KR102223750B1 - 광의 위상을 가변할 수 있는 배열 안테나 - Google Patents

광의 위상을 가변할 수 있는 배열 안테나 Download PDF

Info

Publication number
KR102223750B1
KR102223750B1 KR1020190143858A KR20190143858A KR102223750B1 KR 102223750 B1 KR102223750 B1 KR 102223750B1 KR 1020190143858 A KR1020190143858 A KR 1020190143858A KR 20190143858 A KR20190143858 A KR 20190143858A KR 102223750 B1 KR102223750 B1 KR 102223750B1
Authority
KR
South Korea
Prior art keywords
antenna element
waveguide
antenna
phase variable
phase
Prior art date
Application number
KR1020190143858A
Other languages
English (en)
Inventor
유난이
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020190143858A priority Critical patent/KR102223750B1/ko
Priority to PCT/KR2020/015752 priority patent/WO2021096210A1/ko
Application granted granted Critical
Publication of KR102223750B1 publication Critical patent/KR102223750B1/ko
Priority to US17/702,288 priority patent/US20220214596A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2676Optically controlled phased array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • G02F1/2955Analog deflection from or in an optical waveguide structure] by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Electromagnetism (AREA)

Abstract

광의 위상을 가변할 수 있는 배열 안테나를 개시한다.
본 실시예의 일 측면에 의하면, 입력되는 광을 복수의 안테나 소자 도파로로 분배하는 수신부와 각 안테나 소자 도파로로 열을 가하여 각 안테나 소자 도파로로 전파되는 광의 위상을 가변하는 위상 가변부와 복수의 안테나 소자를 포함하며, 상기 위상 가변부에서 위상이 가변되어 각 안테나 소자 도파로로 전파되는 광을 각 안테나 소자로 출력하는 출력부 및 상기 수신부, 상기 위상 가변부 및 상기 출력부를 안착시키는 베이스부를 포함하는 것을 특징으로 하는 광 위상 가변 배열안테나를 제공한다.

