KR101892357B1 - 실리콘 반도체를 기반으로 하는 광 빔 포밍 네트워크 칩 - Google Patents

실리콘 반도체를 기반으로 하는 광 빔 포밍 네트워크 칩 Download PDF

Info

Publication number
KR101892357B1
KR101892357B1 KR1020160131381A KR20160131381A KR101892357B1 KR 101892357 B1 KR101892357 B1 KR 101892357B1 KR 1020160131381 A KR1020160131381 A KR 1020160131381A KR 20160131381 A KR20160131381 A KR 20160131381A KR 101892357 B1 KR101892357 B1 KR 101892357B1
Authority
KR
South Korea
Prior art keywords
optical
beam forming
channels
ttd
forming network
Prior art date
Application number
KR1020160131381A
Other languages
English (en)
Other versions
KR20180039948A (ko
Inventor
김종훈
김영수
유동은
이동욱
김기남
황해철
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020160131381A priority Critical patent/KR101892357B1/ko
Priority to US15/336,538 priority patent/US20180102847A1/en
Publication of KR20180039948A publication Critical patent/KR20180039948A/ko
Application granted granted Critical
Publication of KR101892357B1 publication Critical patent/KR101892357B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2652Self-phasing arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6165Estimation of the phase of the received optical signal, phase error estimation or phase error correction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12123Diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12159Interferometer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • G02B6/2813Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2861Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using fibre optic delay lines and optical elements associated with them, e.g. for use in signal processing, e.g. filtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/0155Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the optical absorption
    • G02F1/0156Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the optical absorption using free carrier absorption
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Abstract

일실시예에 따르면, 실리콘 반도체를 기반으로 실리콘 단일 반도체 공정(monolithic integration)에 의해 제작되어, 위상배열안테나의 신호 처리를 위한 실제 시간지연을 이용하는 광 빔 포밍 네트워크(Photonic Beam Forming Network; PBFN) 칩은 광원으로부터 발생되는 광 파워를 균등한 파워로 분기하는 적어도 하나의 파워 스플리터(Power splitter); 상기 적어도 하나의 파워 스플리터를 이용하여, 복수의 안테나들로부터 송수신되는 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 복수의 MZM(Mach-Zehnder Modulator) 광 변조기들; 상기 복수 채널의 광 신호들에 대해 상기 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD(True Time Delay) 소자들; 상기 복수 채널의 광 신호들이 결합된 단일 광 신호 또는 상기 복수 채널의 광 신호들을 RF 신호로 변경하는 광 검출기(Photodetector); 및 상기 적어도 하나의 파워 스플리터, 상기 복수의 MZM 광 변조기들, 상기 복수의 TTD 소자들 및 상기 광 검출기 각각을 연결하는 광 도파로를 포함한다.

