • the specific structure and working principle of the lidar are the same as the lidar in the foregoing embodiment, and will not be repeated here.
  • Fig. 4 shows a schematic flowchart of a method for improving a phase error according to an embodiment of the present invention.
  • the phase error improvement method is applied to the optical phased array in the foregoing embodiment, as shown in FIG. 4, including:
  • Step S10 Output M modulated optical signals, where M is a positive integer.
  • the input light is split and phase-shifted through the splitter and the phase shifter to output M-channel modulated optical signals.
  • the optical splitter may first split the input light, and then the phase shifter may phase shift the light split by the optical splitter to obtain and output multiple optical signals with different phases.
  • the splitter and the phase shifter may also be alternately arranged, that is, the splitting and phase shifting of the input light are performed alternately, and finally multiple optical signals of different phases are output.
  • Step S11 Convert the first narrow waveguide mode for outputting the M-channel modulated optical signal into a wide waveguide.
  • the M-channel modulated optical signal corresponds to the M-channel waveguide pipe.
  • the waveguide width mode of the first narrow waveguide for outputting the M-channel modulated optical signal is converted into the second waveguide width w2 of the wide waveguide by at least one tapered mode converter in each waveguide pipe.
  • the second waveguide width w2 is greater than the waveguide width of the first narrow waveguide for outputting the M-channel modulated optical signal.
  • a tapered mode converter can be used in each waveguide pipe to slowly convert the waveguide width of the first narrow waveguide for outputting the M-channel modulated optical signal to the waveguide width w of the single-mode waveguide. , And then slowly convert the waveguide width w0 of the single-mode waveguide to the second waveguide width w2 of the wide waveguide by another tapered mode converter.
  • Step S12 Use at least one of the wide waveguides to transmit the optical signal.
  • the wide waveguide is the straight waveguide transmission part, and the M-channel modulated optical signal is transmitted with the second waveguide width w2.
  • the second waveguide width w2 is generally 800 nm to 1 ⁇ m.
  • Step S13 Convert the wide waveguide into a second narrow waveguide for transmitting the optical signal.
  • the second waveguide width of the wide waveguide is converted into the waveguide width of the second narrow waveguide for transmitting the optical signal by at least one tapered mode converter.
  • the second waveguide width w2 is greater than the waveguide width of the second narrow waveguide for transmitting the optical signal.
  • the second waveguide width w2 of the wide waveguide can be slowly converted into the waveguide width w0 of the single-mode waveguide by a tapered mode converter, and then another tapered mode The converter slowly converts the waveguide width w0 of the single-mode waveguide into the waveguide width of the second narrow waveguide for transmitting the optical signal.
  • Step S14 Transmit the optical signal.
  • the phase error improvement method further includes: converting the wide waveguide mode into a bent waveguide; applying the bent waveguide to bend a waveguide pipe; and converting the bent waveguide mode into the wide waveguide.
  • the second waveguide width w2 of the wide waveguide is slowly mode converted into the first waveguide width w1 of the curved waveguide by a tapered mode converter.
  • the curved waveguide bends the waveguide pipe with the first waveguide width w1 and transmits the optical signal, and then the first waveguide width w1 of the curved waveguide is slowly converted into the second waveguide width w2 of the wide waveguide by another tapered mode converter.
  • the first waveguide width w1 of the curved waveguide is preferably the waveguide width w0 of the single-mode waveguide.
  • the curved waveguide is preferably bent 90 degrees to the waveguide tube.
  • the waveguide width of a curved waveguide is generally 150 nm to 500 nm.
  • the narrow waveguide is still used in the transmission part of the curved waveguide to reduce the bending radius of the narrow waveguide, and the narrow waveguide is equivalent to a mode filter, which will filter out the higher-order modes that may be generated in the wide waveguide.
  • the connection between the wide straight waveguide transmission part and the narrow curved waveguide transmission part through a mode converter can effectively reduce the loss.
  • the optical phased array includes: an optical signal output unit, a waveguide unit, and an antenna transmitting unit; the optical signal output unit is used to output M modulated optical signals, where M is a positive integer;
  • the waveguide unit includes M waveguide pipes, each of the waveguide pipes includes at least one connecting waveguide, the connecting waveguide includes an input mode converter, a wide waveguide, and an output mode converter connected in sequence, and one of the connecting waveguides
  • the input end of the input mode converter is connected to the optical signal output unit, and the output end of one of the output mode converters connected to the waveguide is connected to the antenna transmitting unit;
  • the antenna transmitting unit is connected to the waveguide unit for To transmit M optical signals transmitted by the waveguide unit.