Description

광의 위상을 가변할 수 있는 배열 안테나{Array Antenna Capable of Varying the Phase of Light}
본 실시예는 광의 위상을 정밀하게 가변할 수 있는 배열 안테나에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
자율주행용 차량용 라이다 센서는 입사된 펄스 레이저가 물체에 반사되어 돌아오는 시간을 측정하여 3차원 공간 정보를 획득한다. 레이저 방출 방식에 따라, 라이다는 크게 플래시 방식과 스캐닝 방식으로 나누어진다. 플래시 방식의 라이다는 넓은 면적에 레이저 빔을 동시에 주사하는 방법으로, 수신부도 반사되어 오는 이미지를 인식할 수 있게 2D 어레이 형태의 수광소자를 포함한다. 그와 달리, 스캐닝 방식의 라이다는 레이저 빔의 수직 수평방향의 회전을 통해 삼차원 공간을 포인트 맵핑(Point Mapping)한다. 그렇기 때문에 스캐닝 방식의 라이다는 플래시 방식에 비해 적은 레이저 광원 출력과 단순한 수신부 구조를 갖는다.
종래의 스캐닝 방식의 라이다는 기계적 모터 회전에 의한 360°시야각을 측정하였다. 하지만, 기본의 기계적 라이다는 회전을 위한 모터의 무게가 무겁고 많은 전력을 소모하기 때문에, 제한된 전력과 중량을 요구하는 무인비행체에서 사용될 수 없을 뿐만 아니라, 자율주행 차량의 고속도로 주행에서 필요한 회전속도에 기계식 회전속도가 상응하지 못하는 문제가 존재한다.
따라서, 종래의 스캐닝 방식의 라이다는 광 위상배열 안테나의 이용을 고려하였다. 광 위상배열 안테나는 여러 개의 방향성 결합기를 이용해 입사된 레이저를 각각의 안테나 소자로 분산하고, 분산된 레이저의 위상을 변조하여 원하는 방향으로 레이저를 출력하였다.
그러나 종래의 스캐닝 방식의 라이다 내 도파로는 낮은 굴절률로 인해 도파로 모드의 소멸파(Evanescent Wave)의 크기가 커지므로, 같은 전파상수(Propagation Constant)를 갖는 인접한 도파로와 쉽게 상호작용 할 수 있다. 광 위상배열 안테나가 가지고 있는 제한된 수평시야각을 넓히기 위해서, 안테나 소자사이의 간격이 파장의 반(λ/2) 만큼의 거리에 근접해야 하는데, 안테나 소자사이가 가까워질수록 인접한 소자 사이의 혼선(Cross-talk)로 인해 원하는 출력 위상분포를 얻지 못한다. 자율주행차량 내 장착을 목적을 둔 라이다의 경우, 정상적인 작동을 하는 것이 탑승자와 보행자의 안전에 중요하기 때문에, 종래의 라이다는 자율주행차량 등의 장치에 장착이 곤란한 문제가 있었다.
본 발명의 일 실시예는, 기계적 회전을 대체하여 보다 가볍고 저렴하면서도, 원하는 대로 정확히 출력할 수 있는 광 위상 가변 배열안테나를 제공하는 데 일 목적이 있다.
본 실시예의 일 측면에 의하면, 입력되는 광을 복수의 안테나 소자 도파로로 분배하는 수신부와 각 안테나 소자 도파로로 열을 가하여 각 안테나 소자 도파로로 전파되는 광의 위상을 가변하는 위상 가변부와 복수의 안테나 소자를 포함하며, 상기 위상 가변부에서 위상이 가변되어 각 안테나 소자 도파로로 전파되는 광을 각 안테나 소자로 출력하는 출력부 및 상기 수신부, 상기 위상 가변부 및 상기 출력부를 안착시키는 베이스부를 포함하는 것을 특징으로 하는 광 위상 가변 배열안테나를 제공한다.
본 실시예의 일 측면에 의하면, 상기 수신부는 상기 입력되는 광을 복수의 안테나 소자 도파로로 분배하기 위해 다중모드 간섭기(Multi-mode Interference Coupler), Y-접합부 커플러(Y-junction Coupler) 또는 방향성 결합기(Directional Coupler)를 포함하는 것을 특징으로 한다.
본 실시예의 일 측면에 의하면, 상기 위상 가변부는 각 안테나 소자 도파로를 가열하는 양이 서로 상이한 것을 특징으로 한다.
본 실시예의 일 측면에 의하면, 상기 베이스부는 실리콘 기판과 상기 실리콘 기판 상에 산화 실리콘 클래딩이 적층되어 형성된 것을 특징으로 한다.
본 실시예의 일 측면에 의하면, 상기 복수의 안테나 소자는 각각 기 설정된 간격을 갖는 회절 격자를 구비하는 것을 특징으로 한다.
본 실시예의 일 측면에 의하면, 상기 회절격자는 비 주기적으로 형성되는 것을 특징으로 한다.
본 실시예의 일 측면에 의하면, 상기 회절격자는 안테나 소자의 외곽으로부터 중심을 향할수록 각 회절격자간 간격이 감소하고, 안테나 소자의 중심으로부터 기 설정된 범위 내에서는 각 회절격자간 간격이 일정하게 유지되며, 안테나 소자의 중심으로부터 기 설정된 범위를 벗어나 다시 외곽으로 향할수록 각 회절격자간 간격이 증가하는 것을 특징으로 한다.
본 실시예의 일 측면에 의하면, 상기 회절격자는 안테나 소자의 외곽으로부터 중심을 향할수록 각 회절격자간 간격이 감소하고, 안테나 소자의 중심을 벗어나면 다시 각 회절격자간 간격이 증가하는 것을 특징으로 한다.
본 실시예의 일 측면에 의하면, 상기 출력부는 안테나 소자 도파로로 전파되는 광을 광의 전파방향에 수직한 방향으로 출력하는 것을 특징으로 한다.
이상에서 설명한 바와 같이 본 실시예의 일 측면에 따르면, 기계적 회전을 대체하여 보다 가볍고 저렴하면서도, 원하는 대로 정확히 출력할 수 있어 다양한 장치 내에서 라이다 시스템으로 장착될 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 광 위상가변 배열 안테나의 구성을 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 마이크로 히터의 구성을 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 위상 가변부의 단면도이다.
도 4 및 5는 본 발명의 일 실시예에 따른 안테나 소자의 단면도 및 사시도이다.
도 6 및 7은 종래의 배열 안테나의 출력과 본 발명의 일 실시예에 따른 광 위상가변 배열 안테나의 출력을 도시한 그래프이다
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 본 발명의 각 실시예에 포함된 각 구성, 과정, 공정 또는 방법 등은 기술적으로 상호간 모순되지 않는 범위 내에서 공유될 수 있다.
도 1은 본 발명의 일 실시예에 따른 광 위상가변 배열 안테나의 구성을 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광 위상가변 배열 안테나(100)는 수신부(110), 위상 가변부(120), 출력부(130) 및 베이스부(140)를 포함한다.
광 위상가변 배열 안테나(100)는 라이다 시스템(미도시) 내에서 센싱을 위해 조사할 (레이저) 광의 위상을 가변하여 출력되는 광의 방향을 조정하는 구성이다. 광 위상가변 배열 안테나(100)는 광을 생성하여 광 위상가변 배열 안테나로 출력(전달)하는 광원(미도시) 및 대상물 등으로부터 반사되는 반사광을 수광하여 센싱하는 센싱장치(미도시)와 함께 라이다 시스템을 구성할 수 있다.
수신부(110)는 광원(미도시)에서 출력된 광을 수신하고, 복수 개의 커플러를 이용하여 수신한 광을 복수 개의 안테나 소자 도파로로 분배한다.
수신부(110)는 광원(미도시)에서 출력된 광을 수신하기 위한 제1 광 커플러(112)를 포함한다. 광원(미도시)에서 출력된 광의 모드 지름은 광 위상가변 배열 안테나(100) 내 후술할 도파로(122)의 모드 지름과 상이한 것이 보통이다. 수신부(110)는 제1 광 커플러(112)를 이용하여, 광원에서 출력된 광의 모드 지름을 조정함으로써, 광원에서 출력된 광을 온전히 수신한다. 제1 광 커플러(112)는 광의 모드 지름을 조정하기 위해 캔틸레버 형태의 산화 실리콘 도파로 속에서 역테이퍼 형태의 구조를 가질 수 있다.
수신부(110)는 제2 광 커플러(114)를 이용하여 수신한 광을 복수의 안테나 소자 도파로로 분배한다. 여기서, 제2 광 커플러(114)는 다중모드 간섭기(Multi-mode Interference Coupler), Y-접합부 커플러(Y-junction Coupler) 또는 방향성 결합기(Directional Coupler)로 구현될 수 있으며, 하나 이상이 포함되어 수신된 광을 복수 개로 분배한다.