Description

실리콘 반도체를 기반으로 하는 광 빔 포밍 네트워크 칩{PHOTONIC BEAM FORMING NETWORK CHIP BASED ON SILICON SEMICONDUCTOR}
아래의 실시예들은 반도체를 기반으로 하는 광 빔 포밍 네트워크(Photonic Beam Forming Network; PBFN) 칩에 관한 것으로, 보다 상세하게는, 위상배열안테나(Phased Array Antenna)로 수신 또는 송신되는 RF 신호를 광학적 실제 시간 지연(True Time Delay; TTD)을 기반으로 처리하는 빔 조향 기술이다.
기존의 BFN(Beam Forming Network)은 MMIC(Monolithic Microwave Integrated Circuit)을 기반으로 구성되었다. 이러한 기존의 BFN은 칩의 크기가 커서 상용화에 제한적인 단점이 있으며, 위상배열안테나의 개수가 증가하고, 요구하는 주파수 대역이 증가함에 따라, 위상지연부분에서의 신호 간섭 현상 및 전력 소모가 심각해져 그 성능이 한계에 다다르는 문제점이 있다.
이에, 네덜란드 SATARAX사가 Si3N4 광 도파로 기반의 TTD(True Time Delay)를 포함하는 OBFN(Optical Beam Forming Network)를 제안하였다.
그러나 OBFN은 MZM(Mach-Zehnder Modulator)을 InP를 기반으로 구성하기 때문에, Si3N4 광 도파로 기반의 TTD 소자와의 광 커플링 문제를 유발하였다.
따라서, 두 이종 형태의 서브스트레이트(substrate)를 기반으로 구성되는 TTD와 MZM 사이의 광 커플링 문제를 해결하기 위한 기술이 요구된다.
일실시예들은 실리콘포토닉스 기술을 기반으로 기존의 OBFN이 갖는 Si3N4 광 도파로 기반의 TTD와 InP 화합물 반도체 기반 MZM 사이의 광 커플링 문제점을 해결하며, 칩의 크기를 줄여 상용화에 적합한 광 빔 포밍 네트워크 칩을 제공한다.
구체적으로, 일실시예들은 하나의 광원으로부터 발생되는 광 파워를 균등한 파워로 분기하는 적어도 하나의 파워 스플리터, 적어도 하나의 파워 스플리터를 이용하여 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 복수의 MZM 광 변조기들 및 링(Ring) 공진기를 기반으로 복수 채널의 광 신호들에 대해 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD 소자들을 하나의 칩 위에 제작함으로써, 복수의 MZM 광 변조기들 및 복수의 TTD 소자들 사이의 별도의 커플링 없이 광 도파로를 기반으로 연결되는 광 빔 포밍 네트워크 칩을 제공한다.
또한, 일실시예들은 복수의 RF 신호들이 변경된 복수 채널의 광 신호들 사이의 광 손실 차이가 최소화되도록 미리 설정된 기준값 이하의 광 도파 손실값을 갖는 광 도파로를 구성하는 광 빔 포밍 네트워크 칩을 제공한다.
또한, 일실시예들은 광 빔 포밍 네트워크 칩을 기반으로 하는 광 빔 포밍 네트워크 패키지 및 광 빔 포밍 네트워크 시스템을 제공한다.
일실시예에 따르면, 실리콘 반도체를 기반으로 실리콘 단일 반도체 공정(monolithic integration)에 의해 제작되어, 위상배열안테나의 신호 처리를 위한 실제 시간지연을 이용하는 광 빔 포밍 네트워크(Photonic Beam Forming Network; PBFN) 칩은 광원으로부터 발생되는 광 파워를 균등한 파워로 분기하는 적어도 하나의 파워 스플리터(Power splitter); 상기 적어도 하나의 파워 스플리터를 이용하여, 복수의 안테나들로부터 송수신되는 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 복수의 MZM(Mach-Zehnder Modulator) 광 변조기들; 상기 복수 채널의 광 신호들에 대해 상기 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD(True Time Delay) 소자들; 상기 복수 채널의 광 신호들이 결합된 단일 광 신호 또는 상기 복수 채널의 광 신호들을 RF 신호로 변경하는 광 검출기(Photodetector); 및 상기 적어도 하나의 파워 스플리터, 상기 복수의 MZM 광 변조기들, 상기 복수의 TTD 소자들 및 상기 광 검출기 각각을 연결하는 광 도파로를 포함한다.
상기 복수의 MZM 광 변조기들의 개수는 상기 복수의 안테나들의 개수에 기초하여 설정될 수 있다.
상기 복수의 TTD 소자들 각각은 상기 광 도파로에 링(Ring) 공진기가 구비되어 구성되고, 상기 링 공진기의 동작에 따라 상기 복수의 안테나들 별로 시간 지연을 보상 또는 조절할 수 있다.
상기 광 도파로는 상기 복수 채널의 광 신호들 사이의 광 손실 차이가 최소화되도록 미리 설정된 기준값 이하의 광 도파 손실값을 가질 수 있다.
상기 광 빔 포밍 네트워크 칩은 상기 복수의 TTD 소자들에서의 광 손실을 미리 설정된 범위 내로 일치화하는 복수의 광 감쇠기(Optical attenuator)들을 더 포함할 수 있다.
상기 복수의 광 감쇠기들 각각은 상기 광 도파로에 p-i-n 다이오드가 접합되어 구성될 수 있다.
상기 광 빔 포밍 네트워크 칩은 상기 복수의 광 감쇠기들에서의 자유 운반자 주입(Free carrier injection)에 의한 위상 변화를 동기화하는 복수의 위상 튜너(Phase tuner)들을 더 포함할 수 있다.
상기 복수의 위상 튜너들 각각은 상기 광 도파로에 메탈 히터(Metal heater)가 접합되어 구성될 수 있다.
상기 복수의 MZM 광 변조기들 및 상기 복수의 TTD 소자들 각각에 포함되는 상기 광 도파로는 열-광학(Thermo-optic) 효과에 의해 중심 동작 파장을 조절하기 위한 메탈 히터를 포함할 수 있다.
상기 광 빔 포밍 네트워크 칩은 상기 복수 채널의 광 신호들을 증폭하는 복수의 하이브리드 광 증폭기들을 더 포함할 수 있다.
상기 광 빔 포밍 네트워크 칩은 상기 복수 채널의 광 신호들을 결합하는 적어도 하나의 파워 컴바이너(Power combiner)를 더 포함할 수 있다.일실시예에 따르면, 실리콘 반도체를 기반으로 실리콘 단일 반도체 공정(monolithic integration)에 의해 제작되어, 위상배열안테나의 신호 처리를 위한 실제 시간지연을 이용하는 광 빔 포밍 네트워크(Photonic Beam Forming Network; PBFN) 패키지는 광 빔 포밍 네트워크 칩; 및 상기 광 빔 포밍 네트워크 칩을 제어하는 Tx 모듈 및 Rx 모듈을 포함하고, 상기 광 빔 포밍 네트워크 칩은 광원으로부터 발생되는 광 파워를 균등한 파워로 분기하는 적어도 하나의 파워 스플리터(Power splitter); 상기 적어도 하나의 파워 스플리터를 이용하여, 복수의 안테나들로부터 송수신되는 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 복수의 MZM(Mach-Zehnder Modulator) 광 변조기들; 상기 복수 채널의 광 신호들에 대해 상기 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD(True Time Delay) 소자들; 상기 복수 채널의 광 신호들이 결합된 단일 광 신호 또는 상기 복수 채널의 광 신호들을 RF 신호로 변경하는 광 검출기(Photodetector); 및 상기 적어도 하나의 파워 스플리터, 상기 복수의 MZM 광 변조기들, 상기 복수의 TTD 소자들 및 상기 광 검출기 각각을 연결하는 광 도파로를 포함한다,
일실시예에 따르면, 실리콘 반도체를 기반으로 실리콘 단일 반도체 공정(monolithic integration)에 의해 제작되어, 위상배열안테나의 신호 처리를 위한 실제 시간지연을 이용하는 광 빔 포밍 네트워크(Photonic Beam Forming Network; PBFN) 시스템은 광 빔 포밍 네트워크 패키지; 및 상기 광 빔 포밍 네트워크 패키지를 제어하는 FPGA(Field-Programmable Gate Array)를 포함하고, 상기 광 빔 포밍 네트워크 패키지는 광원으로부터 발생되는 광 파워를 균등한 파워로 분기하는 적어도 하나의 파워 스플리터(Power splitter); 상기 적어도 하나의 파워 스플리터를 이용하여, 복수의 안테나들로부터 송수신되는 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 복수의 MZM(Mach-Zehnder Modulator) 광 변조기들; 상기 복수 채널의 광 신호들에 대해 상기 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD(True Time Delay) 소자들; 상기 복수 채널의 광 신호들이 결합된 단일 광 신호 또는 상기 복수 채널의 광 신호들을 RF 신호로 변경하는 광 검출기(Photodetector); 상기 적어도 하나의 파워 스플리터, 상기 복수의 MZM 광 변조기들, 상기 복수의 TTD 소자들 및 상기 광 검출기 각각을 연결하는 광 도파로; 및 상기 복수의 MZM 광 변조기들을 제어하는 Tx 모듈과 상기 광 검출기를 제어하는 Rx 모듈을 포함한다.
일실시예들은 실리콘포토닉스 기술을 기반으로 기존의 OBFN이 갖는 Si3N4 광 도파로 기반의 TTD와 InP 화합물 반도체 기반 MZM 사이의 광 커플링 문제점을 해결하며, 칩의 크기를 줄여 상용화에 적합한 광 빔 포밍 네트워크 칩을 제공할 수 있다.
구체적으로, 일실시예들은 하나의 광원으로부터 발생되는 광 파워를 균등한 파워로 분기하는 적어도 하나의 파워 스플리터, 적어도 하나의 파워 스플리터를 이용하여 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 복수의 MZM 광 변조기들 및 링(Ring) 공진기를 기반으로 복수 채널의 광 신호들에 대해 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD 소자들을 하나의 칩 위에 제작함으로써, 복수의 MZM 광 변조기들 및 복수의 TTD 소자들 사이의 별도의 커플링 없이 광 도파로를 기반으로 연결되는 광 빔 포밍 네트워크 칩을 제공할 수 있다.
또한, 일실시예들은 복수의 RF 신호들이 변경된 복수 채널의 광 신호들 사이의 광 손실 차이가 최소화되도록 미리 설정된 기준값 이하의 광 도파 손실값을 갖는 광 도파로를 구성하는 광 빔 포밍 네트워크 칩을 제공할 수 있다.
또한, 일실시예들은 광 빔 포밍 네트워크 칩을 기반으로 하는 광 빔 포밍 네트워크 패키지 및 광 빔 포밍 네트워크 시스템을 제공할 수 있다.
도 1은 일실시예에 따른 광 빔 포밍 네트워크 칩을 나타낸 도면이다.
도 2는 다른 일실시예에 따른 광 빔 포밍 네트워크 칩을 나타낸 도면이다.
도 3은 일실시예에 따른 광 빔 포밍 네트워크 패키지를 나타낸 도면이다.
도 4는 일실시예에 따른 광 빔 포밍 네트워크 시스템을 나타낸 도면이다.
이하, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 그러나 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 또한, 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 일실시예에 따른 광 빔 포밍 네트워크 칩을 나타낸 도면이다.
도 1을 참조하면, 일실시예에 따른 광 빔 포밍 네트워크 칩(100)은 실리콘 반도체를 기반으로 실리콘 단일 반도체 공정(monolithic integration)에 의해 위상배열안테나의 신호 처리를 위한 실제 시간지연을 이용하도록 제작된다.
광 빔 포밍 네트워크 칩(100)은 복수의 MZM 광 변조기들(110), 복수의 TTD 소자들(120), 적어도 하나의 파워 스플리터(130) 및 광 검출기(140)를 포함한다. 여기서, 복수의 MZM 광 변조기들(110), 복수의 TTD 소자들(120), 적어도 하나의 파워 스플리터(130) 및 광 검출기(140) 각각은 광 도파로(150)로 연결된다.
복수의 MZM 광 변조기들(110)은 복수의 안테나들과 각각 연결됨으로써, 복수의 안테나들로부터 수신되는 복수의 RF 신호들을 복수 채널의 광 신호들로 변경한다. 이 때, 복수의 MZM 광 변조기들(110) 각각은 Si-CMOS 공정을 기반으로 광 도파로(151)에 pn 다이오드가 접합되어 구성될 수 있다.
특히, 복수의 MZM 광 변조기들(110)은 후술되는 적어도 하나의 파워 스플리터(130)를 이용하여, 복수의 RF 신호들을 복수 채널의 광 신호들로 변경할 수 있다.
예를 들어, 복수의 MZM 광 변조기들(110) 각각은 광원(160)에서 유입되는 광 파워가 적어도 하나의 파워 스플리터(130)에 의해 균등하게 분기된 광 파워 각각이 온-오프(on-off)되며 pn 다이오드에 역전압이 인가됨에 따라 공핍(Depletion) 영역을 조절하여 FCPD(Free Carrier Plasma Dispersion) 효과에 의해 광 도파로(151)의 굴절률을 변화시켜 복수의 RF 신호들 중 어느 하나의 RF 신호를 복수 채널의 광 신호들 중 어느 하나 채널의 광 신호로 변경할 수 있다.
즉, 복수의 MZM 광 변조기들(110)은 전기-광학(Electro-optic) 효과를 기반으로 광 도파로(151)의 유효 굴절률을 변화시킴으로써, 수 Gbps 이상의 고속으로 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 동작을 수행할 수 있다.
이 때, 복수의 MZM 광 변조기들(110)의 개수는 복수의 안테나들의 개수에 기초하여 설정될 수 있다.
복수의 TTD 소자들(120)은 복수 채널의 광 신호들에 대해 복수의 안테나들 별로 시간 지연을 보상 또는 조절한다. 특히, 복수의 TTD 소자들(120) 각각은 광 도파로(152)에 링 공진기(153)(예컨대, 실리콘 기반의 링 공진기)가 구비되어 구성됨으로써, 링 공진기(153)의 동작에 따라 복수의 안테나들 별로 시간 지연을 보상 또는 조절할 수 있다.
예를 들어, 복수의 TTD 소자들(120) 각각의 링 공진기(153)는 광 도파로(152)의 중심 동작 파장 또는 광 커플링을 조절함으로써, 광 도파로(152)를 진행하는 광 신호(복수 채널의 광 신호들 중 어느 하나 채널의 광 신호)에 대해 복수의 안테나들에 따른 시간 지연을 보상 또는 조절할 수 있다.
다시 말해, 복수의 TTD 소자들(120) 각각에 포함되는 링 공진기(153)의 크기 및 개수가 적응적으로 조절됨으로써, 복수 채널의 광 신호들에 대해 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD 소자들(120)의 동작이 제어될 수 있다.
상술한 바와 같이, 광 빔 포밍 네트워크 칩(100)은 복수의 MZM 광 변조기들(110) 및 복수의 TTD 소자들(120) 각각에 포함되는 광 도파로(151, 152)의 중심 동작 파장을 전기-광학 효과 또는 링 공진기(153)를 통하여 조절함으로써, 복수의 MZM 광 변조기들(110) 및 복수의 TTD 소자들(120) 사이에서 의도치 않은 광 커플링이 발생되는 것을 방지할 수 있다.
또한, 도면에는 도시되지 않았지만, 복수의 MZM 광 변조기들(110) 및 복수의 TTD 소자들(120) 각각에 포함되는 광 도파로(151, 152)가 열-광학(Thermo-optic) 효과에 의해 중심 동작 파장을 조절하기 위한 메탈 히터(Metal heater)를 포함하도록 구성됨으로써, 광 빔 포밍 네트워크 칩(100)은 전기-광학 효과 또는 링 공진기(153)를 통하여 복수의 MZM 광 변조기들(110) 및 복수의 TTD 소자들(120) 각각에 포함되는 광 도파로(151, 152)의 중심 동작 파장을 조절할 수 있다.
적어도 하나의 파워 스플리터(130)는 광원(160)으로부터 발생되는 광 파워를 균등한 파워로 분기한다. 예를 들어, 적어도 하나의 파워 스플리터(130)는 광 빔 포밍 네트워크 칩(100)에서 광원(160)과 복수의 MZM 광 변조기들(110) 사이에 배치되어, 광원(160)으로부터 발생되는 광 파워를 균등한 파워로 몇 차례에 걸쳐 분기함으로써, 복수의 MZM 광 변조기들(110)로 하여금 분기된 광 파워에 따라 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하도록 할 수 있다.
광 빔 포밍 네트워크 칩(100)에 더 포함되는 적어도 하나의 파워 컴바이너(170)는 복수 채널의 광 신호들을 결합할 수 있다. 예를 들어, 광 빔 포밍 네트워크 칩(100)에서 복수의 MZM 광 변조기들(110)과 복수의 TTD 소자들(120) 사이에 배치되는 제1 파워 컴바이너들(171)은 제1 MZM 광 변조기(111) 및 제2 MZM 광 변조기(112)에서 각각 출력되는 제1 채널의 광 신호 및 제2 채널의 광 신호를 결합하여 제1 TTD 소자(121)로 전달하고, 제3 MZM 광 변조기(113) 및 제4 MZM 광 변조기(114)에서 각각 출력되는 제3 채널의 광 신호 및 제4 채널의 광 신호를 결합하여 제2 TTD 소자(122)로 전달할 수 있다.
마찬가지로, 복수의 TTD 소자들(120)과 광 검출기(140)를 사이에 배치되는 제2 파워 컴바이너(172)는 제1 TTD 소자(121)에서 출력되는 광 신호와 제2 TTD 소자(122)에서 출력되는 광 신호를 결합하여 광 검출기(140)로 전달할 수 있다.
이러한 적어도 하나의 파워 스플리터(130) 및 적어도 하나의 파워 컴바이너(170)는 MMI(Multi-Mode Interferometer) 형태 기반으로 형성될 수 있으며, 각각 광 결합 손실 및 광 분기 손실이 미리 설정된 기준값 이하가 되도록 구성될 수 있다. 또한, 적어도 하나의 파워 스플리터(130) 및 적어도 하나의 파워 컴바이너(170)의 개수는 복수의 MZM 광 변조기들(110)의 개수 또는 복수의 TTD 소자들(120)의 개수에 따라 적응적으로 조절될 수 있다.
광 검출기(140)는 복수 채널의 광 신호들이 결합된 단일 광 신호를 단일 RF 신호로 변경한다. 예를 들어, 광 검출기(140)는 제2 파워 스플리터(172)에 의해 제1 TTD 소자(121)에서 출력되는 광 신호와 제2 TTD 소자(122)에서 출력되는 광 신호가 결합된 단일 광 신호를 전달 받아, 단일 RF 신호로 변경할 수 있다.
그러나 이에 제한되거나 한정되지 않고, 광 빔 포밍 네트워크 칩(100)에 적어도 하나의 파워 컴바이너(170)가 포함되지 않는 경우(또는 적어도 하나의 파워 컴바이너(170) 중 제1 파워 컴바이너(171)만이 포함되는 경우), 광 검출기는 복수의 TTD 소자들(120)에서 출력되는 복수 채널의 광 신호들을 각각 RF 신호들로 변경할 수도 있다.
이 때, 복수의 TTD 소자들(120)과 광 검출기(140)를 사이에는 복수의 하이브리드 광 증폭기들(180), 복수의 광 감쇠기(Optical attenuator)들(181) 및 복수의 위상 튜너(Phase tuner)들(183)이 더 배치될 수 있다.
복수의 하이브리드 광 증폭기들(180)은 복수의 TTD 소자들(120)에서 출력되는 복수 채널의 광 신호들을 증폭할 수 있다.
복수의 광 감쇠기들(181) 각각은 광 도파로(154)에 p-i-n 다이오드가 접합되어 구성됨으로써, 복수의 TTD 소자들(120)에서 출력되는 복수 채널의 광 신호들에 대한 복수의 광 감쇠기들(181) 각각의 광 도파로(154)의 광 손실을 조절함으로써, 복수의 TTD 소자들(120)에서의 광 손실을 미리 설정된 범위 내로 일치화할 수 있다.
복수의 위상 튜너들(183) 각각은 광 도파로(155)에 메탈 히터(예컨대, TiN로 형성되는 메탈 히터)가 접합되어 구성됨으로써, 복수의 광 감쇠기들(182)에서의 자유 운반자 주입(Free carrier injection)에 의한 위상 변화를 동기화할 수 있다.
상술한 바와 같이 광 빔 포밍 네트워크 칩(100)은 광 도파로(150)에 의해 각 구성부가 연결되는 구조를 갖기 때문에, SiO2 BOX 상에 실리콘이 적층된 기본 소자에 대해 Si-photonic 공정을 통하여 광 도파로(150)를 형성한 이후, 광 도파로(150)를 기반으로 그 위에 각 구성부를 형성함으로써, 제작될 수 있다.
이상, 복수의 안테나들로부터 복수의 RF 신호들이 수신되는 경우의 광 빔 포밍 네트워크 칩(100)에 대하여 설명하였으나, 복수의 안테나들로 복수의 RF 신호들을 송신하는 경우에도 광 빔 포밍 네트워크 칩은 동일한 구조로 형성될 수 있다. 이에 대한 상세한 설명은 생략하기로 한다.
일실시예에 따른 광 빔 포밍 네트워크 칩(100)은 이상 2 채널 형태로 구현되는 것으로 설명되었으나, 4 채널 형태로 구현될 수도 있다. 이에 대한 상세한 설명은 도 2를 참조하여 기재하기로 한다.
또한, 일실시예에 따른 광 빔 포밍 네트워크 칩(100)을 기반으로 광 빔 포밍 네트워크 패키지 및 광 빔 포밍 네트워크 시스템이 구성될 수 있다. 이에 대한 상세한 설명은 도 3 내지 4를 참조하여 기재하기로 한다.
도 2는 다른 일실시예에 따른 광 빔 포밍 네트워크 칩을 나타낸 도면이다.
도 2를 참조하면, 다른 일실시예에 따른 광 빔 포밍 네트워크 칩(200)은 도 1을 참조하여 기재한 광 빔 포밍 네트워크 칩과 각 구성부의 구조 및 동작이 동일하나, 포함되는 복수의 MZM 광 변조기들(210), 복수의 TTD 소자들(220) 및 적어도 하나의 파워 스플리터 각각의 개수에서 차이가 있다.
즉, 다른 일실시예에 따른 광 빔 포밍 네트워크 칩(200)은 도 1을 참조하여 기재한 광 빔 포밍 네트워크 칩 두 개가 복합된 구조를 가질 수 있다.
이와 같이, 광 빔 포밍 네트워크 칩(200)은 각 구성부의 개수를 적응적으로 조절함으로써, N 채널의 다양한 형태로 확장되어 구현될 수 있다.
도 3은 일실시예에 따른 광 빔 포밍 네트워크 패키지를 나타낸 도면이다.
도 3을 참조하면, 일실시예에 따른 광 빔 포밍 네트워크 패키지(300)는 PCB(310) 상에 집적되는 광 빔 포밍 네트워크 칩(320)과 Tx 모듈(330) 및 Rx 모듈(340)을 포함한다.
여기서, 광 빔 포밍 네트워크 칩(320)은 도 1을 참조하여 기재한 광 빔 포밍 네트워크 칩으로서, 도 1에서 상술된 구조를 갖도록 형성된다. 그러나 이에 제한되거나 한정되지 않고, 도 2와 같이 N 채널의 다양한 형태로 확장되어 구현된 구조를 가질 수도 있다.
Tx 모듈(330) 및 Rx 모듈(340)은 광 빔 포밍 네트워크 칩(320)을 제어하는 드라이버로서, 예를 들어, Tx 모듈(330)은 G-S-G-S-G 형태를 갖는 소자에 differential signal을 지원하며, 1Gbps(또는 5Gbps) 이상의 동작 가능 속도와 5V(또는 4V) 이하의 구동 전압, 4 채널(또는 8채널) 이상의 채널을 갖도록 구성되어, 광 빔 포밍 네트워크 칩(320)에 포함되는 복수의 MZM 광 변조기들을 제어할 수 있고, Rx 모듈(340)은 10Gbps 이상의 동작 가능 속도를 갖도록 구성되어, 광 빔 포밍 네트워크 칩(320)에 포함되는 광 검출기를 제어할 수 있다.
도 4는 일실시예에 따른 광 빔 포밍 네트워크 시스템을 나타낸 도면이다.
도 4를 참조하면, 일실시예에 따른 광 빔 포밍 네트워크 시스템(400)은 PCB(410) 상에 집적되는 광 빔 포밍 네트워크 패키지(420)와 FPGA(Field-Programmable Gate Array)(430)를 포함한다.
여기서, 광 빔 포밍 네트워크 패키지(420)는 도 3을 참조하여 기재한 광 빔 포밍 네트워크 패키지로서, 도 1에서 상술된 구조를 갖는 광 빔 포밍 네트워크 칩을 포함하는 광 빔 포밍 네트워크 패키지이다. 그러나 이에 제한되거나 한정되지 않고, 도 2와 같이 N 채널의 다양한 형태로 확장되어 구현된 구조를 갖는 광 빔 포밍 네트워크 칩을 포함하는 광 빔 포밍 네트워크 패키지일 수도 있다.
FPGA(430)는 광 빔 포밍 네트워크 패키지(420)를 제어하는 회로로서, 광 빔 포밍 네트워크 패키지(420), 특히, 광 빔 포밍 네트워크 패키지(420)에 포함되는 광 빔 포밍 네트워크 칩을 구동시키도록 프로그래밍된 로직을 포함하는 회로일 수 있다. 예를 들어, FPGA(430)는 광 빔 포밍 네트워크 칩을 구동시켜, 빔 조향 각도를 조절하고, Beam tracking error를 제어하는 회로일 수 있다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (13)

  1. 실리콘 반도체를 기반으로 실리콘 단일 반도체 공정(monolithic integration)에 의해 제작되어, 위상배열안테나의 신호 처리를 위한 실제 시간지연을 이용하는 광 빔 포밍 네트워크(Photonic Beam Forming Network; PBFN) 칩에 있어서,
    광원으로부터 발생되는 광 파워를 균등한 파워로 분기하는 적어도 하나의 파워 스플리터(Power splitter);
    상기 적어도 하나의 파워 스플리터를 이용하여, 복수의 안테나들로부터 송수신되는 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 복수의 MZM(Mach-Zehnder Modulator) 광 변조기들;
    상기 복수 채널의 광 신호들에 대해 상기 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD(True Time Delay) 소자들;
    상기 복수의 TTD 소자들에서 출력되는 상기 복수 채널의 광 신호들에 대한 상기 복수의 TTD 소자들에서의 광 손실을 미리 설정된 범위 내로 일치화하는 복수의 광 감쇠기(Optical attenuator)들;
    상기 복수 채널의 광 신호들이 결합된 단일 광 신호 또는 상기 복수 채널의 광 신호들을 RF 신호로 변경하는 광 검출기(Photodetector); 및
    상기 적어도 하나의 파워 스플리터, 상기 복수의 MZM 광 변조기들, 상기 복수의 TTD 소자들 및 상기 광 검출기 각각을 연결하는 광 도파로
    를 포함하고,
    상기 광 도파로는
    상기 복수 채널의 광 신호들 사이의 광 손실 차이가 최소화되도록 미리 설정된 기준값 이하의 광 도파 손실값을 갖는 광 빔 포밍 네트워크 칩.
  2. 제1항에 있어서,
    상기 복수의 MZM 광 변조기들의 개수는
    상기 복수의 안테나들의 개수에 기초하여 설정되는, 광 빔 포밍 네트워크 칩.
  3. 제1항에 있어서,
    상기 복수의 TTD 소자들 각각은
    상기 광 도파로에 링(Ring) 공진기가 구비되어 구성되고, 상기 링 공진기의 동작에 따라 상기 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는, 광 빔 포밍 네트워크 칩.
  4. 삭제
  5. 삭제
  6. 제1항에 있어서,
    상기 복수의 광 감쇠기들 각각은
    상기 광 도파로에 p-i-n 다이오드가 접합되어 구성되는, 광 빔 포밍 네트워크 칩.
  7. 제1항에 있어서,
    상기 복수의 광 감쇠기들에서의 자유 운반자 주입(Free carrier injection)에 의한 위상 변화를 동기화하는 복수의 위상 튜너(Phase tuner)들
    을 더 포함하는 광 빔 포밍 네트워크 칩.
  8. 제7항에 있어서,
    상기 복수의 위상 튜너들 각각은
    상기 광 도파로에 메탈 히터(Metal heater)가 접합되어 구성되는, 광 빔 포밍 네트워크 칩.
  9. 제1항에 있어서,
    상기 복수의 MZM 광 변조기들 및 상기 복수의 TTD 소자들 각각에 포함되는 상기 광 도파로는
    열-광학(Thermo-optic) 효과에 의해 중심 동작 파장을 조절하기 위한 메탈 히터를 포함하는, 광 빔 포밍 네트워크 칩.
  10. 제1항에 있어서,
    상기 복수 채널의 광 신호들을 증폭하는 복수의 하이브리드 광 증폭기들
    을 더 포함하는 광 빔 포밍 네트워크 칩.
  11. 제1항에 있어서,
    상기 복수 채널의 광 신호들을 결합하는 적어도 하나의 파워 컴바이너(Power combiner)
    를 더 포함하는 광 빔 포밍 네트워크 칩.
  12. 실리콘 반도체를 기반으로 실리콘 단일 반도체 공정(monolithic integration)에 의해 제작되어, 위상배열안테나의 신호 처리를 위한 실제 시간지연을 이용하는 광 빔 포밍 네트워크(Photonic Beam Forming Network; PBFN) 패키지에 있어서,
    광 빔 포밍 네트워크 칩; 및
    상기 광 빔 포밍 네트워크 칩을 제어하는 Tx 모듈 및 Rx 모듈
    을 포함하고,
    상기 광 빔 포밍 네트워크 칩은
    광원으로부터 발생되는 광 파워를 균등한 파워로 분기하는 적어도 하나의 파워 스플리터(Power splitter);
    상기 적어도 하나의 파워 스플리터를 이용하여, 복수의 안테나들로부터 송수신되는 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 복수의 MZM(Mach-Zehnder Modulator) 광 변조기들;
    상기 복수 채널의 광 신호들에 대해 상기 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD(True Time Delay) 소자들;
    상기 복수의 TTD 소자들에서 출력되는 상기 복수 채널의 광 신호들에 대한 상기 복수의 TTD 소자들에서의 광 손실을 미리 설정된 범위 내로 일치화하는 복수의 광 감쇠기(Optical attenuator)들;
    상기 복수 채널의 광 신호들이 결합된 단일 광 신호 또는 상기 복수 채널의 광 신호들을 RF 신호로 변경하는 광 검출기(Photodetector); 및
    상기 적어도 하나의 파워 스플리터, 상기 복수의 MZM 광 변조기들, 상기 복수의 TTD 소자들 및 상기 광 검출기 각각을 연결하는 광 도파로
    를 포함하고,
    상기 광 도파로는
    상기 복수 채널의 광 신호들 사이의 광 손실 차이가 최소화되도록 미리 설정된 기준값 이하의 광 도파 손실값을 갖는 광 빔 포밍 네트워크 패키지.
  13. 실리콘 반도체를 기반으로 실리콘 단일 반도체 공정(monolithic integration)에 의해 제작되어, 위상배열안테나의 신호 처리를 위한 실제 시간지연을 이용하는 광 빔 포밍 네트워크(Photonic Beam Forming Network; PBFN) 시스템에 있어서,
    광 빔 포밍 네트워크 패키지; 및
    상기 광 빔 포밍 네트워크 패키지를 제어하는 FPGA(Field-Programmable Gate Array)
    를 포함하고,
    상기 광 빔 포밍 네트워크 패키지는
    광원으로부터 발생되는 광 파워를 균등한 파워로 분기하는 적어도 하나의 파워 스플리터(Power splitter);
    상기 적어도 하나의 파워 스플리터를 이용하여, 복수의 안테나들로부터 송수신되는 복수의 RF 신호들을 복수 채널의 광 신호들로 변경하는 복수의 MZM(Mach-Zehnder Modulator) 광 변조기들;
    상기 복수 채널의 광 신호들에 대해 상기 복수의 안테나들 별로 시간 지연을 보상 또는 조절하는 복수의 TTD(True Time Delay) 소자들;
    상기 복수의 TTD 소자들에서 출력되는 상기 복수 채널의 광 신호들에 대한 상기 복수의 TTD 소자들에서의 광 손실을 미리 설정된 범위 내로 일치화하는 복수의 광 감쇠기(Optical attenuator)들;
    상기 복수 채널의 광 신호들이 결합된 단일 광 신호 또는 상기 복수 채널의 광 신호들을 RF 신호로 변경하는 광 검출기(Photodetector);
    상기 적어도 하나의 파워 스플리터, 상기 복수의 MZM 광 변조기들, 상기 복수의 TTD 소자들 및 상기 광 검출기 각각을 연결하는 광 도파로; 및
    상기 복수의 MZM 광 변조기들을 제어하는 Tx 모듈과 상기 광 검출기를 제어하는 Rx 모듈
    을 포함하고,
    상기 광 도파로는
    상기 복수 채널의 광 신호들 사이의 광 손실 차이가 최소화되도록 미리 설정된 기준값 이하의 광 도파 손실값을 갖는 광 빔 포밍 네트워크 시스템.
KR1020160131381A 2016-10-11 2016-10-11 실리콘 반도체를 기반으로 하는 광 빔 포밍 네트워크 칩 KR101892357B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160131381A KR101892357B1 (ko) 2016-10-11 2016-10-11 실리콘 반도체를 기반으로 하는 광 빔 포밍 네트워크 칩
US15/336,538 US20180102847A1 (en) 2016-10-11 2016-10-27 Photonic beam forming network chip based on silicon semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160131381A KR101892357B1 (ko) 2016-10-11 2016-10-11 실리콘 반도체를 기반으로 하는 광 빔 포밍 네트워크 칩

Publications (2)

Publication Number Publication Date
KR20180039948A KR20180039948A (ko) 2018-04-19
KR101892357B1 true KR101892357B1 (ko) 2018-08-27

Family

ID=61829743

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160131381A KR101892357B1 (ko) 2016-10-11 2016-10-11 실리콘 반도체를 기반으로 하는 광 빔 포밍 네트워크 칩

Country Status (2)

Country Link
US (1) US20180102847A1 (ko)
KR (1) KR101892357B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021096210A1 (ko) * 2019-11-11 2021-05-20 광주과학기술원 광의 위상을 가변할 수 있는 배열 안테나

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10534110B2 (en) * 2018-01-09 2020-01-14 Precision Optical Transceivers Inc. Integrated photonics device for continuous phase-controlled active beam steering and forming
US10523331B2 (en) 2018-01-12 2019-12-31 Precision Optical Transceivers Inc. Increasing RF power output in photonics-fed phased array antenna systems
US10505632B1 (en) 2018-07-23 2019-12-10 Precision Optical Transceivers Inc. Fiber bus extender embedment
US10629989B2 (en) 2018-02-23 2020-04-21 Precision Optical Transceivers Inc. Phased array communication system with remote RF transceiver and antenna beam control
CN108847892B (zh) * 2018-06-08 2019-12-06 南京航空航天大学 一种基于光子学的宽带射频波束形成方法及装置
KR102470140B1 (ko) * 2018-09-03 2022-11-24 한국전자통신연구원 빔포밍 통신을 위한 송수신 장치 및 방법
WO2020127170A1 (en) * 2018-12-20 2020-06-25 Eth Zurich Electronic device for converting a wireless signal into at least one modulated optical signal
US11394116B2 (en) * 2019-05-22 2022-07-19 Raytheon Company Dual optical and RF phased array and photonic integrated circuit
KR102079029B1 (ko) * 2019-07-19 2020-02-19 국방과학연구소 광빔포밍장치
US20230051113A1 (en) * 2020-04-21 2023-02-16 University Of Washington Phase-change metasurface for programmable waveguide mode conversion
US11589140B2 (en) 2020-06-08 2023-02-21 Electronics And Telecommunications Research Institute Optical beamforming device using phased array antenna and operating method thereof
CN113917624B (zh) * 2020-07-07 2022-11-29 青岛海信宽带多媒体技术有限公司 一种光模块
CN112558053B (zh) * 2020-10-28 2022-05-31 电子科技大学 基于微波光子真延时的光波束形成网络装置和方法
JP2022104096A (ja) * 2020-12-28 2022-07-08 住友大阪セメント株式会社 光変調器とそれを用いた光送信装置
US11888530B2 (en) 2021-09-21 2024-01-30 X Development Llc Optical tracking module chip for wireless optical communication terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592768A1 (en) 2010-07-08 2013-05-15 Universidade de Aveiro Photonic system and method for tunable beamforming of the electric field radiated by a phased array antenna
EP3064956A1 (en) 2014-02-26 2016-09-07 Shanghai Jiao Tong University Fully optically controlled phased array radar transmitter

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267071A (en) * 1991-09-03 1993-11-30 Scientific-Atlanta, Inc. Signal level control circuitry for a fiber communications system
AUPQ879200A0 (en) * 2000-07-14 2000-08-10 Thomas & Betts International, Inc. A lamp assembly
US6882782B2 (en) * 2000-11-01 2005-04-19 Schott Glas Photonic devices for optical and optoelectronic information processing
US6897715B2 (en) * 2002-05-30 2005-05-24 Analog Devices, Inc. Multimode voltage regulator
US6882758B2 (en) * 2002-07-09 2005-04-19 Bookham Technology Plc Current tuned Mach-Zehnder optical attenuator
US7725618B2 (en) * 2004-07-29 2010-05-25 International Business Machines Corporation Memory barriers primitives in an asymmetric heterogeneous multiprocessor environment
US7261257B2 (en) * 2004-11-23 2007-08-28 Helou Jr Elie Cargo aircraft
US20060263097A1 (en) * 2005-05-23 2006-11-23 Fujitsu Limited Optical transmitting apparatus, optical receiving apparatus, and optical communication system comprising them
US20110024355A1 (en) * 2007-10-10 2011-02-03 Polymers Crc Ltd. Antimicrobial membranes
US8340523B2 (en) * 2008-02-20 2012-12-25 Jds Uniphase Corporation Tunable optical filter
US8548333B2 (en) * 2010-04-02 2013-10-01 Infinera Corporation Transceiver photonic integrated circuit
US9574179B2 (en) * 2011-02-08 2017-02-21 Cellular Dynamics International, Inc. Hematopoietic precursor cell production by programming
US9683928B2 (en) * 2013-06-23 2017-06-20 Eric Swanson Integrated optical system and components utilizing tunable optical sources and coherent detection and phased array for imaging, ranging, sensing, communications and other applications
CN107078810B (zh) * 2015-04-20 2020-05-26 电信研究院 光子波束成形系统及其方法
EP3124991B1 (en) * 2015-07-30 2018-04-18 Braun GmbH Method for determining a spatial correction of an ultrasonic emitter and measurement device for applying the method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592768A1 (en) 2010-07-08 2013-05-15 Universidade de Aveiro Photonic system and method for tunable beamforming of the electric field radiated by a phased array antenna
EP3064956A1 (en) 2014-02-26 2016-09-07 Shanghai Jiao Tong University Fully optically controlled phased array radar transmitter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Stavros Iezekiel et al., "RF Engineering Meets Optoelectronics," IEEE Microwave Magazine, p. 28, (2015.09)*
Timothy P. McKenna et al., "Photonic Beamsteering of a Millimeter-Wave Array With 10-Gb/s Data Transmission," IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 26, NO. 14, P. 1407, (2014.07.15)*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021096210A1 (ko) * 2019-11-11 2021-05-20 광주과학기술원 광의 위상을 가변할 수 있는 배열 안테나

Also Published As

Publication number Publication date
US20180102847A1 (en) 2018-04-12
KR20180039948A (ko) 2018-04-19

Similar Documents

Publication Publication Date Title
KR101892357B1 (ko) 실리콘 반도체를 기반으로 하는 광 빔 포밍 네트워크 칩
US10615903B2 (en) Method and system for a polarization immune wavelength division multiplexing demultiplexer
US11309965B2 (en) Efficiently combining multiple taps of an optical filter
US11063671B2 (en) Method and system for redundant light sources by utilizing two inputs of an integrated modulator
EP3244242B1 (en) Method and system for integrated multi-port waveguide photodetectors
TWI674747B (zh) 使用雙複製及伺服迴路以對轉阻抗放大器進行精確增益調整的方法與系統
US10855229B2 (en) Method and system for process and temperature compensation in a transimpedance amplifier using a dual replica
WO2018226984A1 (en) Method and system for selectively illuminated integrated photodetectors with configured launching and adaptive junction profile for bandwidth improvement
US20190049666A1 (en) Method And Systems For All Optical Tunable Equalizers
US20210384709A1 (en) Integrated photonic device and photonic integrated circuit using the same
WO2018195347A1 (en) Method and system for two-dimensional mode-matching grating couplers
US11228374B2 (en) Method and system for a distributed optical transmitter with local domain splitting
US10749601B2 (en) Optical transceiver
KR102079029B1 (ko) 광빔포밍장치
CN116054958A (zh) 一种光子集成的光域均衡器芯片

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant