JP2006078989A - 発光デバイス、光書込み装置、および光通信装置 - Google Patents
発光デバイス、光書込み装置、および光通信装置 Download PDFInfo
- Publication number
- JP2006078989A JP2006078989A JP2004265692A JP2004265692A JP2006078989A JP 2006078989 A JP2006078989 A JP 2006078989A JP 2004265692 A JP2004265692 A JP 2004265692A JP 2004265692 A JP2004265692 A JP 2004265692A JP 2006078989 A JP2006078989 A JP 2006078989A
- Authority
- JP
- Japan
- Prior art keywords
- light
- emitting device
- light emitting
- light source
- light guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
【課題】1次元フォトニック結晶を利用したアレイ状の発光デバイスの構成では、アレイ中の1箇所から発光する場合は問題とならないが、複数箇所から発光する場合は発光強度の位置依存が非常に大きい。透過率の位置に対する依存性を設けて均一化を図るとすると、もっとも低い強度の部分に合わせて、透過率そのものやONの時間を位置ごとに変えることになり、アレイの数が多くなればなるほど煩雑となる。
【解決手段】導光体1の1面に、所定のピッチで複数の欠陥層3をアレイ状に設けた1次元フォトニック結晶多層膜2を設ける。導光体1の傾斜した側面1aにレーザー光源4を正対させる。導光体には光源4の位置を焦点とし、多層膜2に直交する光軸(対称軸)を有する放物面鏡1bが配置されており、入射した光束はすべて多層膜2に対して垂直になるよう反射されるので、欠陥層3の電気的制御により光束の出射を制御する。
【選択図】 図1
【解決手段】導光体1の1面に、所定のピッチで複数の欠陥層3をアレイ状に設けた1次元フォトニック結晶多層膜2を設ける。導光体1の傾斜した側面1aにレーザー光源4を正対させる。導光体には光源4の位置を焦点とし、多層膜2に直交する光軸(対称軸)を有する放物面鏡1bが配置されており、入射した光束はすべて多層膜2に対して垂直になるよう反射されるので、欠陥層3の電気的制御により光束の出射を制御する。
【選択図】 図1
Description
本発明は、プリンタ用光書込み用アレイ光源、光通信装置用アレイ光源などに用いることのできる、フォトニック結晶を利用する発光デバイスに関する。
図6は1次元フォトニック結晶の例を示す図である。
図7は1次元フォトニック結晶の透過光スペクトルを観察した結果を示す図である。
フォトニック結晶を用いて微小光回路を作製する考えは数多く提案されている。
フォトニック結晶とは屈折率の異なる材料を波長サイズ程度に周期的に配列した人工結晶であり、設計の自由度が大きく、特異な光学特性(フォトニックバンドギャップ、スーパーレンズ、スーパープリズムなど)を有する。
また、フォトニック結晶はその周期から1次元、2次元、3次元と分類される。このうち1次元フォトニック結晶はもっともシンプルな構造をもっている。図6は、1次元フォトニック結晶の例として非特許文献1に紹介されているものである。それによれば、同図(a)に示すように、TiO2層とSiO2層の多層膜がガラス基板上にその膜厚が600nm/4になるように交互に成膜されている。同図(b)に示すように、中央部に欠陥層として厚さが1.6倍の層を設けている。
この2つのデバイスに光を入射し、その透過光スペクトルを観察した結果を図7に示す。欠陥層を含まない場合は波長600nmを中心とした広い範囲で透過率が低い領域が存在するが、欠陥層がある場合は鋭い透過ピークが存在する。欠陥層を含まないときの透過率の低い領域が伝播方向を限定した場合のフォトニックバンドギャップに対応する。また、欠陥層がある場合、フォトニックバンドギャップ中に欠陥準位ができ、欠陥準位に相当する波長の光が透過することとなる。欠陥層に共鳴する光を入射すると1次元フォトニック結晶中で多重反射が生じ、光電場は欠陥層のまわりに局在化する。
図7は1次元フォトニック結晶の透過光スペクトルを観察した結果を示す図である。
フォトニック結晶を用いて微小光回路を作製する考えは数多く提案されている。
フォトニック結晶とは屈折率の異なる材料を波長サイズ程度に周期的に配列した人工結晶であり、設計の自由度が大きく、特異な光学特性(フォトニックバンドギャップ、スーパーレンズ、スーパープリズムなど)を有する。
また、フォトニック結晶はその周期から1次元、2次元、3次元と分類される。このうち1次元フォトニック結晶はもっともシンプルな構造をもっている。図6は、1次元フォトニック結晶の例として非特許文献1に紹介されているものである。それによれば、同図(a)に示すように、TiO2層とSiO2層の多層膜がガラス基板上にその膜厚が600nm/4になるように交互に成膜されている。同図(b)に示すように、中央部に欠陥層として厚さが1.6倍の層を設けている。
この2つのデバイスに光を入射し、その透過光スペクトルを観察した結果を図7に示す。欠陥層を含まない場合は波長600nmを中心とした広い範囲で透過率が低い領域が存在するが、欠陥層がある場合は鋭い透過ピークが存在する。欠陥層を含まないときの透過率の低い領域が伝播方向を限定した場合のフォトニックバンドギャップに対応する。また、欠陥層がある場合、フォトニックバンドギャップ中に欠陥準位ができ、欠陥準位に相当する波長の光が透過することとなる。欠陥層に共鳴する光を入射すると1次元フォトニック結晶中で多重反射が生じ、光電場は欠陥層のまわりに局在化する。
図8は全反射型1次元フォトニック結晶の作用を説明するための図である。