위상 가변부(120)는 각 안테나 소자 도파로(122)의 굴절률을 변화시켜 도파로 모드의 위상을 변화시킨다.
위상 가변부(120)는 마이크로 히터(126)와 마이크로 히터(126)로 전원을 공급할 전극(124)을 포함한다. 위상 가변부(120)는 마이크로 히터(126)를 이용하여 안테나 소자 도파로(122)로 줄열을 가하여 각 도파로(122)의 굴절률을 변화시키고, 도파로의 굴절률 변화는 도파로 모드의 위상 변화를 유발한다. 마이크로 히터(126) 및 전극(124)에 대해서는 도 2에 상세히 도시되어 있다.
도 2는 본 발명의 일 실시예에 따른 마이크로 히터의 구성을 도시한 도면이다.
도 2에 도시된 바와 같이, 전극(124a)과 전극(124b)은 복수의 안테나 소자 도파로(122)의 양 외곽의 베이스부(140)에 대각선 방향으로 배치되며, 하나의 마이크로 히터(126)가 각 도파로(122) 상을 가로지르며 각 전극(124a, 124b)에 연결된다.
이때, 마이크로 히터(126)은 모든 도파로(122)를 일시에 가로질러 각 도파로 상의 베이스부와 1회만 접촉하며 전극에 연결되는 것이 아니라, 각각의 도파로(122) 상의 베이스부와 1회 또는 복수 회 접촉하며 전극에 연결된다. 마이크로 히터(126)는 각 도파로(122)의 방향으로 진행하다가 도파로가 위치한 방향(도파로의 방향과 수직한 방향)으로 꺾이며 특정 도파로 상의 베이스부까지 접촉하는 형태를 가지며, 그 후 다시 도파로 상의 베이스부로부터 멀어진 후 다시 도파로의 방향으로 진행하는 형태로 형성되어, 일시에 하나 또는 복수 개의 도파로 상의 베이스부와 접촉할 수 있다. 마이크로 히터(126)는 방향이 접촉하고자 하는 (도파로 상의) 베이스부의 위치를 지속적으로 달리함으로써, 각 도파로 상의 베이스부의 위치와 접촉 횟수를 달리 할 수 있다. 예를 들어, 도 2에 도시된 마이크로 히터(126)는 전극(124a)와 연결되도록 형성되며, 최초에는 전극(124a)과 가장 근접한 도파로 상의 베이스부까지만 접촉한 후 멀어지며, 차츰 전극(124a)과 멀어지는 도파로 상의 베이스부까지 접촉한 후 멀어지고 최종적으로는 모든 도파로 상을 가로질러 전극(124b)와 연결되는 형태로 형성된다. 마이크로 히터(126)가 이처럼 각 도파로 상의 베이스부와 접촉 횟수를 달리하며 전극에 연결되기 때문에, 하나의 마이크로 히터(126) 및 두 개의 전극(124a, 124b)만을 구비하더라도 모든 도파로를 일시에 가열할 수 있고, 각 도파로의 가열 정도를 모두 달리할 수 있다. 다만, 도 2에는 각 도파로 상의 베이스부와 접촉횟수가 모두 다른 형태로 마이크로 히터(126)가 형성된 예만이 도시되어 있으나, 반드시 이에 한정되는 것은 아니고, 일부 도파로 상의 베이스부와는 접촉횟수가 동일한 형태(예를 들어, 마이크로 히터가 최초에 일 전극과 가장 먼 도파로 상의 베이스부까지 접촉한 후 멀어지며, 차츰 일 전극과 가까워지는 도파로 상의 베이스부까지 접촉한 후 멀어지다가, 다시 일 전극과 가장 먼 도파로 상의 베이스부까지 접촉한 후 멀어지는 형태로 다른 전극과 연결되는 형태)를 가질 수 있다.
마이크로 히터(122)는 다음과 같은 공정에 의해 형성될 수 있다. 마이크로 펜(Micro Pen)을 이용하여 마이크로 히터(122)를 형성하고자 하는 형태로 백금 페이스트(Pt Paste)를 도포한 후, 도포한 부위로 레이저를 조사함으로써 마이크로 히터를 제조할 수 있다.
다시 도 1을 참조하면, 마이크로 히터(126)는 각 도파로 상의 베이스부와 접촉하며 도파로(122)로 간접적으로 열을 가함으로써, 도파로의 굴절률을 변화시킨다. 히터(126)가 접촉한 도파로(122)의 단면은 도 3에 도시되어 있다.
도 3은 본 발명의 일 실시예에 따른 위상 가변부의 단면도이다.
