JP2008292134A - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
JP2008292134A
JP2008292134A JP2007295446A JP2007295446A JP2008292134A JP 2008292134 A JP2008292134 A JP 2008292134A JP 2007295446 A JP2007295446 A JP 2007295446A JP 2007295446 A JP2007295446 A JP 2007295446A JP 2008292134 A JP2008292134 A JP 2008292134A
Authority
JP
Japan
Prior art keywords
atomization
electrode
atomizing
cooling
metal pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007295446A
Other languages
English (en)
Other versions
JP4151739B1 (ja
Inventor
Toyoshi Kamisako
豊志 上迫
Yoshihiro Ueda
啓裕 上田
Kazuya Nakanishi
和也 中西
Kenichi Kakita
健一 柿田
Kiyoshi Mori
貴代志 森
Toshiaki Mamemoto
壽章 豆本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007295446A priority Critical patent/JP4151739B1/ja
Application granted granted Critical
Publication of JP4151739B1 publication Critical patent/JP4151739B1/ja
Publication of JP2008292134A publication Critical patent/JP2008292134A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

【課題】庫内を高湿にする目的でミストを噴霧しているが、霧化量の調整ができず、過剰噴霧のため庫内に水溜まりが発生する可能性があり、また野菜等の収納物が水腐れなどを発生する可能性がある。
【解決手段】断熱区画された貯蔵室と、貯蔵室内にミストを噴霧させる静電霧化装置131を備え、静電霧化装置131は、電位差を発生させる電圧印加部133と、電圧印加部133に接続された霧化電極135と、霧化電極に付着する水量を調整する調整手段を有し、霧化電極135に空気中の水分を結露させて貯蔵室にミストとして噴霧する。
これによって、安定的にミスト噴霧を行うことができるとともに霧化電極の過剰結露を防止し、霧化部の信頼性を向上させることができる。
【選択図】図3

Description

本発明は野菜などを収納する貯蔵室空間に霧化装置を設置した冷蔵庫に関するものである。
野菜の鮮度低下に対する影響因子としては、温度、湿度、環境ガス、微生物、光などが挙げられる。野菜は生き物であり、野菜表面では呼吸と蒸散作用が行われ、鮮度を維持するには呼吸と蒸散作用の抑制が必要となる。低温障害をおこす一部の野菜を除き、多くの野菜は低温で呼吸が抑制され、高湿により蒸散防止できる。近年、家庭用冷蔵庫では野菜の保存を目的とし、密閉された野菜専用容器が設けられ、野菜を適正な温度に冷却するとともに、庫内を高湿化するなど野菜の蒸散を抑制するよう制御している。ここで、庫内の高湿化手段として、ミストを噴霧するものがある。
従来、この種のミスト噴霧機能を備えた冷蔵庫は、野菜室内が低湿時に超音波霧化装置にてミストを生成噴霧、野菜室内を加湿、野菜の蒸散を抑制しているものである(例えば、特許文献1参照)。
図19は特許文献1に記載された従来の超音波霧化装置を設けた冷蔵庫を示すものである。また、図20は超音波霧化装置の要部を示す拡大斜視図である。
図19に示すように、野菜室21は冷蔵庫本体20の本体ケース26の下部に設けられ、その前面開口は開閉自在に引き出される引出し扉22により閉止されるようになっている。また、野菜室21は仕切板2によりその上方の冷蔵室(図示せず)と仕切られている。
引出し扉22の内面に固定ハンガ23が固定され、この固定ハンガ23に野菜等の食品を収納する野菜容器1が搭載されている。野菜容器1の上面開口は蓋体3により封止されるようになっている。野菜容器1の内部には解凍室4が設けられ、解凍室4には超音波霧化装置5が備えられている。
また、図20に示すように、超音波霧化装置5には霧吹出し口6と貯水容器7と湿度センサ8とホース受け9が備えられている。貯水容器7は、ホース受け9により除霜水ホース10に接続されている。除霜水ホース10には、その一部に除霜水を清浄するための浄化フィルター11が備えられている。
以上のように構成された冷蔵庫において、以下その動作について説明する。
熱交換冷却器(図示せず)より冷却された冷却空気は野菜容器1及び蓋体3の外面を流通することで、野菜容器1が冷却され、内部に収納された食品が冷やされる。また、冷蔵庫運転時に冷却器から発生する除霜水は除霜水ホース10を通過する時に浄化フィルター11によって浄化されて、超音波霧化装置5の貯水容器7に供給される。
次に湿度センサ8によって、庫内湿度が90%以下と検知されると、超音波霧化装置5が加湿を開始し、野菜容器1内の野菜等を新鮮に保持するための適度な湿度に調湿することができる。
一方、湿度センサ8によって庫内湿度が90%以上であると検知された場合、超音波霧化装置5は過度な加湿を停止する。その結果、超音波霧化装置5により、野菜室内をすばやく加湿することができ、野菜室内は常に高湿度となり、野菜等の蒸散作用が抑制され、野菜等の鮮度を保持することができる。
また、オゾン水ミスト装置を設けた冷蔵庫を示す(例えば、特許文献2参照)。
冷蔵庫は、野菜室の近傍にオゾン発生体、排気口、水道直結の水供給経路、およびオゾン水供給経路を有している。オゾン水供給経路は野菜室に導かれている。オゾン発生体は水道直結の水供給部に連結している。また、排気口はオゾン水供給経路に連結するよう構成されている。また、野菜室内には超音波素子が備えられている。オゾン発生体で発生したオゾンは水と接触させて処理水としてのオゾン水にされる。生成したオゾン水は冷蔵庫の野菜室に導かれ、超音波振動子により霧化され、野菜室に噴霧される。
特開平6−257933号公報 特開2000−220949号公報
しかしながら、上記従来の構成では、霧化装置への水の供給は、除霜水を溜めた貯水容器の水かもしくは水道水を用いているので、除霜水ホースや浄化フィルター、もしくは水道直結の水供給経路などの構成が必要であり、その構成が複雑になるという課題を有していた。
また、略密閉された低温空間である冷蔵庫の貯蔵室にミストを噴霧する際には、噴霧量の過多による貯蔵室内の過剰結露や渇水状態での噴霧による不具合を防ぐ為に、ムラがなく安定した噴霧を実現する必要があるが、上記従来の構成では、庫内を高湿にする目的でミストを噴霧しているが、霧化量の調整ができず、過剰噴霧によって庫内に水溜まりが発生する可能性があり、また野菜等の収納物が水腐れなどを発生する可能性があるという課題を有していた。
本発明は、適切な量のミスト噴霧を行うことを目的とする。
上記従来の課題を解決するために、本発明の冷蔵庫は、断熱区画された貯蔵室と、前記貯蔵室内にミストを噴霧させる霧化部と、前記霧化部に備えられたミストが噴霧される霧化先端部とを有し、前記霧化先端部を露点以下に冷却し、前記霧化先端部に空気中の水分を結露させて貯蔵室にミストとして噴霧するとともに前記霧化先端部に付着する水量を調整する調整手段を有したものである。
このように、霧化先端部が過剰に結露することを防止するための水量を調節する調整手段を備えたことにより、霧化電極に結露する液滴の大きさもしくは量を調整することができるので、結露状態が安定し、安定的にミスト噴霧を行うことができるとともに霧化先端部の過剰結露を防止し、霧化部の信頼性を向上させることができる。
本発明の冷蔵庫は、安定的にミスト噴霧を行うことができるとともに霧化先端部の過剰結露を防止し、霧化部の信頼性を向上させることができるので、より保鮮性を向上させた使い勝手のよい冷蔵庫を提供することができる。
請求項1に記載の発明は、断熱区画された貯蔵室と、前記貯蔵室内にミストを噴霧させる霧化部と、前記霧化部に備えられたミストが噴霧される霧化先端部とを有し、前記霧化先端部を露点以下に冷却し、前記霧化先端部に空気中の水分を結露させて貯蔵室にミストとして噴霧するとともに前記霧化先端部に付着する水量を調整する調整手段を有した冷蔵庫である。
このように、霧化先端部が過剰に結露することを防止するための水量を調節する調整手段を備えたことにより、霧化電極に結露する液滴の大きさもしくは量を調整することができるので、結露状態が安定し、安定的にミスト噴霧を行うことができるとともに霧化先端部の過剰結露を防止し、霧化部の信頼性を向上させることができる。
また、これによって、ミスト噴霧用の水を供給するための除霜水ホースや浄化フィルター、もしくは専用タンクと水搬送手段とその経路、さらに水道直結の水供給経路などの複雑な構成を要することなく、簡単な構成で霧化させる水量を調整することができる。
また、貯蔵室内の余剰な水蒸気から容易に、確実に霧化電極に結露させ、また、その水量を調整することができ、微細ミストが生成され、噴霧された微細ミストが野菜等の青果物の表面に均一に付着し、青果物からの蒸散を抑制し、保鮮性を向上させることができる。また、青果物表面の細胞間隙や気孔等から、組織内に浸透し、萎んだ細胞内に水分が供給され、シャキッとした状態に復帰させることができる。
請求項2に記載の発明は、請求項1に記載の発明の冷蔵庫に加え、霧化電極に接続された伝熱接続部材を有し、調節手段によって前記伝熱接続部材を冷却または加熱することで間接的に前記霧化電極の温度調整を行うものである。
これによって、霧化先端部を直接冷却することなく、伝熱接続部材を冷却することで間接的に霧化電極を冷却することができ、伝熱接続部材が霧化先端部よりも大きな熱容量を有することで、調整手段の温度変化が霧化電極に直接的に大きな影響を与えることを緩和し、霧化先端部の温度を調整することができ、霧化先端部の負荷変動を抑え、安定した噴霧量のミスト噴霧を実現することができる。
請求項3に記載に発明は、請求項1または2に記載の発明に加え、霧化先端部に付着する水量を調整する調整手段は、冷却手段と加熱手段とを有するものである。
これによって、冷却手段と加熱手段とを組み合わせることで容易に霧化先端部の温度を調整することができるので、適切な霧化先端部に付着する水量を適切な範囲に調整することで放電が安定し、安定的にミスト噴霧を行うことができ、さらに霧化先端部の過剰結露を防止し、霧化部の信頼性を向上させることができるので、より保鮮性を向上させた使い勝手のよい冷蔵庫を提供することができる。
請求項4に記載の発明は、請求項3に記載の発明に加え、冷却手段は冷蔵庫の冷凍サイクルで生成された冷却源であり、加熱手段はヒータであるものである。
これによって、冷蔵庫の冷凍サイクルで生成された冷却源を有効に用いることで、簡単な構成で貯蔵室へ微細ミストを供給することができるので、霧化部の信頼性を向上させることができる。また、冷却手段用として装置および電力を必要としないので、省材料でかつ省エネルギでのミスト噴霧を実現することができる。
また、霧化先端部の過剰結露を防止するために調整手段の加熱手段がヒータであることにより、霧化先端部の先端温度の温度制御を容易に行うことが可能となり、霧化先端部に結露する液滴の大きさもしくは量を調整することができるので、安定的に噴霧することができ、さらに信頼性を向上させることができる。
請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明に加え、冷蔵庫本体は複数の貯蔵室と、前記貯蔵室を冷却するための冷却器を収納する冷却室とを有し、霧化部は前記貯蔵室の冷却室側の仕切り壁に取り付けたものである。
これによって、冷蔵庫の冷凍サイクルで生成された冷却源を用いて冷却される冷気の中でも最も低温となる冷却室の冷気もしくは冷気からの熱伝達を利用したパイプ等の部材を冷却手段とすることができる。このように簡単な構造で冷却手段を構成することができるので、故障が少なく信頼性が高い霧化部を実現することができる。また、冷凍サイクルの冷却源を利用して伝熱接続部材および霧化電極の冷却を行うことができるので、より省エネルギで霧化を行うことができる。
また、霧化部を仕切り壁に取り付けたことにより、霧化部が貯蔵室内に大きく出張らず間隙を有効に利用する位置に設置することで収納容積を減少することがなく、また、奥面に取り付けられていることで容易に人の手に触れることができないので安全性も向上する。
請求項6に記載の発明は、請求項1から4のいずれか一項に記載の発明に加え、冷蔵庫本体は複数の貯蔵室を有し、霧化部を備えた貯蔵室の天面側には前記霧化部を備えた貯蔵室よりも低温に保たれた低温貯蔵室が備えられ、前記霧化部は前記霧化部を備えた貯蔵室の天面側の仕切り壁に取り付けたものである。
これによって、冷凍室や製氷室のような冷凍温度帯の貯蔵室が上部にある場合、それらを仕切る天面の仕切り壁に設置され、その冷却源で霧化部の伝熱接続部材を介して霧化電極を冷却し、結露させることができるので、特別な冷却装置が不必要で、簡単な構成で霧化部を備えることができるので、故障が少なく信頼性が高い霧化部を実現することができる。
また、天面から噴霧できるので収納容器全体に拡散しやすく、また、人の手にも触れにくいので安全性が向上させることができる。
請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明に加え、冷蔵庫本体は、貯蔵室もしくは冷却室に冷気を搬送するための少なくとも1つの風路を有し、調整手段に備えられた冷却手段は冷却室で生成された冷気を用いるものである。
これによって、冷気を用いた間接的な熱伝導で伝熱接続部材および霧化先端部を冷却することで、霧化先端部が極度に冷却されることを防ぐことができる。霧化先端部が極度に冷却されると、それに伴い結露量が多大となり霧化部の負荷の増大による霧化部への入力液滴表面面積が大きくなり、それに伴い表面張力も大きくなり、静電気力による微細化ができず、霧化部の霧化不良が懸念されるが、こういった霧化部の負荷増大による不具合を防ぐことができ、適切な結露量を確保することができ、低入力で安定的なミスト噴霧を実現することができる。
また、簡単な構造で冷却手段を構成することができるので、故障が少なく信頼性が高い霧化部を実現することができる。さらに、冷凍サイクルの冷却源を利用して伝熱接続部材および霧化電極の冷却を行うことができるので、より省エネルギで電極に水滴を結露させ霧化を行うことができる。
請求項8に記載の発明は、請求項1から7のいずれか一項に記載の発明に加え、冷蔵庫本体は、貯蔵室もしくは冷却室に冷気を搬送するための少なくとも1つの風路を有し、調整手段に備えられた加熱手段は冷蔵庫の冷凍サイクル中に備えられたヒータであるものである。
これによって、冷凍サイクルの熱源を利用して伝熱接続部材および霧化先端部の加熱を行うことができるので、より省エネルギで電極の温度調節を行うことができる。
さらに、霧化先端部が過剰結露を防止するために調整手段に備えられた加熱手段がヒータであることにより、霧化先端部の温度制御を容易に行うことが可能となり、霧化先端部に結露する液滴の大きさもしくは量を調整することができるので、安定的に噴霧することができ、さらに信頼性を向上させることができる。
請求項9に記載の発明は、請求項8に記載の発明に加え、調整手段に備えられた加熱手段は、冷却器に付着した霜を融解するための除霜ヒータであるものである。
これにより、調整手段として特別なヒータを用いることなく、冷凍サイクル中に備えられている除霜ヒータを用いることで、特別な装置および電力を必要としないので、省材料でかつ省エネルギでのミスト噴霧を実現することができる。
また、除霜ヒータは、冷却器の温度がある程度上昇するとヒータ通電が停止するというという特性を有しているため、霧化先端部および伝熱接続部材の温度が必要以上に上昇することなく、適切な範囲で確実に霧化先端部および伝熱接続部材を昇温できる。
請求項10に記載の発明は、請求項1から7のいずれか一項に記載の発明に加え、調整手段に備えられた加熱手段は、霧化部を備えた貯蔵室の背面側に備えられた貯蔵室用ヒータであるものである。
これにより、調整手段として特別なヒータを用いることなく、貯蔵室に備えられている貯蔵室用ヒータを用いることで、特別な装置および電力を必要としないので、省材料でかつ省エネルギでのミスト噴霧を実現することができる。
また、ヒータの熱で直接的に電極および伝熱接続部材を加熱することができるので、短時間で確実に温度を上昇させることが可能であり、温度応答性も速くなるので水量の調整手段の応答性も向上し、調節手段の精度を向上させることが可能となる。
請求項11に記載の発明は、請求項1から7のいずれか一項に記載の発明に加え、調整手段は、ペルチェ素子を利用した温度調節手段であるものである。
これによって、ペルチェ素子への印加電圧だけで霧化電極の温度が調整でき、霧化電極を単独で任意の温度に容易に調節することが可能である。
また、電圧の反転等を行うだけで、冷却と加温の双方を実現できるので冷却手段や加熱手段としてのヒータなどの特別な装置を追加する必要がなく、簡単な構造で冷却と加温双方を行い、その温度応答性も速くなるので水量の調整手段の応答性も向上した上で任意の温度へと調節することが可能となり、より霧化部の精度を向上させることが可能となる。
請求項12に記載の発明は、請求項1から7のいずれか一項に記載の発明に加え、調整手段に備えられた加熱手段は、熱交換器の熱を利用したものである。
これによって、冷凍サイクルのエネルギを利用して伝熱接続部材および霧化電極の温度調節を行うことができるので、より省エネルギで霧化電極の温度調節を行うことができる。
また、温度調手段として熱交換器の熱を利用することで、冷凍サイクル内のエネルギを有効利用することが可能となるので、冷凍サイクルの熱効率がより向上し、省エネルギを実現した冷蔵庫を提供することができる。
請求項13に記載の発明は、請求項1から12のいずれか一項に記載の発明に加え、霧化部は、霧化電極と、前記霧化電極に対向する位置に配された対向電極とを備え、霧化電極と対向電極間に高圧電位差を発生させる電圧印加部を有したものである。
これによって、霧化電極近傍の電界が安定に構築できることによって微粒化現象、噴霧方向が定まり、収納容器内に噴霧する微細ミストの精度をより高めることができ、霧化部の精度を向上させることができる。
請求項14に記載の発明は、請求項13に記載の発明に加え、貯蔵室と、前記貯蔵室に備えられ基準電位部にアースされた保持部材とを有し、電圧印加部は霧化電極と前記保持部材との間に電位差を発生させるものである。
これにより、特に対向電極を持たなくても、貯蔵室側の一部にアースされた保持部材を備えることで、霧化電極と電位差を発生させて、ミスト噴霧を行うことができ、より簡単な構成で安定的な電界が構成されることにより安定的に霧化部から噴霧できる。
また、収納容器側に保持部材を取り付けると、収納容器全体が基準電位になっているので噴霧されるミストが収納容器全体に拡散することができる。さらに、周辺の物体への帯電も防止することができる。
以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。図2は、本発明の実施の形態1における冷蔵庫の野菜室近傍の正面図である。図3は、図2のA−A部の静電霧化装置近傍の詳細断面図である。図4は、本発明の実施の形態1における霧化電極の温度挙動と霧化状態を示す放電電流モニター電圧値を示した実験結果を示す図である。図5は、本発明の実施の形態1における霧化電極温度と霧化電極近傍湿度の相関から求められた結露適正範囲を示した実験結果を示す図である。図6は、本発明の実施の形態1における機能ブロック図の一例を示す図である。図7は、本発明の実施の形態1における制御フロー図の一例を示す図である。
図において、冷蔵庫100の断熱箱体101は主に鋼板を用いた外箱102とABSなどの樹脂で成型された内箱103で構成され、その内部には例えば硬質発泡ウレタンなどの発泡断熱材が充填されている。これにより、貯蔵室を断熱するのと同時に、複数の貯蔵室に区分されている。冷蔵庫100の最上部には第一の貯蔵室としての冷蔵室104、その冷蔵室104の下部に第四の貯蔵室としての切換室105と第五の貯蔵室としての製氷室106が横並びに設けられ、その切換室105と製氷室106の下部に第二の貯蔵室としての野菜室107、そして最下部に第三の貯蔵室としての冷凍室108が構成されている。
冷蔵室104は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃とし、野菜室107は冷蔵室104と同等もしくは若干高い温度設定の2℃〜7℃としている。冷凍室108は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。切換室105は、1℃〜5℃で設定される冷蔵、2℃〜7℃で設定される野菜、通常−22℃〜−15℃で設定される冷凍の温度帯以外に、冷蔵温度帯から冷凍温度帯の間で予め設定された温度帯に切り換えることができる。切換室105は製氷室106に並設された独立扉を備えた貯蔵室であり、引出し式の扉を備えることが多い。なお、本実施の形態では切換室105を冷蔵,冷凍の温度帯までを含めた貯蔵室としているが、冷蔵は冷蔵室104,野菜室107、冷凍は冷凍室108に委ねて、冷蔵と冷凍の中間の上記温度帯のみの切り換えに特化した貯蔵室としても構わない。また、特定の温度帯に固定された貯蔵室でもかまわない。製氷室106は、冷蔵室104内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、室内下部に配置した貯氷容器(図示せず)に貯蔵する。
断熱箱体101の天面部は冷蔵庫の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室を形成して圧縮機109、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109を配設する機械室は、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。手が届きにくくデッドスペースとなっていた断熱箱体101の最上部の貯蔵室後方領域に機械室を設けて圧縮機109を配置することにより、従来の冷蔵庫で、使用者が使いやすい断熱箱体101の最下部にあった機械室のスペースを貯蔵室容量として有効に転化することができ、収納性や使い勝手を大きく改善することができる。なお、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった断熱箱体101の最下部の貯蔵室後方領域に機械室を設けて圧縮機109を配置するタイプの冷蔵庫に適用しても構わない。
野菜室107と冷凍室108の背面には冷気を生成する冷却室110が設けられ、その間には、断熱性を有する各室への冷気の搬送風路141と、各貯蔵室を断熱区画するための断熱材152とで構成された奥面仕切り壁111が備えられている。風路141と冷却室仕切り板401によって区画された冷却室110内には、冷却器112が配設されており、冷却器112の上部空間には強制対流方式により冷却器112で生成した冷気を冷蔵室104、切換室105、製氷室106、野菜室107、冷凍室108に送風する冷却ファン113が配置され、冷却器112の下部空間には冷却時に冷却器112やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ114が設けられ、さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン115、その最深部から庫外に貫通したドレンチューブ116が構成され、その下流側の庫外に蒸発皿117が構成されている。
野菜室107には、野菜室107の引出し扉118に取り付けられたフレームに載置された下段収納容器119と、下段収納容器119に載置された上段収納容器120が配置されている。
引出し扉118が閉ざされた状態で主に上段収納容器120を略密閉するための蓋体122が野菜室上部の第一の仕切り壁123及び内箱103に保持されている。引出し扉118が閉ざされた状態で蓋体122と上段収納容器120の上面の左右辺、奥辺が密接し、上面の前辺は略密接している。さらに、上段収納容器120の背面の左右下辺と下段収納容器119の境界部は、上段収納容器120が稼働する上で接触しない範囲で食品収納部の湿気が逃げないよう隙を詰めている。
蓋体122と第一の仕切り壁123の間には、奥面仕切り壁111に構成された野菜室用吐出口124から吐出された冷気の風路が設けられている。また、下段収納容器119と第二の仕切り壁125との間にも空間が設けられ冷気風路を構成している。野菜室107の背面側に位置する奥面仕切り壁111の下部には、野菜室107内を冷却し熱交換された冷気が冷却器112に戻るための野菜室用吸込口126が設けられている。
なお、本実施の形態における、以下に述べる発明の要部に関する事項は、従来一般的であった扉に取り付けられたフレームと内箱に設けられたレールにより開閉するタイプの冷蔵庫に適用しても構わない。また、蓋体122、野菜室吐出口、吸い込み口、風路構成については、収納容器の形態によりそれらは最適化される。
奥面仕切り壁111は、主にABSなどの樹脂を用いた奥面仕切り壁表面151と発泡スチロールなどを用いて風路141野菜室107の間を隔離、断熱性を確保する断熱材152とで構成されている。また、各室へ冷気を循環するための風路141と、冷却室110との間を隔離する冷却室仕切り板401を備えている。ここで、奥面仕切り壁111の貯蔵室内側の壁面の一部に他の箇所より低温になるように凹部111aを設け、その箇所に霧化装置である静電霧化装置131が設置されている。
霧化装置である静電霧化装置131は主に霧化部139、電圧印加部133、外郭ケース137で構成され、外郭ケース137の一部には、噴霧口132と湿度供給口138が構成されている。霧化部139は、霧化先端部である霧化電極135が設置され、霧化電極135はアルミニウムやステンレス、真鍮などの良熱伝導部材からなる伝熱接続部材である金属ピン134に固定され、電気的にも電圧印加部から配線されている一端を含めて接続している。
この伝熱接続部材である金属ピン134は霧化電極135に比べて50倍以上好ましくは100倍以上の大きな熱容量を有するものであり、例えば、アルミや銅などの高熱伝導部材が好ましく、金属ピン134の一端からもう一端に冷熱を熱伝導で効率よく伝導させるため、その周囲は断熱部材で覆われていることが望ましい。
また、長期的に霧化電極135と金属ピン134の熱伝導の維持も必要であるので、接続部に湿度等の侵入を防止するためにエポキシ部材などを流しこみ、熱抵抗を抑え、さらに、霧化電極135と金属ピン134を固定する。また、熱抵抗を低下させるために霧化電極135を金属ピン134に圧入等により固定してもよい。
さらに、金属ピン134は、貯蔵室と冷却器112もしくは風路を断熱するための断熱材内で冷温を熱伝導させる必要があるので、その長さは5mm以上好ましくは10mm以上確保することが望ましい。ただし、その長さを30mm以上にした場合は、その効果は低下する。
なお、貯蔵室に設置された静電霧化装置131が高湿環境下にあり、その湿度が金属ピン134に影響する可能性があるので、金属ピン134は耐腐食性、耐錆性の性能を持った金属材料、もしくはアルマイト処理などの表面処理、コーティングを行った材料を選択したほうが好ましい。
金属ピン134は外郭ケース137に固定され、金属ピン134自体は外郭ケース137から突起して構成されている。また、霧化電極135に対向している位置で貯蔵室側にドーナツ円盤状の対向電極136が、霧化電極135の先端と一定距離を保つように取付けられ、その延長上に噴霧口132が構成されている。
霧化電極135近傍では、ミスト噴霧のため、常に放電が起こるため、霧化電極135先端では、磨耗を生じる可能性がある。冷蔵庫100は、10年以上運転することになるので、霧化電極135の表面は、強靭な表面処理が必要であり、例えば、ニッケルメッキ、および金メッキや白金メッキを用いることが望ましい。
さらに、霧化部139の近傍に電圧印加部133が構成され、高電圧を発生する電圧印加部133の負電位側が霧化電極135と、正電位側が対向電極136とそれぞれ電気的に接続されている。
対向電極136は、例えば、ステンレスで構成されていて、また、その長期信頼性を確保する必要があり、特に異物付着防止、汚れ防止するため、例えば白金メッキなどの表面処理をすることが望ましい。
電圧印加部133は、冷蔵庫本体の制御手段146と通信、制御され、冷蔵庫100もしくは静電霧化装置131からの入力信号で高圧のON/OFFを行う。
さらに、静電霧化装置131を固定している奥面仕切り壁表面151と断熱材152の間には、貯蔵室の温度調節をする、もしくは表面の結露を防止するための仕切り壁ヒータ154が設置されている。さらに静電霧化装置131に備えられた伝熱接続部材である金属ピン134の温度調整と、霧化先端部である霧化電極135を含めた周辺部の過剰結露を防止するための金属ピンヒータ158が霧化部139近傍に設置されている。
この伝熱接続部材である金属ピン134が外郭ケース137に固定され、金属ピン134自体は外郭から突起した凸部134aを有して構成されている。この金属ピン134は霧化電極135と逆側に凸部134aを有する形状で、凸部134aが奥面仕切り壁111の凹部111aよりもさらに深い最深凹部111bに嵌めあわされている。
よって、伝熱接続部材である金属ピン134の背面側には凹部111aよりもさらに深い最深凹部111bが備えられており、すなわち冷却室110側は断熱材152が野菜室107の背面側の仕切り壁における他の部分よりも薄くなっており、この薄い断熱材152を熱緩和部材として、背面から冷却室110の冷気もしくは暖気が熱緩和部材である断熱材152を介して金属ピン134を冷却するように設置されている。
また、伝熱接続部材である金属ピン134の冷却は、冷却室110で生成された冷気を用いており、金属ピン134は熱伝導性のよい金属片で形成したので、冷却手段は、冷却器112で生成された冷気が流れる風路からの熱伝導だけで必要な冷却を行うことができる。
このように簡単な構造で調整手段を構成することができるので、故障が少なく信頼性が高い霧化部を実現することができる。また、冷凍サイクルの冷却源を利用して伝熱接続部材および霧化電極の冷却を行うことができるので、省エネルギで霧化を行うことができる。
また、この時、本実施の形態の伝熱接続部材である金属ピン134は霧化電極と逆側に凸部134aを有する形状をしているので、霧化部の中で凸部134a側の端部134bが冷却手段に最も近接する為、金属ピン134の中でも霧化電極135から最も遠い端部134b側から調整手段によって冷却されることとなる。
また、このように断熱材152は熱緩和部材として金属ピン134の少なくとも冷却手段側を覆っているが、好ましくは金属ピンの凸部134aの表面全体をほぼ覆うことが望ましく、この場合には金属ピン134の長手方向と直交する横方向のからの熱侵入が少なくなり、凸部134a側の端部134b側から長手方向に向かって熱伝達が行われる為、金属ピン134の中でも霧化電極135から最も遠い端部134b側から調整手段によって冷却されることとなる。
以上のように構成された冷蔵庫について、以下その動作、作用を説明する。
まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御手段からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化し、さらに冷蔵庫本体の側面や背面、また冷蔵庫本体の前面間口に配設された冷媒配管(図示せず)などを経由し冷蔵庫本体の結露を防止しながら凝縮液化し、キャピラリ(図示せず)に至る。その後、キャピラリでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。ここで、低温低圧の液冷媒は、冷却ファン113の動作により各貯蔵室内の空気と熱交換され、冷却器112内の冷媒は蒸発気化する。この時、冷却室110で各貯蔵室を冷却するための冷気を生成する。低温冷気は冷却ファン113から冷蔵室104、切替室105、製氷室106、野菜室107、冷凍室108に冷気を風路やダンパを用いて分流させ、それぞれの目的温度帯に冷却する。特に、野菜室107は、冷蔵室104を冷却した後、その空気を冷却器112に循環させるための冷蔵室戻り風路の途中に構成された野菜室用吐出口124から野菜室107に吐出し、上段収納容器120や下段収納容器119の外周に流し間接的に冷却し、その後、野菜室用吸込口126から再び冷却器112に戻る循環風路になっている。また、野菜室107の温度制御については、冷気の配分や仕切り壁に備えられた仕切り壁ヒータ154などのON/OFF運転で行っており、これらの制御により2℃から7℃になるように調整されている。なお、一般的には庫内温度検知手段をもたないものが多い。
野菜室107の奥面に設置されている奥面仕切り壁111には、凹部が構成され、この箇所に静電霧化装置131が取り付けられている。ここで、霧化部139である金属ピン134の後方は最深凹部111bがあり、断熱材の厚みは例えば2mm〜10mm程度で構成され、他の箇所より低温状態になる。本実施の形態の冷蔵庫においては、この程度の厚みが金属ピンと調整手段との間に位置する熱緩和部材としての適切なものとなる。これにより、奥面仕切り壁111は凹部111aが構成され、この箇所の最背面の最深凹部111bに金属ピン134の凸部134aが突出した形状の静電霧化装置131が嵌めこまれて、取り付けられている。
金属ピン134背面の冷凍室吐出風路141には、冷凍サイクルの運転により冷却器112で冷気が生成され、冷却ファン113により−15〜−25℃程度の冷気が吐出、風路表面から熱伝導で金属ピン134が0〜−6℃程度に冷却される。このとき、金属ピン134は、良熱伝導部材であるため、冷熱を非常に伝えやすく、金属ピン134に固定された霧化電極135も金属ピン134を介して0〜−6℃程度に冷却される。
ここで、野菜室は2℃から7℃で、かつ野菜などからの蒸散により比較的高湿状態を保持するので、霧化先端部である霧化電極135は露点以下となり、先端を含め、霧化電極135には水が生成し、水滴が付着する。
水滴が付着した霧化電極135に負電圧、対向電極136を正電圧側として、電圧印加部133によりこの電極間に高電圧(例えば4〜10kV)を印加させる。このとき電極間でコロナ放電が起こり、霧化電極135の先端の水滴が、静電エネルギにより微細化され、さらに液滴が帯電しているためレイリー分裂により数nmレベルの目視できない電荷をもったナノレベルの微細ミストと、それに付随してオゾンやOHラジカルなどが発生する。なお、電極間に印加する電圧は、4〜10kVと非常に高電圧であるが、そのときの放電電流値は数μA、入力としては0.5〜1.5Wと非常に低入力であるため庫内温度への影響は微小である。
具体的には、霧化電極135を基準電位側(0V)、対向電極136を高電圧側(+7kV)とすると霧化電極135先端に付着した結露水により、対向電極136の距離が接近し、これにより空気絶縁層が破壊され、放電が開始する。このとき結露水は帯電し、また、液滴表面において、表面に発生した静電気力は表面張力を超え、微細な粒子が発生する。さらに対向電極136がプラス側のため、帯電した微細ミストは引き寄せられ、微細粒子がさらにレイリー分裂により超微粒化され、ラジカルを含んだ数nmレベルの目視できない電荷をもったナノレベルの微細ミストが対向電極136に引き寄せられ、その慣性力により、貯蔵室に向けて、微細ミストが噴霧される。
上記における実験結果を図4および、図5に示す。
図4の横軸は時間、縦軸は放電電流モニター電圧値を示しており、放電電流モニター電圧値は、電極間に電流が流れる、つまり、放電現象がおき、微細ミストが発生したときのみ電圧値が下がるように設定され、出力されている。
冷蔵庫100において、冷却器112の温度が下がり始める、つまり冷凍サイクルの運転が開始したとき、野菜室107の冷却も開始する。このとき、野菜室107にも冷気が流れるため、乾燥状態となり、霧化電極135も乾燥する傾向にある。
次に冷蔵室ダンパ(図示せず)が閉じると冷蔵室吐出空気温度が上昇し、冷蔵室104や野菜室107の温度、湿度は上昇する。このとき、冷凍室吐出冷気温度は次第に低下するので、金属ピン134はさらに冷却され、高湿環境に推移した野菜室107に設置された霧化部139の霧化電極135は結露しやすくなる。そして、霧化電極135先端で液滴が成長し、液滴先端と対向電極136間の距離がある一定距離になると空気絶縁層が破壊され、放電現象が開始し、霧化電極135先端より微細ミストが噴霧される。このとき、電極間に微小電流が流れるため図に示す波形のように放電電流モニター電圧値が下がる。その後、圧縮機109が停止、冷却ファン113が停止し、金属ピン134の温度は上昇するものの霧化部139雰囲気は引き続き高湿なため霧化は継続する。
ところが、冷却器112についた霜、氷を融解し、除去する除霜時には、冷却器112の温度が0℃を超える。このとき、静電霧化装置背面の冷凍室吐出風路の温度も上昇し、この温度上昇に伴って金属ピン134も加温され、霧化電極135の温度も上昇し、先端に付着した結露水は、蒸発し、霧化電極が乾燥する。
また、除霜ヒータは、冷却器の温度がある程度上がるとともに切れるという特性を有しているため、電極および伝熱接続部材の温度が上がりすぎることなく、適切な範囲で確実に電極および伝熱接続部材を昇温できるという効果を有する。
なお、本実施の形態では加熱手段は除霜ヒータのみでなく金属ピンヒータ158を備えるものとしたが、金属ピンヒータ158を備えずに除霜ヒータのみで調整手段の加熱手段を構成してもよく、過剰結露が生じた場合でも、このように冷却器の除霜時のタイミングと合わせて伝熱接続部材を介して霧化先端部である霧化電極が加熱されることで特別な構成を有することなく簡単に過剰な水滴を除去することが可能となる。このように、調整手段として特別なヒータを用いることなく、冷凍サイクル中に備えられている除霜ヒータを用いることで、特別な装置および電力を必要としないので、省材料でかつ省エネルギでのミスト噴霧を実現することができる。また、冷却器の除霜時に対応でき、さらに信頼性を向上させている。
冷蔵庫100の実使用状態を考慮したとき、使用される環境、開閉動作、食品収納状態により、野菜室107の湿度状況、加湿量は変化するので霧化先端部である霧化電極135に結露する量が過剰になることも想定でき、場合によれば、霧化電極135全体を覆うほどの液滴になり、放電による静電気力が表面張力を勝ることができず、霧化できない。よって、冷蔵室ダンパが開動作のとき、冷気による除湿に加え、加熱手段である金属ピンヒータ158を通電することにより霧化電極135を加熱する。これにより、付着している水滴の蒸発を促進させ、過剰結露を防止し、継続的・安定的に霧化を行うことができる。また、過剰結露により、液滴が成長し、奥面仕切り壁111などの水たれによる品質劣化を防止することもできる。
このように霧化電極135は、冷蔵庫100の冷凍サイクルを利用して、図5に示すように結露と乾燥を繰り返し、噴霧を断続的に行う。これにより霧化電極先端の水量を調整し、過剰結露の防止を行い、継続的な霧化を実現している。
このように霧化電極135を直接冷却もしくは加熱することなく、伝熱接続部材である金属ピン134を冷却もしくは加熱することで間接的に霧化電極135の温度調節をすることができ、伝熱接続部材134が霧化電極135よりも大きな熱容量を有することで、調節手段の温度変化が霧化電極に直接的に大きな影響を与えることを緩和し、霧化電極の温度を調整することができ、霧化電極の負荷変動を抑え、安定した噴霧量のミスト噴霧を実現することができる。
また、霧化電極135に対向する位置に配された対向電極136とを備え、霧化電極135と対向電極136間に高圧電位差を発生させる電圧印加部133を有することで、霧化電極135近傍の電界が安定に構築できることによって微粒化現象、噴霧方向が定まり、収納容器内に噴霧する微細ミストの精度をより高めることができ、霧化部139の精度を向上させることができ、信頼性の高い静電霧化装置131置を提供することができる。
さらに、伝熱接続部材である金属ピン134は熱緩和部材を介して冷却もしくは加温されるので、上記のように霧化電極135を金属ピン134で間接的に温度を変化させるものにさらに、熱緩和部材である断熱材152を介して二重構造で間接的に温度を変化させることができ、霧化電極135が極度に冷却もしくは加温されることを防ぐことができる。霧化電極135が極度に冷却されると、それに伴い結露量が多大となり霧化部139の負荷の増大による静電霧化装置131への入力の増大および霧化部139の霧化不良が懸念されるが、こういった霧化部139の負荷増大による不具合を防ぐことができ、適切な結露量を確保することができ、低入力で安定的なミスト噴霧を実現することができる。
また、霧化電極135が極度に加熱されると、電圧印加部および霧化部周辺の貯蔵室温度が急激に上がり、電気部品の故障や収納物の温度上昇による冷却不良等の不具合が発生するが、こういった霧化部139の温度上昇による不具合を防ぐことができ、適切な結露量を確保することができ、低入力で安定的なミスト噴霧を実現することができる。
また、霧化電極135を伝熱接続部材と熱緩和部材とを介して二重構造で間接的に温度調節することで、調節手段の温度変化が霧化電極に直接的に大きな影響を与えることをさらに緩和することができるので、霧化電極の負荷変動を抑え、安定した噴霧量のミスト噴霧を実現することができる。
また、伝熱接続部材である金属ピン134の温度調節は、冷却室110で生成された冷気を用いており、金属ピン134は熱伝導性のよい金属片で形成したので、温度調節手段は、冷却器112で生成された冷気が流れる風路からの熱伝導だけで必要な冷却を行うことができる。
また、この時、本実施の形態の伝熱接続部材である金属ピン134は霧化電極と逆側に凸部134aを有する形状をしているので、霧化部の中で凸部134a側の端部134bが冷却手段に最も近接する為、金属ピン134の中でも霧化電極135から最も遠い端部134b側から冷却手段である冷気によって冷却されることとなる。
また、伝熱接続部材である金属ピン134の冷却は、冷却室110で生成された冷気を用いており、金属ピン134は熱伝導性のよい金属片で形成したので、冷却手段は、冷却器112で生成された冷気が流れる風路からの熱伝導だけで必要な冷却を行うことができる。
このように簡単な構造で冷却手段を構成することができるので、故障が少なく信頼性が高い霧化部を実現することができる。また、冷凍サイクルの冷却源を利用して伝熱接続部材である金属ピン134および霧化先端部である霧化電極135の冷却を行うことができるので、省エネルギで霧化を行うことができる。
また、この時、本実施の形態の霧化部においては、伝熱接続部材である金属ピン134によって霧化電極135と逆側に凸部134aを有する形状をしているので、霧化部の中で凸部134a側の端部134bが冷却手段に最も近接する為、金属ピン134の中でも霧化電極135から最も遠い端部134b側から冷却手段である冷気によって冷却されることとなる。
このように調整手段である冷却手段を金属ピン134の中でも霧化電極135から最も遠い端部134b側に配置することで、調整手段である冷却手段の温度変化が霧化電極135に直接的に大きな影響を与えることをさらに緩和し、より変動負荷の小さく安定的なミスト噴霧を実現することができ安定して霧化電極の温度調節を行うことが可能となる。
また、霧化部が取り付けられている奥面仕切り壁111は、貯蔵室側の一部に凹部111aがあり、この凹部111aよりもさらに深い最深凹部111bに凸部134aを有した霧化部が挿入されることによって、熱緩和部材として貯蔵室の仕切り壁を構成する断熱材152を用いることができ、特別な熱緩和部材を備えることなく断熱材の厚みを調整することで霧化電極が適度に冷却されるような熱緩和部材を備えることができ、霧化部139をより簡単な構成にすることができる。
また、凹部111aに霧化部139および最深凹部111bに凸部134aを有する金属ピン134を挿入することで、二段の凹部で霧化部をガタツキなく確実に仕切り壁に取り付けることができると共に、貯蔵室である野菜室107側への出っ張りを抑えることができ、人の手にも触れにくいので安全性を向上させることができる。
また、貯蔵室である野菜室107の奥面仕切り壁111を挟んだ外側に霧化部139が出っ張らないので、風路面積に影響を与えず、風路抵抗を増加させることによる冷却量の低下を防ぐことができる。
また、野菜室107の一部に凹部があり、そこに霧化部139が挿入されていることにより、青果物や食品などを収納する収納量に影響することがなく、また、伝熱接続部材を確実に冷やすとともに、それ以外の部分については、断熱性が確保できる壁厚が確保できるのでケース内の結露を防止することができ、信頼性を向上することができる。
また、伝熱接続部材である金属ピン134は、ある程度の熱容量を確保できているので冷却風路からの熱伝導の応答を緩和することができるので、霧化電極の温度変動を抑制することができ、また蓄冷部材としての働きを有することになるので、霧化電極の結露発生の時間を確保し、凍結も防止することができる。さらに、良熱伝導性の金属ピン134と断熱材を組み合わせることにより損失なく良好に冷熱を伝導することができ、さらに金属ピン134と霧化電極135の接合部の熱抵抗を抑えているので霧化電極135と金属ピン134の温度変動が良好に追従する。また、接合に関しても湿度が侵入することができないので、長期的に熱接合性が維持される。
また、貯蔵室が高湿環境下にあり、その湿度が金属ピン134に影響する可能性があるので、金属ピン134は耐腐食性、耐錆性の性能を持った金属材料、もしくはアルマイト処理などの表面処理、コーティングを行っているので、さび等が発生せず、表面熱抵抗の増加が抑制され、安定した熱伝導が確保できる。
さらに、霧化電極135表面がニッケルメッキや金メッキや白金メッキを用いているので、霧化電極先端の放電による磨耗が抑制され、これにより、霧化電極135先端の形状が維持できるので、長期に噴霧することが可能となり、また、その先端の液滴形状も安定する。
なお、霧化電極135から微細ミストが噴霧されるとき、イオン風が発生する。このとき、湿度供給口138より、新たに高湿な空気が霧化部139に流入するため、連続して噴霧することができる。
発生した微細ミストは、下段収納容器119内に噴霧されるが非常に小さい微粒子のため拡散性が強く、上段収納容器120にも微細ミストは到達する。噴霧される微細ミストは、高圧放電で生成されたため、マイナスの電荷を帯びている。野菜室107内には青果物である野菜の中でも緑の菜っ葉ものや果物等も保存されており、これらの青果物は蒸散あるいは保存中の蒸散によってより萎れやすいものである。野菜室内に保存されている野菜や果物の中には、通常、購入帰路時での蒸散あるいは保存中の蒸散によってやや萎れかけた状態のものが含まれており、プラスの電荷をもつ。よって、霧化されたミストは、野菜の表面に集まりやすく、これにより保鮮性が向上する。
また、野菜表面に付着したナノレベルの微細ミストは、OHラジカルなどのラジカルと微量ではあるがオゾンなどを多く含んでおり、殺菌、抗菌、除菌などに効果がある。さらに、酸化分解による農薬除去や抗酸化によるビタミンC量などの栄養素の増加を野菜に促す。
ここで、霧化電極135に水がないときは、放電距離が離れ、空気の絶縁層を破壊することができず、放電現象がおこらない。これにより霧化電極と対向電極間に電流がながれない。この現象を冷蔵庫100の制御手段146で検知することにより電圧印加部133の高圧をON/OFFすることもできる。
次に図6の本実施の形態の一例の機能ブロック図を説明する。
静電霧化装置131から出力される放電電流モニター電圧値211と、霧化電極温度検知手段212と、扉開閉検知部213の信号を冷蔵庫本体の制御手段215に入力し、静電霧化装置131の高圧を印加させるための電圧印加部133と仕切り壁ヒータ154と金属ピンヒータ158の動作を決定する。例えば、霧化電極温度検知手段212により霧化電極温度が露点以下と制御手段215で判定されたとき、静電霧化装置131の電圧印加部の高圧を発生させる。また、霧化電極135が凍結の可能性のある温度や、扉開閉動作が頻繁におこなわれ、野菜室107内が非常に高湿であり、霧化電極135が過剰結露状態と想定される場合、仕切り壁ヒータ154もしくは、金属ピンヒータ158に通電、加熱させ、霧化電極135表面に付着している結露水を融解・蒸発させ、霧化電極135の水量を調整する。
なお、霧化電極温度検知手段212を用いているが、冷蔵庫100の冷凍サイクルから温度挙動の推定が容易である場合、温度検知手段はなくてもよい。また、冷蔵室ダンパ214の挙動により貯蔵室内の湿度が変動するので、冷蔵室ダンパ214と連動して、電圧印加部133をON/OFFさせてもよい。
さらに、実施例では冷蔵室ダンパ214としているが、野菜室ダンパでもかまわない。
次に図7の本実施の形態の一例の制御フローを説明する。
霧化電極135温度を制御するため、霧化電極温度判定を行う。ステップ250で霧化電極温度調整モードにいると、ステップ251で霧化電極温度Tがあらかじめプログラムされた第1の値Tより高い場合(例えばT=6℃)、霧化電極135は温度が高温のため結露していない、もしくは、庫内温度が高いと判定し、ステップ252に移行、静電霧化装置131の高圧発生を停止するとともに、金属ピン134を加熱する、例えば、金属ピンヒータ158の通電を停止させる。もし、霧化電極温度Tがあらかじめプログラムされた第1の値Tより低い場合、ステップ253に移行する。ステップ253において霧化電極温度Tがあらかじめプログラムされた第2の値Tより高い場合(例えばT=−6℃)、霧化電極135は適温であると判定し、ステップ254に移行、静電霧化装置131の高圧発生を発生させる。ただし、金属ピン134を加熱する手段は動作させない。もし、霧化電極温度Tがあらかじめプログラムされた第2の値Tより低い場合、ステップ255に移行する。次に、ステップ255において、霧化電極温度Tがあらかじめプログラムされた第3の値Tより高い場合(例えばT=−10℃)、霧化電極135は、過冷状態であると判定し、ステップ256に移行する。ステップ256により霧化電極135の放電は継続するものの、凍結防止のため金属ピンヒータ158や仕切り壁ヒータ154などの加熱手段を動作させる。もし、ステップ255で霧化電極温度TfがT3より低いと判定したときは、霧化電極が凍結していると想定し、放電を停止させ、金属ピンヒータ158や仕切り壁ヒータ154などの加熱手段を動作させ、霧化電極135を加熱・昇温させ、優先的に霧化電極135に付着した霜・氷を融解する。
ステップ252、ステップ254、ステップ256、ステップ257終了後は、一定時間経過後、初期ステップに戻り、制御を引き続き行い霧化電極135の水量調整を行う。
以上のように、本実施の形態1においては、断熱区画された貯蔵室と、貯蔵室内にミストを噴霧させる静電霧化装置を備え、霧化部には高電圧を発生する電圧印加部に電気的に接続させる霧化電極と、霧化電極に対向する位置に配された対向電極と、霧化電極の水量を調整する手段を構成し、霧化電極に空気中の水分を結露させて貯蔵室にミストとして噴霧することにより、貯蔵室内の余剰な水蒸気から容易に、確実に霧化電極に結露させることができるとともに、霧化電極先端の水量を調整することで安定的・継続的に霧化電極と対向電極間でコロナ放電が起こり、これによりナノレベルの微細ミストが生成、噴霧された微細ミストが野菜等の青果物の表面に均一に付着し、青果物からの蒸散を抑制し、保鮮性を向上させることができる。また、青果物表面の細胞間隙や気孔等から、組織内に浸透し、萎んだ細胞内に水分が供給され、シャキッとした状態に復帰させることができる。
また、霧化電極と対向電極と間で放電させるので、電界が安定に構築できることによって噴霧方向が定まり、収納容器内に微細ミストが噴霧しやすくなる。
また、ミスト発生時に同時に発生するオゾンやOHラジカルにより脱臭、食品表面の有害物質除去、防汚などの効果を高めることができる。
また、噴霧されたミストは直接、野菜容器内の食品に噴霧することができ、ミストと野菜の電位を利用して野菜表面にミストを付着させることができるので、保鮮の効率が向上すると同時に脱臭、食品表面の有害物質除去、防汚などの効果もさらに向上する。
また、霧化電極に貯蔵室内の余剰な水蒸気を結露させ、水滴を付着させ、ミストを噴霧することからミスト噴霧用の水を供給する為の除霜ホースや浄化フィルター、もしくは水道直結の水供給経路、貯水タンクなどが不要であり、また、ポンプやキャピラリなどの送水手段等も使用しておらず、複雑な構成を要することなく、簡単な構成で貯蔵室へ微細ミストを供給することができる。
このように簡単な構成で安定的に貯蔵室へ微細ミストを供給することができるので、冷蔵庫の故障の可能性を大幅に低減することができ、信頼性をより高めた上で冷蔵庫の品質を向上させることができる。
さらに、水道水ではなく結露水を用いるためミネラル成分や不純物がないため、保水材を用いたときの劣化や目詰まりによる保水性の劣化を防ぐことができる。
さらに、超音波振動による超音波霧化ではないので、水の欠損による圧電素子の破壊、その周囲部材の変形の心配がなく、また、貯水タンクが不必要であり、入力も小さいので庫内の温度影響が少ない。
さらに、電圧印加部が収納されている部分についても奥面仕切り壁111に埋め込まれて、冷却されているので基板の温度上昇を抑えることができる。これにより、貯蔵室内の温度影響を少なくすることができると同時に基板の信頼性も向上する。
また、本実施の形態では、貯蔵室を断熱区画するための仕切り壁を備え、静電霧化装置は仕切り壁に取り付けたことにより、貯蔵室内の間隙に設置することで収納容積を減少することがなく、また、奥面に取り付けられていることで容易に人の手に触れることができないので安全性も向上する。
また、本実施の形態では、静電霧化装置の霧化電極を冷却・加熱し、霧化電極先端の結露量を調整できる調整手段は、熱伝導性のよい金属片からなる金属ピンであって、その金属片を冷却・加熱する手段は、冷却器で生成された冷気が流れる風路からの熱伝導とヒータの加熱手段であるため、断熱材の壁厚とヒータ入力値を調整することで金属ピンおよび霧化電極の温度を簡単に設定することができ、また、断熱材を挟むことにより冷気の漏れがないのとヒータ等の加熱手段を備えているのでケース外郭などの着霜や結露などの信頼性低下を防止することができる。
また、本実施の形態では、静電霧化装置が取り付けられている奥面仕切り壁111は、貯蔵室側の一部に凹部があり、そこに静電霧化装置の水量調整手段である金属片が挿入されていることにより、青果物や食品などを収納する収納量に影響することがなく、静電霧化装置を取り付けている部分以外は、断熱性が確保できる壁厚が確保できるのでケース内の結露を防止することができ、信頼性を向上することができる。
また、本実施の形態では、冷却器と貯蔵室を断熱区画するための仕切り壁には、貯蔵室もしくは冷却器に冷気を搬送するための少なくとも1つの風路と、貯蔵室や他の風路と熱影響がないよう断熱された断熱材が備えられ、静電霧化装置の霧化電極の温度を可変するための手段は、熱伝導性のよい金属片であって、その金属片の温度を調節する手段は、冷却器で生成された冷気とヒータなどの加熱手段を用いて調整することにより、確実の霧化電極の温度を調整することができる。
さらに、霧化電極先端が過剰結露を防止するために水量調整手段の一つとしてヒータなどの加熱手段を備えたことにより、先端温度の温度制御により先端液滴の大きさ・量を調整することができるので、安定的に噴霧することができ、さらに抗菌能力の向上ができる。
なお、微細ミスト発生時にオゾンも微量ながら発生するが、放電電流値が極めて小さいため、また、基準電位を0V、対向電極を+7kVのプラス側で放電させるため、人が感じる濃度にはならない。さらに、静電霧化装置のON/OFF運転により、貯蔵室内のオゾン濃度を調整することが出来るので、その濃度を適度に調整することにより、オゾン過多による野菜の黄化などの劣化を防止し、かつ、野菜表面の殺菌、抗菌作用を高めることが出来る。
なお、本実施の形態では、霧化電極を基準電位側(0V)と対向電極(+7kV)間に高圧電位差を発生させたが、対向電極を基準電位側(0V)とし、霧化電極に印加(−7kV)し、高圧電位差を発生させてもよい。この場合、貯蔵室に近い対向電極が基準電位側になるので、人が対向電極に近づいても感電等を起こさない。また、霧化電極に−7kVにした場合、貯蔵室側を基準電位側とすれば、特に対向電極を持たなくてもよい場合もある。
なお、本実施の形態では、金属ピンを冷却するための風路は、冷凍室吐出風路としたが、製氷室の吐出風路や、冷凍室戻り風路などの低温風路でもかまわない。これにより、静電霧化装置の設置可能場所が拡大する。
なお、本実施の形態では、伝熱接続部材である金属ピンを冷却する冷却手段は、冷蔵庫の冷凍サイクルで生成された冷却源を用いて冷却された冷気としたが、冷蔵庫の冷却源からの冷気もしくは冷温を用いた冷却管からの熱伝達を用いるものであってもよい。これにより、この冷却管の温度を調節することで、電極冷却部を任意の温度に冷却することができ、霧化電極を冷却する際の温度管理を行いやすくなる。
なお、本実施の形態では、静電霧化装置の霧化電極周囲には、保水材を設けなかったが、保水材を配設してもよい。これにより、霧化電極近傍で生成された結露水を霧化電極周囲に保持することができるので霧化電極に適時に供給することができる。
なお、本実施の形態において、冷蔵庫の貯蔵室は野菜室としたが、冷蔵室や切替室などの他の温度帯の貯蔵室でもよく、この場合、様々な用途に展開が可能となる。
また、本実施の形態では、金属ピンを用いたが、良熱伝導部材であればよく、例えば、高熱伝導性の高分子材料を用いてもかまわない。この場合、軽量化と加工性が向上し、その構成が安価になる。
(実施の形態2)
図8は、本発明の実施の形態2における図2のA−A部の静電霧化装置近傍の詳細断面図である。
本実施の形態では、実施の形態1で説明した構成と異なる部分を中心に詳細な説明を行い、実施の形態1と同一構成である部分および同一の技術思想が適用できる部分については、詳細な説明を省略する。
図において、奥面仕切り壁111は、ABSなどの樹脂で構成された奥面仕切り壁表面151と、発泡スチロールなどを用いた断熱材152とで構成されている。また風路156と冷却室110とを隔離、断熱性を確保するための冷却室仕切り板401が備えられている。ここで、奥面仕切り壁111の貯蔵室内側の壁面の一部に凹部111aおよび貫通部111cを設け、さらに伝熱接続部材である金属ピン134が貫通部111cに挿入されることで霧化装置である静電霧化装置131が設置されている。
このとき、伝熱接続部材である金属ピン134の一部は断熱材を貫通し、低温風路156の一部に露出している。また、低温風路は、金属ピン背面の貫通部111c近傍で、断熱材凹部155が構成されており、風路が一部拡大している。
さらに、静電霧化装置131の霧化部139近傍には、霧化先端部である霧化電極135と金属ピン134の温度を調整するための加熱手段である金属ピンヒータ158が構成されている。
なお、金属ピン134は耐腐食性、耐錆性の性能を持った金属材料、もしくはアルマイト処理などの表面処理、コーティングを行った材料を選択したほうが好ましい。
以上のように構成された冷蔵庫について、以下その動作、作用を説明する。
奥面仕切り壁111の比較的高湿度環境である箇所の一部について、断熱材152が、他の箇所より壁厚が薄く、特に、金属ピン134の側壁近傍の断熱材152の厚みは例えば2mm〜10mm程度で構成されている。これにより、奥面仕切り壁111は凹部111aが構成され、この箇所に静電霧化装置131が取り付けられている。
金属ピン134は背面にある低温風路156に一部が露出している。冷凍サイクルの運転により冷却器112で生成し、冷却ファン113により野菜室温度より低温の冷気と加熱手段である金属ピンヒータ158や仕切り壁ヒータ154によって、金属ピン134が例えば0〜−6℃程度に調整される。このとき、金属ピン134は、良熱伝導部材であるため、冷熱を非常に伝えやすく、霧化電極135も0〜−6℃程度に調節される。
このとき、低温風路156の断熱材凹部近傍に向けて徐々に拡大されるので風路抵抗が下がるので冷却ファン113の風量が増加し、冷凍サイクル効率が向上する。
水滴が付着した霧化電極135に負電圧、対向電極136を正電圧側として、電圧印加部133によりこの電極間に高電圧(例えば4〜10kV)を印加させる。このとき電極間でコロナ放電が起こり、霧化電極135の先端の水滴が、静電エネルギにより微細化され、さらに液滴が帯電しているためレイリー分裂により数nmレベルの目視できない電荷をもったナノレベルの微細ミストと、それに付随してオゾンやOHラジカルなどが発生する。電極間に印加する電圧は、4〜10kVと非常に高電圧であるが、そのときの放電電流値は数μA、入力としては0.5〜1.5Wと非常に低入力である。
発生した微細ミストは、下段収納容器119内に噴霧されるが非常に小さい微粒子のため拡散性が強く、上段収納容器120にも微細ミストは到達する。噴霧される微細ミストは、高圧放電で生成されたため、マイナスの電荷を帯びている。野菜室107内には青果物である野菜の中でも緑の菜っ葉ものや果物も保存されており、これらの青果物は蒸散あるいは保存中の蒸散によってより萎れやすいものである。野菜室内に保存されている野菜や果物の中には、通常、購入帰路時での蒸散あるいは保存中の蒸散によってやや萎れかけた状態のものが含まれており、プラスの電荷をもつ。よって、霧化されたミストは、野菜の表面に集まりやすく、これにより保鮮性が向上する。
また、野菜表面に付着したナノレベルの微細ミストは、OHラジカルと微量ではあるがオゾンなどを多く含んでおり、殺菌、抗菌、除菌などに効果がある他、酸化分解による農薬除去や抗酸化によるビタミンC量などの栄養素の増加を野菜に促す。
以上のように、本実施の形態2においては、冷却器と貯蔵室を断熱区画するための仕切り壁には断熱材が備えられ、静電霧化装置の霧化電極135(霧化先端部)の温度を露点以下に調整する手段は、熱伝導性のよい金属片からなる伝熱接続部材である金属ピン134であって、その金属ピン134の温度を調整する調整手段は、冷却器で生成された冷気からなる冷却手段と、金属ピン近傍に備えられた加熱手段であることにより、確実の霧化電極の温度を調整することができる。
また、本実施の形態では、静電霧化装置が取り付けられている仕切り壁は、貯蔵室側の一部に凹部があり、そこに静電霧化装置の冷却手段である金属片が挿入されているので、確実に金属片を冷却することができ、また、風路面積が徐々に広がることにより風路抵抗が減少、もしくは同等になるので冷却量の低下を防ぐことができる。また、金属ピンの風路への露出表面積とヒータ入力量で霧化電極の温度を容易に調整することができる。
なお、本実施の形態では、金属ピンを風路の凹部に設置しているが、金属ピンが適正温度を確保できるなら風路側に凹部を設けなくてもよい。この場合、風路が容易に加工できる。
(実施の形態3)
図9は、本発明の実施の形態3における図2のA−A部の静電霧化装置近傍の詳細断面図である。
本実施の形態では、実施の形態1および2で説明した構成と異なる部分を中心に詳細な説明を行い、実施の形態1および2と同一構成である部分および同一の技術思想が適用できる部分については、詳細な説明を省略する。
図に示すように、野菜室107と製氷室106の温度帯を区切るために断熱性を確保した第一の仕切り壁123に霧化装置である静電霧化装置131は、組み込まれており、特に霧化部139の伝熱接続部材である金属ピン134部については、その断熱材が凹形状になっており、その近傍に金属ピンヒータ158が構成されている。
以上のように構成された冷蔵庫について、以下その動作・作用を説明する。
静電霧化装置131が設置されている第一の仕切り壁123の厚さは、霧化先端部である霧化電極135が固定されている金属ピン134を冷却するための冷却能力が必要であり、静電霧化装置131が備えられている凹部123aの壁厚は他の部分より薄く構成されており、さらに金属ピン134が保持されている最深凹部123bの壁厚は凹部123aよりもさらに薄く構成されている。そのため、比較的低温である製氷室からの熱伝導により金属ピン134を冷却し、霧化電極135を冷却することが出来る。ここで、霧化電極135の先端温度を露点以下にすれば、霧化電極135近傍の水蒸気は霧化電極135に結露し、水滴が確実に生成される。
また、外気温度変動や速氷等の製氷室106の温調が変動し、霧化電極135が過冷になる場合があるため、霧化電極135近傍に設置された金属ピンヒータ158で霧化電極135の温度を調整することにより霧化電極135先端の水量を最適化する。
ここでは図示しないが庫内に庫内温度検知部や庫内湿度検知部などを設置することにより、あらかじめ決められた演算により厳密に庫内環境下の変化に応じて露点を割り出すことが出来る。
この状態で霧化電極135を負電圧側とし、対向電極136を正電圧側として、電圧印加部133によりこの電極間に高電圧(例えば7.5kV)を印加させる。このとき、電極間で空気絶縁層が破壊されコロナ放電が起こり、霧化電極135の水が電極先端から霧化し、目視できない1μm未満の電荷をもったナノレベルの微細ミストと、それに付随するオゾンやOHラジカルなどが発生する。
発生した微細ミストは、野菜容器内に噴霧される。静電霧化装置131から噴霧される微細ミストは、マイナスの電荷を帯びている。一方、野菜室内には青果物である野菜が収納されており、その中には緑の菜っ葉ものや果物等も保存されている。これらの青果物は、通常、購入帰路時での蒸散あるいは保存中の蒸散によってやや萎れかけた状態で収納されていることが多い。これらの青果物は通常、プラスの電荷に帯電されており、噴霧されたマイナスの電荷を持った微細ミストは、野菜表面に集まりやすい。よって、噴霧された微細ミストは野菜室内を再び高湿にすると同時に青果物の表面に付着し、青果物からの蒸散を抑制し、保鮮性を向上させる。また、野菜や果物の細胞の隙間から組織内に浸透し、水分が蒸散して、萎んだ細胞内に再び水分が供給され、細胞の膨圧によって萎れが解消され、シャキッとした状態に復帰する。
また、発生した微細ミストは、オゾンやOHラジカルなどを保持しており、これらは強い酸化力を保持する。そのため、発生した微細ミストが野菜室内の脱臭や野菜表面を抗菌、殺菌することが出来ると同時に、野菜表面に付着する農薬やワックスなどの有害物質を酸化分解・除去することが出来る。
現在、冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されているものが主流になっている。
この、炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。
仮に、圧縮機の停止時に冷凍システムから可燃性冷媒であるイソブタンが漏洩した場合には、空気よりも重いので、下方に漏洩することになる。このとき、奥面の仕切り壁111より、庫内へ冷媒が漏洩する可能性がある。特に、冷媒の滞留量が多い冷却器112から漏洩する場合には、漏洩量が多くなる可能性があるが、静電霧化装置131を具備する野菜室107は、冷却器112より上方に設置されているため、漏洩しても野菜室には漏洩することがない。
また、仮に野菜室107に漏洩したとしても、冷媒は空気より重いため貯蔵室下部に滞留する。よって、静電霧化装置131が貯蔵室天面に設置されているため、静電霧化装置131付近が可燃濃度になることは極めて低い。
以上のように、本実施の形態3は、貯蔵室を区画するための仕切り壁と、貯蔵室の天面側には低温貯蔵室が備えられ、静電霧化装置は天面の仕切り壁に取り付けたことにより、冷凍室や製氷室のような冷凍温度帯の貯蔵室が上部にある場合、それらを仕切る天面の仕切り壁に設置され、その冷却源で静電霧化装置の霧化電極を冷却し、結露させることができるので、特別な冷却装置が不必要で、また、天面から噴霧できるので収納容器全体に拡散しやすく、また、人の手にも触れにくいので安全性が向上させることができる。
また、本実施の形態の霧化部は静電霧化方式によってミストを生成するものであり、高電圧等の電気エネルギを使って水滴を分裂させ、細分化することによって微細ミストを発生させる。発生したミストは電荷を帯びている為、そのミストに野菜や果物等の付着させたい物と逆の電荷を持たすことによって、例えばプラスの電荷を持つ野菜に対してマイナスの電荷を帯びたミストを噴霧することにより、野菜や果物への付着力が向上するため、より均一に野菜表面にミストが付着するとともに、電荷を帯びていないタイプのミストと比較してミストの付着率をより向上させることが出来る。また、噴霧された微細ミストは直接、野菜容器内の食品に噴霧することができ、微細ミストと野菜の電位を利用して野菜表面に微細ミストを付着させることが出来るので、保鮮性を効率よく向上させることが出来る。
さらに、本実施の形態の補給水は、外部から供給する水道水ではなく結露水を用いる。そのためミネラル成分や不純物がなく、霧化電極先端の劣化や目詰まりによる保水性の劣化を防ぐことが出来る。
さらに、本実施の形態のミストはラジカルを含んでいることにより野菜表面に付着する農薬やワックスなどを極めて少ない水量で分解・除去出来るので節水ができ、かつ低入力化が出来る。
また、静電霧化装置を蒸発器より上方に配置していることから、イソブタンやプロパンなどの可燃性冷媒を用いて冷凍サイクルを構成した場合であって、かつ、冷媒が漏洩した場合も、空気より重いため冷媒が野菜室に充満することはないので安全である。
また、野菜室内においても静電霧化部を貯蔵室の上方に設置しているので、冷媒が漏洩しても、貯蔵室の下部に滞留するので着火することはない。
なお、貯蔵室内は冷媒配管等に直接面している部分がないので、冷媒が漏洩することはない。よって、可燃性冷媒に着火することはない。
(実施の形態4)
図10は、本発明の実施の形態4における図2のA−A部の静電霧化装置近傍の詳細断面図である。
本実施の形態では、実施の形態1から3で説明した構成と異なる部分を中心に詳細な説明を行い、実施の形態1から3と同一構成である部分および同一の技術思想が適用できる部分については、詳細な説明を省略する。
図において奥面仕切り壁111は、ABSなどの樹脂で構成された奥面仕切り壁表面151と断熱性を確保するための発泡スチロールなどで構成された断熱材152で構成されている。また風路156と冷却室110とを隔離する、冷却室仕切り板401が備えられている。ここで、奥面仕切り壁111の貯蔵室内側の壁面の一部に他の箇所より低温になるように凹部111aを設け、霧化装置である静電霧化装置131が設置されている。
静電霧化装置131は、主に霧化部139、電圧印加部133、外郭ケース137で構成され、外郭ケース137の一部には、噴霧口132と湿度供給口138が構成されている。霧化部139は、霧化先端部である霧化電極135が設置され、霧化電極135は良熱伝導材を用いた霧化電極側固定部材202で固定されている。
霧化電極側固定部材202の背面には貫通部111cが備えられ、霧化電極135の温度を調整するためのペルチェ素子を含んだペルチェモジュール201の片面に隣接している。また、ペルチェモジュール201のもう一面にも良熱伝導部材を用いた風路側熱伝導部材203が隣接しており、さらに風路側熱伝導部材203にも熱交換部材204が構成されており、貫通部111cに備えられている。
以上のように構成された冷蔵庫について、以下その動作、作用を説明する。
霧化電極135背面にある低温風路156は、冷凍サイクルの運転により冷却器112で冷気を生成し、低温風路内を冷気が搬送される。このとき、ペルチェ素子を含んだペルチェモジュール201に電圧を印加させると、その印加方向と、印加電圧値により霧化電極を露点以下に調整できる。例えば、霧化電極135に対して冷却が必要としたとき、ペルチェモジュールの吸熱面を霧化電極側、放熱面を風路側として電圧を印加する。反対に、霧化電極135に対して加熱が必要としたとき、ペルチェモジュール201の吸熱面を風路側、放熱面を霧化電極135側として電圧を印加する。これにより、霧化電極135先端に適時、水が確保でき、安定した霧化が可能となる。
以上のように、本実施の形態においては、静電霧化装置の霧化電極に付着する水量を調整手段は、ペルチェ素子を利用することにより、ペルチェ素子への印加電圧だけで霧化電極の温度が調整でき、また、電圧の反転等を行えば、冷却・加温の双方できるのでヒータなどの追加の必要がない。
また、本実施の形態では、ペルチェモジュール201への印加電圧の微調整で極めて細かい温度制御が可能となるため、霧化電極の先端水量の細かい制御ができる。
また、本実施の形態では、ペルチェモジュールが加熱手段と冷却手段を兼ねることから特に加熱手段が不必要となるため、構成部品が簡素化される。
なお、本実施の形態では、霧化部近傍に温度センサや湿度センサを設けていないが、設置することによりさらに精密な制御が可能となり、安定した噴霧が可能となる。
なお、風路側熱伝導部材203熱交換部材204を一体にしてもかまわない。これにより両部材間の接触熱抵抗がなくなるので熱伝導が良好になり、応答性がよくなる。
また、霧化電極135と霧化電極側固定部材を一体にしてもかまわない。これにより両部材間の接触熱抵抗がなくなるので熱伝導が良好になり、応答性がよくなる。
このように、ペルチェ素子への印加電圧だけで霧化電極の温度が調整でき、霧化電極を単独で任意の温度に調節することが可能である。
また、電圧の反転等を行うだけで、冷却と加温の双方を実現できるので冷却手段や加熱手段としてのヒータなどの特別な装置を追加する必要がなく、簡単な構造で冷却と加温の双方を行い、その温度応答性も速くなるので水量の調整手段の応答性も向上した上で任意の温度へと調節することが可能となり、より霧化部の精度を向上させることが可能となる。
(実施の形態5)
図11は、本発明の実施の形態5における静電霧化装置近傍の詳細断面図である。
本実施の形態では、実施の形態1から4で説明した構成と異なる部分を中心に詳細な説明を行い、実施の形態1から4と同一構成である部分および同一の技術思想が適用できる部分については、詳細な説明を省略する。
図において霧化装置である静電霧化装置131は、主に霧化部139、電圧印加部133、外郭ケース137で構成され、外郭ケース137の一部には、噴霧口132と湿度供給口138が構成されている。霧化部139は、霧化先端部である霧化電極135が外郭ケース137に固定されており、霧化電極135は伝熱接続部材である金属ピン134が備えられ、その近辺には霧化電極135の温度を調整できるように加熱手段である金属ピンヒータ158が構成されている。また、霧化電極135に対向している位置で貯蔵室側にドーナツ円盤状の対向電極136が、霧化電極135の先端と一定距離を保つように取り付けられ、その延長上に噴霧口132が構成されている。
静電霧化装置131の背面には貯蔵室を冷却するための冷却器301が隣接されており、静電霧化装置131は奥面仕切り壁111の凹部111aに固定されている。
以上のように構成された冷蔵庫について、以下その動作、作用を説明する。
圧縮機109で高温高圧に圧縮された冷媒は凝縮器(図示せず)で放熱され、低温になる。ここでキャピラリなどの減圧装置(図示せず)により冷媒が減圧され、低温の状態で冷却器301へ冷媒が流れる。ここで、冷却器301は比較的低温状態となり、その熱伝導で霧化電極135が露点以下になり、先端が結露する。ここで、霧化電極と対向電極間に電圧印加部で発生した高電圧を両極間に印加すると微細ミストが発生し、野菜室内に噴霧される。
以上のように、本実施の形態においては、霧化装置である静電霧化装置の霧化先端部(霧化電極135)に結露させる水量の調整手段は、冷却手段として貯蔵室を冷却するための冷却器301を利用し、加熱手段として熱交換器を利用することにより、冷蔵庫の冷却源である冷却器301で直接霧化先端部(霧化電極135)を冷却することができ、その温度応答性も速くなる。
このように、温度調整手段を冷凍サイクルを利用して伝熱接続部材および霧化電極の温度を調整することができるので、より省エネルギで霧化電極の温度調節を行うことができる。
また、調節手段の加熱手段として熱交換器を利用することで、冷凍サイクル内で発生したエネルギを回収し、有効利用することが可能となるので、冷凍サイクルの熱効率がより向上し、省エネルギを実現した冷蔵庫を提供することができる。
なお、本実施の形態では、冷凍サイクルに関して、冷却器の温度を調整するために膨張弁を用いてもよい。これによりその絞り量で冷却器の温度が調整できる。
(実施の形態6)
図12は本発明の実施の形態6における図2のA−A部の静電霧化装置近傍の詳細断面図である。
本実施の形態では、実施の形態1から5で説明した構成と異なる部分を中心に詳細な説明を行い、実施の形態1から5と同一構成である部分および同一の技術思想が適用できる部分については、詳細な説明を省略する。
図において、奥面仕切り壁111は、ABSなどの樹脂で構成された貯蔵室を区画する仕切り壁である奥面仕切り壁表面151と、野菜室107と冷凍室吐出風路141との間の断熱性を確保するための発泡スチロールなどで構成された断熱材152とで構成される。また、貯蔵室を冷却する冷気が通る風路である冷凍室吐出風路141と冷却室110とを隔離するための仕切り板401を備えており、また、奥面仕切り壁表面151には、貯蔵室の温度調節をするためにヒータ等の加熱手段154が奥面仕切り壁表面151と断熱材152の間に設置されている。
ここで、奥面仕切り壁111の貯蔵室内側の壁面の一部に凹部111aを設け、その箇所に静電霧化装置131が埋設されている。
静電霧化装置131は霧化部に備えられた霧化先端部である霧化電極135を冷却手段によって露点温度以下に冷却することで、霧化部周辺の空気中の水分を霧化電極に結露させて生成した結露水をミストとして噴霧させるものである。
この結露を行う際に、本実施の形態では冷却手段として風路である冷凍室吐出風路141を流れる低温冷気を冷却手段とし、また霧化電極135を直接冷却するのではなく、霧化電極135よりも大きな熱容量を有する伝熱接続部材である金属ピン134を介して霧化電極135を冷却しているものである。
また、凹部111aよりもさらに深い最深凹部111bを設け、伝熱接続部材である金属ピン134がこの最深凹部111bに備えられている。
この最深凹部111bの背面側すなわち冷却室110側の断熱材152は、金属ピン134を冷却するために薄く形成されることが理想的であるが、発泡スチロール等の成型において、極端な薄肉部を設けることは、困難であり、また、強度不足や成型不良による割れ、穴あきなどの不具合が発生する可能性が高くなり、品質の劣化が懸念される場合がある。
そこで、本実施の形態では、金属ピン134の背面近傍の断熱材に突起部402を設けることにより、平面部に比べて金属ピン134周辺の剛性を高めた上で、断熱材の壁厚を確保してさらに剛性を高めた形状とした。また、突起部162によって金属ピン134を側面側と背面側の両方から冷却することができる構成とし、熱伝導のための表面積を増加させた。
また、突起部162の形状を斜面を円錐状にすることにより、風路抵抗の増加を抑制することで、風量低下を抑制する。
また、金属ピン134の近傍には、金属ピンの温度を調整するための金属ピンヒータ403が構成されている。
以上のように構成された冷蔵庫について、以下その動作、作用を説明する。
伝熱接続部材である金属ピン134は熱緩和部材である断熱材を介して冷却されるので、霧化電極135を伝熱接続部材である金属ピン134で間接的に冷却するものにさらに、熱緩和部材である断熱材152を介して二重構造で間接的に冷却することができ、また、金属ピンヒータ403により霧化先端部である霧化電極135の温度を調整することにより極度に冷却されることを防ぐことができる。霧化電極135が極度に冷却されると、それに伴い結露量が多大となり霧化部139の負荷の増大による静電霧化装置131への入力の増大および霧化部139の凍結などによる霧化不良が懸念されるが、こういった霧化部139の負荷増大による不具合を防ぐことができ、適切な結露量を確保することができ、低入力で安定的なミスト噴霧を実現することができる。
また、霧化電極135を伝熱接続部材と熱緩和部材とを介して二重構造で間接的に冷却することで、冷却手段の温度変化が霧化電極に直接的に大きな影響を与えることをさらに緩和することができるので、霧化電極の負荷変動を抑え、安定した噴霧量のミスト噴霧を実現することができる。
また、伝熱接続部材である金属ピン134の冷却は、冷却室110で生成された冷気を用いており、金属ピン134は熱伝導性のよい金属片で形成したので、冷却手段は、冷却器112で生成された冷気が流れる風路からの熱伝導だけで必要な冷却を行うことができる。
また、この時、本実施の形態の伝熱接続部材である金属ピン134は霧化電極と逆側に凸部134aを有する形状をしているので、霧化部の中で凸部134a側の端部134b側が冷却手段に最も近接する為、金属ピン134の中でも霧化電極135から最も遠い端部134b側およびその側面部側から冷却手段である冷気によって冷却されることとなる。
このように霧化電極135を伝熱接続部材である金属ピン134を介して熱伝導で冷やすため、霧化電極135では、結露生成、ミストの発生ができ、その他の箇所については断熱性を確保していることにより、例えば、外郭ケース137の結露などを防止している。
さらに静電霧化装置131と冷凍室風路141の間は、連通している箇所がないので低温冷気が庫内に漏れてくることもないので、貯蔵室やその周辺部品が結露や低温異常などを起こすことがない。
このように簡単な構造で冷却手段を構成することができるので、故障が少なく信頼性が高い霧化部を実現することができる。また、冷凍サイクルの冷却源を利用して伝熱接続部材および霧化電極の冷却を行うことができるので、省エネルギで霧化を行うことができる。
このように冷却手段によって冷却する際に、伝熱接続部材である金属ピン134の霧化電極135から最も距離の離れた遠い部分である端部134b側から冷却することで、金属ピン134の大きな熱容量を冷却した上で、金属ピン134によって霧化電極135が冷却されることで、冷却手段の温度変化が霧化電極135に直接的に大きな影響を与えることをさらに緩和し、より変動負荷の小さく安定的なミスト噴霧を実現することができる。
また、霧化部が取り付けられている奥面仕切り壁111は、貯蔵室側の一部に凹部111aがあり、この凹部111aよりもさらに深い最深凹部111bに凸部134aを有した霧化部が挿入されることによって、熱緩和部材として貯蔵室の仕切り壁を構成する断熱材152を用いることができ、特別な熱緩和部材を備えることなく断熱材の厚みを調整することで霧化電極が適度に冷却されるような熱緩和部材を備えることができ、霧化部139をより簡単な構成にすることができる。
また、奥面仕切り壁111内の背面側に備えられた風路141では、一部円錐状の突起部161が断熱材152で形成されるものの冷気の流れ方向に対して、抵抗にならないように緩やかな斜面で形成されているので冷却能力劣化を防止しているとともに金属ピン134に対しては熱伝導面積が増加しているので金属ピンに対する冷却効率が向上している。
このように、本実施の形態では、金属ピン134の背面近傍の断熱材に突起部162を設けることにより、平面部に比べて金属ピン134周辺の剛性を高めた上で、断熱材の壁厚を確保してさらに剛性を高めた場合でも、金属ピンを側面側と背面側の両方から冷却することができるので、熱伝導のための表面積を増加させることができ、金属ピン134の冷却効率を低下させることなく金属ピン134周辺の剛性を高めることができる。
また、突起部の形状において斜面を円錐状にすることにより、冷気は、冷気の流れ方向に対して曲面である突起部161の外周をなめるように流れるので風路抵抗の増加を抑制すると共に、金属ピンが側壁の外周から均一に冷却されることで、金属ピン134をムラなく冷却でき、金属ピン134を介して霧化電極135を効率よく冷却することができる。
また、伝熱接続部材である金属ピン134は、ある程度の熱容量を確保できているので冷却風路からの熱伝導の応答を緩和することができるので、霧化電極の温度変動を抑制することができ、また蓄冷の働きを有することになるので、霧化電極の結露発生の時間を確保し、凍結も防止することができる。
また、霧化装置を静電霧化装置131としたことで、発生した微細ミストは、非常に小さい微粒子のため拡散性が高く、野菜室107全体へ微細ミストは到達する。噴霧される微細ミストは、高圧放電で生成されたため、マイナスの電荷を帯びているので、野菜室107内にはプラスの電荷をもつ青果物である野菜が収納されているので、霧化されたミストは、野菜の表面に集まりやすく、これにより保鮮性が向上する。
また、野菜表面に付着したナノレベルの微細ミストは、OHラジカルと微量ではあるがオゾンなどを多く含んでおり、殺菌、抗菌、除菌などに効果がある他、酸化分解による農薬除去や抗酸化によるビタミンC量などの栄養素の増加を野菜に促す。
ここで、霧化電極135に水がないときは、放電距離が離れ、空気の絶縁層を破壊することができず、放電現象がおこらない。これにより霧化電極と対向電極間に電流がながれない。この現象を冷蔵庫100の制御手段146で検知することにより電圧印加部133の高圧をON/OFFすることもできるので、庫内への熱負荷の抑制と省エネルギが図れる。
以上のように、本実施の形態6においては、霧化部の凸部である金属ピン背面の断熱材について、円錐状の突起部を設けることにより、金属ピンへの冷却能力を確保しつつ断熱壁の剛性を向上させることで断熱材の成型を容易にすることができ、また、冷凍室吐出風路の流路抵抗を最小限に抑えることで、金属ピンへの冷却能力を確保することができる。
また、本実施の形態では、断熱材の壁厚を確実に確保することにより、野菜室107と隣接する別区画の冷凍室吐出風路141との間に冷温冷気の漏れがないのでケース外郭などの着霜や結露などの信頼性低下を防止することができる。
なお、本実施の形態では、金属ピンを冷却するための冷却手段としての風路は、冷凍室吐出風路としたが、製氷室の吐出風路や、冷凍室戻り風路などの低温風路でもかまわない。また、風路に限らず野菜室107よりも低温の貯蔵室内の冷気を用いても良い。これにより、静電霧化装置の設置可能場所が拡大する。
なお、本実施の形態では、伝熱接続部材である金属ピンを冷却する冷却手段は、冷蔵庫の冷凍サイクルで生成された冷却源を用いて冷却された冷気としたが、冷蔵庫の冷却源からの冷気もしくは冷温を用いた冷却管からの熱伝達を用いるものであってもよい。これにより、この冷却管の温度を調節することで、電極冷却部を任意の温度に冷却することができ、霧化電極を冷却する際の温度管理を行いやすくなる。
また、本実施の形態では、伝熱接続部材である金属ピンを冷却する冷却手段は低温冷気としたが、ペルチェ効果を用いたペルチェ素子を補助部品として用いてよく、この場合、ペルチェへの供給電圧により霧化電極先端の温度を極めて細かい温度で制御できる。
なお、本実施の形態では、静電霧化装置の外郭と断熱材の凹部の間には、緩衝材を用いていないが、金属ピンへの湿度侵入防止やがたつき防止のためウレタンフォームなどの緩衝材を静電霧化装置の外郭ケースもしくは断熱材の凹部に構成するとさらに望ましく、金属ピンへの湿度流入を防止でき、断熱材に結露することを防止できる。
なお、本実施の形態では、霧化電極周囲には、保水材を設けなかったが、保水材を配設してもよい。これにより、霧化電極近傍で生成された結露水を霧化電極周囲に保持することができるので霧化電極に適時に供給することができる。さらに、野菜室内に保水材や密閉化手段を講じることにより、高湿度を維持することもできる。
なお、本実施の形態において、冷蔵庫の貯蔵室は野菜室としたが、冷蔵室や切替室などの他の温度帯の貯蔵室でもよく、この場合、様々な用途に展開が可能となる。
(実施の形態7)
図13は本発明の実施の形態7における図2のA−A部の静電霧化装置近傍の詳細断面図である。
本実施の形態では、実施の形態1〜6で詳細に説明した構成と異なる部分についてのみ詳細な説明を行い、実施の形態1〜6で詳細に説明した構成と同じ部分もしくは、同じ技術思想が適用できる部分については、説明を省略する。
図において、奥面仕切り壁111は、ABSなどの樹脂で構成された奥面仕切り壁表面151と野菜室107と冷凍室吐出風路141との間の断熱性を確保するための発泡スチロールなどで構成された断熱材152で構成される。また、冷凍室吐出風路141と冷却室110とを隔離するための仕切り板401を備えており、また、奥面仕切り壁表面151には、貯蔵室の温度調節をする、もしくは表面の結露を防止するためヒータ等の加熱手段154が奥面仕切り壁表面151と断熱材152の間に設置されている。
ここで、奥面仕切り壁111の貯蔵室側の壁面の一部に他の箇所より低温になるように凹部111aを設け、その箇所に静電霧化装置131が設置されている。
静電霧化装置131は主に霧化部139、電圧印加部133、外郭ケース137で構成され、外郭ケース137の一部には、噴霧口132と湿度供給口138が構成されている。霧化部139は、霧化電極135が設置され、霧化電極135はアルミニウムやステンレスなどの良熱伝導部材からなる伝熱接続部材である金属ピン134に固定されて接続し、また、電気的にも電圧印加部から配線されている一端を含め接続している。
この伝熱接続部材である金属ピン134は霧化電極135に比べて50倍以上、好ましくは100倍以上の大きな熱容量を有するものであり、例えば、アルミや銅などの高熱伝導部材が好ましく、金属ピン134の一端からもう一端に冷熱を熱伝導で効率よく伝導させるため、その周囲は断熱部材で覆われていることが望ましい。
また、凹部111aの背面側に貫通部405が設けられ、伝熱接続部材である金属ピン134の凸部134aがこの貫通部405に備えられている。
この伝熱接続部材である金属ピン134が備えられる貫通部405は、発泡スチロール等の成型において、本実施の形態のような貫通孔を設けると、断熱壁の剛性が低下し、強度不足や成型不良による割れ、穴あきなどの不具合が発生する可能性が高くなり、品質の劣化が懸念される場合がある。
そこで、本実施の形態では、貫通部405近傍の断熱材に突起部162を設けることにより、平面部に比べて貫通部405周辺の剛性を高めた上で、断熱材の壁厚を確保してさらに剛性を高めた形状とした。また、突起部162によって金属ピンを側面側と背面側の両方から冷却することができる構成とした。
金属ピン134を直接風路内に設置すると、冷却過多になり霧化電極135の結露量が過多になるもしくは、凍結する可能性があるが、風路抵抗の増加を抑制する目的で、突起部162の形状を斜面を円錐状にしている。
また、金属ピン134の背面近傍の断熱材に貫通孔である貫通部405を設け、そこに金属ピン134を挿入し、その周囲に金属ピンカバー406を設置することにより、断熱性を確保する。
なお、図示はしないが、貫通部405と金属ピンカバー406に緩衝材を設け、シール性を確保してもよい。
さらに、孔開口部407に図示はしないが、テープなどを貼付することにより冷気の遮断を行ってもよい。
以上のように構成された冷蔵庫について、以下その動作、作用を説明する。
伝熱接続部材である金属ピン134は金属ピンカバー406を介して冷却されるので、霧化電極135を金属ピン134で間接的に冷却するものにさらに、熱緩和部材である金属ピンカバー406を介して二重構造で間接的に冷却することができ、霧化電極135が極度に冷却されることを防ぐことができる。霧化電極135が極度に冷却されると、それに伴い結露量が多大となり霧化部139の負荷の増大による静電霧化装置131への入力の増大および霧化部139の凍結などによる霧化不良が懸念されるが、こういった霧化部139の負荷増大による不具合を防ぐことができ、適切な結露量を確保することができ、低入力で安定的なミスト噴霧を実現することができる。
また、霧化電極135を伝熱接続部材と熱緩和部材とを介して二重構造で間接的に冷却することで、冷却手段の温度変化が霧化電極に直接的に大きな影響を与えることをさらに緩和することができるので、霧化電極の負荷変動を抑え、安定した噴霧量のミスト噴霧を実現することができる。
また、伝熱接続部材である金属ピン134の冷却は、冷却室110で生成された冷気を用いており、金属ピン134は熱伝導性のよい金属片で形成したので、冷却手段は、冷却器112で生成された冷気が流れる風路からの熱伝導だけで必要な冷却を行うことができる。
また、この時、本実施の形態の伝熱接続部材である金属ピン134は霧化電極と逆側に凸部134aを有する形状をしているので、霧化部の中で凸部134a側の端部134bが冷却手段に最も近接する為、金属ピン134の中でも霧化電極135から最も遠い端部134b側から冷却手段である冷気によって冷却されることとなる。
このように、本実施の形態では、貫通部405近傍の断熱材に突起部162を設けることにより、貫通部405周辺の剛性を高めた場合でも、金属ピンを側面側と背面側の両方から冷却することができるので、熱伝導のための表面積を増加させることができ、金属ピン134の冷却効率を低下させることなく金属ピン134周辺の剛性を高めることができる。
また、突起部の形状を斜面を円錐状にすることにより、冷気は、冷気の流れ方向に対して曲面である突起部162の外周をなめるように流れるので風路抵抗の増加を抑制すると共に、金属ピンが側壁の外周から均一に冷却されることで、金属ピン134をムラなく冷却でき、金属ピン134を介して霧化電極135を効率よく冷却することができる。
また、断熱材152の金属ピン134背面の一部のみ孔である貫通部405を設け、薄肉部が構成されていないので、発泡スチロールの成型が容易にでき、また、組み立て時の破損などの問題がない。
さらに、本実施の形態の構成では、金属ピンカバー406の背面側の冷却手段(低温の冷気)と接する部分が熱緩和部材となるので、熱緩和部材の熱緩和の状態は金属ピンカバー406の冷気と接する部分の厚みを変えることによって調整することができるので、容易に冷却ピンの冷却状態を変えられることができ、例えば様々な貯蔵容量の冷蔵庫に適用する場合でも、それぞれの冷却負荷によって冷却ピンカバー166の厚みを変えることで、対応することができる。
さらに金属ピンカバーと貫通部405の間には隙間がなく、また貫通部405の開口部407はテープなどにより冷気を遮断しているのでいので、連通している箇所がなく、低温冷気が庫内に漏れてくることもないので、貯蔵室やその周辺部品が結露や低温異常などを起こすことがない。
このように冷却手段によって冷却する際に、伝熱接続部材である金属ピン134の霧化電極135から最も距離の離れた遠い部分である端部134b側から冷却することで、金属ピン134の大きな熱容量を冷却した上で、金属ピン134によって霧化電極135が冷却されることで、冷却手段の温度変化が霧化電極135に直接的に大きな影響を与えることをさらに緩和し、より変動負荷の小さく安定的なミスト噴霧を実現することができる。
発生した微細ミストは、下段収納容器119内に噴霧されるが非常に小さい微粒子のため拡散性が強く、上段収納容器120にも微細ミストは到達する。また、霧化装置を静電霧化装置131としたことで、発生した微細ミストは、非常に小さい微粒子のため拡散性が強く、噴霧する野菜室107全体へ到達する。噴霧される微細ミストは、高圧放電で生成されたため、マイナスの電荷を帯びているので、野菜室107内にはプラスの電荷をもつ青果物である野菜が収納されているので、霧化されたミストは、野菜の表面に集まりやすく、これにより保鮮性が向上する。
また、野菜表面に付着したナノレベルの微細ミストは、OHラジカルと微量ではあるがオゾンなどを多く含んでおり、殺菌、抗菌、除菌などに効果がある他、酸化分解による農薬除去や抗酸化によるビタミンC量などの栄養素の増加を野菜に促す。
また、本実施の形態のように、霧化電極を冷却することで空気中の水分を結露させた結露水をミスト噴霧に用いる場合に、霧化電極135に水がないときは、放電距離が離れ、空気の絶縁層を破壊することができず、放電現象がおこらない。これにより霧化電極と対向電極間に電流が流れないが、この現象を冷蔵庫100の制御手段146で検知することにより電圧印加部133の高圧をON/OFFすることもできるので、庫内への熱負荷の抑制と省エネルギが図れる。
以上のように、本実施の形態7においては、霧化部の凸部である金属ピンの構成について、断熱材に貫通孔である貫通部405を設け、その箇所に金属ピンを挿入し、その周囲に金属ピンカバーを設けることにより、金属ピンへの冷却能力を確保しつつ断熱材の成型を容易にすることができる。
また、このように金属ピンの側面および背面部を一体成型された金属ピンカバー406で覆うことによって、背面部に配置されたである冷凍室吐出風路141からの冷気が冷却ピンの周囲に侵入することをより効果的に防止している。
また、本実施の形態7においては、金属ピン周囲に緩衝材を設けていないが、設けてもよい。これにより孔と金属ピンカバー間を密着させることができ、冷気もれを防止できる。
また、本実施の形態7においては、孔の開口部にテープなどの遮蔽物を設置していないが、設置してもよい。これによりさらに、冷気もれを防止できる。
なお、本実施の形態では、金属ピンを冷却するための風路は、冷凍室吐出風路としたが、製氷室の吐出風路や、冷凍室戻り風路などの低温風路でもかまわない。これにより、静電霧化装置の設置可能場所が拡大する。
なお、本実施の形態では、伝熱接続部材である金属ピンを冷却する冷却手段は、冷蔵庫の冷凍サイクルで生成された冷却源を用いて冷却された冷気としたが、冷蔵庫の冷却源からの冷気もしくは冷温を用いた冷却管からの熱伝達を用いるものであってもよい。これにより、この冷却管の温度を調節することで、電極冷却部を任意の温度に冷却することができ、霧化電極を冷却する際の温度管理を行いやすくなる。
また、本実施の形態では、伝熱接続部材である金属ピンを冷却する冷却手段は、ペルチェ効果を用いたペルチェ素子を補助部品として用いてよく、この場合、ペルチェへの供給電圧により霧化電極先端の温度を極めて細かい温度で制御できる。
なお、本実施の形態では、静電霧化装置の外郭と断熱材の凹部の間には、緩衝材を用いていないが、金属ピンへの湿度侵入防止やがたつき防止のためウレタンフォームなどの緩衝材を静電霧化装置の外郭ケースもしくは断熱材の凹部に構成してもかまわない。これにより、金属ピンへの湿度流入を防止でき、断熱材に結露することを防止できる。
(実施の形態8)
図14は本発明の実施の形態8における図2のA−A部の静電霧化装置近傍の詳細断面図である。
本実施の形態では、実施の形態1〜7で詳細に説明した構成と異なる部分についてのみ詳細な説明を行い、実施の形態1〜7で詳細に説明した構成と同じ部分もしくは、同じ技術思想が適用できる部分については、説明を省略する。
図において、奥面仕切り壁111は、ABSなどの樹脂で構成された奥面仕切り壁表面151と野菜室107と冷凍室吐出風路141との間の断熱性を確保するための発泡スチロールなどで構成された断熱材152で構成される。また、冷凍室吐出風路141と冷却室110とを隔離するための仕切り板401を備えており、また、奥面仕切り壁表面151には、貯蔵室の温度調節をする、もしくは表面の結露を防止するためヒータ等の加熱手段154が奥面仕切り壁表面151と断熱材152の間に設置されている。
ここで、奥面仕切り壁111の貯蔵室内側の壁面の一部に貫通部405を設け、その箇所に静電霧化装置131が設置されている。
静電霧化装置131は主に霧化部139、電圧印加部133、外郭ケース137で構成され、外郭ケース137の一部には、噴霧口132と湿度供給口138が構成されている。
静電霧化装置131は霧化部139に備えられた霧化先端部である霧化電極135を冷却手段によって露点温度以下に冷却することで、霧化部周辺の空気中の水分を霧化電極に結露させて生成した結露水をミストとして噴霧させるものである。
この結露を行う際に、本実施の形態では冷却手段として風路である冷凍室吐出風路141を流れる低温冷気を冷却手段とし、また霧化電極135を直接冷却するのではなく、霧化電極135よりも大きな熱容量を有する伝熱冷却部材である冷却ピン134を介して霧化電極135を冷却しているものである。
霧化部139は、霧化電極135が設置され、霧化電極135はアルミニウムやステンレスなどの良熱伝導部材からなる伝熱接続部材である金属ピン134に固定されて接続し、また、電気的にも電圧印加部から配線されている一端を含め接続している。
この伝熱接続部材である金属ピン134は霧化電極135に比べて50倍以上、好ましくは100倍以上の大きな熱容量を有するものであり、例えば、アルミや銅などの高熱伝導部材が好ましく、金属ピン134の一端からもう一端に冷熱を熱伝導で効率よく伝導させるため、その周囲は断熱部材で覆われていることが望ましい。
金属ピン134を直接風路内に設置すると、冷却過多になり霧化電極135の結露量が過多になるもしくは、凍結する可能性がある。
そこで、霧化電極135の背面近傍の断熱材に貫通孔405を設け、そこに金属ピン134を挿入し、その周囲に金属ピンカバー406を設置することにより、断熱性を確保することで、金属ピン134が直接冷却手段に接せず熱緩和部材である断熱材を介して接することになる。
この時、略円柱状の金属ピン134の側面側がすべて断熱材で覆われている構成となる。
また、貫通孔405の開口部407は冷凍室吐出風路141と冷却室110を仕切る仕切り板401により風路と遮蔽され、シール性を確保している。
孔開口部407に図示はしないが、テープなどを貼付することにより冷気の遮断を行ってもよい。
以上のように構成された冷蔵庫について、以下その動作、作用を説明する。
伝熱接続部材である金属ピン134は断熱材152の突起部402を介して側面側から冷却されるので、霧化電極135を金属ピン134で間接的に冷却するものにさらに、断熱材152の突起部402を介して二重構造で間接的に冷却することができ、霧化電極135が極度に冷却されることを防ぐことができる。
また、円柱状の金属ピン134の周囲を断熱材が円錐状に囲っており、最も断熱壁が薄い側が霧化電極135から最も遠い側であるので、冷却ピンの側面外周部の特に開口部407近傍に位置する部分を最も強く、他の部分も側壁の外周面から均一に冷却することが可能となる。
また、金属ピンの風路側の端面は仕切り板401で風路と遮蔽されており、さらに突起部402の端面をある程度距離を確保し、仕切り板401を圧接させることにより、沿面距離を確保することで、さらに、冷気が金属ピンに直接当たることを防止している。また、これにあわせてテープなどを端面に貼付し、シール性を向上させてもよい。このように貫通孔405の開口部407を仕切り板401に固定することによって、外気温度や庫内温度、霜取り制御等で温度変化が大きい冷蔵庫において、熱変形が生じた場合でも、より確実に金属ピン135および霧化部139を固定することができる。
この時、本実施の形態の伝熱接続部材である金属ピン134は霧化電極と逆側に凸部134aを有する形状をしているので、霧化部の中で凸部134a側の端部134bが冷却手段に最も近接する為、金属ピン134の中でも霧化電極135から最も遠い端部134b側から冷却手段である冷気によって冷却されることとなる。
また、断熱材152の金属ピン134背面の一部のみ孔を設け、薄肉部が構成されていないので、発泡スチロールの成型が容易にでき、また、組み立て時の破損などの問題がない。
さらに金属ピンカバーと貫通孔405との間には隙間がなく、また貫通孔405の開口部407はテープなどにより冷気を遮断しているのでいので、連通している箇所がなく、低温冷気が庫内に漏れてくることもないので、貯蔵室やその周辺部品が結露や低温異常などを起こすことがない。
さらに、奥面仕切り壁111を薄型化でき、庫内の収納量をさらに大きくできる。
このように冷却手段によって冷却する際に、伝熱接続部材である金属ピン134の霧化電極135から最も距離の離れた遠い部分である端部134bが最も強く冷却されることで、金属ピン134の大きな熱容量を冷却した上で、金属ピン134によって霧化電極135が冷却されることで、冷却手段の温度変化が霧化電極135に直接的に大きな影響を与えることをさらに緩和し、より変動負荷の小さく安定的なミスト噴霧を実現することができる。
発生した微細ミストは、下段収納容器119内に噴霧されるが非常に小さい微粒子のため拡散性が強く、上段収納容器120にも微細ミストは到達する。
また、霧化装置を静電霧化装置131としたことで、発生した微細ミストは、非常に小さい微粒子のため拡散性が強く、噴霧する野菜室107全体へ到達する。噴霧される微細ミストは、高圧放電で生成されたため、マイナスの電荷を帯びているので、野菜室107内にはプラスの電荷をもつ青果物である野菜が収納されているので、霧化されたミストは、野菜の表面に集まりやすく、これにより保鮮性が向上する。
また、野菜表面に付着したナノレベルの微細ミストは、OHラジカルと微量ではあるがオゾンなどを多く含んでおり、殺菌、抗菌、除菌などに効果がある他、酸化分解による農薬除去や抗酸化によるビタミンC量などの栄養素の増加を野菜に促す。
ここで、霧化電極135に水がないときは、放電距離が離れ、空気の絶縁層を破壊することができず、放電現象がおこらない。これにより霧化電極と対向電極間に電流がながれない。この現象を冷蔵庫100の制御手段146で検知することにより電圧印加部133の高圧をON/OFFすることもできるので、庫内への熱負荷の抑制と省エネルギが図れる。
以上のように、本実施の形態8においては、霧化部の凸部である金属ピンと断熱材および冷却室の構成について、断熱材に孔を設け、その箇所に金属ピンを挿入し、金属ピンの端面を仕切り板にその周囲に金属ピンカバーを設けることにより、伝熱接続部材である金属ピン134は断熱材152の突起部402を介して冷却されるので、霧化電極135を金属ピン134で間接的に冷却するものにさらに、断熱材152の突起部402を介して二重構造で間接的に冷却することができ、霧化電極135が極度に冷却されることを防ぐことができる。また、金属ピンの風路側の端面は仕切り板401で風路と遮蔽されており、さらに突起部402の端面をある程度距離を確保し、仕切り板401を圧接させることにより、沿面距離を確保することで、さらに、冷気が金属ピンに直接当たることを防止している。
これにより、金属ピンの過冷を防止し、また、冷気漏れなどによる貯蔵室の過冷や結露を防止できる。
また、本実施の形態では、金属ピン134の背面近傍の断熱材に突起部162を設けることにより、平面部に比べて金属ピン134周辺の剛性を高めた上で、金属ピンを側面側から冷却することができるので、熱伝導のための表面積を増加させることができ、金属ピン134の冷却効率を低下させることなく金属ピン134周辺の剛性を高めることができる。
また、突起部の形状を斜面を円錐状にすることにより、冷気は、冷気の流れ方向に対して曲面である突起部161の外周をなめるように流れるので風路抵抗の増加を抑制すると共に、金属ピンが側壁の外周から均一に冷却されることで、金属ピン134をムラなく冷却でき、金属ピン134を介して霧化電極135を効率よく冷却することができる。
また、突起部の形状を円柱状としても良く、その場合には金属ピン134の側面から均一に金属ピン134を冷却することができるので、よりムラなく冷却できる。
また、本実施の形態においては、貫通孔405の開口部407側面の断熱壁を仕切り板401に固定することによって、外気温度や庫内温度、霜取り制御等で温度変化が大きい冷蔵庫において、熱変形が生じた場合でも、より確実に金属ピン135および霧化部139を固定することができる。
また、本実施の形態8においては、金属ピン周囲に緩衝材を設けていないが、設けてもよい。これにより金属ピンと孔を密着させることができ、冷気もれを防止できる。
また、本実施の形態8においては、孔の開口部にテープなどの遮蔽物を設置していないが、設置してもよい。これによりさらに、冷気もれを防止できる。
なお、本実施の形態では、静電霧化装置の外郭と断熱材の貫通孔407との間には、緩衝材を用いていないが、金属ピンへの湿度侵入防止やがたつき防止のためウレタンフォームなどの緩衝材を静電霧化装置の外郭ケースもしくは断熱材の凹部に構成してもかまわない。これにより、金属ピンへの湿度流入を防止でき、断熱材に結露することを防止できる。
(実施の形態9)
図15は本発明の実施の形態9における冷蔵庫の野菜室近傍の断面図、図16は冷蔵庫の野菜室上部仕切り壁の図15のB−B部の平面図、図17は冷蔵庫の野菜室上部仕切り壁の図16のC−C部の正面図である。
本実施の形態では、実施の形態1〜8で詳細に説明した構成と異なる部分についてのみ詳細な説明を行い、実施の形態1〜8で詳細に説明した構成と同じ部分もしくは、同じ技術思想が適用できる部分については、説明を省略する。
図において、冷蔵庫100の断熱箱体101は主に鋼板を用いた外箱102とABSなどの樹脂で成型された内箱103で構成され、その内部には例えば硬質発泡ウレタンなどの発泡断熱材が充填、周囲と断熱され、複数の貯蔵室に区分されている。本実施例においては、野菜室107が冷蔵庫の最下部に構成され、その上部に冷凍温度帯の温度設定を行っている冷凍室108もしくは製氷室がその上に構成され、その間を仕切り壁で仕切り、貯蔵室として区画されている。
冷凍室108の背面には冷気を生成する冷却室110が設けられ、その間には、断熱性を有する各室への冷気の搬送風路と、各室と断熱区画するために構成された奥面仕切り壁111が構成されている。
冷却室の冷却器で生成された冷気は、各室に冷却ファンにより搬送される。ここで本実施例の野菜室107は、上部冷却器で生成された冷気を直接もしくは他室で熱交換された戻り風路を利用して、野菜室吐出風路182を介して野菜室に流れ、野菜室吸込み風路421から再び冷却器112に戻る。
野菜室上面には冷凍室と区画するために仕切り壁414が構成されている。
仕切り壁414は、ABSなどの樹脂で構成された野菜室側仕切り板413と冷凍室側仕切り板412とその間に断熱性を確保するための発泡スチロールやウレタンなどで構成された断熱材411で構成されている。ここで、仕切り壁414の野菜室側の壁面の一部に他の箇所より低温になるように凹部を設け、その箇所に静電霧化装置131とミスト風路417が設置されている。
静電霧化装置131は主に霧化部139、電圧印加部133で構成されている。霧化部139は、霧化電極135が設置され、霧化電極135はアルミニウムやステンレス、真鍮などの良熱伝導部材からなる伝熱接続部材である金属ピン134に固定され、電気的にも電圧印加部から配線されている一端を含め接続している。
この伝熱接続部材である金属ピン134は霧化電極135に比べて50倍以上、好ましくは100倍以上の大きな熱容量を有するものであり、例えば、アルミや銅などの高熱伝導部材が好ましく、金属ピン134の一端からもう一端に冷熱を熱伝導で効率よく伝導させるため、その周囲は断熱部材で覆われていることが望ましい。
また、長期的に霧化電極135と金属ピン134の熱伝導の維持も必要であるので、接続部に湿度等の侵入を防止するためにエポキシ部材などを流しこみ、熱抵抗を抑え、さらに、霧化電極135と金属ピン134を固定する。また、熱抵抗を低下させるために霧化電極135を金属ピン134に圧入等により固定してもよい。
さらに、金属ピン134は、貯蔵室と冷却器112もしくは風路を断熱するための断熱材内で冷温を熱伝導させる必要があるので、その長さは5mm以上好ましくは10mm以上確保することが望ましい。ただし、その長さを30mm以上にした場合は、その効果は低下すると同時に仕切り壁が厚くなり庫内収納量が減少する。
なお、貯蔵室に設置された静電霧化装置131が高湿環境下にあり、その湿度が金属ピン134に影響する可能性があるので、金属ピン134は耐腐食性、耐錆性の性能を持った金属材料、もしくはアルマイト処理などの表面処理、コーティングを行った材料を選択したほうが好ましい。
伝熱接続部材である金属ピン134は、断熱材411の一部に設けられた凹部にはめ合わせられ断熱材411に固定され、霧化電極135は金属ピン134とL字型に突起した形で取り付けられている。これは、庫内収納量を大きくするために仕切り壁の薄型化に寄与している。
よって、伝熱接続部材である金属ピン134の霧化電極の反対側の端面は、ABSやPPなどの樹脂で成型された冷凍室側の仕切り板に圧接され、その冷凍室の冷気を仕切り板を介し、熱伝導で霧化電極を冷却させ、その先端に結露させ、水を生成する。
このように簡単な構造で冷却手段を構成することができるので、故障が少なく信頼性が高い霧化部を実現することができる。また、冷凍サイクルの冷却源を利用して伝熱接続部材および霧化電極の冷却を行うことができるので、省エネルギで霧化を行うことができる。
また、霧化電極135に対向している位置で貯蔵室側にドーナツ円盤状の対向電極136が、霧化電極135の先端と一定距離を保つように取付けられ、その延長上にミスト風路417が形成されている。
ミスト風路417は、野菜室107と冷凍室108を区画する仕切り壁414の凹部に設けられている。
仕切り壁414は、断熱性と庫内容量を確保するため一般に25mm〜45mmで構成されている。この凹部にミスト風路を設ける。
ミスト風路417は、野菜室から湿度を供給するためのミスト吸込み口423とミストを野菜室へ噴霧するミスト吐出口416があり、このミスト吸込み口から霧化部に高湿な空気を流入し、霧化部の霧化電極は冷凍室から熱伝導で金属ピンを介して冷却されているため、霧化電極先端は結露する。
霧化電極先端と対向電極間に高電圧を印加さえることによりミストを発生させ、発生したミストは、ミスト風路417を通過して、ミスト吐出口416より野菜室に噴霧される。
さらに、霧化部139と電気的に接続された電圧印加部133が構成され、高電圧を発生する電圧印加部133の負電位側が霧化電極135と、正電位側が対向電極136とそれぞれ電気的に配線、接続されている。
霧化電極135近傍では、ミスト噴霧のため、常に放電が起こるため、霧化電極135先端では、磨耗を生じる可能性がある。冷蔵庫100は、10年以上運転することになるので、霧化電極135の表面は、強靭な表面処理が必要であり、例えば、ニッケルメッキ、および金メッキや白金メッキを用いることが望ましい。
対向電極136は、例えば、ステンレスで構成されていて、また、その長期信頼性を確保する必要があり、特に異物付着防止、汚れ防止するため、例えば白金メッキなどの表面処理をすることが望ましい。
電圧印加部133は、冷蔵庫本体の制御手段146と通信、制御され、冷蔵庫100もしくは静電霧化装置131からの入力信号で高圧のON/OFFを行う。
なお、静電霧化装置131を固定している仕切り壁414には、風路内の結露を防止するためヒータ等の加熱手段418が設置されている。
以上のように構成された冷蔵庫について、以下その動作・作用を説明する。
静電霧化装置131が設置されている仕切り壁414の断熱材411の厚さは、霧化電極135が固定されている金属ピン134を冷却するための冷却能力が必要であり、静電霧化装置131が備えられている箇所の壁厚は他の部分より薄く構成されている。そのため、比較的低温である冷凍室からの熱伝導により金属ピン134を冷却し、霧化電極135を冷却することが出来る。ここで、霧化電極135の先端温度を露点以下にすれば、霧化電極135近傍の水蒸気は霧化電極135に結露し、水滴が確実に生成される。
ここでは図示しないが庫内に庫内温度検知部や庫内湿度検知部などを設置することにより、あらかじめ決められた演算により厳密に庫内環境下の変化に応じて露点を割り出すことが出来る。
この状態で霧化電極135を負電圧側とし、対向電極136を正電圧側として、電圧印加部133によりこの電極間に高電圧(例えば7.5kV)を印加させる。このとき、電極間で空気絶縁層が破壊されコロナ放電が起こり、霧化電極135の水が電極先端から霧化し、目視できない1μm未満の電荷をもったナノレベルの微細ミストと、それに付随するオゾンやOHラジカルなどが発生する。
発生した微細ミストは、野菜容器内に噴霧される。静電霧化装置131から噴霧される微細ミストは、マイナスの電荷を帯びている。一方、野菜室内には青果物である野菜が収納されており、その中には緑の菜っ葉ものや果物等も保存されている。これらの青果物は、通常、購入帰路時での蒸散あるいは保存中の蒸散によってやや萎れかけた状態で収納されていることが多い。これらの青果物は通常、プラスの電荷に帯電されており、噴霧されたマイナスの電荷を持った微細ミストは、野菜表面に集まりやすい。よって、噴霧された微細ミストは野菜室内を再び高湿にすると同時に青果物の表面に付着し、青果物からの蒸散を抑制し、保鮮性を向上させる。また、野菜や果物の細胞の隙間から組織内に浸透し、水分が蒸散して、萎んだ細胞内に再び水分が供給され、細胞の膨圧によって萎れが解消され、シャキッとした状態に復帰する。
また、発生した微細ミストは、オゾンやOHラジカルなどを保持しており、これらは強い酸化力を保持する。そのため、発生した微細ミストが野菜室内の脱臭や野菜表面を抗菌、殺菌することが出来ると同時に、野菜表面に付着する農薬やワックスなどの有害物質を酸化分解・除去することが出来る。
以上のように、本実施の形態9は、冷蔵庫本体は複数の貯蔵室を有し、霧化部を備えた貯蔵室である野菜室の天面側には霧化部を備えた貯蔵室である野菜室よりも低温に保たれた低温貯蔵室である冷凍室が備えられ、霧化部は野菜室の天面側の仕切り壁に取り付けた。
これによって、霧化部を備えた貯蔵室の上部に冷凍室や製氷室のような冷凍温度帯の貯蔵室がある場合、それらを仕切る天面の仕切り壁に霧化部を設置することで、上部貯蔵室の冷気で霧化部の伝熱接続部材である金属ピンを冷却し、霧化電極135が冷却され、結露させることができるので、特別な冷却装置が不必要で、簡単な構成で霧化部を備えることができるので、故障が少なく信頼性が高い霧化部を実現することができる。
貯蔵室を区画するための仕切り壁と、貯蔵室の天面側には低温貯蔵室が備えられ、静電霧化装置は天面の仕切り壁に取り付けたことにより、冷凍室や製氷室のような冷凍温度帯の貯蔵室が上部にある場合、それらを仕切る天面の仕切り壁に設置され、その冷却源で静電霧化装置の霧化電極を冷却し、結露させることができるので、特別な冷却装置が不必要で、また、天面から噴霧できるので収納容器全体に拡散しやすい。
また、霧化部139を野菜室107の収納空間内に備えず、野菜室側仕切り板173の奥側に備えているので、人の手にも触れにくいので安全性が向上させることができる。
また、本実施の形態の霧化部は静電霧化方式によってミストを生成するものであり、高電圧等の電気エネルギを使って水滴を分裂させ、細分化することによって微細ミストを発生させる。発生したミストは電荷を帯びている為、そのミストに野菜や果物等の付着させたい物と逆の電荷を持たすことによって、例えばプラスの電荷を持つ野菜に対してマイナスの電荷を帯びたミストを噴霧することにより、野菜や果物への付着力が向上するため、より均一に野菜表面にミストが付着するとともに、電荷を帯びていないタイプのミストと比較してミストの付着率をより向上させることが出来る。また、噴霧された微細ミストは直接、野菜容器内の食品に噴霧することができ、微細ミストと野菜の電位を利用して野菜表面に微細ミストを付着させることが出来るので、保鮮性を効率よく向上させることが出来る。
さらに、本実施の形態の補給水は、外部から供給する水道水ではなく結露水を用いる。そのためミネラル成分や不純物がなく、霧化電極先端の劣化や目詰まりによる保水性の劣化を防ぐことが出来る。
さらに、本実施の形態のミストはラジカルを含んでいることにより野菜表面に付着する農薬やワックスなどを極めて少ない水量で分解・除去出来るので節水ができ、かつ低入力化が出来る。
(実施の形態10)
図18は本発明の実施の形態10における冷蔵庫の超音波霧化装置近傍の詳細断面図である。
本実施の形態では、実施の形態1〜9で詳細に説明した構成と異なる部分についてのみ詳細な説明を行い、実施の形態1〜9で詳細に説明した構成と同じ部分もしくは、同じ技術思想が適用できる部分については、説明を省略する。
図において、奥面仕切り壁111は、ABSなどの樹脂で構成された奥面仕切り壁表面151と、野菜室107と冷凍室吐出風路141との間の断熱性を確保するための発泡スチロールなどで構成された断熱材152で構成される。また、冷凍室吐出風路141と冷却室110とを隔離するための仕切り板401を備えており、また、奥面仕切り壁表面151には、貯蔵室の温度調節をする、もしくは表面の結露を防止するためヒータ等の加熱手段154が奥面仕切り壁表面151と断熱材152の間に設置されている。
ここで、奥面仕切り壁111の貯蔵室内側の壁面の一部に霧化装置である超音波霧化装置460が設置されている。
このように、霧化装置である超音波霧化装置460は側壁の中でもヒータ等の加熱手段154を備える奥面仕切り壁111に備えられており、少なくとも超音波霧化装置460よりも下方側に加熱手段154が備えられているものとする。
超音波霧化装置460は、霧化部であるホーン部461、電極部462、圧電素子463、電極部464、金属ピン465で構成されたホーン型超音波振動子468と、それらを固定、囲う外郭ケース467、外郭ケースの備えられたミストを野菜室内に噴霧するための噴霧口469で構成されている。また、奥面仕切り壁111に貫通部405を備え、貫通部405に金属ピン465が備えられている。霧化先端部であるホーン部461は、切削加工や焼結加工等により底面部から先端部に向けて凸部状となっている。ホーン先端部461aは、矩形もしくは円形上に加工され、その断面積比は約1/5以下でホーン部461の側面形状は圧電素子463の発振周波数に依存しており、ホーン部461、電極部462、圧電素子463、電極部464の順に一体的に形成され、各接続間にエポキシやシリコン系の接着剤で接着固定し、圧電素子463で発生する振動をホーン先端部461aで最大振幅となるように構成されている。
また、圧電素子、電極部はここでは図示しないが円筒系で構成されており、その中心部は空間である。ここに金属ピンが構成され、ホーン部と圧着、固定されている。
ホーン型超音波振動子468の外郭はシリコン樹脂やエポキシ樹脂、アクリル樹脂等でコーティングがされている(図示せず)。
霧化先端部であるホーン部461は、熱伝導性の高い材質としており、例えばアルミニウム、チタン、ステンレス等の金属が挙げられる。特に、軽量で、熱伝導性が高く、超音波伝達時の振幅の増幅性能の点からするとアルミニウムを主成分とするもの選択することが好ましいが、冷蔵庫のような耐腐食性が必要でかつ長寿命化の配慮が必要なものにはSUS304やSUS316Lのようなステンレスを主成分とするものを選択すると、経年劣化が起こりにくく長期に渡る信頼性が確保できる為望ましい。
噴霧口469は、外郭ケース467の一部に矩形や円形の孔が設けられ、霧化部から液体が霧化発生する方向、つまりホーン部461のホーン先端部461aと対向する部分の外郭ケース467に圧電素子の振幅方向の一端に孔が設けられている。
霧化装置である超音波霧化装置460は霧化部に備えられた霧化先端部であるホーン461を冷却手段によって露点温度以下に冷却することで、霧化部周辺の空気中の水分をホーン部461に結露させて生成した結露水をホーン先端部461aからミストとして噴霧させるものである。
また、扉開閉等で多湿状態が続き、ホーン部461に必要以上の結露水が供給された時、排水口138より排水する。この排水口138は、外郭ケース467内に溜まった水を外部へ排出する水抜き穴という機能に加え、外郭ケース467内へ冷気を取り入れる冷気供給口の機能も果たしている。
排水された結露水は、仕切り壁111の奥面仕切り壁表面151を沿い流れるが、ごく微量なため野菜室の対流や背面のヒータにより蒸発する。この時、壁面にヒータ等の加熱手段154が備えられていることで他の側面壁と比較して奥面仕切り壁111周辺は上昇気流が発生しやすい。よって、この奥面仕切り壁111に霧化部が備えられ、さらに霧化部を収納する外郭ケース467の下面部に備えられている冷気供給口の機能を果たす排水口138から再高湿度の冷気が流れ込み、より結露を促進させることが可能になる。
以上のように構成された冷蔵庫について、以下その動作を説明する。
野菜室107内の余分な水蒸気を奥面仕切り壁111の一部の設置された超音波霧化装置460の金属ピン465は、ミストが噴霧されている貯蔵室である野菜室よりも低温冷気が流れている冷凍室風路により冷却される。そして、金属ピン465とホーン部461が圧着しているため霧化先端部であるホーン部461が熱伝導により冷却され、野菜室の高湿空気に含まれる水蒸気が低温化されたホーン部461によりホーン部に結露することで結露水が生成され、先端部461aに付着する。
この状態で高圧・発振回路に通電し、高電圧を所定の周波数(例えば80k〜210kHz)で発振させ、電極部462、電極部464に印加すると、圧電素子462は振動を起こし、供給された霧化部であるホーン部461の先端部461aに付着した水の表面にはキャピラリー波が発生し、先端の水は数μmから数十μmの微粒子化され、その振動方向にミストとして霧化する。その微粒子ミストは、噴霧口469を通過させることで、ホーン部461の先端部461a以外から発生した粒子径の大きいミストは矩形や円形の噴霧口469の外周壁に衝突し、貯蔵室内へ噴霧されずケース内に残るので、比較的小さい粒子径のミストのみを分級し、微細ミストのみが貯蔵室である野菜室107へと噴霧される。
また、超音波霧化装置460を一定間隔、例えば1分間ON、9分間OFFのようなインターバルで通電し、霧化発生の霧化量を調整しながら野菜室107に噴霧し、野菜室107をすばやく加湿する。これにより、野菜室107は高湿化でき、野菜からの蒸散が抑えられるのと同時に、圧電素子463で発生する振動をホーン部461先端であるホーン先端部461aで最大振幅となるようにエネルギを集中していることから、圧電素子部463は1Wから2W程度の低発熱量に抑えられ、野菜室107への温度影響を軽減することができる。
圧電素子463を覆うコーティング材は、平均10年程度の長期使用が前提となる冷蔵庫においてはコーディング材の劣化を防ぐ為、超音波伝達時の振幅の増幅性能の点から柔軟性がある為に繰り返し振動を受けても劣化しにくいシリコン樹脂を主成分とするもの選択することが好ましく、ホーン部461、電極部462、圧電素子部463、電極部464とのそれぞれの結合部における液体や水蒸気の侵入を防ぎ、接着剤の劣化を防ぎ、寿命信頼性の向上に寄与し、冷蔵庫に搭載した場合の実負荷に耐え得る構成となる。
なお、外郭ケース467とホーン型超音波振動子の隙間には、水漏れ防止や共振防止のためにパッキン材(図示せず)を用いてもよい。これにより、上記に記載したような液体や水蒸気の侵入をより確実に防ぐとともに騒音も低減できる。なお、具体的には、フッ素系のパッキン材を用いることにより寿命信頼性が向上する。
以上のように、本実施の形態においては、断熱区画された比較的高湿環境である野菜室と、野菜室に液体を噴霧するためのホーン型超音波霧化装置を備え、ホーン先端に結露水を生成するためホーン部に金属ピンを設置することにより、先端に結露させ、それを直接噴霧させることにより野菜室内の品質を保持することができる。
なお、本実施の形態において、霧化させる液体は、静菌力、消臭力を持つ金属イオンを含む、例えば、亜鉛イオン水、銀イオン水、銅イオン水などでもかまわない。これにより貯蔵室内に発生する菌の抑制効果を向上させることができる。
なお、本実施の形態においては、金属ピン465を備える部分の断熱材152の形状は図18で示すものを例に挙げたが、金属ピン465を配置する部分に関する形状は実施の形態1〜7で説明したような形状にしても同様の効果を奏するのは言うまでもない。
なお、本実施の形態においては、霧化装置は超音波霧化装置460としたが、実施の形態1〜7で説明した静電霧化装置や、それ以外のエジェクタ方式等の霧化装置であっても、空気中の水分を積極的に結露させた水を用いてミスト噴霧を行うものであれば、他の霧化装置であっても良く、上記実施の形態で説明した技術思想を適用することができる。
以上のように、本発明にかかる冷蔵庫は、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対して実施することはもちろん、野菜などの食品低温流通、倉庫などの用途にも適用できる。
本発明の実施の形態1における冷蔵庫の縦断面図 本発明の実施の形態1における冷蔵庫の野菜室近傍の正面図 本発明の実施の形態1における図2のA−A部の静電霧化装置近傍の詳細断面図 本発明の実施の形態1における霧化電極の温度挙動と霧化状態を示す放電電流モニター電圧値を示した実験結果を示す図 本発明の実施の形態1における霧化電極温度と霧化電極近傍湿度の相関から求められた結露適正範囲を示した実験結果を示す図 本発明の実施の形態1における機能ブロック図の一例を示す図 本発明の実施の形態1における制御フロー図の一例を示す図 本発明の実施の形態2における図2のA−A部の静電霧化装置近傍の詳細断面図 本発明の実施の形態3における図2のA−A部の静電霧化装置近傍の詳細断面図 本発明の実施の形態4における図2のA−A部の静電霧化装置近傍の詳細断面図 本発明の実施の形態5における静電霧化装置近傍の詳細断面図 本発明の実施の形態6における図2のA−A部の静電霧化装置近傍の詳細断面図 本発明の実施の形態7における図2のA−A部の静電霧化装置近傍の詳細断面図 本発明の実施の形態8における図2のA−A部の静電霧化装置近傍の詳細断面図 本発明の実施の形態9における冷蔵庫の野菜室近傍の断面図 本発明の実施の形態9における図15のB−B部の仕切り壁の平面図 本発明の実施の形態9における図16のC−C部の仕切り壁の正面図 本発明の実施の形態10における図2のA−A部の超音波霧化装置近傍の詳細断面図 従来の冷蔵庫の超音波霧化装置近傍の縦断面図 従来の冷蔵庫の超音波霧化装置の要部を示す拡大斜視図
符号の説明
100 冷蔵庫
101 断熱箱体
102 外箱
103 内箱
104 冷蔵室
105 切替室
106 製氷室
107 野菜室
108 冷凍室
109 圧縮機
110 冷却室
111 奥面仕切り壁
111a 凹部
112 冷却器
113 冷却ファン
114 ラジアントヒータ
115 ドレンパン
116 ドレンチューブ
117 蒸発皿
118 扉
119 下段収納容器
120 上段収納容器
122 蓋体
123 第一の仕切り壁
124 野菜室用吐出口
125 第二の仕切り壁
126 野菜室用吸込口
131 静電霧化装置
132 噴霧口
133 電圧印加部
134 金属ピン(伝熱接続部材)
134a 凸部
135 霧化電極
136 対向電極
137 外郭ケース
138 湿度供給口
139 霧化部
141 冷凍室吐出風路
146 制御手段
151 奥面仕切り壁表面
152 断熱材
154 仕切り壁ヒータ
155 断熱材凹部
156 低温風路
158 金属ピンヒータ
201 ペルチェモジュール(ペルチェ素子)
202 霧化電極側熱伝導部材
203 風路側熱伝導部材
204 熱交換部材
301 冷却器
401 冷却室仕切り壁
402 断熱材突起部
403 金属ピンヒータ
405 貫通部
406 金属ピンキャップ
407 孔開口部
411 断熱材
412 冷凍室側仕切り板
413 野菜室側仕切り板
414 仕切り壁
416 ミスト吐出口
417 ミスト風路
418 ヒータ
421 野菜室吸込み風路
422 野菜室吐出風路
423 ミスト吸込み口
460 ホーン型超音波霧化装置
461 ホーン部
462 電極部
463 圧電素子
464 電極部
465 金属ピン
467 外郭ケース
468 結露水
469 噴霧口
471 霧化部

Claims (14)

  1. 断熱区画された貯蔵室と、前記貯蔵室内にミストを噴霧させる霧化部と、前記霧化部に備えられたミストが噴霧される霧化先端部とを有し、前記霧化先端部を露点以下に冷却し、前記霧化先端部に空気中の水分を結露させて貯蔵室にミストとして噴霧するとともに前記霧化先端部に付着する水量を調整する調整手段を有した冷蔵庫。
  2. 霧化電極に接続された伝熱接続部材を有し、調節手段によって前記伝熱接続部材を冷却または加熱することで間接的に前記霧化先端部の温度調整を行う請求項1に記載の冷蔵庫。
  3. 霧化先端部に付着する水量を調整する調整手段は、冷却手段と加熱手段とを有する請求項1または2に記載の冷蔵庫。
  4. 冷却手段は冷蔵庫の冷凍サイクルで生成された冷却源であり、加熱手段はヒータである請求項3に記載の冷蔵庫。
  5. 冷蔵庫本体は複数の貯蔵室と、前記貯蔵室を冷却するための冷却器を収納する冷却室とを有し、霧化部は前記貯蔵室の冷却室側の仕切り壁に取り付けた請求項1から4のいずれか一項に記載の冷蔵庫。
  6. 冷蔵庫本体は複数の貯蔵室を有し、霧化部を備えた貯蔵室の天面側には前記霧化部を備えた貯蔵室よりも低温に保たれた低温貯蔵室が備えられ、前記霧化部は前記霧化部を備えた貯蔵室の天面側の仕切り壁に取り付けた請求項1から4のいずれか一項に記載の冷蔵庫。
  7. 冷蔵庫本体は、貯蔵室もしくは冷却室に冷気を搬送するための少なくとも1つの風路を有し、調整手段に備えられた冷却手段は冷却室で生成された冷気を用いる請求項1から6のいずれか一項に記載の冷蔵庫。
  8. 冷蔵庫本体は、貯蔵室もしくは冷却室に冷気を搬送するための少なくとも1つの風路を有し、調整手段に備えられた加熱手段は冷蔵庫の冷凍サイクル中に備えられたヒータである請求項1から7のいずれか一項に記載の冷蔵庫。
  9. 調整手段に備えられた加熱手段は、冷却器に付着した霜を融解するための除霜ヒータである請求項8に記載の冷蔵庫。
  10. 調整手段に備えられた加熱手段は、霧化部を備えた貯蔵室の背面側に備えられた貯蔵室用ヒータである請求項1から7のいずれか一項に記載の冷蔵庫。
  11. 調整手段は、ペルチェ素子を利用した温度調節手段である請求項1から7のいずれか一項に記載の冷蔵庫。
  12. 調整手段に備えられた加熱手段は、熱交換器の熱を利用したものである請求項1から7のいずれか一項に記載の冷蔵庫。
  13. 霧化部は、霧化電極と、前記霧化電極に対向する位置に配された対向電極とを備え、霧化電極と対向電極間に高圧電位差を発生させる電圧印加部を有した請求項1から12のいずれか一項に記載の冷蔵庫。
  14. 貯蔵室と、前記貯蔵室に備えられ基準電位部にアースされた保持部材とを有し、電圧印加部は霧化電極と前記保持部材との間に電位差を発生させる請求項13に記載の冷蔵庫。
JP2007295446A 2007-04-26 2007-11-14 冷蔵庫 Active JP4151739B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295446A JP4151739B1 (ja) 2007-04-26 2007-11-14 冷蔵庫

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007116946 2007-04-26
JP2007295446A JP4151739B1 (ja) 2007-04-26 2007-11-14 冷蔵庫

Publications (2)

Publication Number Publication Date
JP4151739B1 JP4151739B1 (ja) 2008-09-17
JP2008292134A true JP2008292134A (ja) 2008-12-04

Family

ID=39846524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295446A Active JP4151739B1 (ja) 2007-04-26 2007-11-14 冷蔵庫

Country Status (1)

Country Link
JP (1) JP4151739B1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249428A (ja) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp 冷蔵庫
JP2012032015A (ja) * 2010-07-28 2012-02-16 Toshiba Corp 冷蔵庫
JP2012251768A (ja) * 2009-03-27 2012-12-20 Mitsubishi Electric Corp 冷蔵庫
JP2017122576A (ja) * 2009-03-27 2017-07-13 東芝ライフスタイル株式会社 冷蔵庫
JP2020133940A (ja) * 2019-02-14 2020-08-31 シャープ株式会社 冷蔵庫

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257933A (ja) * 1993-03-02 1994-09-16 Sharp Corp 冷蔵庫
JP2000220949A (ja) * 1999-01-29 2000-08-08 Sharp Corp 冷蔵庫
WO2006009190A1 (ja) * 2004-07-22 2006-01-26 Matsushita Electric Industrial Co., Ltd. 収納庫とそれを用いた冷蔵庫
JP2006038444A (ja) * 2005-02-03 2006-02-09 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2006204968A (ja) * 2005-01-25 2006-08-10 Matsushita Electric Ind Co Ltd 霧化装置
JP2007054808A (ja) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd 静電霧化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257933A (ja) * 1993-03-02 1994-09-16 Sharp Corp 冷蔵庫
JP2000220949A (ja) * 1999-01-29 2000-08-08 Sharp Corp 冷蔵庫
WO2006009190A1 (ja) * 2004-07-22 2006-01-26 Matsushita Electric Industrial Co., Ltd. 収納庫とそれを用いた冷蔵庫
JP2006204968A (ja) * 2005-01-25 2006-08-10 Matsushita Electric Ind Co Ltd 霧化装置
JP2006038444A (ja) * 2005-02-03 2006-02-09 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2007054808A (ja) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd 静電霧化装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251768A (ja) * 2009-03-27 2012-12-20 Mitsubishi Electric Corp 冷蔵庫
JP2013064601A (ja) * 2009-03-27 2013-04-11 Mitsubishi Electric Corp 冷蔵庫
JP2013231588A (ja) * 2009-03-27 2013-11-14 Mitsubishi Electric Corp 冷蔵庫
JP2014159949A (ja) * 2009-03-27 2014-09-04 Mitsubishi Electric Corp 冷蔵庫
US8991203B2 (en) 2009-03-27 2015-03-31 Mitsubishi Electric Corporation Electrostatic atomizing apparatus, appliance, air conditioner, and refrigerator
JP2017122576A (ja) * 2009-03-27 2017-07-13 東芝ライフスタイル株式会社 冷蔵庫
JP2019105443A (ja) * 2009-03-27 2019-06-27 東芝ライフスタイル株式会社 冷蔵庫
JP2010249428A (ja) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp 冷蔵庫
JP2012032015A (ja) * 2010-07-28 2012-02-16 Toshiba Corp 冷蔵庫
JP2020133940A (ja) * 2019-02-14 2020-08-31 シャープ株式会社 冷蔵庫
JP7198109B2 (ja) 2019-02-14 2022-12-28 シャープ株式会社 冷蔵庫

Also Published As

Publication number Publication date
JP4151739B1 (ja) 2008-09-17

Similar Documents

Publication Publication Date Title
EP2199714B1 (en) Refrigerator
JP5891420B2 (ja) 冷蔵庫
JP5609457B2 (ja) 冷蔵庫
AU2008325938B2 (en) Refrigerator
JP5251228B2 (ja) 冷蔵庫
JP2009174798A (ja) 冷蔵庫
JP4151743B1 (ja) 冷蔵庫
JP4151739B1 (ja) 冷蔵庫
JP5239456B2 (ja) 冷蔵庫
JP5029165B2 (ja) 冷蔵庫
JP5338078B2 (ja) 冷蔵庫
JP2012088032A (ja) 霧化装置の制御方法、放電装置の制御方法および冷蔵庫
JP4179398B1 (ja) 冷蔵庫
JP5589698B2 (ja) 冷蔵庫
JP5251275B2 (ja) 冷蔵庫
JP5245513B2 (ja) 冷蔵庫
JP2009264665A (ja) 冷蔵庫
JP2011069604A (ja) 冷蔵庫
JP5347260B2 (ja) 冷蔵庫
JP5239455B2 (ja) 冷蔵庫
JP5167840B2 (ja) 冷蔵庫
JP5326285B2 (ja) 冷蔵庫
RU2537196C2 (ru) Холодильник и электрическое устройство
JP2011047549A (ja) 冷蔵庫

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R151 Written notification of patent or utility model registration

Ref document number: 4151739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5