JP2008277851A - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2008277851A
JP2008277851A JP2008156042A JP2008156042A JP2008277851A JP 2008277851 A JP2008277851 A JP 2008277851A JP 2008156042 A JP2008156042 A JP 2008156042A JP 2008156042 A JP2008156042 A JP 2008156042A JP 2008277851 A JP2008277851 A JP 2008277851A
Authority
JP
Japan
Prior art keywords
region
trench
conductor
forming
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008156042A
Other languages
English (en)
Other versions
JP5167973B2 (ja
Inventor
Katsuya Tabuchi
勝也 田淵
Naoto Fujishima
直人 藤島
Mutsumi Kitamura
睦美 北村
Yoshio Sugi
祥夫 杉
Masanobu Iwatani
将伸 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2008156042A priority Critical patent/JP5167973B2/ja
Publication of JP2008277851A publication Critical patent/JP2008277851A/ja
Application granted granted Critical
Publication of JP5167973B2 publication Critical patent/JP5167973B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Abstract

【課題】従来の耐圧80V用のトレンチ横型パワーMOSFETよりも簡素なプロセス工程で製造でき、かつ従来の80Vよりも低い耐圧用の横型パワーMOSFETよりもデバイスピッチが小さくて単位面積当たりのオン抵抗が小さいこと。
【解決手段】基板50に浅く幅の狭いトレンチ51を小さいピッチで形成し、トレンチ51の周囲にドリフト領域となるn拡散領域60を形成する。トレンチ51の内側には厚さが0.05μmの均一な厚さのゲート酸化膜59を形成し、その内側にゲートポリシリコン52を形成する。基板50の表面領域にベース領域62およびソース領域となるn+拡散領域61を形成すると共にトレンチ51の底部にドレイン領域となるn+拡散領域58を形成する。ゲートポリシリコン52の内側に層間絶縁膜65を設け、その内側をドレイン領域に電気的に接続するポリシリコン63で埋める。
【選択図】図2

Description

本発明は、半導体装置およびその製造方法に関し、特にスイッチング電源用IC、自動車パワー系駆動用IC、フラットパネルディスプレー駆動用ICなど、高耐圧で大電流を制御するICに用いられる低オン抵抗のパワーMOSFET(絶縁ゲート型電界効果トランジスタ)およびその製造方法に関する。
近時、携帯機器の急速な普及や通信技術の高度化などに伴い、パワーMOSFETを内蔵したパワーICの重要性が高まっている。横型パワーMOSFETを制御回路に集積したパワーICでは、従来のパワーMOSFET単体と制御駆動回路とを組み合わせてなる構成に対し、小型化、低消費電力化、高信頼性化および低コスト化などが期待される。そこで、CMOS回路よりなる制御駆動回路と横型パワーMOSFETとを同一半導体基板上に集積するため、CMOSプロセスをベースにした高性能横型パワーMOSFETの開発が活発におこなわれている。
図49は、従来の耐圧30V用の横型パワーMOSFETの構成を示す縦断面図である。この横型パワーMOSFET1101は、p-基板10上にp-ウェル11、ゲート酸化膜12、ゲート電極13、ソース電極14およびドレイン電極15が形成され、かつp-ウェル11の表面に沿って横方向にp+拡散領域16、n+拡散領域17、n-ドリフト領域18およびn+拡散領域19が形成された構成となっている。
従来より、横型パワーMOSFETについては、多数の報告がなされている。たとえば、V.Parthasarathyらによる“A 0.35μm CMOS based
smart power technology for 7V−50V applications”(Proceedings of ISPSD 2000)には、耐圧
が44Vで単位面積当たりのオン抵抗が30mΩ−mm2の横型パワーMOSFETについて記載されている。このMOSFETについて、0.35μmルールの場合に推定されるデバイスピッチ(ソース中央からドレイン中央までの距離、図49においてl1+l2+l3+l4)はおおよそ3.6μmであるが、要求される耐圧が高くなるとドリフト領域の寸法が大きくなるため、デバイスピッチはさらに大きくなる。
また、チョッパー回路のような降圧回路に用いられるハイサイドスイッチ用デバイスとして、つぎのような横型パワーMOSFETが知られている。たとえば、Taylor Eflandらによる“A Performance Comparison Betw
een New Reduced Surface Drain “RSD” LDMO
S and RESURF and Conventional Planar Power Devices Rated at 20V”(Proceedings of
ISPSD 1997)には、耐圧が24.4Vで単位面積当たりのオン抵抗が39mΩ−mm2の横型パワーMOSFETについて記載されている。この横型パワーMOSFETの縦断面構成を図50に示す。
図50に示す構成の横型パワーMOSFET1102では、p型基板1上にnウェル2が形成され、そのnウェル2の中にpウェル3が形成されている。pウェル3の中には、n+拡散領域4およびp+拡散領域5が形成されている。これらn+拡散領域4およびp+拡散領域5の表面上には、ソース電極14が形成されている。pウェル3の表面上には、ゲート酸化膜12を介してゲート電極13が形成されている。nウェル2の中で、pウェル3の外側にはn+拡散領域6が形成されている。n+拡散領域6の表面上には、ドレイン電極15が形成されている。
図51は、図50に示す構成の横型パワーMOSFET1102をハイサイドスイッチとして用いた場合の回路図である。横型パワーMOSFET1102のゲート電極13、ソース電極14およびドレイン電極15は、それぞれゲート駆動回路7、負荷回路8および電源電圧制御回路9に接続されている。また、横型パワーMOSFET1102のp型基板1は接地されている。図51において、Vg、VoおよびVccは、それぞれゲート電圧、出力電圧および電源電圧であり、それぞれ横型パワーMOSFET1102のゲート電極13、ソース電極14およびドレイン電極15の各電位に相当する。たとえば、Vccは30Vであり、Vgは0〜35Vである。
図50に示す構成の横型パワーMOSFET1102において、ゲート電極13に駆動電圧Vgとしてたとえば35Vが印加されると、pウェル3の表面に電子が集まる。それによってpウェル3の表面がn型に反転し、MOSFET1102がオン状態となる。このとき、ソース電極14はドレイン電極15とほぼ同電位の30Vになる。また、n+拡散領域6およびn+拡散領域4と、p型基板1との間には、nウェル2を介して30Vがかかる。空乏層は、p型基板1とnウェル2に拡がり、p型基板1側に大きく拡がる。
ここで、オン状態のときにp型基板1とソース電極14とがパンチスルーしないためには、nウェル2に拡がった空乏層がpウェル3に及ばないように、nウェル2の接合深さを深くする必要がある。また、p型基板1の表面領域において、pウェル3とnウェル2の距離を一定以上にする必要がある。
一方、ゲート電極13に0Vが印加された場合には、pウェル3の表面はp型のままで、横型パワーMOSFET1102はオフ状態となる。このとき、ソース電極14の電位は0Vとなり、ドレイン電極15の電位は30Vとなる。また、n+拡散領域6と、n+拡散領域4およびp型基板1との間には、nウェル2を介して30Vがかかる。空乏層は、p型基板1とnウェル2との間に拡がり、p型基板1側に大きく拡がる。オフ状態において、ドレイン電極15とソース電極14との間の耐圧を得るためには、図50においてp型基板1の表面領域のl2+l3の距離を一定以上にする必要がある。たとえば、耐圧30Vを得るためには、このl2+l3の距離を2.6μmにする必要がある。
図50に示す構成のMOSFET1102において、1μmルールの場合に推定されるデバイスピッチ(ソース中央からドレイン中央までの距離、図50においてl1+l2+l3+l4+l5)はおおよそ4.6μmである。しかし、要求される耐圧が高くなるとドリフト領域l2の寸法が大きくなるため、デバイスピッチはさらに大きくなる。
上述したように、横型パワーMOSFETでは、耐圧を維持するための拡張ドレインが基板表面に形成されるとともに、チャネルも基板表面に沿って形成されるので、パンチスルー耐圧の制限から素子の微細化には限界がある。また、ドリフト領域とチャネルが基板表面に水平に形成されるため、素子の集積度を高めることができない。したがって、単位面積当たりのチャネル幅を増加できず、単位面積当たりのオン抵抗の低減に限界がある。
ところで、デバイスピッチを縮小して集積度を高めるための技術として、トレンチ構造のMOSFETが知られている。本発明者は、トレンチ構造を適用した横型パワーMOSFET(以下、トレンチ横型パワーMOSFETとする)について、“A trench
lateral power MOSFET using self−aligned trench bottom contact holes”(IEDM ’97 D
igest、359〜362頁、1997年)の中で提案している。
図52〜図54はこのトレンチ横型パワーMOSFETの構造を示す図であり、図52は平面図である。図53は、MOSFETとして電流を駆動する領域(以下、活性領域とする)の構造を示し、図52のA−Aにおける断面図である。図54は、基板表面にゲートポリシリコンを引き出す領域(以下、ゲート領域とする)の構造を示し、図52のB−Bにおける断面図である。
このMOSFET1103は、p-基板20に形成されたトレンチ21の内周面に沿ってゲート酸化膜22が形成され、その内側にゲートポリシリコン23が形成され、さらにトレンチ21の底およびトレンチ21の外周にそれぞれドレイン領域となるn+拡散領域29およびソース領域となるn+拡散領域27が形成された構成となっている。n+拡散領域29(ドレイン領域)は、トレンチ21の下半部を包囲するn-拡散領域28(n-ドレイン領域)により囲まれており、さらにそのn-拡散領域28はpボディとなるp-拡散領域31により囲まれている。
+拡散領域27(ソース領域)の外側にはp+拡散領域32が設けられており、下側にはpベース領域33が形成されている。また、耐圧を確保するための厚い酸化膜34がトレンチ21内の下半部に設けられている。図52〜図54において、符号24はソース電極であり、符号25はドレイン電極であり、符号26は層間酸化膜であり、符号35はゲート電極であり、符号36および符号37はともにコンタクト部であり、符号38はn+拡散領域であり、符号39および符号40はともに層間酸化膜である。このトレンチ横型パワーMOSFET1103によれば、80Vの耐圧で単位面積当たりのオン抵抗は80mΩ−mm2である。また、デバイスピッチは4μmであり、これは従来の耐圧80V用の横型パワーMOSFETのデバイスピッチの約半分である。
耐圧が80Vよりも低いたとえば30Vの横型パワーMOSFETにおいても、デバイスピッチを縮小するためにはトレンチ構造を適用することが望ましい。しかしながら、図52〜図54に示すトレンチ横型パワーMOSFET1103は80Vの耐圧に適した構造のものであるため、これをそのまま80Vよりも低い耐圧用に適用するとつぎのような不具合がある。すなわち、耐圧が80Vよりも低いと耐圧確保用の酸化膜34の厚さは耐圧80V用に比べて薄くてもよい。
つまり、この酸化膜34の厚さを、80Vよりも低い耐圧に対して必要十分な厚さにすれば、さらに全体のサイズを小さくすることが可能となる。それにもかかわらず、耐圧80V用の構造を適用すると、耐圧確保用の酸化膜34の厚さを最適化した場合よりも素子全体のサイズが大きくなってしまうため、素子周辺の配線抵抗等が大きくなるなどの特性上の不具合が生じる。
また、ゲート面積も耐圧確保用の酸化膜34の厚さを最適化した場合よりも大きくなり過ぎるため、寄生ゲート容量が大きくなり、駆動ロスが増えてしまう。また、上述したトレンチ横型パワーMOSFET1103を製造する際には、一旦浅いトレンチを掘り、そのトレンチの側面を窒化膜で保護した後、さらに深くトレンチを掘って熱酸化をおこない、耐圧確保用の厚い酸化膜34を形成するため、製造プロセスが複雑であり、歩留りの低下を招くおそれがある。
本発明は、上記問題点に鑑みてなされたものであって、従来の耐圧80V用のトレンチ横型パワーMOSFETよりも簡素なプロセス工程で製造可能であり、かつ従来の80Vよりも低い耐圧用の横型パワーMOSFETよりもデバイスピッチが小さくて単位面積当たりのオン抵抗が小さい80Vよりも低い耐圧用に最適化したトレンチ横型パワーMOSFETよりなる半導体装置、およびその製造方法を提供することを主たる目的とする。
上記目的を達成するため、本発明は、半導体基板に浅く幅の狭いトレンチを小さいピッチで形成し、そのトレンチの周囲にドリフト領域を形成した後、そのトレンチの内側にたとえば厚さが0.05μmの均一な厚さのゲート絶縁膜を形成し、さらにその内側にゲートポリシリコンを形成し、基板の表面領域にベース領域およびソース領域を形成するとともに、トレンチの底部にドレイン領域を形成し、ゲートポリシリコンの内側に層間絶縁膜を設け、さらにその内側をドレイン領域に電気的に接続するポリシリコンで埋めることを特徴とする。
また、本発明は、半導体基板にドリフト領域を形成し、その中にベース領域を形成し、ベース領域を貫通してドリフト領域に達するトレンチを形成した後、そのトレンチの内側にたとえば厚さが0.05μmの均一な厚さのゲート絶縁膜を形成し、さらにその内側にゲートポリシリコンを形成し、ベース領域の表面にソース領域を形成するとともに、トレンチの底部にドレイン領域を形成し、ゲートポリシリコンの内側に層間絶縁膜を設け、さらにその内側をドレイン領域に電気的に接続するポリシリコンで埋めることを特徴とする。
また、本発明は、半導体基板にベース領域を形成し、その中にベース領域を貫通するトレンチを形成し、ドリフト領域を形成した後、そのトレンチの内側にたとえば厚さが0.05μmの均一な厚さのゲート絶縁膜を形成し、さらにその内側にゲートポリシリコンを形成し、ベース領域の表面にソース領域を形成するとともに、トレンチの底部にドレイン領域を形成し、ゲートポリシリコンの内側に層間絶縁膜を設け、さらにその内側をドレイン領域に電気的に接続するポリシリコンで埋めることを特徴とする。
また、本発明は、半導体基板にドリフト領域を形成し、その中にトレンチを形成した後、そのトレンチの内側にたとえば厚さが0.05μmの均一な厚さのゲート絶縁膜を形成し、さらにその内側にゲートポリシリコンを形成し、ベース領域およびその表面にソース領域を形成するとともに、トレンチの底部にドレイン領域を形成し、ゲートポリシリコンの内側に層間絶縁膜を設け、さらにその内側をドレイン領域に電気的に接続するポリシリコンで埋めることを特徴とする。
これらの発明によれば、高耐圧化のために距離をとる必要のあるチャネル領域がトレンチの側部に沿って垂直方向に形成され、また、層間絶縁膜の厚さに対応するトレンチ底面に形成されたドリフト領域が電界緩和を担う。また、デバイスピッチに必要な領域がソースとドレインのコンタクト領域に限られる。また、MOSFETがトレンチの側部に自己整合的に形成されるため、マスク合わせ精度が不要となる。また、従来の耐圧80V用のトレンチ横型パワーMOSFETのように高耐圧を確保するための厚い酸化膜が不要となる。また、製造プロセスにおいてトレンチエッチングの回数が1回で済む。
また、上述した各発明において、トレンチエッチング後に、熱酸化またはCVD法により酸化膜を形成し、その酸化膜をケミカルドライエッチャまたはバッファードフッ酸によりエッチングすることにより、トレンチ底部のコーナ部に酸化膜を残し、その後にゲート絶縁膜を形成するようにしてもよい。このようにすれば、トレンチ底部のコーナ部でゲート絶縁膜が薄くなるのを防ぐことができる。
本発明によれば、高耐圧化のために距離をとる必要のあるチャネル領域がトレンチの側部に沿って垂直方向に形成され、またドリフト領域がトレンチ底面に層間絶縁膜の厚さに対応して形成され、またデバイスピッチに必要な領域がソースとドレインのコンタクト領域に限られるため、従来の80Vよりも低い耐圧用の横型パワーMOSFETよりもデバイスピッチを小さくすることができる。さらには、トレンチの側部にMOSFETが自己整合的に形成されるため、マスク合わせ精度が不要となり、デバイスピッチをより小さくして高集積化を図ることができる。デバイスピッチが小さくなることによって、単位面積当たりのチャネル幅が増大するので、単位面積当たりのオン抵抗が低減するという効果が得られる。
また、本発明によれば、従来の耐圧80V用のトレンチ横型パワーMOSFETのように高耐圧を確保するための厚い酸化膜が不要となるので、この耐圧80V用のトレンチ横型パワーMOSFETよりもゲート面積や素子サイズが小さくなる。したがって、従来の耐圧80V用のトレンチ横型パワーMOSFETを耐圧30V用に適用した場合に比べて、基板と素子の間に生ずる寄生容量が小さくなり、またゲートやソース・ドレイン配線長が短くなることによって寄生の配線抵抗が減るため、スイッチング素子として高速化を実現でき、スイッチング損失が低減する。また、隣接素子へのノイズの影響も低減する。
また、本発明によれば、製造プロセスにおいてトレンチエッチングを1回だけおこなえばよいため、トレンチエッチングを2回おこなう従来の耐圧80V用のトレンチ横型パワーMOSFETよりも簡素なプロセス工程で製造可能であり、歩留りの低下を防ぐことができる。
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。なお、以下においては第1導電型をp型とし、第2導電型をn型として説明するが、本発明はその逆の場合にも適用可能である。
(実施の形態1)
図1は、本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの要部を示す平面図である。このトレンチ横型パワーMOSFET1は、図1に示すように、p型基板50にストライプ状に複数のトレンチ51を形成し、それらトレンチ51を横断するようにゲートポリシリコン52を形成し、基板表面にゲート電極53、櫛歯状のソース電極54および櫛歯状のドレイン電極55を形成した構成となっている。
ゲートポリシリコン52はコンタクト部56を介してゲート電極53に電気的に接続される。ドレイン電極55は、図1において図示省略するが、コンタクト部56を介してトレンチ51内のポリシリコンに電気的に接続される。そのポリシリコンはトレンチ51の底のドレイン領域となるn+拡散領域に電気的に接続される。また、ソース電極54はコンタクト部57を介してソース領域となるn+拡散領域に電気的に接続される。図1において、基板表面部分の、p+拡散領域41とトレンチ51を除く領域がn+拡散領域となる。また、その下の部分では、トレンチ51以外の領域はpベース領域である。
つぎに、MOSFETとして電流を駆動する活性領域における断面構造について説明する。図2は、図1のC−Cにおける縦断面図であり、活性領域における構成を示している。ゲート絶縁膜となるゲート酸化膜59はトレンチ51の側面に沿って均一な厚さで形成されている。このゲート酸化膜59はトレンチ51の底面も被覆している。第1の導電体であるゲートポリシリコン52は、ゲート酸化膜59の内側に沿ってトレンチ51の略上下にわたって形成されている。このゲートポリシリコン52は、図3に関連して後述するゲート領域まで延びている。
トレンチ51の下半部の外側領域は、n型のドリフト領域となるn拡散領域60である。そのn拡散領域60内において、トレンチ51の底の中央部にドレイン領域となるn+拡散領域58が設けられている。n+拡散領域58(ドレイン領域)は、トレンチ51内に設けられた第2の導電体であるポリシリコン63を介してドレイン電極55に電気的に接続されている。このポリシリコン63は、トレンチ51内において層間絶縁膜である層間酸化膜65によりゲートポリシリコン52から絶縁されている。
また、トレンチ51の上半部の外側領域はpベース領域62であり、そのpベース領域62上の基板表面領域にソース領域となるn+拡散領域61が形成されている。n+拡散領域61(ソース領域)は、基板表面に形成されたソース電極54に電気的に接続されている。図2において、符号66は層間酸化膜(層間絶縁膜)である。
つぎに、基板表面にゲートポリシリコン52を引き出すゲート領域における断面構造について説明する。図3は、図1のD−Dにおける縦断面図であり、ゲート領域における構成を示している。トレンチ51の外側領域は前記n拡散領域60となっている。ゲート酸化膜59はトレンチ51の側面および底面に沿って均一な厚さで形成されている。また、ゲート酸化膜59は基板表面も被覆している。ゲートポリシリコン52は、基板表面およびトレンチ51内面に沿ってゲート酸化膜59の表面上に形成されている。
ゲートポリシリコン52の表面上には、ゲートポリシリコン52に沿って層間酸化膜67が積層されている。トレンチ51内の、その層間酸化膜67に挟まれた部分には前記層間酸化膜65を介して前記ポリシリコン63が設けられている。ポリシリコン63および層間酸化膜67の上には前記層間酸化膜66が積層されている。
上述した構成のゲート領域および活性領域が同一素子に存在する。ここで、特に限定しないが、各部の寸法および不純物の表面濃度はつぎのとおりである。たとえばトレンチ51について、その深さは2μmであり、その幅は3μmである。トレンチ51の間隔はたとえば3μmであり、この3μm幅のトレンチ51間の基板表面領域に前記pベース領域62およびソース領域となる前記n+拡散領域61が形成される。pベース領域62の拡散深さはたとえば1μmであり、表面濃度はたとえば1×1018cm-3である。
また、前記n+拡散領域58(ドレイン領域)および前記n+拡散領域61(ソース領域)について、それぞれたとえば拡散深さは0.2μmであり、表面濃度は1×1020cm-3である。また、たとえば前記n拡散領域60(ドリフト領域)の拡散深さは2μmであり、表面濃度は2×1016cm-3である。ゲート酸化膜59の厚さはたとえば0.05μmである。ゲートポリシリコン52の厚さはたとえば0.3μmである。
つぎに、実施の形態1にかかるトレンチ横型パワーMOSFET1の製造プロセスについて説明する。図4〜図12はトレンチ横型パワーMOSFET1の製造段階における要部を示す縦断面図であるが、これらの図においては1個のトレンチ51についてのみ示す。
まず、たとえば比抵抗12Ωcmのp型基板50の表面にたとえば厚さ1μmのマスク酸化膜71を成長させる。そのマスク酸化膜71の一部を選択的に除去してトレンチ形成部を開口させる。そのパターニングされたマスク酸化膜71をマスクとしてRIE(反応性イオンエッチング)により、たとえば開口幅3μmのトレンチ51をたとえば3μm間隔で複数形成する。そして、斜めイオン注入により、基板50の、トレンチ51の側面および底面の部分にドリフト領域となるn拡散領域60を形成する(図4)。
マスク酸化膜71を除去した後、犠牲酸化によりトレンチ51の側面を清浄化した後、トレンチ51の側面および底面にたとえば厚さ50nmのゲート酸化膜59を形成する。ゲート酸化膜59は基板表面上に延びる。しかる後、ゲート酸化膜59上にたとえば厚さ0.3μmのポリシリコン72を堆積する。さらに、ポリシリコン72上にたとえば厚さ0.4μmの層間酸化膜67を堆積する。
その後、フォトレジストを塗布し、露光、現像によりゲート領域にのみ選択的にレジストマスク73を形成する。活性領域のレジストは除去される。このレジストマスク73を用いて層間酸化膜67を選択的に除去する。この工程により、活性領域では層間酸化膜67が除去されてポリシリコン72が露出する(図5)。一方、ゲート領域では層間酸化膜67およびレジストマスク73はそのまま残る(図6)。
つづいて、残留したレジストマスク73を除去し、ポリシリコン72を異方性エッチングによりエッチバックする。この工程により、活性領域ではトレンチ51の側面を除いてポリシリコン72が除去され、トレンチ51の側面にのみポリシリコン72が残る。この残ったポリシリコン72が活性領域におけるゲートポリシリコン52となる。このエッチバック工程においては、活性領域に残ったポリシリコン72の上端がトレンチ51の表面、すなわち最初の基板表面よりも低くなるようにオーバーエッチングする。それによって、ポリシリコン72の上端は、基板表面上のゲート酸化膜59の上面よりもtovだけ低くなる(tov:オーバーエッチ量)。
つづいて、基板表面にイオン注入をおこなった後、ドライブ熱処理をおこなう。それによって、活性領域において、たとえば拡散深さ1μmで表面濃度1×1018cm-3のpベース領域62と、たとえば拡散深さ0.2μmで表面濃度1×1020cm-3のn+拡散領域61(ソース領域)が形成される(図7)。一方、ゲート領域では層間酸化膜67によりポリシリコン72のエッチングが阻止されるので、ポリシリコン72はそのままゲートポリシリコン52として残る(図8)。
つづいて、400℃前後の雰囲気でのLPCVDやP−TEOSなどの成膜方法により層間絶縁膜65を積層する。このような成膜方法を用いることによって、トレンチ51内における層間絶縁膜65の成長速度は、トレンチ51の外、すなわち基板表面における層間絶縁膜65の成長速度の約50%となる。したがって、トレンチ51の底面に堆積した層間絶縁膜65の厚さは、基板表面における層間絶縁膜65よりも薄くなる(図9(活性領域)、図10(ゲート領域))。
つづいて、層間絶縁膜65のエッチバックをおこない、トレンチ51の底面部分の層間絶縁膜65を貫通するコンタクトホールを開口する。その際、トレンチ51の側面に沿って層間絶縁膜65が残る。そして、活性領域のトレンチ51の底部に、イオン注入によりドレイン領域となるn+拡散領域58を形成する(図11(活性領域)、図12(ゲート領域))。
つづいて、ポリシリコンを堆積し、それをエッチバックしてトレンチ51内をポリシリコン63で埋め、その上全面に層間絶縁膜66を形成する。その層間絶縁膜66にコンタクトホールを開口し、メタルを堆積してゲート電極53、ソース電極54およびドレイン電極55を形成する。以上のようにして、活性領域においては図2に示す断面構造を有し、かつゲート領域においては図3に示す断面構造を有するトレンチ横型パワーMOSFET1ができあがる。
上述した実施の形態1によれば、トレンチ51の側部にMOSFETが自己整合的に形成されるため、マスク合わせ精度が不要となり、デバイスピッチを小さくすることができる。また、上述した実施の形態1によれば、高耐圧化のために距離をとる必要のあるチャネル領域がトレンチ51の側部に沿って垂直方向に形成され、またn拡散領域60(ドリフト領域)がトレンチ51の底面に層間酸化膜の厚さに対応して形成されるため、デバイスピッチを低減することができる。
たとえば、図1〜図3に示すトレンチ横型パワーMOSFET1によれば、図52〜図54に示す従来のトレンチ横型パワーMOSFET1103と比べて、デバイスピッチを5μmから3μmに低減でき、またトレンチ深さを6μmから2μmにすることができる。また、上述した実施の形態1によれば、デバイスピッチに必要な領域はソースとドレインのコンタクト領域に限られるため、図49に示す従来の80Vよりも低い耐圧用の横型パワーMOSFET1101と比べて、デバイスピッチの低減効果は、微細化が進むほど顕著となる。
たとえば、従来の80Vよりも低い耐圧用の横型パワーMOSFET(図49参照、これを従来例1と称する)と実施の形態1のトレンチ横型パワーMOSFET1とでデバイスピッチを比較すると、1μmルールの場合には従来例1が5.6μmであるのに対して実施の形態1によれば3.0μmである。また、0.6μmルールの場合には従来例1が4.4μmであるのに対して実施の形態1によれば1.8μmである。さらには、0.35μmルールの場合には従来例1が3.6μmであるのに対して実施の形態1によれば1.05μmである。
これらのいずれのルールにおいても、実施の形態1にかかるMOSFETは単位構造当たりの従来例1とほぼ同等の電流駆動能力を有するため、単位面積当たりのチャネル幅が増大する。それによって、実施の形態1にかかるMOSFETの単位面積当たりのオン抵抗は、従来例1に対して1μmルールの場合には54%、0.6μmルールの場合には41%、0.35μmルールの場合には30%にまで低減される。したがって、実施の形態1にかかるMOSFETによれば、耐圧30Vの場合、単位面積当たりのオン抵抗は、1μmルールでは15mΩ−mm2、0.6μmルールでは11mΩ−mm2、0.35μmルールでは8mΩ−mm2となる。
また、上述した実施の形態1によれば、従来の耐圧80V用のトレンチ横型パワーMOSFET(図52〜図54参照)のように高耐圧を確保するための厚い酸化膜が不要となるので、この耐圧80V用のトレンチ横型パワーMOSFETよりもゲート面積や素子サイズが小さくなる。したがって、従来の耐圧80V用のトレンチ横型パワーMOSFETを耐圧30V用に適用した場合に起こり得る配線抵抗等の増大や駆動ロスの増大という特性上の劣化を回避することができる。
また、上述した実施の形態1によれば、製造プロセスにおいてトレンチエッチングを1回だけおこなえばよいため、トレンチエッチングを2回おこなう従来の耐圧80V用のトレンチ横型パワーMOSFETよりも簡素なプロセス工程で製造可能であり、歩留りの低下を防ぐことができる。
また、上述した実施の形態1によれば、ゲートポリシリコン52となるポリシリコン72のオーバーエッチ量tovをたとえば0.5μm程度に設定することによって、ゲートポリシリコン52の上端とドレイン電極55との間の絶縁耐圧を向上させることができる。
(実施の形態2)
実施の形態2において、実施の形態1と同様の構成については、実施の形態1と同一の符号を付して説明を省略する。本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの平面構成は、概ね図1のとおりである。
ソース電極54は、コンタクト部57を介してソース領域となるn+拡散領域と、導電領域となるp+拡散領域41を介してpベース領域に電気的に接続されている。図1において、基板表面部分の、トレンチ51の外側領域はn+拡散領域であり、その外側領域はpベース領域であり、さらにその外側領域はドリフト領域となるnウェル領域である。また、基板表面部分の、nウェル領域の外側領域にもp+拡散領域41が設けられている。平面構成において、その他の構成は実施の形態1と同じである。
つぎに、MOSFETとして電流を駆動する活性領域における断面構造について説明する。図13は、図1のC−Cに相当する部分の縦断面図であり、活性領域における構成を示している。トレンチ51の上半部の外側領域で、かつn拡散領域60の内側領域はpベース領域62である。このpベース領域62内の基板表面領域で、トレンチ51のすぐ外側領域は、ソース領域となるn+拡散領域61である。
n拡散領域60の内側で、n+拡散領域61の外側領域はp+拡散領域41である。ソース電極54は、n+拡散領域61に電気的に接続されているとともに、p+拡散領域41を介してpベース領域62にも電気的に接続されている。また、p型基板50は、n拡散領域60の外側領域に設けられたp+拡散領域41を介して、基板コンタクト42に電気的に接続されている。活性領域における断面構成において、その他の構成は実施の形態1と同じである。
つぎに、基板表面にゲートポリシリコン52を引き出すゲート領域における断面構造について説明する。図14は、図1のD−Dに相当する部分の縦断面図であり、ゲート領域における構成を示している。トレンチ51の上半部の外側領域で、かつn拡散領域60の内側領域はpベース領域62である。ゲート領域における断面構成において、その他の構成は実施の形態1と同じである。
上述した構成のゲート領域および活性領域が同一素子に存在する。ここで、特に限定しないが、各部の寸法および不純物の表面濃度はつぎのとおりである。たとえばトレンチ51のピッチは4μmであり、この4μm幅のトレンチ51間の基板表面領域に前記n拡散領域60、前記pベース領域62およびソース領域となる前記n+拡散領域61が形成される。また、たとえば前記n拡散領域60(ドリフト領域)の拡散深さは4μmである。
なお、トレンチ51の深さおよび幅、pベース領域62の拡散深さおよび表面濃度、n+拡散領域58(ドレイン領域)およびn+拡散領域61(ソース領域)のそれぞれの拡散深さおよび表面濃度、n拡散領域60(ドリフト領域)の拡散深さおよび表面濃度、ゲート酸化膜59の厚さ、並びにゲートポリシリコン52の厚さは、たとえば実施の形態1と同じである。
実施の形態2の横型パワーMOSFET101をハイサイドスイッチとして用いた場合、横型パワーMOSFET101のゲート電極53、ソース電極54およびドレイン電極55は、それぞれゲート駆動回路、負荷回路および電源電圧制御回路に接続される(図51参照)。また、基板コンタクト42は接地される。たとえば、電源電圧Vccは30Vであり、ゲート電圧Vgは0〜35Vである。
ゲート電極53に駆動電圧Vgとしてたとえば35Vが印加されると、pベース領域62の表面に電子が集まり、pベース領域62の表面が反転してn型になり、MOSFET101がオン状態となる。このとき、ソース電極54はドレイン電極55とほぼ同電位の30Vになる。また、n+拡散領域58およびn+拡散領域61と、p型基板50との間には、n拡散領域60を介して30Vがかかる。空乏層は、p型基板50とn拡散領域60に拡がり、p型基板50側に大きく拡がる。
また、トレンチ側壁に沿ってn拡散領域60が設けられているため、オン状態においても、トレンチ底面より高い位置にpベース領域62があり、n拡散領域60に拡がった空乏層はpベース領域62に達しない。したがって、p型基板50とソース電極54とがパンチスルーすることはない。また、p型基板50の表面領域において、pベース領域62とn拡散領域60の距離を一定以上にすることによって、p型基板50とソース電極54とがパンチスルーすることはない。
一方、ゲート電極53に0Vが印加された場合には、pベース領域62の表面はp型のままで、横型パワーMOSFET101はオフ状態となる。このとき、ソース電極54の電位は0Vとなり、ドレイン電極55の電位は30Vとなる。また、n+拡散領域58と、n+拡散領域61およびp型基板50との間には、n拡散領域60を介して30Vがかかる。空乏層は、ドレイン電極55とp型基板50との間では、n+拡散領域58の下部においてp型基板50とn拡散領域60との間に拡がり、p型基板50側に大きく拡がる。
また、空乏層は、ドレイン電極55とソース電極54との間では、n拡散領域60とpベース領域62に拡がり、n拡散領域60内のトレンチ51の底面および側壁に沿って大きく拡がる。このようにトレンチ構造を採用したことによって、トレンチ51の底面および側壁に適当な距離が確保されるので、デバイスピッチを大きくすることなく、ドレイン電極55とソース電極54との間の耐圧を高くすることができる。
つぎに、実施の形態2にかかるトレンチ横型パワーMOSFET101の製造プロセスについて説明する。図15〜図25は、トレンチ横型パワーMOSFET101の製造段階における要部を示す縦断面図であるが、これらの図においては1個のトレンチ51についてのみ示す。
まず、たとえば比抵抗12Ωcmのp型基板50の表面にたとえば厚さ1μmのマスク酸化膜71を成長させる。そのマスク酸化膜71の一部を選択的に除去して、n拡散領域60を形成する領域の基板表面を開口させる。そして、イオン注入によりn拡散領域60を形成する。たとえば、n拡散領域60の拡散深さは4μmであり、表面濃度は1×1017cm-3である。つづいて、イオン注入によりpベース領域62を形成する。たとえば、pベース領域62の拡散深さは1μmであり、表面濃度は1×1018cm-3である(図15)。
ついで、基板表面に残るマスク酸化膜71をマスクとしてRIEにより、たとえば開口幅が3μmで、深さが2μmのトレンチ51を4μm間隔で複数形成する。ここまでで、p型基板50の、トレンチ51の側面および底面の部分に、ドリフト領域となるn拡散領域60が形成され、また、トレンチ51の側面および上面の部分に、pベース領域62が形成されたことになる(図16)。
マスク酸化膜71を除去した後、実施の形態1と同様にして、ゲート酸化膜59、ポリシリコン72および層間酸化膜67を順次積層し、ゲート領域にのみ選択的にレジストマスク73を形成し、これをマスクとして層間酸化膜67を選択的に除去する。それによって、活性領域ではポリシリコン72が露出し(図17)。ゲート領域では層間酸化膜67およびレジストマスク73がそのまま残る(図18)。
レジストマスク73を除去した後、実施の形態1と同様にして、ポリシリコン72のエッチバックをおこなう。それによって、ポリシリコン72は、活性領域において、その上端が基板表面上のゲート酸化膜59の上面よりもオーバーエッチ量tovだけ低いゲートポリシリコン52として残る(図19)。オーバーエッチ量tovは、たとえば0.5μm程度であるのが適当であり、その場合には、ゲートポリシリコン52の上端とドレイン電極55との間の絶縁耐圧が向上する。ゲート領域では、層間酸化膜67によりポリシリコン72のエッチングが阻止されるので、ポリシリコン72はそのままゲートポリシリコン52として残る(図20)。
つづいて、活性領域において、トレンチ51の外側で、かつpベース領域62内の一部を選択的に除去したレジストマスクを形成し、イオン注入をおこなった後、そのレジストマスクを除去する。ついで、n拡散領域60の外側の一部を選択的に除去したレジストマスクを形成し、イオン注入をおこなった後、そのレジストマスクを除去する。しかる後、ドライブ熱処理をおこなう。それによって、活性領域において、たとえば拡散深さ0.2μmで表面濃度1×1020cm-3のn+拡散領域61(ソース領域)と、たとえば拡散深さ0.2μmで表面濃度1×1020cm-3のp+拡散領域41が形成される(図21)。
つづいて、実施の形態1と同様にして、LPCVDやP−TEOSなどの成膜方法により層間絶縁膜65を積層する。層間絶縁膜65は、トレンチ51の底面で薄く、基板表面において厚くなる(図22(活性領域)、図23(ゲート領域))。そして、層間絶縁膜65のエッチバックにより、層間絶縁膜65の、トレンチ51の底面部分にコンタクトホールを開口し、活性領域のトレンチ51の底部に、イオン注入によりドレイン領域となるn+拡散領域58を形成する(図24(活性領域)、図25(ゲート領域))。
ここで、図24および図25には、基板表面の層間絶縁膜65が完全にエッチバックされた状態が示されているが、層間絶縁膜65の、積層時点での基板表面上の膜厚とトレンチ51の底面上の膜厚との差を利用して、基板表面に層間絶縁膜65が残るようにしてもよい。このようにすれば、基板表面に残った層間絶縁膜65をマスクとして、n+拡散領域58を形成することができる。図24に示すように基板表面に層間絶縁膜65が残らない場合には、基板表面を選択的に覆うレジストマスクを形成し、それをマスクとして用いてn+拡散領域58を形成することになる。
+拡散領域58の形成後、実施の形態1と同様にして、トレンチ51内をポリシリコン63で埋め、層間絶縁膜66を形成し、ゲート電極53、ソース電極54およびドレイン電極55を形成する。また、基板コンタクト42を形成する。以上のようにして、活性領域においては図13に示す断面構造を有し、かつゲート領域においては図14に示す断面構造を有するトレンチ横型パワーMOSFET101ができあがる。
上述した実施の形態2によれば、従来の耐圧80V用のトレンチ横型パワーMOSFET(図52〜図54参照)に対して、実施の形態1と同様の効果が得られるとともに、従来の横型パワーMOSFETよりもデバイスピッチが小さくなるという効果が得られる。たとえば、従来の耐圧30V用の横型パワーMOSFET(図50参照、これを従来例2と称する)と実施の形態2のトレンチ横型パワーMOSFET101とでデバイスピッチを比較すると、1μmルールの場合には従来例2が4.6μmであるのに対して実施の形態2によれば3.5μmである。また、0.6μmルールの場合には従来例2が3.8μmであるのに対して実施の形態2によれば2.1μmである。さらには、0.35μmルールの場合には従来例2が3.3μmであるのに対して実施の形態2によれば1.2μmである。
これらのいずれのルールにおいても、実施の形態2にかかるMOSFETは単位構造当たりの従来例2とほぼ同等の電流駆動能力を有するため、単位面積当たりのチャネル幅が増大する。それによって、実施の形態2にかかるMOSFETの単位面積当たりのオン抵抗は、従来例2に対して1μmルールの場合には76%、0.6μmルールの場合には55%、0.35μmルールの場合には36%にまで低減される。したがって、実施の形態2によれば、従来の横型パワーMOSFETよりも小型化、低消費電力化および低コスト化を図ることができる。
なお、上述した実施の形態2においては、n拡散領域60を形成するマスクと、pベース領域62を形成するマスクと、トレンチ51を形成するマスクは同一であるとしたが、各々のマスクを個別に形成してもよい。この場合には、n拡散領域60の形成、pベース領域62の形成およびトレンチ51の形成のそれぞれについて最適なマスクを使用することができるため、デバイスの微細化、オン抵抗の低減および耐圧の向上など、デバイスの最適化に有利である。
(実施の形態3)
実施の形態3は、図13および図14に示すトレンチ横型パワーMOSFET101の別の製造方法である。実施の形態2と異なる工程のみ説明する。図26〜図27は、トレンチ横型パワーMOSFET101の製造段階における要部を示す縦断面図であるが、これらの図においては1個のトレンチ51についてのみ示す。
まず、たとえば比抵抗12Ωcmのp型基板50の表面にたとえば厚さ1μmのマスク酸化膜71を成長させる。そのマスク酸化膜71の一部を選択的に除去して、pベース領域62を形成する領域の基板表面を開口させる。そして、イオン注入によりpベース領域62を形成する(図26)。ついで、基板表面に残るマスク酸化膜71をマスクとしてRIEにより、たとえば開口幅が3μmで、深さが2μmのトレンチ51を4μm間隔で複数形成する。
ついで、斜めイオン注入により、p型基板50の、トレンチ51の側面および底面の部分にドリフト領域となるn拡散領域60を形成する(図27)。これ以降は、実施の形態2と同様の工程を経て(図17〜図25参照)、活性領域においては図13に示す断面構造を有し、かつゲート領域においては図14に示す断面構造を有するトレンチ横型パワーMOSFET101ができあがる。
上述した実施の形態3によれば、実施の形態2に比べて、n拡散領域60の接合深さを深くすることができるので、ドレイン電極55とp型基板50との間の耐圧を高くすることができる。
なお、上述した実施の形態3においては、pベース領域62を形成するマスクと、トレンチ51を形成するマスクと、n拡散領域60を形成するマスクは同一であるとしたが、各々のマスクを個別に形成してもよい。この場合には、pベース領域62の形成、トレンチ51の形成およびn拡散領域60の形成のそれぞれについて最適なマスクを使用することができるため、デバイスの微細化、オン抵抗の低減および耐圧の向上など、デバイスの最適化に有利である。
(実施の形態4)
実施の形態4は、図13に示すトレンチ横型パワーMOSFET101のさらに別の製造方法である。実施の形態4では、図28に示すように、ゲート領域にpベース領域62がない断面構成となっている。したがって、実施の形態4では、実施の形態2と区別するため、トレンチ横型パワーMOSFETの符号を102とする。図29〜図36は、トレンチ横型パワーMOSFET102の製造段階における要部を示す縦断面図であるが、これらの図においては1個のトレンチ51についてのみ示す。
まず、たとえばp型基板50の表面に、n拡散領域60の形成パターンのマスク酸化膜71を形成し、イオン注入によりn拡散領域60を形成する。つづいて、マスク酸化膜71をマスクとしてRIEにより、トレンチ51を複数形成する。ここまでで、p型基板50の、トレンチ51の側面および底面の部分に、ドリフト領域となるn拡散領域60が形成されたことになる(図29)。
マスク酸化膜71を除去した後、実施の形態1と同様にして、ゲート酸化膜59、ポリシリコン72および層間酸化膜67を順次積層し、ゲート領域にのみ選択的にレジストマスク73を形成し、これをマスクとして層間酸化膜67を選択的に除去する。それによって、活性領域ではポリシリコン72が露出し(図30)。ゲート領域では層間酸化膜67およびレジストマスク73がそのまま残る(図31)。
レジストマスク73を除去した後、実施の形態1と同様にして、ポリシリコン72のエッチバックをおこなう。活性領域では、オーバーエッチ量tovだけ基板表面上のゲート酸化膜59の上面よりも低いゲートポリシリコン52が形成される(図32)。ゲート領域では、ポリシリコン72がそのままゲートポリシリコン52として残る(図33)。
つづいて、活性領域において、トレンチ51の外側で、かつn拡散領域60内の一部を選択的に除去したレジストマスクを形成し、イオン注入をおこなった後、そのレジストマスクを除去する。これにより、p型基板50の、トレンチ51の側面および上面の部分に、pベース領域62が形成されたことになる(図34)。
つづいて、n拡散領域60の外側の一部を選択的に除去したレジストマスクを形成し、イオン注入をおこなった後、そのレジストマスクを除去する。そして、ドライブ熱処理をおこなう。それによって、活性領域において、n+拡散領域61(ソース領域)およびp+拡散領域41が形成され、実施の形態2の図21に示す構成と同様の構成となる。
つづいて、実施の形態1と同様にして、LPCVDやP−TEOSなどの成膜方法により、トレンチ51の底面で薄く、かつ基板表面において厚い層間絶縁膜65を形成する(図22(活性領域)、図35(ゲート領域))。そして、層間絶縁膜65のエッチバックにより、層間絶縁膜65の、トレンチ51の底面部分にコンタクトホールを開口し、活性領域のトレンチ51の底部に、イオン注入によりドレイン領域となるn+拡散領域58を形成する(図24(活性領域)、図36(ゲート領域))。
つづいて、実施の形態1と同様にして、トレンチ51内をポリシリコン63で埋め、層間絶縁膜66を形成し、ゲート電極53、ソース電極54およびドレイン電極55を形成する。また、基板コンタクト42を形成する。以上のようにして、活性領域においては図13に示す断面構造を有し、かつゲート領域においては図28に示す断面構造を有するトレンチ横型パワーMOSFET102ができあがる。
なお、上述した実施の形態4においては、n拡散領域60を形成するマスクおよびトレンチ51を形成するマスクは同一であるとしたが、各々のマスクを個別に形成してもよい。この場合には、n拡散領域60の形成およびトレンチ51の形成のそれぞれについて最適なマスクを使用することができるため、デバイスの微細化、オン抵抗の低減および耐圧の向上など、デバイスの最適化に有利である。
(実施の形態5)
図37は、本発明の実施の形態5にかかるトレンチ横型パワーMOSFETの活性領域における断面構成を示す縦断面図である。図37に示すように、実施の形態5のトレンチ横型パワーMOSFET103は、同一のn拡散領域60内にたとえば2個のトレンチ51が形成された構成となっている。
一方のトレンチ51とこれと隣り合うトレンチ51との間の表面領域は、ソース領域となるn+拡散領域61とp+拡散領域41により満たされている。つまり、隣り合うトレンチ51,51の間では、n拡散領域60は基板表面に達していない。そして、それらn+拡散領域61およびp+拡散領域41と、n拡散領域60との間にはpベース領域62が設けられている。n拡散領域60は、これら2個のトレンチ群の外側で基板表面に達している。したがって、実施の形態5によれば、複数のトレンチを形成することによって、デバイスピッチをさらに小さくすることができる。同一のn拡散領域60内に3個以上のトレンチが形成されている場合も同様である。
(実施の形態6)
図38は、本発明の実施の形態6にかかるトレンチ横型パワーMOSFETの活性領域における断面構成を示す縦断面図である。図38に示すように、実施の形態6のトレンチ横型パワーMOSFET104は、同一のn拡散領域60内にたとえば4個のトレンチ51が形成された構成となっている。
n拡散領域60内において端に位置するトレンチ51の、隣り合うトレンチが存在しない側の外側領域(図38において、左端のトレンチの左側と右端のトレンチの右側の各領域)には、pベース領域62、n+拡散領域61およびソース電極54が形成されていない。この場合、端のトレンチ51の片側半分はMOSFETを構成しないが、素子分離の役割を果たしている。
従来の横型パワーMOSFETでは、オン状態のときに接地電位のp型基板と電源電圧のソース電極とがパンチスルーしないようにするため、ドリフト領域に拡がった空乏層がpベース領域に及ばないようにp型基板の表面領域においてpベース領域とドリフト領域の距離を一定以上にする必要があったが、実施の形態6によれば、トレンチ51の底面および側壁に必要な距離を確保することができるため、デバイスピッチを小さくすることができる。同一のn拡散領域60内に2個、3個または5個以上のトレンチが形成されている場合も同様である。
なお、図示しないが、端のトレンチ51において、ドレイン電極55およびn+拡散領域58を形成せずに、トレンチの片側半分だけでなく両側ともデバイスを形成しないで、素子分離として機能させることもできる。この場合には、その端のトレンチの幅を狭くすることが可能である。
(実施の形態7)
図39は、本発明の実施の形態7にかかるトレンチ横型パワーMOSFETの活性領域における断面構成を示す縦断面図である。図39に示すように、実施の形態7のトレンチ横型パワーMOSFET105は、トレンチ51の底部のコーナ部とゲート酸化膜59との間に酸化膜46を設けた構成となっている。
一般に、トレンチ横型パワーMOSFETにおいて、ゲート酸化をおこなう際に、トレンチコーナ部で応力が働き、ゲート酸化膜がトレンチ底部のコーナ部で薄くなってしまうことがある。実際に、本発明者らが、ゲート酸化膜の膜厚を断面SEMで観察したところ、トレンチの側壁および底面での膜厚が50nmであるのに対して、トレンチ底部のコーナ部では26nmしかなかった。
ゲート酸化膜は50nmの厚さで40V程度の耐圧を有するが、上述したようにトレンチ底部のコーナ部でゲート酸化膜が薄くなってしまうため、このコーナ部でゲート酸化膜の破壊が起こると推測される。本発明者らが、素子のゲート耐圧試験をおこない、破壊された素子100個について破壊個所をFIBで観察したところ、そのうち78個の素子が、トレンチ底部のコーナ部で破壊されていた。そこで、実施の形態7では、トレンチ51の底部のコーナ部に酸化膜46を設けることによって、このコーナ部でゲート酸化膜59が薄くなるのを防いでいる。
図39に示すトレンチ横型パワーMOSFET105の製造プロセスについて説明する。図40〜図46は、トレンチ横型パワーMOSFET105の製造段階における要部を示す縦断面図である。まず、たとえば比抵抗12Ωcmのp型基板50に、マスク酸化膜71を用いてRIEによりトレンチ51を形成する。そして、斜めイオン注入により、基板50の、トレンチ51の側面および底面の部分にドリフト領域となるn拡散領域60を形成する(図40)。
マスク酸化膜71を除去した後、熱酸化によりトレンチ51の側面および底面に厚さ120nmの酸化膜45を形成する(図41)。そして、ケミカルドライエッチャを用いてエッチングをおこない、トレンチ底部のコーナ部に酸化膜46を残す(図42)。つづいて、トレンチ51の側面および底面にたとえば厚さ0.02μmのゲート酸化膜59を形成する。しかる後、ゲート酸化膜59上にドープドポリシリコンを堆積し、これを異方性エッチングによりエッチバックしてゲートポリシリコン52とする(図43)。つづいて、基板表面にイオン注入をおこなった後、ドライブ熱処理をおこない、pベース領域62、n+拡散領域61(ソース領域)およびp+拡散領域41を形成する(図44)。
つづいて、層間絶縁膜65を積層し、これをエッチバックして、トレンチ51の底面部分にコンタクトホールを開口する(図45)。そして、活性領域のトレンチ51の底部に、イオン注入によりドレイン領域となるn+拡散領域58を形成する(図46)。ついで、トレンチ51内をポリシリコン63で埋め、層間絶縁膜66を積層し、これにコンタクトホールを開口し、メタルを堆積してゲート電極53、ソース電極54およびドレイン電極55を形成する。以上のようにして、活性領域において図39に示す断面構造を有するトレンチ横型パワーMOSFET105ができあがる。
ケミカルドライエッチャを用いたエッチング処理では、エッチングと同時に膜の堆積が起こる。このとき堆積する膜は、凸部にはあまり堆積せず、凹部により厚く堆積される。そのため、トレンチ底部のコーナ部により膜がより厚く堆積する。この堆積した膜にはエッチングを阻害する効果があるため、トレンチ底部のコーナ部では他の部分よりエッチングレートが遅くなる。したがって、上述したプロセスによって、トレンチ底部のコーナ部に酸化膜46を残すことにより、ゲート酸化膜が薄くなることに起因する素子破壊を防ぎ、耐圧向上を実現することができる。ただし、酸化膜46を残すためのエッチングをおこなった際に酸化膜46が残るか否かは、エッチング条件により変わるため、本発明者らは、酸化膜46が残る条件を調査した。
その結果、判明した代表的なエッチング条件は、CF4の流量が70sccmであり、O2の流量が200sccmであり、圧力は27Paであり、パワーは350Wである。また、エッチング時間は300secである。圧力、パワーおよび時間を変えずに、CF4の流量とO2の流量をパラメータとして種々変えて酸化膜46の有無を調べた結果を図47に示す。図47において、○印は、酸化膜46が残っていたことを表し、×印は、酸化膜46が残っていなかったことを表す。O2の流量をxとし、CF4の流量をyとすると、酸化膜46が残る条件は、2x−y≧270である。そして、2x−yの値が大きくなるほど酸化膜46の残存量は多くなる。
上述した実施の形態7によれば、トレンチ底部のコーナ部に酸化膜46が設けられているため、ゲート酸化膜59がトレンチ底部のコーナ部で薄くなるのを防ぐことができ、したがってデバイスの耐圧が向上する。本発明者らが、ゲート酸化膜59の厚さを20nm、50nmおよび100nmに設定して、トレンチ底部のコーナ部に酸化膜46があるものとないものについて、トレンチ横型パワーMOSFETを作製し、それらの耐圧を調べた結果を図48に示す。酸化膜46があるもの(実施の形態7)では、ゲート酸化膜59の厚さにかかわらず、耐圧が40Vであるのに対して、酸化膜46がないもの(比較例)の耐圧は、ゲート酸化膜59の厚さが20nm、50nmおよび100nmのそれぞれに対して6V、15Vおよび30Vであった。この結果より、実施の形態7の有効性が確認された。
なお、トレンチ51の側面および底面に酸化膜45を形成する際に、熱酸化法に代えてCVD法を用いてもよい。また、その酸化膜45をエッチングする際に、ケミカルドライエッチングに代えてウェットエッチングを用いてもよい。その際、CVD法による酸化膜の堆積条件や、ウェットエッチング条件等は、適宜選択される。
以上において本発明は種々変更可能であり、上述した各実施の形態において、たとえば各部の寸法や表面濃度等は要求される仕様等に応じて種々設定される。
本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの要部を示す平面図である。 図1のC−Cにおける縦断面図である。 図1のD−Dにおける縦断面図である。 本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態1にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの図1C−Cに相当する部分の断面構成を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの図1D−Dに相当する部分の断面構成を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態2にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態3にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態3にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態4にかかるトレンチ横型パワーMOSFETの図1D−Dに相当する部分の断面構成を示す縦断面図である。 本発明の実施の形態4にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態4にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態4にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態4にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態4にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態4にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態4にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態4にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態5にかかるトレンチ横型パワーMOSFETの要部の断面構成を示す縦断面図である。 本発明の実施の形態6にかかるトレンチ横型パワーMOSFETの要部の断面構成を示す縦断面図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETの要部の断面構成を示す縦断面図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETの製造段階における要部を示す縦断面図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETを製造する際のケミカルドライエッチングにおけるO2流量とCF4流量と酸化膜の有無の関係を示す特性図である。 本発明の実施の形態7にかかるトレンチ横型パワーMOSFETのゲート酸化膜厚と耐圧との関係を、比較例とともに示す特性図である。 従来の耐圧30V用の横型パワーMOSFETの構成を示す縦断面図である。 従来の横型パワーMOSFETの他の構成を示す縦断面図である。 横型パワーMOSFETをハイサイドスイッチとして用いた回路の構成を示す回路図である。 従来のトレンチ横型パワーMOSFETの構成を示す平面図である。 図52にA−Aで示す活性領域の構成を示す縦断面図である。 図52にB−Bで示すゲート領域の構成を示す縦断面図である。
符号の説明
41 p+拡散領域(導電領域)
45,46 酸化膜
50 半導体基板
51 トレンチ
52 ゲートポリシリコン(第1の導電体)
53 ゲート電極
54 ソース電極
55 ドレイン電極
58 n+拡散領域(ドレイン領域)
59 ゲート酸化膜(ゲート絶縁膜)
60 n拡散領域(ドリフト領域)
61 n+拡散領域(ソース領域)
62 pベース領域
63 ポリシリコン(第2の導電体)
65,66 層間酸化膜(層間絶縁膜)

Claims (20)

  1. 第1導電型の半導体基板に設けられたトレンチと、
    前記トレンチの外側の基板表面領域に形成された第2導電型のソース領域と、
    前記トレンチの外側で前記ソース領域の下側に形成された第1導電型のベース領域と、
    前記ベース領域の下側で前記トレンチの側部に沿って前記トレンチの外側に形成された第2導電型のドリフト領域と、
    前記トレンチの底部に形成された第2導電型のドレイン領域と、
    前記トレンチの側部に沿って前記トレンチの内側に形成された均一な厚さのゲート絶縁膜と、
    前記ゲート絶縁膜の内側に形成された第1の導電体と、
    前記第1の導電体の内側に層間絶縁膜を介して形成され、かつ前記ドレイン領域と電気的に接続する第2の導電体と、
    前記第1の導電体に電気的に接続するゲート電極と、
    前記ソース領域に電気的に接続するソース電極と、
    前記第2の導電体に電気的に接続するドレイン電極と、
    を具備し、
    前記第1の導電体の上端位置は前記半導体基板表面よりも低いことを特徴とする半導体装置。
  2. 前記ドリフト領域は前記トレンチの底部に沿って延びていることを特徴とする請求項1に記載の半導体装置。
  3. 第1導電型の半導体基板の表面領域にトレンチを形成する工程と、
    前記トレンチの周囲に第2導電型のドリフト領域を形成する工程と、
    前記トレンチの内側に、前記トレンチの側部および底部に沿って均一な厚さのゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜の表面に沿って第1の導電体を形成する工程と、
    活性領域に相当する領域において前記第1の導電体を前記トレンチの側面にのみ残るようにエッチバックする工程と、
    前記トレンチの外側の基板表面領域に第1導電型のベース領域および第2導電型のソース領域を形成する工程と、
    前記第1の導電体の内側に層間絶縁膜を形成し、活性領域に相当する領域において前記層間絶縁膜の底部を選択的に除去して前記トレンチの底部に第2導電型のドレイン領域を形成する工程と、
    前記トレンチ内に、前記ドレイン領域に電気的に接続する第2の導電体を設ける工程と、
    を含み、
    活性領域に相当する領域において前記第1の導電体を前記トレンチの側面にのみ残るようにエッチバックする際に、前記第1の導電体を前記半導体基板表面より低い位置にのみ残るようにオーバーエッチングすることを特徴とする半導体装置の製造方法。
  4. 基板表面に層間絶縁膜をさらに形成し、その層間絶縁膜にコンタクトホールを開口して、前記第1の導電体に電気的に接続するゲート電極、前記第2の導電体に電気的に接続するドレイン電極、および前記ソース領域に電気的に接続するソース電極を形成する工程をさらに含むことを特徴とする請求項4に記載の半導体装置の製造方法。
  5. 第1導電型の半導体基板の表面層に形成された第2導電型のドリフト領域と、
    前記ドリフト領域の中に設けられたトレンチと、
    前記ドリフト領域の内側で、かつ前記トレンチの外側の表面領域に形成された第2導電型のソース領域と、
    前記ドリフト領域の内側で、前記ソース領域を囲み、かつ基板表面に達するように形成された第1導電型のベース領域と、
    前記ドリフト領域の内側で、かつ前記トレンチの底部に形成された第2導電型のドレイン領域と、
    前記トレンチの側部に沿って前記トレンチの内側に形成されたゲート絶縁膜と、
    前記ゲート絶縁膜の内側に形成された第1の導電体と、
    前記第1の導電体の内側に層間絶縁膜を介して形成され、かつ前記ドレイン領域と電気的に接続する第2の導電体と、
    前記第1の導電体に電気的に接続するゲート電極と、
    前記ソース領域に電気的に接続するソース電極と、
    前記ソース電極と前記ベース領域とを電気的に接続する導電領域と、
    前記第2の導電体に電気的に接続するドレイン電極と、
    を具備し、
    前記第1の導電体の上端位置は前記半導体基板表面よりも低いことを特徴とする半導体装置。
  6. 第1導電型の半導体基板の表面層に形成された第2導電型のドリフト領域と、
    前記ドリフト領域の中に設けられた複数のトレンチと、
    前記ドリフト領域の内側で、かつ前記各トレンチの外側の表面領域に形成された第2導電型のソース領域と、
    前記ドリフト領域の内側で、前記各ソース領域を囲み、かつ基板表面に達するように形成された第1導電型のベース領域と、
    前記ドリフト領域の内側で、かつ前記各トレンチの底部に形成された第2導電型のドレイン領域と、
    前記各トレンチの側部に沿って前記各トレンチの内側に形成されたゲート絶縁膜と、
    前記各ゲート絶縁膜の内側に形成された第1の導電体と、
    前記各第1の導電体の内側に層間絶縁膜を介して形成され、かつ前記各ドレイン領域と電気的に接続する第2の導電体と、
    前記各第1の導電体に電気的に接続するゲート電極と、
    前記各ソース領域に電気的に接続するソース電極と、
    前記各ソース電極とそれに対応する前記各ベース領域とを電気的に接続する導電領域と、
    前記各第2の導電体に電気的に接続するドレイン電極と、
    を具備し、
    前記各トレンチのうち、隣り合うトレンチ同士に挟まれた表面領域は、前記ソース領域と前記導電領域により満たされており、その下側に前記ベース領域が設けられており、
    前記各第1の導電体の上端位置は前記半導体基板表面よりも低いことを特徴とする半導体装置。
  7. 前記各トレンチのうち、前記ドリフト領域の端に設けられたトレンチの、他のトレンチと隣り合わない側のトレンチ側壁は、前記ドリフト領域に接していることを特徴とする請求項6に記載の半導体装置。
  8. 前記各トレンチのうち、前記ドリフト領域の端に設けられたトレンチの幅は、他のトレンチの幅よりも狭いことを特徴とする請求項6または7に記載の半導体装置。
  9. 前記ドリフト領域は前記トレンチの側部に沿って延びていることを特徴とする請求項5〜8のいずれか一つに記載の半導体装置。
  10. 第1導電型の半導体基板の表面領域に、選択的にマスクを形成し、そのマスクを用いて第2導電型のドリフト領域を形成する工程と、
    前記ドリフト領域内に第1導電型のベース領域を形成する工程と、
    前記ドリフト領域内にトレンチを形成する工程と、
    前記トレンチの内側に、前記トレンチの側部および底部に沿ってゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜の表面に沿って第1の導電体を形成する工程と、
    活性領域に相当する領域において前記第1の導電体を前記トレンチの側面にのみ残るようにエッチバックする工程と、
    前記トレンチの外側の前記ベース領域内に第2導電型のソース領域を形成する工程と、
    前記第1の導電体の内側に層間絶縁膜を形成し、活性領域に相当する領域において前記層間絶縁膜の底部を選択的に除去して前記トレンチの底部に第2導電型のドレイン領域を形成する工程と、
    前記トレンチ内に、前記ドレイン領域に電気的に接続する第2の導電体を設ける工程と、
    を含み、
    活性領域に相当する領域において前記第1の導電体を前記トレンチの側面にのみ残るようにエッチバックする際に、前記第1の導電体を前記半導体基板表面より低い位置にのみ残るようにオーバーエッチングすることを特徴とする半導体装置の製造方法。
  11. 第1導電型の半導体基板の表面領域に、選択的にマスクを形成し、そのマスクを用いて第1導電型のベース領域を形成する工程と、
    前記ベース領域内にトレンチを形成する工程と、
    前記ベース領域の外側まで拡がる第2導電型のドリフト領域を形成する工程と、
    前記トレンチの内側に、前記トレンチの側部および底部に沿ってゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜の表面に沿って第1の導電体を形成する工程と、
    活性領域に相当する領域において前記第1の導電体を前記トレンチの側面にのみ残るようにエッチバックする工程と、
    前記トレンチの外側の前記ベース領域内に第2導電型のソース領域を形成する工程と、
    前記第1の導電体の内側に層間絶縁膜を形成し、活性領域に相当する領域において前記層間絶縁膜の底部を選択的に除去して前記トレンチの底部に第2導電型のドレイン領域を形成する工程と、
    前記トレンチ内に、前記ドレイン領域に電気的に接続する第2の導電体を設ける工程と、
    を含み、
    活性領域に相当する領域において前記第1の導電体を前記トレンチの側面にのみ残るようにエッチバックする際に、前記第1の導電体を前記半導体基板表面より低い位置にのみ残るようにオーバーエッチングすることを特徴とする半導体装置の製造方法。
  12. 第1導電型の半導体基板の表面領域に、選択的にマスクを形成し、そのマスクを用いて第2導電型のドリフト領域を形成する工程と、
    前記ドリフト領域内にトレンチを形成する工程と、
    前記トレンチの内側に、前記トレンチの側部および底部に沿ってゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜の表面に沿って第1の導電体を形成する工程と、
    活性領域に相当する領域において前記第1の導電体を前記トレンチの側面にのみ残るようにエッチバックする工程と、
    前記ドリフト領域内に第1導電型のベース領域を形成する工程と、
    前記トレンチの外側の前記ベース領域内に第2導電型のソース領域を形成する工程と、
    前記第1の導電体の内側に層間絶縁膜を形成し、活性領域に相当する領域において前記層間絶縁膜の底部を選択的に除去して前記トレンチの底部に第2導電型のドレイン領域を形成する工程と、
    前記トレンチ内に、前記ドレイン領域に電気的に接続する第2の導電体を設ける工程と、
    を含み、
    活性領域に相当する領域において前記第1の導電体を前記トレンチの側面にのみ残るようにエッチバックする際に、前記第1の導電体を前記半導体基板表面より低い位置にのみ残るようにオーバーエッチングすることを特徴とする半導体装置の製造方法。
  13. 前記ドリフト領域、前記ベース領域および前記トレンチを、共通のマスクを用いて形成することを特徴とする請求項10または11に記載の半導体装置の製造方法。
  14. 前記ドリフト領域および前記トレンチを、共通のマスクを用いて形成することを特徴とする請求項12に記載の半導体装置の製造方法。
  15. 基板表面に層間絶縁膜をさらに形成し、その層間絶縁膜にコンタクトホールを開口して、前記第1の導電体に電気的に接続するゲート電極、前記第2の導電体に電気的に接続するドレイン電極、および前記ソース領域に電気的に接続するソース電極を形成する工程をさらに含むことを特徴とする請求項10〜14のいずれか一つに記載の半導体装置の製造方法。
  16. 前記トレンチを形成した後、前記ゲート絶縁膜を形成する前に、
    熱酸化法により酸化膜を形成する工程と、
    前記酸化膜をケミカルドライエッチャによりエッチングして、トレンチ底部のコーナ部に酸化膜を残す工程と、
    をさらに含むことを特徴とする請求項3、4、10〜15のいずれか一つに記載の半導体装置の製造方法。
  17. 前記トレンチを形成した後、前記ゲート絶縁膜を形成する前に、
    CVD法により酸化膜を形成する工程と、
    前記酸化膜をケミカルドライエッチャによりエッチングして、トレンチ底部のコーナ部に酸化膜を残す工程と、
    をさらに含むことを特徴とする請求項3、4、10〜15のいずれか一つに記載の半導体装置の製造方法。
  18. ケミカルドライエッチャによりエッチングする際の、O2の流量をxとし、CF4の流量をyとすると、2x−y≧270であることを特徴とする請求項16または17に記載の半導体装置の製造方法。
  19. 前記トレンチを形成した後、前記ゲート絶縁膜を形成する前に、
    熱酸化法により酸化膜を形成する工程と、
    前記酸化膜をウェットエッチングして、トレンチ底部のコーナ部に酸化膜を残す工程と、
    をさらに含むことを特徴とする請求項3、4、10〜15のいずれか一つに記載の半導体装置の製造方法。
  20. 前記トレンチを形成した後、前記ゲート絶縁膜を形成する前に、
    CVD法により酸化膜を形成する工程と、
    前記酸化膜をウェットエッチングして、トレンチ底部のコーナ部に酸化膜を残す工程と、
    をさらに含むことを特徴とする請求項3、4、10〜15のいずれか一つに記載の半導体装置の製造方法。
JP2008156042A 2001-05-30 2008-06-13 半導体装置 Expired - Fee Related JP5167973B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156042A JP5167973B2 (ja) 2001-05-30 2008-06-13 半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001162384 2001-05-30
JP2001162384 2001-05-30
JP2008156042A JP5167973B2 (ja) 2001-05-30 2008-06-13 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002157450A Division JP4228594B2 (ja) 2001-05-30 2002-05-30 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2008277851A true JP2008277851A (ja) 2008-11-13
JP5167973B2 JP5167973B2 (ja) 2013-03-21

Family

ID=19005522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156042A Expired - Fee Related JP5167973B2 (ja) 2001-05-30 2008-06-13 半導体装置

Country Status (3)

Country Link
US (2) US6624470B2 (ja)
JP (1) JP5167973B2 (ja)
DE (1) DE10223822A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797265B2 (ja) * 2001-03-21 2011-10-19 富士電機株式会社 半導体装置および半導体装置の製造方法
US7012301B2 (en) * 2001-12-18 2006-03-14 Fuji Electric Co., Ltd. Trench lateral power MOSFET and a method of manufacturing the same
US6858500B2 (en) * 2002-01-16 2005-02-22 Fuji Electric Co., Ltd. Semiconductor device and its manufacturing method
DE10203164B4 (de) 2002-01-28 2005-06-16 Infineon Technologies Ag Leistungshalbleiterbauelement und Verfahren zu dessen Herstellung
US6878475B2 (en) * 2002-11-22 2005-04-12 T/J Technologies, Inc. Membrane for fuel cell, and fuel cell incorporating that membrane
DE10326523A1 (de) * 2003-06-12 2005-01-13 Infineon Technologies Ag Feldeffekttransistor, insbesondere doppelt diffundierter Feldeffekttransistor, sowie Herstellungsverfahren
CN100539184C (zh) * 2004-02-16 2009-09-09 富士电机电子技术株式会社 双方向元件及其制造方法、半导体装置
JP2005322723A (ja) * 2004-05-07 2005-11-17 Nec Electronics Corp 半導体装置およびその製造方法
JP4867157B2 (ja) * 2004-11-18 2012-02-01 ソニー株式会社 高周波トランジスタの設計方法、および、マルチフィンガーゲートを有する高周波トランジスタ
US20070032029A1 (en) * 2005-04-19 2007-02-08 Rensselaer Polytechnic Institute Lateral trench power MOSFET with reduced gate-to-drain capacitance
JP5157164B2 (ja) * 2006-05-29 2013-03-06 富士電機株式会社 半導体装置、バッテリー保護回路およびバッテリーパック
JP2009206268A (ja) * 2008-02-27 2009-09-10 Seiko Instruments Inc 半導体装置及びその製造方法
JP6078390B2 (ja) * 2013-03-25 2017-02-08 ルネサスエレクトロニクス株式会社 半導体装置
CN104538446B (zh) * 2014-12-23 2017-09-22 电子科技大学 一种双向mos型器件及其制造方法
WO2016101134A1 (zh) * 2014-12-23 2016-06-30 电子科技大学 一种双向mos型器件及其制造方法
JP6960119B2 (ja) 2017-11-28 2021-11-05 株式会社東芝 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102481A (ja) * 1991-10-08 1993-04-23 Nissan Motor Co Ltd 半導体装置
JPH08181313A (ja) * 1994-10-25 1996-07-12 Fuji Electric Co Ltd 横型トレンチmisfetおよびその製造方法
JPH11354793A (ja) * 1998-06-10 1999-12-24 Motorola Kk 半導体装置の製造方法
JP4228594B2 (ja) * 2001-05-30 2009-02-25 富士電機デバイステクノロジー株式会社 半導体装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122848A (en) * 1991-04-08 1992-06-16 Micron Technology, Inc. Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance
US5410170A (en) * 1993-04-14 1995-04-25 Siliconix Incorporated DMOS power transistors with reduced number of contacts using integrated body-source connections
US5963800A (en) * 1995-06-16 1999-10-05 Interuniversitair Micro-Elektronica Centrum (Imec Vzw) CMOS integration process having vertical channel
US6316807B1 (en) * 1997-12-05 2001-11-13 Naoto Fujishima Low on-resistance trench lateral MISFET with better switching characteristics and method for manufacturing same
DE19845003C1 (de) 1998-09-30 2000-02-10 Siemens Ag Vertikaler Feldeffekttransistor mit innenliegendem ringförmigen Gate und Herstellverfahren
US6545316B1 (en) * 2000-06-23 2003-04-08 Silicon Wireless Corporation MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same
JP3356162B2 (ja) * 1999-10-19 2002-12-09 株式会社デンソー 半導体装置及びその製造方法
US6355944B1 (en) * 1999-12-21 2002-03-12 Philips Electronics North America Corporation Silicon carbide LMOSFET with gate reach-through protection
JP3531613B2 (ja) * 2001-02-06 2004-05-31 株式会社デンソー トレンチゲート型半導体装置及びその製造方法
JP4797265B2 (ja) * 2001-03-21 2011-10-19 富士電機株式会社 半導体装置および半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102481A (ja) * 1991-10-08 1993-04-23 Nissan Motor Co Ltd 半導体装置
JPH08181313A (ja) * 1994-10-25 1996-07-12 Fuji Electric Co Ltd 横型トレンチmisfetおよびその製造方法
JPH11354793A (ja) * 1998-06-10 1999-12-24 Motorola Kk 半導体装置の製造方法
JP4228594B2 (ja) * 2001-05-30 2009-02-25 富士電機デバイステクノロジー株式会社 半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7008003287; Naoto Fujishima, C. Andre T.Salama: 'A Trench lateral power MOSFET using self-aligned trench bottom contact holes' 1997 International Electron Devices Meeting Technical Digest , 1997, P.359-362, IEEE *

Also Published As

Publication number Publication date
JP5167973B2 (ja) 2013-03-21
US20040147078A1 (en) 2004-07-29
US6624470B2 (en) 2003-09-23
US20020179928A1 (en) 2002-12-05
DE10223822A1 (de) 2002-12-05
US7056793B2 (en) 2006-06-06

Similar Documents

Publication Publication Date Title
JP5167973B2 (ja) 半導体装置
JP4797265B2 (ja) 半導体装置および半導体装置の製造方法
US6617656B2 (en) EDMOS device having a lattice type drift region
TWI470676B (zh) 在帶有三掩膜屏蔽柵工藝的溝槽中直接接觸
KR101144025B1 (ko) 반도체 장치 및 그 제조 방법
US7256086B2 (en) Trench lateral power MOSFET and a method of manufacturing the same
EP3217434B1 (en) Semiconductor device capable of high-voltage operation
JP4261335B2 (ja) トレンチゲート半導体デバイスの製造
KR101450437B1 (ko) Ldmos 소자와 그 제조 방법
JP4720307B2 (ja) 半導体装置の製造方法
KR20090092718A (ko) 반도체 장치 및 그 제조 방법
US8598659B2 (en) Single finger gate transistor
JP4228594B2 (ja) 半導体装置の製造方法
JP2006108208A (ja) Ldmosトランジスタを含む半導体装置
JP2008103375A (ja) 半導体装置およびその製造方法
JP2008085117A (ja) 半導体装置およびその製造方法
US7382030B1 (en) Integrated metal shield for a field effect transistor
JP4461676B2 (ja) 半導体装置の製造方法
JP4062045B2 (ja) 半導体集積回路装置の製造方法
JP4378781B2 (ja) 半導体装置とその製造方法
KR100306744B1 (ko) 트렌치게이트전력소자의제조방법
JP2004207706A (ja) 半導体装置および半導体装置の製造方法
JP5228287B2 (ja) 半導体装置およびその製造方法
JP4324218B2 (ja) 高耐圧mosfetを備えた半導体装置及びその製造方法
JP2006041308A (ja) 半導体装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

LAPS Cancellation because of no payment of annual fees