도 3을 참조하면, 베이스부(140)는 클래딩(310, 320) 및 기판(330)을 포함한다. 기판(330)은 실리콘으로 구현되며, 기판(330) 상에 산화 실리콘(SiO2)으로 구현된 클래딩(310, 320)이 증착되는 형태로 구현된다. 이때, 도파로(122)는 실리콘으로 구현되어 클래딩(310, 320)의 내부에 배치되며, 도파로(122)를 기준으로 클래딩을 상부 클래딩(310)과 하부 클래딩(320)으로 구분한다. 도파로(122)는 산화 실리콘에 둘러 쌓여있는 형태를 갖는다. 도파로(122)가 산화 실리콘으로 구현된 클래딩에 둘러 쌓여있어, 광학적 손실(Optical Loss)이 감소하는 효과가 발생한다.
이때, 마이크로 히터(126)는 도파로(122)상의 상부 클래딩(310)과 접촉함으로써, 열을 도파로(122)로 전달한다. 즉, 마이크로 히터(126)는 도파로 방향으로 도파로 상의 베이스부, 즉, 상부 클래딩(310)까지 꺾이며 도파로(122) 상의 상부 클래딩(310)과 접촉하여 도파로(122)로 열을 전달한다.
다시 도 1을 참조하면, 출력부(130)는 위상 가변부(120)에서 가변된 위상분포를 유지하며, 광을 전파방향의 수직인 방향인 안테나 상부(+z축)로 출력한다 출력부(130)는 광을 x-y 평면에서 z축 방향으로 출력할 수 있는데, 수신부(110)로 입력되는 광의 파장과, 위상 가변부(120)에서 가변된 위상에 따라 출력부(130)에서 출력되는 광의 출력 방향은 스티어링(Steering)된다.
출력부(130)에서는 안테나 소자 도파로(122)들의 거리를 좁히기 위해 최적화된 도파로 너비를 사용해야 하는데, 이는 소멸파의 크기를 작게 하기 위해서는 넓은 너비가 사용되어야 하지만, 넓은 너비로 인해 가까워진 소자간 거리는 보상되어야한다.
출력부(130) 내 하나의 안테나 소자(132)의 단면이 도 4에 도시되어 있고, 하나의 안테나 소자(132)의 사시도가 도 5에 도시되어 있다.
도 4 및 5는 본 발명의 일 실시예에 따른 안테나 소자의 단면도 및 사시도이다.
안테나 소자, 역시, 베이스부(140) 상에 배치된 소자이므로, 위상 가변부(120)의 단면과 동일한 구성으로 구현된다. 안테나 소자도 실리콘 기판(330) 상에 산화 실리콘(SiO2)으로 구현된 클래딩(310, 320)이 증착되고, 클래딩 내부에 도파로(122)가 배치되어 클래딩을 상부(310)와 하부(320)로 구분한다. 도파로(122)가 실리콘으로 구현되고 도파로(122) 상부에 산화 실리콘으로 구현된 클래딩이 위치함에 따라, 광학적 손실이 현저히 감소되는 효과가 발생한다. 나아가, 도파로의 상부에 회절격자(410)가 형성되는데, 이러한 회절격자가 대칭성과 함께 비주기성을 갖기 때문에 실리콘 보다는 산화 실리콘으로 구현된 소재에 보다 원활하게 형성될 수 있다. 따라서, 본 발명의 일 실시예에 따른 안테나 소자는 클래딩과 도파로가 전술한 소재로 구현됨에 따라, 제조에 있어서도 용이해지고 광학적 손실도 감소될 수 있다.
상부 클래딩(310)의 실리콘은 높은 굴절률을 갖기 때문에, 하이브리드 도파로의 실효 굴절률(Effective Refractive Index)의 값을 높여주는 역할과 모드 크기를 축소해주지만, 2-광자 흡수로 인한 비선형적 소실을 최소화하기 위해 120nm 이하의 두께를 갖는다. 수직 굴절율 대칭을 없애기 위해 주기적으로 변화시킨 실리콘의 두께의 최대값은 수신부나 변조부보다 더 두꺼울 수 있고, 도파로 상부를 덮는 물질은 라이다의 사용 환경에 따라 산화 실리콘을 대신해 그보다 큰 굴절률을 갖는 질화 산화 실리콘이 사용될 수 있다.
안테나 소자가 상부(+z축)로 광을 지향적으로 방출하기 위해서, 상부 클래딩(310)의 두께를 주기적으로 변화시킨 회절격자(410)를 포함한다. 회절격자(410)는 에칭(Etching)에 의해 형성될 수 있으나 이에 한정되는 것은 아니고, 레이저 식각 등 다양한 방법에 의해 형성될 수 있다. 이때, 회절격자(410)의 얇은 부분과 두꺼운 부분에서의 두께 변화로 인해 위상변화가 발생하는데, 회절격자의 상부에서는 보강간섭이, 하부에서는 상쇄간섭이 만족하게 된다. 이에 따라, 안테나 소자 내 도파로(122)로 전파되는 광은 상부로 지향적으로 방출되고, 도파로를 둘러싼 상층과 하층의 산화 실리콘 클래딩(310, 320)의 두께는 파장의 반의 배수에 근접하여 보강간섭을 만족한다.
이때, 회절격자(410)간 간격(420)은 의도적으로 등간격이 아닌 비주기적으로 형성된다. 안테나 소자는 안테나 소자의 크기와 무관하게, 안테나 소자의 중심(430)을 기준으로 회절격자(410)가 대칭성을 가지며 형성되며 회절격자간 간격(420)은 비주기적으로 형성된다.
예를 들어, 도 4에 도시된 바와 같이, 안테나 소자의 회절격자(410)간 간격(420)은 안테나 소자의 외곽으로부터 중심(430)을 향할수록 감소하다가, 중심(430)을 지나면 다시 증가하는 형태를 가질 수 있다. 또는, 안테나 소자의 회절격자(410)간 간격(420)은 안테나 소자의 외곽으로부터 중심(430)을 향할수록 감소하다가, 중심(430)으로부터 기 설정된 범위 내에서는 간격이 일정하게 유지되며, 다시 중심(430)으로부터 기 설정된 범위를 벗어나 외곽을 향할수록 증가하는 형태를 가질 수 있다. 이처럼, 회절격자(410)간 간격(420)이 비주기성과 대칭성을 가짐에 따라, 다음과 같은 효과가 발생한다. 회절격자(410)간 간격(420)을 균일하게 배치하는 주기성을 깨고 비주기성과 대칭성을 갖도록 하여, 많은 양의 광을 출력할 수 있어 수직으로의 광 출력이 많아져서 신호의 세기가 증가하고, 이에 따른 원거리에서의 잡음대비 신호세기(S/N비)의 증가한다.
이러한 효과는 도 6 및 7에 도시된 그래프에 의해 뒷받침된다.
도 6 및 7은 종래의 배열 안테나의 출력과 본 발명의 일 실시예에 따른 광 위상가변 배열 안테나의 출력을 도시한 그래프이다
도 6(a)를 참조하면, 방사 세기가 등간격으로 형성된 것을 보아 종래의 배열 안테나 내 회절격자의 위치는 등간격으로 배치된 것을 확인할 수 있다. 이 경우, 도 6(b)를 참조하면, 중심(0°)에서 일정한 파워의 메인 로브(Main Lobe)가 발생하고는 있으나, 중심으로 벗어난 위치에서도 상당한 파워의 사이드 로브(Side Lobe)가 발생하고 있는 것을 확인할 수 있다. 또한, 도 6(c)를 참조하면, 종래의 배열 안테나 내 회절격자의 간격은 모두 동일하므로 0의 위치에서만 상당히 낮은 S/N비의 값을 갖는 것을 확인할 수 있다.
반면, 도 7(a)를 참조하면, 방사 세기는 중심에서는 간격이 좁아지고 중심으로부터 멀수록 간격이 넓어지는 것을 확인할 수 있어, 본 발명의 일 실시예에 따른 광 위상가변 배열 안테나 내 회절격자의 위치는 비주기성과 대칭성을 갖는 것을 확인할 수 있다. 이 경우, 도 7(b)를 참조하면, 중심(0°)에서 일정한 파워의 메인 로브(Main Lobe)가 발생하고 있으며, 중심(0°) 조금만 벗어나더라도 현저하게 감소한 파워의 사이드 로브만이 미세하게 발생하고 있어 S/N비가 현저히 개선되었음을 확인할 수 있다. 이는 도 7(c)를 참조하면 보다 확실히 확인된다. 화절격자의 간격이 좁을수록(0에 가까울수록) S/N비는 상승하고 있으며, 회절격자의 간격이 넓을수록(0으로부터 멀어질수록) S/N비는 하강하고 있음을 확인할 수 있다. 전술한 대로, 본 발명의 일 실시예에 따른 광 위상가변 배열 안테나 내 회절격자는 중심에서 좁은 간격을 가지고 중심으로부터 멀어질수록 넓은 간격을 갖기 때문에, 일정한 파워의 메인로브와 현저히 감소된 사이드로브만이 발생하고 있음을 확인할 수 있다.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
100: 광 위상 가변 배열안테나
110: 수신부
112: 제1 광 커플러
114: 제2 광 커플러
120: 위상 가변부
122: 광 도파로
124: 전극
126: 마이크로 히터
130: 출력부
132: 안테나 소자
140: 베이스부
310, 320: 클래딩
330: 기판
410: 회절격자
420: 간격
430: 중심