  • modules or units or components in the embodiments can be combined into one module or unit or component, and in addition, they can be divided into multiple sub-modules or sub-units or sub-components. Except that at least some of such features and/or processes or units are mutually exclusive, any combination can be used to compare all features disclosed in this specification (including the accompanying claims, abstract and drawings) and any method or methods disclosed in this manner or All the processes or units of the equipment are combined. Unless expressly stated otherwise, each feature disclosed in this specification (including the accompanying claims, abstract and drawings) may be replaced by an alternative feature providing the same, equivalent or similar purpose.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光学相控阵,包括:光信号输出单元(1)用于输出M路调制后的光信号;波导单元(2)包括M路波导管道(200),每路波导管道(200)包括至少一个连接波导(20),连接波导(20)包括依次连接的输入模式转换器(21)、宽波导(22)和输出模式转换器(23),输入模式转换器(21)用于将窄波导转换为宽波导(22),输出模式转换器(23)用于将宽波导(22)转换为窄波导,其中一个连接波导(20)的输入模式转换器(21)的输入端连接光信号输出单元(1),其中一个连接波导(20)的输出模式转换器(23)的输出端连接天线发射单元(3);天线发射单元(3)用于发射波导单元(2)传输的M路光信号。还公开了光学相控阵相位误差改善方法、激光雷达、智能设备。

Description

光学相控阵及其相位误差改善方法、激光雷达、智能设备 技术领域
本发明涉及激光雷达技术领域,具体涉及一种光学相控阵及其相位误差改善方法、激光雷达、智能设备。
背景技术
光学相控阵是全固态激光雷达系统的重要组成部分,具有完全固态化,高可靠性,体积小,方便控制等优点。光学相控阵可以通过集成光电子技术来实现,现有的光学天线单元包括绝缘体上硅(Silicon-on-insulator,SOI)材料,氮化硅材料,三五族材料材料等。而基于SOI材料的硅基光学相控阵由于其可以利用成熟的微电子互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺平台,近年来受到业界的高度关注。
一般来说,光学相控阵由分光器、可调谐移相器、连接波导,天线发射单元构成。输入光通过分光器可以分成等比例,或者不等比例的光,这些光通过可调谐移相器之后,其相位会被改变。当经过一系列连接波导后,最终在天线发射单元中发射到自由空间中。
本发明的发明人在实现本发明的过程中,发现:由于目前天线发射单元大都是按照一定间距平行排列,所占面积往往无法改变。而移相器通常尺寸较大,特别是在大规模光学相控阵中,将这些大尺寸的可调谐移相器的输出端口与固定面积的天线发射单元逐个连接,将会使用大量的直波导和弯曲波导。从功能角度来说,这些波导并不是必须的,但是实际中整个光学相控阵中大量的面积被这些连接波导所占据。以64路的硅基光学相控阵为例,最长一路的连接波导甚至高达几个毫米,这些波导不仅仅带来了额外的传播损耗,更重要的是,工艺误差造成的波导宽度的不确定性会引起非常严重的相位误差。这些相位误差将会逐渐累积,会给理论上等差分布的相位分布施加一个随机扰动,导致光学相控阵远场光斑质量显著劣化。因此如何降低由于工艺误差造成的波导宽度的不确定性对相位变化的影响,是目前业界急需解决的问题。
发明内容
鉴于上述问题,本发明实施例提供一种克服上述问题或者至少部分地解决上述问题的一种光学相控阵及其相位误差改善方法、激光雷达、智能设备。
根据本发明的一个方面,提供了一种光学相控阵,包括:光信号输出单元、波导单元和天线发射单元;所述光信号输出单元,用于输出M路调制后的光信号,其中M为正整数;所述波导单元,包括M路波导管道,所述波导单元:包括M路波导管道,每路所述波导管道包括至少一个连接波导,所述连接波导包括依次连接的输入模式转换器、宽波导和输出模式转换器,所述输入模式转换器用于将窄波导转换为宽波导,所述输出模式转换器用于将宽波导转换为窄波导,其中一个所述连接波导的所述输入模式转换器的输入端连接所述光信号输出单元,其中一个所述连接波导的所述输出模式转换器的输出端连接所述天线发射单元;天线发射单元:与所述波导单元连接,用于发射所述波导单元传输的M路光信号。
可选的,每路所述波导管道进一步包括:至少一个弯曲波导,所述弯曲波导用于连接其中一个所述连接波导的输出模式转换器和相邻的所述连接波导的所述输入模式转换器,将所述波导管道进行弯曲。
可选的,每路所述波导管道进一步包括:初始模式转换器,位于所述波导管道的初始端,所述初始模式转换器的输入端和所述光信号输出单元连接,输出端和其中一个所述连接波导的所述输入模式转换器连接。
可选的,每路所述波导管道进一步包括:末端模式转换器,位于所述波导管道的末端,所述末端模式转换器的输入端和其中一个所述连接波导的所述输出模式转换器连接,输出端和所述天线发射单元连接。
可选的,至少一个所述连接波导的所述输入模式转换器之间结构相同;至少一个所述连接波导的所述输出模式转换器的结构相同;所述至少一个弯曲波导之间的结构相同。
可选的,所述M路波导管道中,相邻波导管道中处于相互正对位置的宽波导之间相互平行,波导间距相同。
可选的,所述M路波导管道中,相邻波导管道中处于相互正对位置的宽波导的长度差相同。
根据本发明的另一个方面,提供了一种激光雷达,包括前述的光学相控阵、 光接收单元以及测距单元。
根据本发明的另一个方面,提供了一种智能设备,包括前述的激光雷达。
根据本发明的另一个方面,提供了一种相位误差改善方法,应用于前述的光学相控阵,方法包括:输出M路调制后的光信号,其中M为正整数;将用于输出M路调制后的光信号的第一窄波导模式转换为宽波导;应用至少一个所述宽波导传输所述光信号;将所述宽波导模式转换为用于发射所述光信号的第二窄波导;发射所述光信号。
可选的,所述方法还包括:将所述宽波导模式转换为弯曲波导;应用所述弯曲波导对波导管道进行弯曲;将所述弯曲波导模式转换为所述宽波导。
在本发明的实施例中,光学相控阵包括:光信号输出单元、波导单元和天线发射单元;所述光信号输出单元用于输出M路调制后的光信号,其中M为正整数;所述波导单元:包括M路波导管道,每路所述波导管道包括至少一个连接波导,所述连接波导包括依次连接的输入模式转换器、宽波导和输出模式转换器,所述输入模式转换器用于将窄波导转换为宽波导,所述输出模式转换器用于将宽波导转换为窄波导,其中一个所述连接波导的所述输入模式转换器的输入端连接所述光信号输出单元,其中一个所述连接波导的所述输出模式转换器的输出端连接所述天线发射单元;天线发射单元与所述波导单元连接,用于发射所述波导单元传输的M路光信号。因此,通过宽波导传输多个光信号,而工艺误差导致的波导宽度变化对宽波导的宽度改变量相比于传统技术中的窄波导较小,如此能够降低工艺误差对波导宽度的改变引起的相位误差。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1示出了根据本发明实施例一种光学相控阵的结构示意图;
图2示出了根据本发明实施例另一种光学相控阵的结构示意图;
图3示出了根据本发明实施例又一种光学相控阵的结构示意图;
图4示出了根据本发明实施例一种相位误差改善方法的流程示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
图1示出了根据本发明实施例一种光学相控阵的结构示意图。如图1所示,该光学相控阵包括:光信号输出单元1、波导单元2和天线发射单元3。所述光信号输出单元1用于输出M路调制后的光信号,其中M为正整数。所述波导单元2包括M路波导管道200,每路所述波导管道200包括至少一个连接波导20,所述连接波导20包括依次连接的输入模式转换器21、宽波导22和输出模式转换器23,所述输入模式转换器21用于将窄波导转换为宽波导,所述输出模式转换器23用于将宽波导转换为窄波导,其中一个所述连接波导20的所述输入模式转换器21的输入端连接所述光信号输出单元1,其中一个所述连接波导20的所述输出模式转换器23的输出端连接所述天线发射单元3。天线发射单元3与所述波导单元2连接,用于发射所述波导单元2传输的M路光信号。
需要说明的是:光信号输出单元1包括分光器10、移相器11。在本发明实施例中,可以是先分光器10对输入光进行分光,然后移相器11对分光器10分出的光进行移相,得到多个不同相位的光信号并输出。也可以是分光器10和移相器11交替设置,即对输入光的分光和移相交替进行,最终输出多个不同相位的光信号。经过分光器10和移相器11分别对输入光进行分光和移相后输出M个不同相位的光信号。波导单元2接收经分光器10和移相器11分光和移相后输出的M个载有不同相位信息的光信号,波导单元2的M个输出端与所述天线发射单元3的M个输入端进行连接。
在本发明实施例中,如图2所示,每路所述波导管道200进一步包括:至少一个弯曲波导24。所述弯曲波导24用于连接其中一个所述连接波导20的输出模式转换器23和相邻的所述连接波导20的所述输入模式转换器21,将所述波导管道200进行弯曲。具体地,弯曲波导24的输入端与上一个连接波导20的输出模式转换器23的输出端连接,弯曲波导24的输出端与下一个连接波导20的输入模式转换器21的输入端连接。在本发明实施例中,优选的,弯曲波导24弯曲90度。当然在本发明的其他实施例中,弯曲波导24也可以弯曲0-180 之间其他任意角度。
假设波导单元2中的每个波导管道200中包括N个连接波导20,N为整数。在本发明实施例中,N优选为3。在本发明的其他实施例中,N也可以为其他整数,在此不作限制。继续参见如图2,波导单元2中的每个波导管道200中包括N个连接波导20;N-1个弯曲波导24,如第一弯曲波导,……,第N-1弯曲波导。每个连接波导20包括一输入模式转换器21、一宽波导22以及一输出模式转换器23。任意相邻的连接波导20之间通过一弯曲波导24连接。所述宽波导22为直波导传输部分,以较宽的波导传输多个所述光信号。所述弯曲波导24为弯曲波导传输部分,将所述波导管道200进行弯曲并以较窄的波导传输多个所述光信号。宽波导22的波导宽度一般为800nm~1μm,而弯曲波导24的波导宽度一般为150nm~500nm。如此在所有的直波导传输部分全部是以波导宽度较大的波导进行传输,这样工艺误差导致的波导宽度变化对宽波导的宽度改变量相比于传统技术中的窄波导较小,因此相位误差会显著下降。而在弯曲波导传输部分依然采用窄波导,用于降低窄波导的弯曲半径,而且窄波导相当于一个模式滤波器,会滤除宽波导中可能产生的高阶模式。
在本发明实施例中,输入模式转换器21用于将光信号的输入波导宽度或弯曲波导24的第一波导宽度w1转换为宽波导22的第二波导宽度w2。输出模式转换器23连接在相邻的宽波导22与弯曲波导24之间,或者宽波导22与天线发射单元3之间。输出模式转换器23将第二波导宽度w2转换为弯曲波导24的第一波导宽度w1,转换为天线发射单元3的输入端波导宽度。第二波导宽度w2大于第一波导宽度w1,第一波导宽度w1优选为单模波导的波导宽度w0。光信号的输入波导宽度和天线发射单元3的输入端波导宽度在第一波导宽度w1和第二波导宽度w2之间,当然也可以为与第一波导宽度w1相同。
每路所述波导管道200进一步包括:初始模式转换器25和末端模式转换器26。初始模式转换器25位于所述波导管道200的初始端,所述初始模式转换器25的输入端和所述光信号输出单元1连接,输出端和其中一个所述连接波导20的所述输入模式转换器21连接。末端模式转换器26位于所述波导管道200的末端,所述末端模式转换器26的输入端和其中一个所述连接波导20的所述输出模式转换器23连接,输出端和所述天线发射单元3连接。
继续参见图2,初始模式转换器25与光信号输出单元1连接,N个连接波 导20连接在所述初始模式转换器25与所述末端模式转换器26之间,任意相邻的连接波导20之间连接弯曲波导24。末端模式转换器26与天线发射单元3连接。具体地,初始模式转换器25的输入端与光信号输出单元1连接,输出端与第一个连接波导20的输入模式转换器21连接,第一个连接波导20的宽波导22连接在第一个连接波导20的输入模式转换器21和输出模式转换器23之间,第一个弯曲波导24的输入端与第一个连接波导20的输出模式转换器23连接,输出端与相邻的第二个连接波导20的输入模式转换器21连接,以此类推,第N-1弯曲波导24的输出端与第N个连接波导20的输入模式转换器21连接,第N个连接波导20的宽波导22连接在第N个连接波导20的输入模式转换器21和输出模式转换器23之间,第N个连接波导20的输出模式转换器23与末端模式转换器26的输入端连接,末端模式转换器26的输出端与天线发射单元3连接。
初始模式转换器25将所述光信号的输入波导宽度转换为所述第一波导宽度w1,所述输入模式转换器21将所述第一波导宽度w1转换为所述宽波导22的第二波导宽度w2。所述输出模式转换器23将所述第二波导宽度w2转换为所述弯曲波导24的所述第一波导宽度w1,所述末端模式转换器26将所述第一波导宽度w1转换为所述天线发射单元3的输入端波导宽度。在宽的直波导传输部分和窄的弯曲波导传输部分之间通过模式转换器进行连接,可以有效降低损耗。
需要说明的是:第一波导宽度w1优选为单模波导的波导宽度w0。如果光信号的输入波导宽度与单模波导的波导宽度w0保持一致,可以省略初始模式转换器25,输入模式转换器21直接将光信号的输入波导宽度转换为宽波导22的第二波导宽度w2。类似地,如果天线发射单元3的输入端波导宽度与单模波导的波导宽度w0保持一致,可以省略末端模式转换器26,输出模式转换器23直接将宽波导22的第二波导宽度w2转换为天线发射单元3的输入端波导宽度。
另外,至少一个连接波导的输入模式转换器之间结构相同;至少一个连接波导的输出模式转换器之间结构相同;所述至少一个弯曲波导之间的结构相同。初始模式转换器25和输出模式转换器23为锥形波导,且结构保持一致,具体各模式转换器的长度和波导宽度都一致,输入模式转换器21和末端模式转换器26为锥形波导,且结构保持一致,同时各弯曲波导24的结构也保持一致,以保证整个波导单元2中各个波导管道200的光程差是一致的。由于每个波导管道200中的模式转换器的作用都是实现弯曲波导24和宽波导22之间的转换,所以 为了提高实用性和降低系统复杂度,可以保持每个模式转换器的锥形波导长度一致。在本发明实施例中,两个锥形的初始模式转换器25和其中一个连接波导20的输入模式转换器21可以合并为一个抛物线形的模式转换器,同样的,两个锥形的其中一个连接波导20的输出模式转换器23和末端模式转换器26也可以合并为一个抛物线形的模式转换器。该抛物线形的模式转换器的结构与两个锥形的模式转换器的组合结构保持一致。本发明实施例通过多个模式转换器保证波导在宽波导22的波导宽度较大,从而降低工艺误差对波导宽度的改变引起的相位误差。
在本发明实施例中,M路波导管道200中,相邻波导管道200中处于相互正对位置的宽波导之间相互平行,波导间距相同。波导间距与波导单元2的位置坐标以及天线发射单元3中天线的条数相关,优选的,波导间距大于5μm。M路波导管道200中,相邻波导管道200中处于相互正对位置的其中一个连接波导20的宽波导22的长度差相同。M路波导管道200中,相邻波导管道200中处于相互正对位置的其中一个连接波导20的宽波导22的长度差通过前一个连接波导20的宽波导22的波导间距来调节。例如,相邻波导管道200中处于相互正对位置的第二个连接波导20的宽波导22的波导长度差通过管道中第一个连接波导20的宽波导22的波导间距来调节。
可以理解的是:继续参见图2,M路波导管道200中,相邻波导管道200中第一个连接波导20的宽波导22的波导间距与光信号输出单元1输出的相邻波导的波导间距相同,相邻波导管道200中第N个连接波导20的宽波导22的波导间距与天线发射单元3中相邻天线的间距相同。在相邻波导管道200中的其他位置,任一个连接波导20的宽波导22的长度差通过上一个连接波导20的宽波导22的波导间距来调节。具体地,如果相邻波导管道200中前一个连接波导20的宽波导22的方向与光信号输出单元1输出的波导的方向平行,则该前一个连接波导20的宽波导22的波导间距越大,后一个连接波导20的宽波导22的长度差越大。如果相邻波导管道200中前一个连接波导20的宽波导22的方向与光信号输出单元1输出的波导的方向垂直,则该前一个连接波导20的宽波导22的波导间距越大,后一个连接波导20的宽波导22的长度差越小。例如,第一个连接波导20的宽波导22的方向与光信号输出单元1输出的波导的方向相同,第二个连接波导20的宽波导22的方向与光信号输出单元1输出的波导 的方向垂直,则第一个连接波导20的宽波导22的波导间距越大,第二个连接波导20的宽波导22的长度差也越大。第二个连接波导20的宽波导22的波导间距越大,第三个连接波导20的宽波导22的长度差越小。
在本发明实施例中,第一个连接波导20的宽波导22的距离光信号输出单元1最近的一端位于同一水平面内,最后一个连接波导20的宽波导22的距离所述天线发射单元3最近的一端位于同一水平面内,其中,所述第一个连接波导20为距离光信号输出单元1最近的连接波导20,最后一个连接波导20为距离天线发射单元3最近的连接波导20。如图2中第一个连接波导20的宽波导22的距离光信号输出单元1最近的一端位于同一水平面内,第N个连接波导20的宽波导22的距离所述天线发射单元3最近的一端位于同一水平面内。光学相控阵中相邻波导管道200的光程差可以为360的整数倍与天线数目的比值,而相邻波导管道200中波导从光信号输出单元1传输至天线发射单元3的总的长度差之和即为光程差。由于各模式转换器以及各弯曲波导24的结构完全相同,不存在波导长度差,则光学相控阵中相邻波导管道200的光程差就等于相邻波导管道200中各连接波导20的宽波导22的长度差之和。
在本发明实施例中,如果天线发射单元3和光信号输出单元1的位置发生改变,或者角度旋转,则连接波导20的数量将会改变。另外,当天线条数M数量较大时,连接波导20中的宽波导22的波导长度将会明显增加,如此工艺误差导致的波导宽度变化对宽波导22的宽度改变量会更小,亦即宽波导22对相位误差的改变将会十分明显,能够进一步降低工艺误差对波导宽度的改变引起的相位误差。本发明实施例的光学相控阵可以利用于硅基CMOS工艺加工,有利于实现更大规模的天线阵列。
以天线条数M=3,每条波导管道200中连接波导20的数量N为3为例进行说明,波导管道200数量与天线条数相等。参见图3,光学相控阵包括依次连接的光信号输出单元41、波导单元42和天线发射单元43。其中光信号输出单元41通过分光器和移相器分别对输入光进行分光和移相,输出3条不同相位的光信号。波导单元42包括依次连接的初始模式转换器420,第一连接波导421、弯曲波导422、第二连接波导423、弯曲波导424、第三连接波导425以及末端模式转换器426。第一连接波导421包括依次连接的输入模式转换器4211,宽波导4212、输出模式转换器4213;第二连接波导423包括依次连接的输入模式 转换器4231,宽波导4232、输出模式转换器4233;第三连接波导425包括依次连接的输入模式转换器4251,宽波导4252、输出模式转换器4253。初始模式转换器420的输入端与光信号输出单元41连接,输出端与输入模式转换器4211连接,宽波导4212连接在输入模式转换器4211与输出模式转换器4213之间,弯曲波导422连接在输出模式转换器4213与输入模式转换器4231之间,宽波导4232连接在输入模式转换器4231与输出模式转换器4233之间,弯曲波导424连接在输出模式转换器4233与输入模式转换器4251之间。宽波导4252连接在输入模式转换器4251与输出模式转换器4253之间,末端模式转换器426的输入端与输出模式转换器4253连接,输出端与天线发射单元43连接。
光信号输出单元41输出的波导经过初始模式转换器420中的锥形转换器后,波导宽度缓慢改变至第一波导宽度w1,第一波导宽度w1优选为一般单模波导的宽度w0。然后通过输入模式转换器4211进行转换,将波导宽度转换为第二波导宽度w2。宽波导4212以第二波导宽度w2传输光信号,接着输出模式转换器4213将第二波导宽度w2缓慢转换为第一波导宽度w1,经过弯曲波导422的一系列波导弯曲,改变波导管道的走向,然后经输入模式转换器4231将第一波导宽度w1转换为第二波导宽度w2,进入宽波导4232。相邻波导管道中处于相互正对位置的宽波导的波导间距会减小,具体相邻波导管道中宽波导4232的波导间距可以通过宽波导4212的长度差调节。由于宽波导4212的波导传输方向与光信号输出单元41输出的波导方向相同,相邻波导管道中宽波导4212的长度差越大,相邻波导管道中宽波导4232的波导间距也就越大。
进入宽波导4232后,宽波导4232以第二波导宽度w2传输光信号,接着输出模式转换器4233将第二波导宽度w2缓慢转换为第一波导宽度w1,经过弯曲波导424的一系列波导弯曲,改变波导管道的走向,然后经输入模式转换器4251将第一波导宽度w1转换为第二波导宽度w2,进入宽波导4252。相邻波导管道中宽波导4252的波导间距会减小,具体相邻波导管道中宽波导4252的波导间距可以通过相邻波导管道中宽波导4232的长度差调节。由于宽波导4232的波导传输方向与光信号输出单元41输出的波导方向相同,相邻波导管道中宽波导4252的长度差越大,相邻波导管道中宽波导4252的波导间距越小。
进入宽波导4252后,宽波导4252以第二波导宽度w2传输光信号,接着输出模式转换器4253将第二波导宽度w2缓慢转换为第一波导宽度w1。然后经过 末端模式转换器426的一系列锥形模式转换器,波导宽度由第一波导宽度w1缓慢转换为天线发射单元43的输入端波导宽度。
本发明实施例中,宽波导4212、4232、4252为直波导传输部分,全部以宽度较大的宽波导来传输光信号,而工艺误差导致的波导宽度变化对宽波导的宽度改变量相比于传统技术中的窄波导较小,因此能够降低工艺误差对波导宽度的改变引起的相位误差。弯曲波导422、424为弯曲导传输部分,依然采用窄的单模波导,用于降低弯曲波导半径,而且窄的弯曲波导相当于一个模式滤波器,会滤除宽波导中可能产生的高阶模式。应用初始模式转换器420和输入模式转换器4211实现光信号输出单元41输出的波导宽度与宽波导4212的波导宽度之间的转换,应用输入模式转换器4231、4251以及输出模式转换器4213、4233实现宽波导4212、4232、4252与弯曲波导422、424之间的转换,应用输出模式转换器4253和末端模式转换器426实现宽波导4252的波导宽度与天线发射单元43的输入端波导宽度之间的转换,可以有效降低损耗。
在本发明实施例中,沿波导传输方向相邻波导管道中处于相互正对位置的宽波导的波导间距依次减小。如相邻波导管道中宽波导4232的波导间距小于相邻波导管道中宽波导4212的波导间距,相邻波导管道中宽波导4252的波导间距小于相邻波导管道中宽波导4232的波导间距。相邻波导管道中宽波导4212的波导间距与光信号输出单元41输出的波导间距相同,相邻波导管道中宽波导4252的波导间距与天线发射单元43中天线的间距相同。相邻波导管道中宽波导4232的波导间距通过相邻波导管道中宽波导4212的长度差调节。同样的,相邻波导管道中宽波导4252的波导间距通过相邻波导管道中宽波导4232的长度差调节。该光学相控阵中相邻波导管道的光程差等于相邻波导管道中宽波导4212的长度差、宽波导4232的长度差以及宽波导4252的长度差之和。
在本发明的实施例中,光学相控阵包括:光信号输出单元、波导单元和天线发射单元;所述光信号输出单元用于输出M路调制后的光信号,其中M为正整数;所述波导单元包括M路波导管道,每路所述波导管道包括至少一个连接波导,所述连接波导包括依次连接的输入模式转换器、宽波导和输出模式转换器,所述输入模式转换器用于将窄波导转换为宽波导,所述输出模式转换器用于将宽波导转换为窄波导,其中一个所述连接波导的所述输入模式转换器的输入端连接所述光信号输出单元,其中一个所述连接波导的所述输出模式转换器 的输出端连接所述天线发射单元;天线发射单元与所述波导单元连接,用于发射所述波导单元传输的M路光信号。因此,通过宽波导传输多个光信号,而工艺误差导致的波导宽度变化对宽波导的宽度改变量相比于传统技术中的窄波导较小,如此能够降低工艺误差对波导宽度的改变引起的相位误差。
本发明实施例还公开了一种激光雷达,包括光学相控阵、光接收单元以及测距单元。光学相控阵用于发射激光,光接收单元用于接收经物体反向回来的激光信号,测距单元用于根据我接收单元接收的激光信号进行测距。本发明实施例中的光学相控阵的具体结构和工作原理与前述实施例中的光学相控阵相同,在此不再赘述。
本发明实施例还公开了一种智能设备,包括激光雷达。激光雷达的具体结构和工作原理与前述实施例中的激光雷达相同,在此不再赘述。
图4示出了根据本发明实施例一种相位误差改善方法的流程示意图。该相位误差改善方法应用于前述实施实施例中的光学相控阵,如图4所示,包括:
步骤S10:输出M路调制后的光信号,其中M为正整数。
通过分光器、移相器分别对输入光进行分光和移相输出M路调制后的光信号。具体地,可以是先分光器对输入光进行分光,然后移相器对分光器分出的光进行移相,得到多个不同相位的光信号并输出。也可以是分光器和移相器交替设置,即对输入光的分光和移相交替进行,最终输出多个不同相位的光信号。
步骤S11:将用于输出M路调制后的光信号的第一窄波导模式转换为宽波导。
M路调制后的光信号对应M路波导管道。在步骤S11中,在各波导管道中通过至少一个锥形的模式转换器将用于输出M路调制后的光信号的第一窄波导的波导宽度模式转换为宽波导的第二波导宽度w2。第二波导宽度w2大于用于输出M路调制后的光信号的第一窄波导的波导宽度。
在本发明实施例中,在各波导管道中可以通过一锥形的模式转换器将用于输出M路调制后的光信号的第一窄波导的波导宽度缓慢转换为单模波导的波导宽度w0,然后通过另一锥形的模式转换器将单模波导的波导宽度w0缓慢转换为宽波导的第二波导宽度w2。
步骤S12:应用至少一个所述宽波导传输所述光信号。
在各波导管道中,宽波导为直波导传输部分,以第二波导宽度w2传输M 路调制后的光信号。第二波导宽度w2一般为800nm~1μm。如此在所有的直波导传输部分全部是以波导宽度较大的波导进行传输,这样工艺误差导致的波导宽度变化对宽波导的宽度改变量相比于传统技术中的窄波导较小,因此相位误差会显著下降。
步骤S13:将所述宽波导转换为用于发射所述光信号的第二窄波导。
具体地,在各波导管道中,通过至少一个锥形的模式转换器将宽波导的第二波导宽度转换为用于发射所述光信号的第二窄波导的波导宽度。第二波导宽度w2大于用于发射所述光信号的第二窄波导的波导宽度。
在本发明实施例中,在各波导管道中,可以通过一锥形的模式转换器将宽波导的第二波导宽度w2缓慢转换为单模波导的波导宽度w0,然后通过另一锥形的模式转换器将单模波导的波导宽度w0缓慢转换为用于发射所述光信号的第二窄波导的波导宽度。
步骤S14:发射所述光信号。
在本发明实施例中,在各波导管道中,应用多个宽波导传输所述光信号时,在相邻的两个宽波导之间应用窄波导更改波导管道的方向,而在宽波导与窄波导之间需要进行模式转换。此时,相位误差改善方法还包括:将所述宽波导模式转换为弯曲波导;应用所述弯曲波导对波导管道进行弯曲;将所述弯曲波导模式转换为所述宽波导。
具体地,在各波导管道中,通过一锥形的模式转换器将宽波导的第二波导宽度w2缓慢模式转换为弯曲波导的第一波导宽度w1。弯曲波导以第一波导宽度w1对波导管道进行弯曲并传输光信号,然后通过另一锥形的模式转换器将弯曲波导的第一波导宽度w1缓慢转换为宽波导的第二波导宽度w2。弯曲波导的第一波导宽度w1优选为单模波导的波导宽度w0。弯曲波导优选地对波导管道弯曲90度。弯曲波导的波导宽度一般为150nm~500nm。在弯曲波导传输部分依然采用窄波导,用于降低窄波导的弯曲半径,而且窄波导相当于一个模式滤波器,会滤除宽波导中可能产生的高阶模式。在宽的直波导传输部分和窄的弯曲波导传输部分之间通过模式转换器进行连接,可以有效降低损耗。
在本发明的实施例中,光学相控阵包括:光信号输出单元、波导单元和天线发射单元;所述光信号输出单元用于输出M路调制后的光信号,其中M为正整数;所述波导单元包括M路波导管道,每路所述波导管道包括至少一个连接 波导,所述连接波导包括依次连接的输入模式转换器、宽波导和输出模式转换器,其中一个所述连接波导的所述输入模式转换器的输入端连接所述光信号输出单元,其中一个所述连接波导的所述输出模式转换器的输出端连接所述天线发射单元;天线发射单元与所述波导单元连接,用于发射所述波导单元传输的M路光信号。因此,通过宽波导传输多个光信号,而工艺误差导致的波导宽度变化对宽波导的宽度改变量相比于传统技术中的窄波导较小,如此能够降低工艺误差对波导宽度的改变引起的相位误差。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求 书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (11)

  1. 一种光学相控阵,其特征在于,包括光信号输出单元、波导单元和天线发射单元;
    所述光信号输出单元,用于输出M路调制后的光信号,其中M为正整数;
    所述波导单元,包括M路波导管道,每路所述波导管道包括至少一个连接波导,所述连接波导包括依次连接的输入模式转换器、宽波导和输出模式转换器,所述输入模式转换器用于将窄波导转换为宽波导,所述输出模式转换器用于将宽波导转换为窄波导,其中一个所述连接波导的所述输入模式转换器的输入端连接所述光信号输出单元,其中一个所述连接波导的所述输出模式转换器的输出端连接所述天线发射单元;
    天线发射单元,与所述波导单元连接,用于发射所述波导单元传输的M路光信号。
  2. 如权利要求1所述的光学相控阵,其特征在于,每路所述波导管道还包括:至少一个弯曲波导,所述弯曲波导用于连接其中一个所述连接波导的所述输出模式转换器和相邻的所述连接波导的所述输入模式转换器,将所述波导管道进行弯曲。
  3. 如权利要求1所述的光学相控阵,其特征在于,每路所述波导管道进一步包括:初始模式转换器,位于所述波导管道的初始端,所述初始模式转换器的输入端和所述光信号输出单元连接,输出端和其中一个所述连接波导的所述输入模式转换器连接。
  4. 如权利要求1或3所述的光学相控阵,其特征在于,每路所述波导管道进一步包括:末端模式转换器,位于所述波导管道的末端,所述末端模式转换器的输入端和其中一个所述连接波导的所述输出模式转换器连接,输出端和所述天线发射单元连接。
  5. 如权利要求2-4中任意一项所述的光学相控阵,其特征在于,至少一个所述连接波导的所述输入模式转换器之间结构相同;至少一个所述连接波导的所述输出模式转换器之间结构相同;所述至少一个弯曲波导之间的结构相同。
  6. 如权利要求5所述的光学相控阵,其特征在于,所述M路波导管道中,相邻波导管道中处于相互正对位置的其中一个所述连接波导的所述宽波导之间 相互平行,波导间距相同。
  7. 如权利要求1所述的光学相控阵,其特征在于,所述M路波导管道中,相邻波导管道中处于相互正对位置的其中一个所述连接波导的所述宽波导的长度差相同。
  8. 一种激光雷达,其特征在于,包括如权利要求1-7中任一项所述的光学相控阵、光接收单元以及测距单元。
  9. 一种智能设备,其特征在于,包括如权利要求8所述的激光雷达。
  10. 一种相位误差改善方法,其特征在于,应用于如权利要求1-7中任一项所述的光学相控阵,方法包括:
    输出M路调制后的光信号,其中M为正整数;
    将用于输出M路调制后的光信号的第一窄波导模式转换为宽波导;
    应用至少一个所述宽波导传输所述光信号;
    将所述宽波导模式转换为用于发射所述光信号的第二窄波导;
    发射所述光信号。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    将所述宽波导模式转换为弯曲波导;
    应用所述弯曲波导对波导管道进行弯曲;
    将所述弯曲波导模式转换为所述宽波导。
PCT/CN2019/086018 2019-05-08 2019-05-08 光学相控阵及其相位误差改善方法、激光雷达、智能设备 WO2020223927A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/086018 WO2020223927A1 (zh) 2019-05-08 2019-05-08 光学相控阵及其相位误差改善方法、激光雷达、智能设备
CN201980002797.XA CN110741280B (zh) 2019-05-08 2019-05-08 光学相控阵及其相位误差改善方法、激光雷达、智能设备
US17/520,601 US11953621B2 (en) 2019-05-08 2021-11-05 Optical phased array, method for improving reducing a phase error thereof, LiDAR, and intelligent apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086018 WO2020223927A1 (zh) 2019-05-08 2019-05-08 光学相控阵及其相位误差改善方法、激光雷达、智能设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/520,601 Continuation US11953621B2 (en) 2019-05-08 2021-11-05 Optical phased array, method for improving reducing a phase error thereof, LiDAR, and intelligent apparatus

Publications (1)

Publication Number Publication Date
WO2020223927A1 true WO2020223927A1 (zh) 2020-11-12

Family

ID=69274624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086018 WO2020223927A1 (zh) 2019-05-08 2019-05-08 光学相控阵及其相位误差改善方法、激光雷达、智能设备

Country Status (3)

Country Link
US (1) US11953621B2 (zh)
CN (1) CN110741280B (zh)
WO (1) WO2020223927A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117092619B (zh) * 2023-10-18 2024-01-12 吉林大学 一种相干激光雷达收发芯片及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169766A (ja) * 2014-03-06 2015-09-28 日本電信電話株式会社 偏波回転回路
CN105759357A (zh) * 2016-05-13 2016-07-13 东南大学 一种基于槽式波导的紧凑式模阶数转换器
CN107065072A (zh) * 2017-02-28 2017-08-18 浙江大学 基于多模波导的新型光调制器
CN107533137A (zh) * 2015-01-20 2018-01-02 迪吉伦斯公司 全息波导激光雷达
CN108700790A (zh) * 2016-01-22 2018-10-23 国立大学法人横浜国立大学 光偏转器及激光雷达装置
CN109491010A (zh) * 2018-12-14 2019-03-19 上海交通大学 基于光相控阵的硅基集成光学可调延时线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102559580B1 (ko) * 2016-08-17 2023-07-25 삼성전자주식회사 광 조향용 OPA, 및 그 OPA를 구비한 LiDAR 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015169766A (ja) * 2014-03-06 2015-09-28 日本電信電話株式会社 偏波回転回路
CN107533137A (zh) * 2015-01-20 2018-01-02 迪吉伦斯公司 全息波导激光雷达
CN108700790A (zh) * 2016-01-22 2018-10-23 国立大学法人横浜国立大学 光偏转器及激光雷达装置
CN105759357A (zh) * 2016-05-13 2016-07-13 东南大学 一种基于槽式波导的紧凑式模阶数转换器
CN107065072A (zh) * 2017-02-28 2017-08-18 浙江大学 基于多模波导的新型光调制器
CN109491010A (zh) * 2018-12-14 2019-03-19 上海交通大学 基于光相控阵的硅基集成光学可调延时线

Also Published As

Publication number Publication date
US11953621B2 (en) 2024-04-09
CN110741280B (zh) 2020-08-28
CN110741280A (zh) 2020-01-31
US20220057488A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US7313301B2 (en) Optical fiber device, optical monitor and optical switch
US7171097B2 (en) Hex tube light homogenizer splitter
CN114779277A (zh) 调频连续波激光雷达
CN116087914A (zh) 激光雷达及可移动设备
US11881632B2 (en) Antenna array applied to optical phased array, optical phased array, and LiDAR
CN116087915B (zh) 光芯片、激光雷达、自动驾驶系统及可移动设备
CN108957900A (zh) 一种基于硅基的多波束光学相控阵天线
CN116087913B (zh) 光芯片、激光雷达、自动驾驶系统及可移动设备
CN110678793A (zh) 光接收器阵列和光学雷达装置
WO2020223927A1 (zh) 光学相控阵及其相位误差改善方法、激光雷达、智能设备
US9397397B2 (en) Electronically-steered Ku-band phased array antenna comprising an integrated photonic beamformer
CN113009621A (zh) 定向耦合器及其分束器
US12019268B2 (en) Serpentine optical phased array with dispersion matched waveguides
CN116106862B (zh) 光芯片、激光雷达、自动驾驶系统及可移动设备
US11960117B2 (en) Optical phased array light shaping
CN111740786B (zh) 一种集成光波导波束赋形装置
US11982837B2 (en) Interposer circuit
CN1343894A (zh) 用于光通信中的动态光耦合器
CN117170156B (zh) 含反向耦合器的光学相控阵芯片、系统与校准方法
CN220271594U (zh) 一种定向转换分路器芯片输出端结构
CN117192703B (zh) 光芯片、激光雷达及可移动设备
CN2530275Y (zh) 光纤动态耦合器
US20240019707A1 (en) Optical system and laser device including the same
CN118311538A (zh) 光学相控阵芯片及激光雷达发射装置
CN115657200A (zh) 一种硅基单片集成的收发通用光控多波束形成网络芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927861

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19927861

Country of ref document: EP

Kind code of ref document: A1