同じ1次元フォトニック結晶の例として、非特許文献2に記載された全反射型1次元フォトニック結晶の例を同図に示した。これはプリズムの表面にTiO2とSiO2の多層膜を設け、欠陥層として色素ドープした有機膜が設けられている。このデバイスに光が入射すると共鳴する波長や入射角でなければ光は欠陥層表面での全反射により光を閉じ込めることができる。
この他に1次元フォトニック結晶の例としては、多層膜に垂直に光を入射する3角形プリズム形状の分光素子がある(例えば、特許文献1 参照。)。
さらに多層膜による変調器の例としては、電気光学効果により屈折率変化が生じてデバイスの反射率が変化を起こし、変調器として作用するものもある(例えば、特許文献2 参照。)。
また、2次元フォトニック結晶を利用した例を説明する。結晶の周期性から光の伝播が禁じられるフォトニックバンドギャップをもつフォトニック結晶に対して、線状の欠陥を導入することによりフォトニック結晶導波路を作成することができる。欠陥とは周期構造に対して屈折率の異なる材料あるいは周期構造を乱す配列(大きさ)を持ったものである。この線状の欠陥では光が伝播することができ、また周囲はフォトニックバンドギャップであるので光は線欠陥にほぼ閉じ込められて伝播するため、光導波路として機能する。
同じ1次元フォトニック結晶の例として、非特許文献2に記載された全反射型1次元フォトニック結晶の例を同図に示した。これはプリズムの表面にTiO2とSiO2の多層膜を設け、欠陥層として色素ドープした有機膜が設けられている。このデバイスに光が入射すると共鳴する波長や入射角でなければ光は欠陥層表面での全反射により光を閉じ込めることができる。
この他に1次元フォトニック結晶の例としては、多層膜に垂直に光を入射する3角形プリズム形状の分光素子がある(例えば、特許文献1 参照。)。
さらに多層膜による変調器の例としては、電気光学効果により屈折率変化が生じてデバイスの反射率が変化を起こし、変調器として作用するものもある(例えば、特許文献2 参照。)。
また、2次元フォトニック結晶を利用した例を説明する。結晶の周期性から光の伝播が禁じられるフォトニックバンドギャップをもつフォトニック結晶に対して、線状の欠陥を導入することによりフォトニック結晶導波路を作成することができる。欠陥とは周期構造に対して屈折率の異なる材料あるいは周期構造を乱す配列(大きさ)を持ったものである。この線状の欠陥では光が伝播することができ、また周囲はフォトニックバンドギャップであるので光は線欠陥にほぼ閉じ込められて伝播するため、光導波路として機能する。
ここで、線状欠陥をもつフォトニック結晶に対して、線状欠陥のそばに点欠陥を配置すると、点欠陥から光が放出されるという現象がある。この現象を利用して光の合波分波するデバイスが提案されている(例えば、特許文献3 参照。)。これは点欠陥が導波路を伝播する光のなかで或る特定の条件を満たす光だけを捕獲し放射するものである。また、外部から特定の条件を満たす光だけを取り入れて導波路を伝播させる働きをもつものである。
一方、アレイ光源の例としては、LDやLEDのアレイ光源が一般的で、その他の構成として、導波路を使ったものとして出射側のピッチを入射側よりも狭ピッチにしたアレイ光源がある(例えば、特許文献4 参照。)。さらに、ビームを複数の導波路に分岐し、電気光学素子でOn/Offするアレイ光源も提案 されている(例えば、特許文献5 参照。)。
一方、アレイ光源の例としては、LDやLEDのアレイ光源が一般的で、その他の構成として、導波路を使ったものとして出射側のピッチを入射側よりも狭ピッチにしたアレイ光源がある(例えば、特許文献4 参照。)。さらに、ビームを複数の導波路に分岐し、電気光学素子でOn/Offするアレイ光源も提案 されている(例えば、特許文献5 参照。)。
通常のアレイ光源、たとえばLEDアレイやLDアレイでは発光時の熱の問題があり、任意のピッチ、特に狭ピッチ化が困難であり、かつ材料の制約により任意の波長の光源を準備するのは困難である。また、高い光源出力が欲しくても、デバイス構造上などから高い出力を得られないことがある。
一方、1次元フォトニック結晶を利用したアレイ状の発光デバイスの構成では、導光路中を光が進む構成となっているので、アレイ中の1箇所から発光する場合は問題とならないが、複数箇所から発光する場合は光が発光によってそのパワーを出射するため発光強度の位置依存が非常に大きい。この影響をなくすため、透過率の位置に対する依存性を設けるようなことが行なわれる。たとえば、もっとも低い強度の部分に合わせるように、透過率そのものやONの時間を位置ごとに変えたりする。ところがこの方法では、アレイ中の発光位置や発光させる数により、透過率やON時間の組合わせを設定しなくてはならず、アレイの数が多くなればなるほど煩雑となる。
一方、1次元フォトニック結晶を利用したアレイ状の発光デバイスの構成では、導光路中を光が進む構成となっているので、アレイ中の1箇所から発光する場合は問題とならないが、複数箇所から発光する場合は光が発光によってそのパワーを出射するため発光強度の位置依存が非常に大きい。この影響をなくすため、透過率の位置に対する依存性を設けるようなことが行なわれる。たとえば、もっとも低い強度の部分に合わせるように、透過率そのものやONの時間を位置ごとに変えたりする。ところがこの方法では、アレイ中の発光位置や発光させる数により、透過率やON時間の組合わせを設定しなくてはならず、アレイの数が多くなればなるほど煩雑となる。
請求項1に記載の発明では、長さ方向と厚さ方向により形成される面に複数の屈折率可変の欠陥層を並べて有する1次元フォトニック結晶多層膜を形成して、前記両方向に直交する高さ方向に光束を出射すべき出射面とする導光手段と、該導光手段の他の面を光束の入射面として該出射面に正対して該導光手段内に光束を入射させる単色または複数色のレーザー光源と、を有する発光デバイスにおいて、前記導光手段は、前記光束を前記複数の欠陥層のすべてに指向させる反射光学素子を有することを特徴とする。
請求項2に記載の発明では、請求項1に記載の発光デバイスにおいて、前記反射光学素子は放物面鏡または疑似放物面鏡であることを特徴とする。
請求項3に記載の発明では、請求項2に記載の発光デバイスにおいて、前記疑似放物面鏡は、前記長さ方向と高さ方向を含む断面は放物線をなし、前記厚さ方向には直線的形状をなすことを特徴とする。
請求項2に記載の発明では、請求項1に記載の発光デバイスにおいて、前記反射光学素子は放物面鏡または疑似放物面鏡であることを特徴とする。
請求項3に記載の発明では、請求項2に記載の発光デバイスにおいて、前記疑似放物面鏡は、前記長さ方向と高さ方向を含む断面は放物線をなし、前記厚さ方向には直線的形状をなすことを特徴とする。
請求項4に記載の発明では、請求項2に記載の発光デバイスにおいて、前記疑似放物面鏡は、複数の微小平面反射鏡からなり、各微小平面反射鏡の中心を結ぶ曲線が1つの放物線に一致することを特徴とする。
請求項5に記載の発明では、請求項1ないし4のいずれか1つに記載の発光デバイスにおいて、前記複数の欠陥層は前記導光手段の前記厚さ方向にも複数列形成してなることを特徴とする。
請求項6に記載の発明では、請求項5に記載の発光デバイスにおいて、前記複数列の欠陥層は列毎に異なる波長特性を有することを特徴とする。
請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載の発光デバイスにおいて、前記レーザー光源のビームプロファイルを前記導光手段の長さ方向に長軸を合わせた楕円形とすることを特徴とする。
請求項5に記載の発明では、請求項1ないし4のいずれか1つに記載の発光デバイスにおいて、前記複数の欠陥層は前記導光手段の前記厚さ方向にも複数列形成してなることを特徴とする。
請求項6に記載の発明では、請求項5に記載の発光デバイスにおいて、前記複数列の欠陥層は列毎に異なる波長特性を有することを特徴とする。
請求項7に記載の発明では、請求項1ないし6のいずれか1つに記載の発光デバイスにおいて、前記レーザー光源のビームプロファイルを前記導光手段の長さ方向に長軸を合わせた楕円形とすることを特徴とする。
請求項8に記載の発明では、請求項1ないし7のいずれか1つに記載の発光デバイスにおいて、前記導光手段に前記レーザー光源のガウス分布による光量不均一を補正する光学手段を設けたことを特徴とする。
請求項9に記載の発明では、請求項1ないし8のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、高さ方向と厚さ方向を有する1面を前記入射面とし、該入射面を前記出射面に対して傾斜させ、前記レーザー光源を前記入射面に正対させ、且つ、前記放物面鏡または疑似放物面鏡の焦点に一致させたことを特徴とする。
請求項10に記載の発明では、請求項1ないし8のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、前記出射面に対向する面の一部を前記入射面として前記レーザー光源を正対させ、前記出射面の前記入射面に近い側に前記レーザー光源からの光束を前記放物面鏡または疑似放物面鏡に向けて反射させる1次反射鏡を設けたことを特徴とする。
請求項11に記載の発明では、請求項10に記載の発光デバイスにおいて、前記1次反射鏡は平面鏡であることを特徴とする。
請求項12に記載の発明では、請求項10に記載の発光デバイスにおいて、前記1次反射鏡は凸面鏡であることを特徴とする。
請求項9に記載の発明では、請求項1ないし8のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、高さ方向と厚さ方向を有する1面を前記入射面とし、該入射面を前記出射面に対して傾斜させ、前記レーザー光源を前記入射面に正対させ、且つ、前記放物面鏡または疑似放物面鏡の焦点に一致させたことを特徴とする。
請求項10に記載の発明では、請求項1ないし8のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、前記出射面に対向する面の一部を前記入射面として前記レーザー光源を正対させ、前記出射面の前記入射面に近い側に前記レーザー光源からの光束を前記放物面鏡または疑似放物面鏡に向けて反射させる1次反射鏡を設けたことを特徴とする。
請求項11に記載の発明では、請求項10に記載の発光デバイスにおいて、前記1次反射鏡は平面鏡であることを特徴とする。
請求項12に記載の発明では、請求項10に記載の発光デバイスにおいて、前記1次反射鏡は凸面鏡であることを特徴とする。
請求項13に記載の発明では、請求項10ないし12のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、前記1次反射鏡と前記放物面鏡または疑似放物面鏡とをそれぞれ2つ有し、それらを前記レーザー光源からの主光線を中心として対称に配置したことを特徴とする。
請求項14に記載の発明では、請求項1ないし13のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、前記レーザー光源の出射光束の放射角あるいはプロファイルを変換させる光学素子を有することを特徴とする。
請求項15に記載の発明では、請求項1ないし14のいずれか1つに記載の発光デバイスを用いた光書込み装置を特徴とする。
請求項16に記載の発明では、請求項1ないし14のいずれか1つに記載の発光デバイスを用いた光通信装置を特徴とする。
請求項14に記載の発明では、請求項1ないし13のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、前記レーザー光源の出射光束の放射角あるいはプロファイルを変換させる光学素子を有することを特徴とする。
請求項15に記載の発明では、請求項1ないし14のいずれか1つに記載の発光デバイスを用いた光書込み装置を特徴とする。
請求項16に記載の発明では、請求項1ないし14のいずれか1つに記載の発光デバイスを用いた光通信装置を特徴とする。
1次元フォトニック結晶を利用した任意のピッチのアレイ状発光デバイスにおいて、複数箇所から発光する構成を提供することを目的とする。
図1は本発明の発光デバイスの第1の実施形態を説明するための図である。同図(a)は光の出射面の正面図、同図(b)は側断面図である。
同図において符号1は導光体、2は多層膜、3は欠陥層、4は光源、Oは放物線の対称軸をそれぞれ示す。
導光体1は利用するレーザー光に対して透過率の高いガラスを使用し、光の入射時に発生する反射光を極力抑えるために反射防止膜を施された入射面1a、曲面からなる反射光学素子(以下単に反射面と呼ぶ)1bを有し、光の出射面には誘電体からなる反射性の多層膜2と、所定のピッチでアレイ状に並んだ複数の欠陥層3が配置されている。反射面1bは、光源4の位置を焦点とし、多層膜2に垂直な光軸(対称軸)Oを有する放物面の一部をなしている。したがって、光源4から出た光束は反射面1bによる反射後、多層膜2にほぼ垂直な方向に進み、一部は欠陥層3に到る。導光体1のアレイ方向を長さ方向と呼び、光軸方向を高さ方向、長さ方向と高さ方向に直交する方向を厚さ方向と呼ぶ。なお、放物面鏡である反射面1bは、理想的には回転放物面からなる3次元的な曲面である方が良いが、欠陥層3の大きさがあまり大きくない場合は、近似的に導光体1の厚さ方向は直線的であっても使用可能である。その場合は、欠陥層からの出射光束が上記厚さ方向に若干発散光になる。この曲面のことを、ここでは疑似放物面と呼ぶことにする。
同図において符号1は導光体、2は多層膜、3は欠陥層、4は光源、Oは放物線の対称軸をそれぞれ示す。
導光体1は利用するレーザー光に対して透過率の高いガラスを使用し、光の入射時に発生する反射光を極力抑えるために反射防止膜を施された入射面1a、曲面からなる反射光学素子(以下単に反射面と呼ぶ)1bを有し、光の出射面には誘電体からなる反射性の多層膜2と、所定のピッチでアレイ状に並んだ複数の欠陥層3が配置されている。反射面1bは、光源4の位置を焦点とし、多層膜2に垂直な光軸(対称軸)Oを有する放物面の一部をなしている。したがって、光源4から出た光束は反射面1bによる反射後、多層膜2にほぼ垂直な方向に進み、一部は欠陥層3に到る。導光体1のアレイ方向を長さ方向と呼び、光軸方向を高さ方向、長さ方向と高さ方向に直交する方向を厚さ方向と呼ぶ。なお、放物面鏡である反射面1bは、理想的には回転放物面からなる3次元的な曲面である方が良いが、欠陥層3の大きさがあまり大きくない場合は、近似的に導光体1の厚さ方向は直線的であっても使用可能である。その場合は、欠陥層からの出射光束が上記厚さ方向に若干発散光になる。この曲面のことを、ここでは疑似放物面と呼ぶことにする。
誘電体多層膜2は、具体的には、TiO2とSiO2の膜が交互に積層されて1次元フォトニック結晶を構成している。そして、或る間隔ならびに或る大きさで一部の多層膜の層中に欠陥層3が成膜されている。この欠陥層3は、屈折率の変化し得る層で構成されている。屈折率の変化し得る層としては、電気光学効果などを利用した非線形材料や液晶などがある。欠陥層3は特に図示はしないが、公知の技術によって欠陥層3の厚さ方向に電界を印加出来るようになっており、電界のON、OFFによって作用が異なる構成になっている。すなわち、電界がOFFの場合は、多層膜2にとって全反射特性を崩さない屈折率を維持しているが、電界がONになると、欠陥層3の屈折率変化が生じ、多層膜2としては全反射特性が崩れ、特定の波長に対して光透過性になる。
半導体レーザーの場合は、そのビームプロファイルが楕円形であるので、この実施形態のように1次元(線状)アレイの構成では楕円の長軸の方向がアレイの方向になるように光源を配置する。固体レーザーの場合はビームプロファイルが円形であるので、アレイの方向に合わせてビームプロファイルを楕円形にしてもかまわない。そのときは、シルンドリカルレンズを利用する。
半導体レーザーの場合は、そのビームプロファイルが楕円形であるので、この実施形態のように1次元(線状)アレイの構成では楕円の長軸の方向がアレイの方向になるように光源を配置する。固体レーザーの場合はビームプロファイルが円形であるので、アレイの方向に合わせてビームプロファイルを楕円形にしてもかまわない。そのときは、シルンドリカルレンズを利用する。
光源から出たレーザー光は入射面1aから導光路中に入射する。入射した光は放物面鏡1bで反射しコリメート光となって、図の上側に位置している多層膜2を照射する。欠陥層3のない場所に入射した光束は、放物面鏡が3次元曲面であれば、多層膜2で全反射され元の光路を逆にたどる。欠陥層3の位置に入射した光束は、欠陥層3がOFF状態、つまり屈折率が全反射の状態の場合は入射した光束は全反射されるが、欠陥層3がON状態、つまり屈折率が全反射の状態からずれた場合は欠陥層3に光が局在化し、欠陥層3から発光する。光源がレーザー光の場合は、通常光強度の位置に対する分布はガウス分布となっている。したがって、発光アレイから出射するアレイ全体での光強度分布もガウス分布的分布になる。もしもアレイ間の光強度を位置に対して均一にするのであれば、ガウス分布の逆の透過率となるように欠陥層3の厚みを変えたり、また、ON時間を場所ごとに変えたり、入射光のガウス分布を均一な強度分布に変換する光学素子を用いるなどする。
本実施形態によれば、任意の欠陥層3の電界をいくつでも同時にONにすることができ、所望の複数の発光点を発光させることができる。また、発光源であるレーザー光が連続点灯であれば、それぞれの発光点を何らかの情報に従ってON/OFF制御すれば、各発光点に光ファイバの入力端部を対向させることで、光通信として複数の端末に異なる情報を伝える情報伝達を行うことが可能である。
発光点の密度を高くし、且つ個数を多くすることで、プリンタなどのライン書き込み装置としても用いることができる。この場合、全ての発光点の制御が同時に行えれば高速の書き込み装置が得られる。
本実施形態によれば、任意の欠陥層3の電界をいくつでも同時にONにすることができ、所望の複数の発光点を発光させることができる。また、発光源であるレーザー光が連続点灯であれば、それぞれの発光点を何らかの情報に従ってON/OFF制御すれば、各発光点に光ファイバの入力端部を対向させることで、光通信として複数の端末に異なる情報を伝える情報伝達を行うことが可能である。
発光点の密度を高くし、且つ個数を多くすることで、プリンタなどのライン書き込み装置としても用いることができる。この場合、全ての発光点の制御が同時に行えれば高速の書き込み装置が得られる。
導光体1をガラス素材などで形成するときは、その素材自身に反射面1bが形成できるので、同図におけるハッチング部分は実際に部材が存在しなくても良い。例えば導光体1を装置に取り付けやすくするための取付部材であっても構わない。
導光体1を中空体として、光束の通過部分の殆どを空気層とすることもできる。この場合は、多層膜2はガラス基板に形成して出射面の位置におき、光源4とともに取付枠等の手段でそれぞれの位置を保つようにする。そして同図のハッチング部分を、例えばガラス素材、あるいは金属部材で形成して、所望の反射面1bを形成する。この場合の導光体1の中心部分は実体のない空気層になるので、この場合を含めてこれらを導光手段と呼ぶことにする。
本実施形態では出射光がすべて光軸に平行になる構成として示したが、その条件にこだわらなくてもよい用途の場合は、曲面を放物面以外の曲面に形成することもできる。例えば、曲面を回転楕円面として、光源(あるいは虚光源)をその一方の焦点に一致させて配置した場合は、欠陥層を出た光束が他方の焦点に向かって進むことになる。あるいは、同じ放物面鏡を用いても、光源位置を焦点から僅かにずらすことで、反射光を平行からずらすことができる。ずらす方向を変えることで、必要に応じて若干発散性にすることも、若干収束性にすることもできる。
導光体1を中空体として、光束の通過部分の殆どを空気層とすることもできる。この場合は、多層膜2はガラス基板に形成して出射面の位置におき、光源4とともに取付枠等の手段でそれぞれの位置を保つようにする。そして同図のハッチング部分を、例えばガラス素材、あるいは金属部材で形成して、所望の反射面1bを形成する。この場合の導光体1の中心部分は実体のない空気層になるので、この場合を含めてこれらを導光手段と呼ぶことにする。
本実施形態では出射光がすべて光軸に平行になる構成として示したが、その条件にこだわらなくてもよい用途の場合は、曲面を放物面以外の曲面に形成することもできる。例えば、曲面を回転楕円面として、光源(あるいは虚光源)をその一方の焦点に一致させて配置した場合は、欠陥層を出た光束が他方の焦点に向かって進むことになる。あるいは、同じ放物面鏡を用いても、光源位置を焦点から僅かにずらすことで、反射光を平行からずらすことができる。ずらす方向を変えることで、必要に応じて若干発散性にすることも、若干収束性にすることもできる。
図2は本発明の発光デバイスの第2の実施形態を説明するための図である。
同図において符号1cはビームプロファイル変換レンズ、1dは平面鏡をそれぞれ示す。その他の符号は、図1に示した部分と同じ機能を有する部分に同じ符号を付してある。
同図において、光源4から出た光束は、ビームプロファイルを所望の形に変換し、所望のビーム放射角に変換するレンズ1cを経て、平面鏡1dに到る。平面鏡1dを便宜上、1次平面鏡と呼ぶ。平面鏡1dによって折り返された光束は、平面鏡1dによって形成される光源4の虚像4’から発射された光束のように反射し、放物面鏡1bに到る。放物面鏡は虚光源4’を焦点とし、多層膜2に垂直な光軸Oを有する構成になっており、放物面鏡1bで反射された光束は多層膜2に垂直に入射する。多層膜2に入射した光束の挙動については実施形態1で述べたとおりなので省略する。
本実施形態は、第1の実施形態に比べて放物面鏡1bと焦点との距離が長くとれるので、レーザー光源の光束の広がり(放射角)があまり大きくなくても済む。
この構成にしてもレーザー光の放射角が不足する場合は、同図に1点鎖線で示すように、平面鏡1dを凸面鏡に置き換えても良い。そうすれば、導光体1の高さ方向をより小さく構成することができる。
同図において符号1cはビームプロファイル変換レンズ、1dは平面鏡をそれぞれ示す。その他の符号は、図1に示した部分と同じ機能を有する部分に同じ符号を付してある。
同図において、光源4から出た光束は、ビームプロファイルを所望の形に変換し、所望のビーム放射角に変換するレンズ1cを経て、平面鏡1dに到る。平面鏡1dを便宜上、1次平面鏡と呼ぶ。平面鏡1dによって折り返された光束は、平面鏡1dによって形成される光源4の虚像4’から発射された光束のように反射し、放物面鏡1bに到る。放物面鏡は虚光源4’を焦点とし、多層膜2に垂直な光軸Oを有する構成になっており、放物面鏡1bで反射された光束は多層膜2に垂直に入射する。多層膜2に入射した光束の挙動については実施形態1で述べたとおりなので省略する。
本実施形態は、第1の実施形態に比べて放物面鏡1bと焦点との距離が長くとれるので、レーザー光源の光束の広がり(放射角)があまり大きくなくても済む。
この構成にしてもレーザー光の放射角が不足する場合は、同図に1点鎖線で示すように、平面鏡1dを凸面鏡に置き換えても良い。そうすれば、導光体1の高さ方向をより小さく構成することができる。
導光体1の厚さ方向における光束の広がりは、欠陥層3の位置で欠陥層3を覆う程度であればよいが、ビームプロファイルは楕円形なので、少なくとも端の方の光束が狭くなる位置で欠陥層3を覆えるだけの大きさが必要である。その場合、中央部に近い部分では所望の幅以上の光束幅が存在する。所望の範囲を超えた角度に出射した光束は側面が反射性であれば、側面によって反射され欠陥層3に達するか、あるいは、出射角度が大きければ繰り返し反射をして欠陥層3に到る。本来、光の利用効率の面から言えばこのような反射光を有効利用すべきであるが、ガウス分布に由来する、欠陥層3の配列における端と中央部との光量の格差を減らすためには、中央部付近の上記反射光は利用せず、吸収させた方がよい。そのためには導光体1の側面1e、1fは光の吸収性を与えておくのがよい。この対策は第1の実施形態においても同様に有効である。
ビームプロファイル変換レンズ1cは、光源からの光束の広がり角度を変える役目もする。また、配置位置は、同図では、導光体1の内部に食い込む形で示してあるが、光路長の条件が許せば、構成上の容易さから、導光体1の入射面1aより下方に配置する方が良い。
ビームプロファイル変換レンズ1cは、光源からの光束の広がり角度を変える役目もする。また、配置位置は、同図では、導光体1の内部に食い込む形で示してあるが、光路長の条件が許せば、構成上の容易さから、導光体1の入射面1aより下方に配置する方が良い。
図3は本発明の発光デバイスの第3の実施形態を説明するための図である。
本実施形態は、第2の実施形態を基本にしているが、放物面鏡1bの代わりに、互いに傾斜角度の異なる複数の微小平面鏡からなるミラーアレイ1b’で構成されている。すなわち、各欠陥層3に対応させて、それぞれ傾斜角の異なる微小平面鏡が多数並べられている。各微小平面鏡の反射面の中心を結ぶ曲線は原則として放物面鏡1bに一致させる。したがって、各微小平面鏡に入射した光束はその中心光が多層膜2に垂直な方向に進み欠陥層3に到る。反射面が放物面の場合は周辺の光束の進行方向も全て多層膜2に垂直になるが、実際には平面で構成されているため、虚光源4’からの発散角度は変化せず、多層膜2には欠陥層3を中心とした発散光束として入射する。このような構成も、ここでは疑似放物面と呼ぶことにする。
本実施形態は図1に示した第1の実施形態にも適用可能である。同様に、以下に説明する他の実施形態においても適用できる。
本実施形態は、第2の実施形態を基本にしているが、放物面鏡1bの代わりに、互いに傾斜角度の異なる複数の微小平面鏡からなるミラーアレイ1b’で構成されている。すなわち、各欠陥層3に対応させて、それぞれ傾斜角の異なる微小平面鏡が多数並べられている。各微小平面鏡の反射面の中心を結ぶ曲線は原則として放物面鏡1bに一致させる。したがって、各微小平面鏡に入射した光束はその中心光が多層膜2に垂直な方向に進み欠陥層3に到る。反射面が放物面の場合は周辺の光束の進行方向も全て多層膜2に垂直になるが、実際には平面で構成されているため、虚光源4’からの発散角度は変化せず、多層膜2には欠陥層3を中心とした発散光束として入射する。このような構成も、ここでは疑似放物面と呼ぶことにする。
本実施形態は図1に示した第1の実施形態にも適用可能である。同様に、以下に説明する他の実施形態においても適用できる。
図4は本発明の発光デバイスの第4の実施形態を説明するための図である。同図(a)は光の出射面の正面図、同図(b)は側断面図、同図(c)はAA矢視図である。
本実施形態ではレーザー光源のビームプロファイルの楕円短軸方向にもある程度の大きさを与えておく。導光体1の厚さ方向は欠陥層3がその方向にも複数並べられる大きさにしておく。同図では4列で示してあるが、2列でも、3列でも特に違いはない。欠陥層3はアレイ方向のみならず、導光体1の厚さ方向にも所定ピッチで並べ、2次元状の発光点を形成する。放物面鏡は導光体の厚さ方向に関して直線にすると、欠陥層からの出射光束が発散光になるだけでなく、厚さ方向の出射方向自体が平行でなくなる。したがって、放物面鏡は3次元的な曲面にする方がよい。ただし、同図(b)の曲面1bは誇張して示してある。この構成では、導光体1の厚さ方向に関しても欠陥層3の位置の違いによる光量の違いがあるので先に述べたような種々の工夫が必要である。
本実施形態ではレーザー光源のビームプロファイルの楕円短軸方向にもある程度の大きさを与えておく。導光体1の厚さ方向は欠陥層3がその方向にも複数並べられる大きさにしておく。同図では4列で示してあるが、2列でも、3列でも特に違いはない。欠陥層3はアレイ方向のみならず、導光体1の厚さ方向にも所定ピッチで並べ、2次元状の発光点を形成する。放物面鏡は導光体の厚さ方向に関して直線にすると、欠陥層からの出射光束が発散光になるだけでなく、厚さ方向の出射方向自体が平行でなくなる。したがって、放物面鏡は3次元的な曲面にする方がよい。ただし、同図(b)の曲面1bは誇張して示してある。この構成では、導光体1の厚さ方向に関しても欠陥層3の位置の違いによる光量の違いがあるので先に述べたような種々の工夫が必要である。
本実施形態の作用を説明する。特に導光体の厚さ方向の作用について述べる。
光源4から厚さ方向への光束の出射角度はあまり大きくする必要はない。
光源4から出た発散光束は、同図(b)に1点鎖線で示す平面鏡1dに到ると、虚光源4’から発散されてきたかのように反射される。反射光束は3次元的に形成された放物面鏡1bに至り、すべての光線が光軸Oに平行になるよう放物面鏡1bから反射され、多層膜2に到る。それらの光線の一部は欠陥層3に到り、欠陥層3に与えられた制御信号によって、欠陥層3から出射するか否かが選択される。この構成では、導光体の厚さ方向に関してもすべての出射光が多層膜2に垂直になるので、出射後の光束の取り扱いが容易になる。
光源4から厚さ方向への光束の出射角度はあまり大きくする必要はない。
光源4から出た発散光束は、同図(b)に1点鎖線で示す平面鏡1dに到ると、虚光源4’から発散されてきたかのように反射される。反射光束は3次元的に形成された放物面鏡1bに至り、すべての光線が光軸Oに平行になるよう放物面鏡1bから反射され、多層膜2に到る。それらの光線の一部は欠陥層3に到り、欠陥層3に与えられた制御信号によって、欠陥層3から出射するか否かが選択される。この構成では、導光体の厚さ方向に関してもすべての出射光が多層膜2に垂直になるので、出射後の光束の取り扱いが容易になる。
導光体の厚さ方向に並べた欠陥層3はすべてに同一の波長特性を与えることで、単色光源に対し複数の発光点を有する光源デバイスが得られる。一方、同図(a)では4列で示した長さ方向に並んだ列を3列に形成し、同列の欠陥層3は互いに同じ波長特性を持たせ、隣接する列間は互いに波長特性を異ならせることもできる。例えば1列目は長波長の660nm、2列目は中間波長の550nm、3列目は短波長側の430nmなどとすることができる。こうして、光源にそれらの波長を含む多色の光源を用いれば、列毎に異なる色の発光をさせることができ、カラーディスプレイなどに用いることができる。発光点を高密度に形成すれば、デジタルカラーラボにも使用可能になる。
図5は本発明の発光デバイスの第5の実施形態を説明するための図である。同図(a)は光の出射面の正面図、同図(b)は側断面図である。
本実施形態は第4の実施形態を応用した実施形態である。すなわち、導光体1の長さ方向をほぼ2倍にし、レーザー光源4から出射する中心光(主光線)を中心とした対称形に形成している。
基本原理は第4の実施形態と同じであるが、特に異なる点は、光源の中心光付近で光束を左右に振り分けている点である。したがって、光源の放射角は、第4の実施形態の構成に比べてほぼ2倍の角度が必要になる。したがって、同図には省略してあるが、図2等に示した光学素子を用いて、光源からの光束の出射角度を広げるとよい。導光体1の厚さ方向に関しては、第4の実施形態と同様なので説明は省略する。本実施形態によれば、1つの光源からより多くの発光点を得ることができる。
作りやすさの点では左右対称の方が良いが、厳密な対称性を要求する必要はない。同図は基本原理を示しているだけなので、必要に応じて対称性を崩すことは構わない。
本実施形態は第4の実施形態を応用した実施形態である。すなわち、導光体1の長さ方向をほぼ2倍にし、レーザー光源4から出射する中心光(主光線)を中心とした対称形に形成している。
基本原理は第4の実施形態と同じであるが、特に異なる点は、光源の中心光付近で光束を左右に振り分けている点である。したがって、光源の放射角は、第4の実施形態の構成に比べてほぼ2倍の角度が必要になる。したがって、同図には省略してあるが、図2等に示した光学素子を用いて、光源からの光束の出射角度を広げるとよい。導光体1の厚さ方向に関しては、第4の実施形態と同様なので説明は省略する。本実施形態によれば、1つの光源からより多くの発光点を得ることができる。
作りやすさの点では左右対称の方が良いが、厳密な対称性を要求する必要はない。同図は基本原理を示しているだけなので、必要に応じて対称性を崩すことは構わない。
以上に説明した発光デバイスを光書込み装置の光源として用いれば、高密度の光源が得られ、高解像度の画像形成装置が得られる。本発明の発光デバイスは、誘電体多層膜と欠陥層の構成を変えることで、出射する光の波長を任意に選ぶことができるので、光源との組み合わせを選ぶことで、カラー画像に必要な3原色を構成することもできる。したがって、そのような3色の発光デバイスを組み合わせればカラー画像形成装置も構成できる。
1 導光体
2 誘電体多層膜
3 欠陥層
4 光源
2 誘電体多層膜
3 欠陥層
4 光源
Claims (16)
- 長さ方向と厚さ方向により形成される面に複数の屈折率可変の欠陥層を並べて有する1次元フォトニック結晶多層膜を形成して、前記両方向に直交する高さ方向に光束を出射すべき出射面とする導光手段と、該導光手段の他の面を光束の入射面として該出射面に正対して該導光手段内に光束を入射させる単色または複数色のレーザー光源と、を有する発光デバイスにおいて、前記導光手段は、前記光束を前記複数の欠陥層のすべてに指向させる反射光学素子を有することを特徴とする発光デバイス。
- 請求項1に記載の発光デバイスにおいて、前記反射光学素子は放物面鏡または疑似放物面鏡であることを特徴とする発光デバイス。
- 請求項2に記載の発光デバイスにおいて、前記疑似放物面鏡は、前記長さ方向と高さ方向を含む断面は放物線をなし、前記厚さ方向には直線的形状をなすことを特徴とする発光デバイス。
- 請求項2に記載の発光デバイスにおいて、前記疑似放物面鏡は、複数の微小平面反射鏡からなり、各微小平面反射鏡の中心を結ぶ曲線が1つの放物線に一致することを特徴とする発光デバイス。
- 請求項1ないし4のいずれか1つに記載の発光デバイスにおいて、前記複数の欠陥層は前記導光手段の前記厚さ方向にも複数列形成してなることを特徴とする発光デバイス。
- 請求項5に記載の発光デバイスにおいて、前記複数列の欠陥層は列毎に異なる波長特性を有することを特徴とする発光デバイス。
- 請求項1ないし6のいずれか1つに記載の発光デバイスにおいて、前記レーザー光源のビームプロファイルを前記導光手段の長さ方向に長軸を合わせた楕円形とすることを特徴とする発光デバイス。
- 請求項1ないし7のいずれか1つに記載の発光デバイスにおいて、前記導光手段に前記レーザー光源のガウス分布による光量不均一を補正する光学手段を設けたことを特徴とする発光デバイス。
- 請求項1ないし8のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、高さ方向と厚さ方向を有する1面を前記入射面とし、該入射面を前記出射面に対して傾斜させ、前記レーザー光源を前記入射面に正対させ、且つ、前記放物面鏡または疑似放物面鏡の焦点に一致させたことを特徴とする発光デバイス。
- 請求項1ないし8のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、前記出射面に対向する面の一部を前記入射面として前記レーザー光源を正対させ、前記出射面の前記入射面に近い側に前記レーザー光源からの光束を前記放物面鏡または疑似放物面鏡に向けて反射させる1次反射鏡を設けたことを特徴とする発光デバイス。
- 請求項10に記載の発光デバイスにおいて、前記1次反射鏡は平面鏡であることを特徴とする発光デバイス。
- 請求項10に記載の発光デバイスにおいて、前記1次反射鏡は凸面鏡であることを特徴とする発光デバイス。
- 請求項10ないし12のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、前記1次反射鏡と前記放物面鏡または疑似放物面鏡とをそれぞれ2つ有し、それらを前記レーザー光源からの主光線を中心として対称に配置したことを特徴とする発光デバイス。
- 請求項1ないし13のいずれか1つに記載の発光デバイスにおいて、前記導光手段は、前記レーザー光源の出射光束の放射角あるいはプロファイルを変換させる光学素子を有することを特徴とする発光デバイス。
- 請求項1ないし14のいずれか1つに記載の発光デバイスを用いたことを特徴とする光書込み装置。
- 請求項1ないし14のいずれか1つに記載の発光デバイスを用いたことを特徴とする光通信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004265692A JP2006078989A (ja) | 2004-09-13 | 2004-09-13 | 発光デバイス、光書込み装置、および光通信装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004265692A JP2006078989A (ja) | 2004-09-13 | 2004-09-13 | 発光デバイス、光書込み装置、および光通信装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006078989A true JP2006078989A (ja) | 2006-03-23 |
Family
ID=36158470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004265692A Pending JP2006078989A (ja) | 2004-09-13 | 2004-09-13 | 発光デバイス、光書込み装置、および光通信装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006078989A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010520627A (ja) * | 2007-03-06 | 2010-06-10 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 半導体チップと光導体層を有する構成体 |
WO2011130925A1 (zh) * | 2010-04-23 | 2011-10-27 | 海洋王照明科技股份有限公司 | 聚光装置、其制造方法和太阳能电池系统 |
WO2019069419A1 (ja) * | 2017-10-05 | 2019-04-11 | 三菱電機株式会社 | 照明装置 |
-
2004
- 2004-09-13 JP JP2004265692A patent/JP2006078989A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010520627A (ja) * | 2007-03-06 | 2010-06-10 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 半導体チップと光導体層を有する構成体 |
US8393748B2 (en) | 2007-03-06 | 2013-03-12 | Osram Opto Semiconductors Gmbh | Arrangement with a semiconductor chip and an optical waveguide layer |
WO2011130925A1 (zh) * | 2010-04-23 | 2011-10-27 | 海洋王照明科技股份有限公司 | 聚光装置、其制造方法和太阳能电池系统 |
WO2019069419A1 (ja) * | 2017-10-05 | 2019-04-11 | 三菱電機株式会社 | 照明装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6879561B2 (ja) | 光偏向デバイスおよびライダー装置 | |
EP2702438B1 (en) | Waveguide apparatus for illumination systems | |
JP4790209B2 (ja) | 表面プラズモンに基づいた光ルータ | |
JP5254205B2 (ja) | 光走査装置及びそれを用いた二次元画像表示装置 | |
JP2013518299A5 (ja) | ||
JPH1172632A (ja) | 側面出射光ファイバ | |
TWM453290U (zh) | 應用於光纖雷射之激發裝置 | |
JP4024270B2 (ja) | 半導体レーザ装置 | |
GB2358512A (en) | Production of a collimated beam | |
JP2006078989A (ja) | 発光デバイス、光書込み装置、および光通信装置 | |
JP5379565B2 (ja) | プログラマブル光源装置 | |
US20210149111A1 (en) | Optical multiplexer, light source module, two-dimensional optical scanning device, and image projection device | |
US7327917B2 (en) | Directional light beam generators | |
JP2019138927A (ja) | 光ファイバ及び光伝送システム | |
JP2008015034A (ja) | 光伝送装置、光モジュール及び光伝送システム | |
JP6485237B2 (ja) | 合波レーザ光源 | |
JP2004273204A (ja) | 導光体、およびそれを用いた表示体 | |
JP2006023466A (ja) | 発光デバイス、光書込み装置、および光通信装置 | |
JP3555888B2 (ja) | 自己導波光回路 | |
JP2006078985A (ja) | 発光デバイス、光書込み装置、および光通信装置 | |
JP4806175B2 (ja) | 発光デバイス、光書込み装置、および光通信装置 | |
US20220344903A1 (en) | Light emitting device | |
JP2006091679A (ja) | 光導波路デバイス | |
JP2012003131A (ja) | レーザ照射装置 | |
JP4982145B2 (ja) | 光伝送デバイス、および受光モジュール |