Claims (9)

  1. 입력되는 광을 복수의 안테나 소자 도파로로 분배하는 수신부;
    각 안테나 소자 도파로로 열을 가하여 각 안테나 소자 도파로로 전파되는 광의 위상을 가변하는 위상 가변부;
    복수의 안테나 소자를 포함하며, 상기 위상 가변부에서 위상이 가변되어 각 안테나 소자 도파로로 전파되는 광을 각 안테나 소자로 출력하는 출력부; 및
    상기 수신부, 상기 위상 가변부 및 상기 출력부를 안착시키는 베이스부를 포함하며,
    상기 출력부 내 포함된 안테나 소자는 안테나 소자의 중심을 기준으로 대칭성을 가지며 각각 비주기적인 간격을 갖는 회절격자를 포함하여, 안테나 소자의 외곽으로부터 중심을 향할수록 각 회절격자간 간격이 감소하고, 안테나 소자의 중심으로부터 기 설정된 범위 내에서는 각 회절격자간 간격이 일정하게 유지되며, 안테나 소자의 중심으로부터 기 설정된 범위를 벗어나 다시 외곽으로 향할수록 각 회절격자간 간격이 증가하는 것을 특징으로 하는 광 위상 가변 배열안테나.
  2. 제1항에 있어서,
    상기 수신부는,
    상기 입력되는 광을 복수의 안테나 소자 도파로로 분배하기 위해 다중모드 간섭기(Multi-mode Interference Coupler), Y-접합부 커플러(Y-junction Coupler) 또는 방향성 결합기(Directional Coupler)를 포함하는 것을 특징으로 하는 광 위상 가변 배열안테나.
  3. 제1항에 있어서,
    상기 위상 가변부는,
    각 안테나 소자 도파로를 가열하는 양이 서로 상이한 것을 특징으로 하는 광 위상 가변 배열안테나.
  4. 제1항에 있어서,
    상기 베이스부는,
    실리콘 기판과 상기 실리콘 기판 상에 산화 실리콘 클래딩이 적층되어 형성된 것을 특징으로 하는 광 위상 가변 배열안테나.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 제1항에 있어서,
    상기 출력부는,
    안테나 소자 도파로로 전파되는 광을 광의 전파방향에 수직한 방향으로 출력하는 것을 특징으로 하는 광 위상 가변 배열안테나.
KR1020190143858A 2019-11-11 2019-11-11 광의 위상을 가변할 수 있는 배열 안테나 KR102223750B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020190143858A KR102223750B1 (ko) 2019-11-11 2019-11-11 광의 위상을 가변할 수 있는 배열 안테나
PCT/KR2020/015752 WO2021096210A1 (ko) 2019-11-11 2020-11-11 광의 위상을 가변할 수 있는 배열 안테나
US17/702,288 US20220214596A1 (en) 2019-11-11 2022-03-23 Array antenna capable of shifting phase of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190143858A KR102223750B1 (ko) 2019-11-11 2019-11-11 광의 위상을 가변할 수 있는 배열 안테나

Publications (1)

Publication Number Publication Date
KR102223750B1 true KR102223750B1 (ko) 2021-03-05

Family

ID=75164186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190143858A KR102223750B1 (ko) 2019-11-11 2019-11-11 광의 위상을 가변할 수 있는 배열 안테나

Country Status (3)

Country Link
US (1) US20220214596A1 (ko)
KR (1) KR102223750B1 (ko)
WO (1) WO2021096210A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150104137A (ko) * 2013-01-08 2015-09-14 메사추세츠 인스티튜트 오브 테크놀로지 광학 위상 어레이들
KR101720434B1 (ko) * 2015-11-10 2017-03-28 한국과학기술원 광 위상배열 안테나
KR101924890B1 (ko) * 2017-09-28 2018-12-04 광주과학기술원 광 위상 배열 안테나 및 이를 포함하는 라이다

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090120254A (ko) * 2008-05-19 2009-11-24 성균관대학교산학협력단 테라헤르츠 주파수 발생 및 광센싱용 두 파장 레이저시스템
KR101892357B1 (ko) * 2016-10-11 2018-08-27 한국과학기술원 실리콘 반도체를 기반으로 하는 광 빔 포밍 네트워크 칩

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150104137A (ko) * 2013-01-08 2015-09-14 메사추세츠 인스티튜트 오브 테크놀로지 광학 위상 어레이들
KR101720434B1 (ko) * 2015-11-10 2017-03-28 한국과학기술원 광 위상배열 안테나
KR101924890B1 (ko) * 2017-09-28 2018-12-04 광주과학기술원 광 위상 배열 안테나 및 이를 포함하는 라이다

Also Published As

Publication number Publication date
US20220214596A1 (en) 2022-07-07
WO2021096210A1 (ko) 2021-05-20

Similar Documents

Publication Publication Date Title
CN108700790B (zh) 光偏转器及激光雷达装置
CN110678774B (zh) 测距传感器
US11604397B2 (en) Phase front shaping in one and two-dimensional optical phased arrays
US9939577B2 (en) Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
Kossey et al. End-fire silicon optical phased array with half-wavelength spacing
KR102559580B1 (ko) 광 조향용 OPA, 및 그 OPA를 구비한 LiDAR 시스템
Phare et al. Silicon optical phased array with high-efficiency beam formation over 180 degree field of view
Abe et al. Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide
CN108398842B (zh) 一种基于串联式光学天线的光学相控阵芯片
KR102070349B1 (ko) 리튬나이오베이트-실리콘나이트라이드 기반의 광 위상변조기 및 이를 이용한 광위상 배열안테나
KR102434808B1 (ko) 이중격자 구조를 갖는 광도파로 방식의 광위상 배열 안테나 및 이를 포함하는 라이다
US11194223B2 (en) Densely-packed optical phased arrays via k-vector mismatch and metamaterial rods
US11953726B2 (en) Optical device
KR102337648B1 (ko) 라이다 센서용 광위상배열 디바이스
US20230350216A1 (en) Optical device
US20240077671A1 (en) Optical phased array device and method of manufacture
KR102223750B1 (ko) 광의 위상을 가변할 수 있는 배열 안테나
JP2023508155A (ja) 統合制御装置を備えたフェーズドアレイアンテナ付き光電子トランスミッタ
KR102494190B1 (ko) 2차원 지향성 광위상배열 디바이스
Zhao et al. Low sidelobe silicon optical phased array with Chebyshev amplitude distribution
EP3968084A1 (en) Optical device and optical detection system
JP7159763B2 (ja) 光学装置及びレーザレーダ装置
CN115398296B (en) Optoelectronic transmitter with phased array antenna comprising integrated control means
EP4258050A1 (en) Single-beam side deflector, multiplexer/demultiplexer and optical antenna feeder incorporating the deflector, and methods that use same
US20240210622A1 (en) Optical device

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant