JP2008268041A - 欠陥検査装置 - Google Patents

欠陥検査装置 Download PDF

Info

Publication number
JP2008268041A
JP2008268041A JP2007112557A JP2007112557A JP2008268041A JP 2008268041 A JP2008268041 A JP 2008268041A JP 2007112557 A JP2007112557 A JP 2007112557A JP 2007112557 A JP2007112557 A JP 2007112557A JP 2008268041 A JP2008268041 A JP 2008268041A
Authority
JP
Japan
Prior art keywords
defect
light
scanning beam
sample
polygon mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007112557A
Other languages
English (en)
Other versions
JP4822548B2 (ja
Inventor
Makoto Yonezawa
米澤  良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lasertec Corp
Original Assignee
Lasertec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lasertec Corp filed Critical Lasertec Corp
Priority to JP2007112557A priority Critical patent/JP4822548B2/ja
Publication of JP2008268041A publication Critical patent/JP2008268041A/ja
Application granted granted Critical
Publication of JP4822548B2 publication Critical patent/JP4822548B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】大型のフォトマスクやガラス基板を高速で欠陥検査できる欠陥検査装置を提供する。
【解決手段】断面がほぼ楕円形をした走査ビームを発生する走査ビーム発生装置10,11,12と、入射する走査ビームの楕円形断面の長軸と平行な回転軸線及び当該回転軸線のまわりで回転する1個又は複数個の反射面を有し、入射する走査ビームを周期的に偏向するビーム偏向装置15と、ビーム偏向装置から出射した走査ビームを集束して検査すべき試料に向けて投射する対物レンズ20と、走査ビーム発生装置とビーム偏向装置との間の光路中に配置した微分干渉光学系14と、複数の受光素子を有し、 前記試料表面で反射し、前記対物レンズ、ビーム偏向装置及び微分干渉光学系を介して入射する試料表面からの反射光を受光する光検出手段22〜27と、光検出手段からの出力信号に基づいて欠陥検出信号を発生する信号処理回路とを具える。
【選択図】図2

Description

本発明は、フォトマスクや液晶表示装置の製造に用いられるガラス基板の欠陥を検査するのに好適な欠陥検査装置、特に大型のガラス基板の欠陥検査に好適な欠陥検査装置に関するものである。
液晶表示装置やプラズマディスプレイ装置の製造工程においては、フォトマスクを用いたフォトリソグラフィ法により基板上に各種パターンが形成されている。この製造工程において、フォトマスクに異物、傷、ボイド等の欠陥が存在すると、欠陥の画像が基板に投影されるため、製造の歩留りが著しく低下する不具合が生じてしまう。従って、フォトマスクやガラス基板の欠陥検査は、各種デバィスの製造の歩留りを改善する観点より極めて重要である。
ガラス基板の欠陥を検出する検査装置として、レーザ散乱方式の検査装置が既知である(例えば、特許文献1参照)。この既知の検査装置では、検査されるべきガラス基板に対して斜めにレーザビームを投射し、ガラス基板からの散乱光を2個の光検出器を用いて受光し、2個の光検出器からの出力信号の形態に応じてガラス基板の表面側に存在する異物と裏面側に存在する異物とを判別している。
特開2003−294653号公報
上述したレーザ散乱方式の検査装置は、ガラス基板の表面上に存在する異物を検出するのに有効な検査装置である。しかしながら、フォトマスクやガラス基板の欠陥は、表面や裏面上に存在する異物だけではなく、ガラス基板の表面に形成された微小な傷(スリーク)や微小な凹凸(ピット)も検出する必要がある。さらに、ガラス基板の内部に気泡や局所的な屈折率分布が存在すると、露光光が散乱してしまい、デバィスの製造の歩留りが低下する要因となってしまう。従って、ガラス基板の内部欠陥であるボイドも高感度で検出できる検査装置の開発が強く要請されている。さらに、検出された種々の欠陥を欠陥の種類ごとに分類できれば、欠陥の発生要因を解明するのに好適であると共に、検出された欠陥を修正する際にも種々の利点が達成される。
近年、デバィスの大型化に伴い、フォトマスクの原版も大型化しており、第8世代のフォトマスクの寸法は、1.22m×1.4mと大型化している。従って、ガラス基板の大型化に伴い、大型のフォトマスクやガラス基板を高速で検査できる欠陥検査装置の開発も急務の課題である。
本発明の目的は、1回の検査工程において、基板の表面に存在する異物だけでなく、基板表面のピットやスリーク並びに基板内部に存在するボイドを同時に検出できる欠陥検査装置を実現することにある。
本発明の別の目的は、大型のフォトマスクやガラス基板を高速で欠陥検査できる欠陥検査装置を提供することにある。
さらに、本発明の別の目的は、検出された欠陥の種類を自動的に分類できる欠陥検査装置を提供することにある。
本発明による欠陥検査装置は、第1の方向に延在する長軸と、長軸と直交する方向に延在する短軸とを有する断面がほぼ楕円形をした走査ビームを発生する走査ビーム発生装置と、
入射する走査ビームの楕円形断面の長軸と平行な回転軸線及び当該回転軸線のまわりで回転する1個又は複数個の反射面を有し、入射する走査ビームを周期的に偏向するビーム偏向装置と、
ビーム偏向装置から出射した走査ビームを集束して検査すべき試料に向けて投射する対物レンズと、
前記走査ビーム発生装置とビーム偏向装置との間又はビーム偏向装置と対物レンズとの間の光路中に配置した微分干渉光学系と、
複数の受光素子を有し、 前記試料表面で反射し、前記対物レンズ、ビーム偏向装置及び微分干渉光学系を介して入射する試料表面からの反射光を受光する光検出手段と、
光検出手段からの出力信号に基づいて欠陥検出信号を発生する信号処理回路とを具えることを特徴とする。
本発明では、断面が楕円形の楕円ビームにより試料表面を走査し、試料からの反射光を複数の光検出器により受光しているので、マルチチャネルの検査光学系が構成される。この結果、1本の光ビームにより試料表面を走査して欠陥検出を行う検査装置に比べて検査速度が一層速くなり、欠陥検査のスループットを大幅に改善することができる。
尚、本発明による検査光学系は、断面が楕円形の走査ビームを用いて試料を走査する非コンフォーカル光学系である。試料表面を複数の走査ビームにより走査し、試料からの反射光をラインセンサで受光するコンフォーカル光学系は、高分解能の欠陥検査を行うことができる利点がある。しかし、コンフォーカル光学系を用いて検査する場合、検査光学系を搭載した検査ヘッドをX及びY方向に移動させながら欠陥検査を行う検査装置においては、検査ヘッドの移動中に光学系が光軸方向に変位し、光検出器に入射する反射光の光量が変化してしまい、焦点の合った基板表面の欠陥しか検出されない不具合がある。特に、フォトマスクや液晶表示装置に用いられるガラス基板の寸法は、1.22m×1.4mと大型化しているため、コンフォーカル光学系を用いてガラス基板の全面を検査しようとすると、ところどころにおいて検査ヘッドの移動中に走査ビームの焦点が試料表面から変位してしまい、ガラス基板の全面にわたって欠陥検出が行われない不具合が生じてしまう。これに対して、本発明では、断面が楕円形の走査ビームを用い、非コンフォーカル光学系を構成しているので、検査ヘッドの移動中に検査ヘッドが対物レンズの光軸方向に変位しても光検出手段に入射する光量が僅かに変化するだけであり、欠陥を正確に検出することができ、大型のガラス基板の全面にわたって欠陥検出を行うことが可能である。
本発明による欠陥検査装置の好適実施例は、ビーム偏向装置は、複数の反射面を有するポリゴンミラーで構成され、ポリゴンミラーの回転軸は、入射する断面楕円形の走査ビームの長軸と平行に設定されていることを特徴とする。ビーム偏向装置としてポリゴンミラーを用いれば、試料表面を一層高速で走査することができ、欠陥検査のスループットが大幅向上する。
本発明による欠陥検査装置の別の好適実施例は、信号処理回路は、ポリゴンミラーの1つの反射面の偏向期間中に光検出手段から出力される出力信号と、ポリゴンミラーの1回転前の当該反射面の偏向期間中に光検出手段から出力される出力信号との差分を検出して差分信号を発生する手段と、
差分信号を+Thの閾値で2値化する第1の2値化手段及び差分信号を−Thの閾値で2値化する第2の2値化手段と、
第1及び第2の2値化手段からの出力信号に基づき、検出された欠陥が凸状欠陥であるか又は凹状欠陥であるかを判別する手段とを有することを特徴とする。本発明では、微分干渉光学系を用いて試料表面の凹凸を位相差情報として検出しているので、試料表面の微細なキズやピットを正確に検出することができる。特に、凸状欠陥と凹状欠陥の微分干渉は輝度変化が反転しているから、+Thの閾値を有する2値化回路と−Thの閾値を有する2値化回路を用い、検出された欠陥が凹状欠陥であるか又は凸状欠陥であるかを明確に判別することが可能である。
本発明による欠陥検査装置の別の好適実施例は、光検出手段は、複数の光ファイバと、各光ファイバの出射側にそれぞれ配置したフォトダイオードのアレイとを有し、各光ファイバの光入射面が前記第1の方向と対応する方向に配列されていることを特徴とする。
本発明による欠陥検査装置の別の好適実施例、走査ビーム発生装置は、レーザ光源と、レーザ光源から出射したレーザ光を拡大平行ビームに変換するエキスパンダ光学系と、前記第1の方向と直交する第2の方向についてだけ光ビームを集束する作用を有するシリンドリカルレンズとを有することを特徴とする。
本発明による欠陥検査装置の別の好適実施例、微分干渉光学系をノマルスキープリズムで構成し、当該ノマルスキープリズムから出射する常光線と異常光線とが前記ポリゴンミラーの反射面上で交差するように設定したことを特徴とする。
本発明による欠陥検査装置は、第1の方向に延在する長軸と、長軸と直交する方向に延在する短軸とを有する断面がほぼ楕円形をした走査ビームを発生する走査ビーム発生装置と、
走査ビームの楕円形断面の長軸と平行な回転軸及び当該回転軸のまわりで回転する複数個の反射面を有し、回転する反射面により走査ビームを周期的に偏向するポリゴンミラーと、
ポリゴンミラーから出射した走査ビームを検査すべき試料に向けて投射する対物レンズと、
前記走査ビーム発生装置とポリゴンミラーとの間の光路中に配置した微分干渉光学系と、
複数の受光素子を有し、 前記試料表面で反射し、前記対物レンズ、ポリゴンミラー及び微分干渉光学系を介して入射する試料からの反射光を受光する第1の光検出手段と、
試料から出射し、走査ビームの進行方向とは反対方向に向けて伝搬する後方散乱光を受光する第2の光検出手段と、
試料をはさんで対物レンズとは反対側に配置され、試料から出射し走査ビームの進行方向にそって伝搬する前方散乱光を受光する第3の光検出手段と、
前記第1〜第3の光検出手段からの出力信号に基づいて欠陥検出信号を発生する信号処理回路とを具えることを特徴とする。
本発明では、第1の光学系により試料表面に存在する凹凸欠陥が検出され、第2の光学系により試料表面に存在する異物による異物欠陥が検出され、第3の光学系により内部欠陥が検出される。従って、試料を1回2次元走査することにより、3種類の欠陥を検出することが可能である。
本発明による欠陥検査装置の好適実施例は、第2の光検出手段は、対物レンズの周囲に沿って配列した複数の光ファイバと、光ファイバを伝搬する光を受光する光検出器とを有することを特徴とする。
本発明による欠陥検査装置の好適実施例は、信号処理回路は、前記第1〜3の光検出手段からの出力信号に基づいて検出された欠陥を分類する欠陥分類手段を有し、当該分類手段は、第1の光検出手段からの出力信号に基づいて検出された欠陥については、試料表面の傷又は凹凸欠陥と判定し、第2の光検出手段からの出力信号に基づいて検出された欠陥については、試料表面に付着した異物による異物欠陥と判定し、第3の光検出手段からの出力信号に基づいて検出された欠陥については試料内部のボイド欠陥と判定することを特徴とする。
本発明による欠陥検査装置は、検査すべきガラス基板を支持するステージと、ステージの両側にそれぞれ配置され、Y方向に延在する2本のYレールと、Yレール上に移動可能に配置され、Y方向と直交するX方向に延在するXレールと、Xレール上に移動可能に装着され、検査光学系が搭載されている検査ヘッドと、前記Xレールを駆動する駆動機構と、前記検査ヘッドを駆動する駆動機構と、前記検査光学系から出力される出力信号を受け取り、欠陥検出を行う信号処理回路とを具え、
前記検査ヘッドは、
第1の方向に延在する長軸と、長軸と直交する方向に延在する短軸とを有する断面がほぼ楕円形をした走査ビームを発生する走査ビーム発生装置と、
走査ビームの楕円形断面の長軸と平行な回転軸線及び当該回転軸線のまわりで回転する複数個の反射面を有し、回転する反射面により走査ビームを周期的に偏向するポリゴンミラーと、
ポリゴンミラーから出射した走査ビームを検査すべき試料に向けて投射する対物レンズと、
前記走査ビーム発生装置とポリゴンミラーとの間の光路中に配置した微分干渉光学系と、
複数の受光素子を有し、 前記試料表面で反射し、前記対物レンズ、ポリゴンミラー及び微分干渉光学系を介して入射する試料からの反射光を受光する第1の光検出手段と、
試料から出射し、走査ビームの進行方向とは反対方向に向けて伝搬する後方散乱光を受光する第2の光検出手段と有することを特徴とする。
本発明では、断面が楕円形の走査ビームにより試料表面を走査し、試料からの反射光を複数の光検出器により受光しているので、マルチチャネルの検査光学系が構成され、一層高速で欠陥検査を行うことができる。また、非コンフォーカル光学系を採用しているので、大型のガラス基板の欠陥検査に好適である。さらに、第1の光検出手段により試料表面からの反射光を検出し、第2の光検出手段により後方散乱光を検出し、第3の光検出手段により前方散乱光を検出しているので、1回の走査により試料表面の傷やピット、異物欠陥及び内部欠陥を検出することができる。
図1は本発明による欠陥検査装置の全体構成を示す線図であり、図1Aは線図的平面図、図1B線図的側面図である。本例では、検査の対象としてフォトマスク用の大型ガラス基板(原版)を用い、ガラス基板の表面に付着した異物、ガラス基板の表面に形成された傷や凹凸並びに基板内部のボイドを同時に検出する例について説明する。欠陥検査装置は、ベースとなる基台1を有し、基台1上にステージ2を固定配置する。ステージ2上に検査すべきガラス基板3を配置する。基台1の側部にY方向に延在する2本のYレール4a及び4bを平行に配置する。2本のレール上に、Y方向と直交するX方向に延在するガントリー構造のXレール5を移動可能に配置する。Xレール5に、ガラス基板3に存在する各種欠陥を検出する検査ヘッド6を移動可能に装着する。Xレール及び検査ヘッドの駆動機構として、例えばリニアモータやACサーボモータが用いられる。ガラス基板3をはさんで検査ヘッド6とは反対側に、ガラス基板を透過した散乱光を受光するサブ検査ヘッド7を配置する。このサブ検査ヘッド7も、検査ヘッドと同様に、X方向及びY方向に移動する駆動機構に装着され、検査ヘッド6と同期してX及びY方向に移動させる。従って、ガラス基板3の全面は、検査ヘッド6とサブ検査ヘッド7により2次元的に走査される。
図2は、検査ヘッド及びサブ検査ヘッドに搭載された検査光学系の一例の構成を示す線図である。レーザ光源10からレーザビームを発生する。レーザ光源1として、例えば波長が532nmのレーザビームを発生する固体レーザを用いる。レーザビームは、エキスパンダ11により拡大平行光束に変換され、シリンドリカルレンズ12により断面が楕円形の走査ビームに変換される。尚、走査ビームの長軸は紙面と直交する方向に延在し、短軸は紙面内方向に延在するものとする。尚、シリンドリカルレンズの代わりに回折格子を用いて断面が楕円状ないし帯状の走査ビームを発生させることも可能である。走査ビームは偏光ビームスプリッタ13を透過し、微分干渉光学系であるノマルスキープリズム14に入射する。ノマルスキープリズム14から常光線と異常光線の2本のビームが出射し、これら2本のビームはポリゴンミラー15に入射する。
ノマルスキープリズム14から出射する常光線と異常光線との分離角度は、例えば1.5mラジアン程度に設定する。このように、分離角度を比較的大きな角度に設定することにより、ガラス基板に形成された凹凸に起因する明暗画像が、明の画像部分と暗の画像部分とに鮮明に分離された画像として撮像することができる。また、ノマルスキープリズム14から出射する常光線と異常光線とがポリゴンミラー15の反射面上で交差するように光路を設定する。
ポリゴンミラー15は、例えば16個の反射面を有するポリゴンミラーにより構成し、その回転軸線は入射する走査ビームの長軸と平行となるように設定する。ポリゴンミラーには駆動回路16が接続され、駆動回路からの駆動信号により所定の回転速度で回転する。従って、ポリゴンミラー15から、周期的に偏向され紙面と直交する方向に延在する断面楕円形の走査ビームが周期的に出射する。また、ポリゴンミラーの前面には、光センサ17を配置し、当該光センサから出力される信号をポリゴンミラーのスキャンタイミング情報信号として利用する。尚、この光センサ17は、後述するf−θレンズと隣接するように配置する。
ポリゴンミラー15から出射した走査ビームは、f−θレンズ18及びチューブレンズ19を経て対物レンズ20に入射する。対物レンズ20は、その後側焦点とポリゴンミラーの反射面とが共役の関係となるように配置する。ここで、光学倍率、すなわちポリゴンミラーの反射面から対物レンズの後側焦点までの倍率を例えば2倍に設定すると、ポリゴンミラーでスキャンされた走査ビームは、相当広い角度範囲にわたって偏向されても、対物レンズの視野を超えることはない。また、瞳の直径は2倍に拡大されるので、ポリゴンミラーの反射面のサイズが小さくても、大きな対物レンズの瞳を充足することができる。尚、ポリゴンミラーの反射面の大きさ、特に幅を大きくすると風損が大きくなり、ドライブするのが困難になる。従って、ポリゴンミラーの反射面は小さくすることが好ましい。
断面が楕円形の走査ビームは、対物レンズ20により集束されてガラス基板3に入射する。検査ヘッド6及びサブ検査ヘッド7はX方向及びY方向に2次元的に移動するので、ガラス基板3の全面が楕円状の走査ビームにより走査されることになる。ガラス基板3の表面又は裏面で反射した反射光は、対物レンズ20により集光され、元の光路を逆行する。すなわち、試料からの反射光は、再びチューブレンズ19及びf−θレンズ18を経てポリゴンミラー15に入射し、ポリゴンミラーによりデスキャンされ、断面がほぼ楕円形の静止した反射ビームに変換される。この楕円形断面の反射ビームの長軸は、走査ビームと同様に第1の方向に延在する。
ポリゴンミラーによりデスキャンされた断面が楕円形の反射ビームは、ノマルスキープリズム14に入射し、常光線による反射光と異常光線の反射光とが合成され、合成干渉ビームとして出射する。すなわち、常光線による反射光と異常光線による反射光のうち電界ベクトル方向の成分が互いに干渉し合い、ガラス基板3の表面の傷や凹凸に起因する位相差に対応した明るさの干渉ビームに変換される。従って、ノマルスキープリズムから出射する干渉ビームの輝度変化を検出することにより、ガラス基板表面に存在する各種欠陥を検出することができる。ノマルスキープリズム14から出射する合成干渉ビームは、偏光ビームスプリッタ13に入射する。そして、反射光のうち偏光面が90°回転した成分が偏光ビームスプリッタにより反射し、集束性レンズ21を経て第1の光検出手段に入射する。
第1の光検出手段は、5本の光ファイバ22〜26と、各光ファイバの出射端にそれぞれ配置した5個のフォトダイオード27a〜27eのアレイとを有する。尚、図2においては、5本の光ファイバ21〜25が紙面内に配列されているように図示したが、5本の光ファイバの光入射端は第1の方向(紙面と直交する方向)に沿って直接隣接するように配置する。図3は、光ファイバの光入射面と入射する干渉ビームとの関係を示す線図である。5本の光ファイバの光入射面22a〜26aは、矩形形状に整形され、第1の方向に配列する。入射する干渉ビーム28は、断面が楕円形であり、干渉ビームの楕円形断面が5個の光ファイバの入射面22a〜26aを完全に覆うように設定する。従って、ガラス基板3からの楕円形の反射ビームは、5個のフォトダイオード27a〜27eにより受光されて電気信号に変換され、各出力信号は増幅器によりそれぞれ増幅され、信号処理回路に供給される。従って、5個のマルチチャネル化された検出系が構成される。
次に、散乱光の検出について説明する。ガラス基板3の表面又は裏面上に異物が存在すると、異物により散乱光が発生する。また、ガラス基板の内部に気泡や局所的な屈折率分布が存在すると、これらのボイドからも散乱光が発生する。従って、ガラス基板3から発生する散乱光を検出することにより、異物や内部欠陥を検出することができる。本例では、第2の光検出手段30により走査ビームの進行方向と反対の方向に進行する後方散乱光を検出し、第3の光検出手段31により走査ビームの伝搬方向に進行する前方散乱光を検出する。
後方散乱光を検出する第2光検出手段は、例えば対物レンズ18の周囲に沿って配列した複数の光ファイバのバンドル32と光ファイバの出射端に配置した第1のフォトマルチプライヤー(PMT)33により構成する。ガラス基板の表面上に異物が存在し、この異物に走査ビームが入射すると、異物表面で反射し散乱光が発生する。この散乱光は主として走査ビームの伝搬方向と反対方向に向けて進行する。よって、対物レンズの周囲に沿って光ファイバを配列することにより、異物から発生する散乱光が光ファイバの入射面に入射し、光ファイバを伝搬してPMT33に入射し、電気信号に変換される。PMT33からの出力信号は信号処理回路に供給する。
前方散乱光を検出する第3の光検出手段31について説明する。ガラス基板3の裏面側に、ガラス厚み補正機構付きの集光レンズ34、穴付きミラー35、及びミラーからの反射光を受光する第2のフォトマルチプライヤー36を配置する。これらの光学素子は検査ヘッド6と同期して移動するサブ検査ヘッド7に搭載する。ガラス基板の内部に存在する気泡や局所的な屈折率分布等のボイドに走査ビームが入射すると、走査ビームはボイドにより光路が僅かに曲げられて進行し、ガラス基板の裏面側から前方散乱光として出射する。この前方散乱光を検出することにより、ガラス基板の内部欠陥が検出される。本例では、集光レンズ34により集光され、ミラー35で反射した散乱光を第2フォトマルチプライヤー36により受光する。従って、第2のフォトマルチプライヤーからの出力信号を信号処理回路に供給し、内部欠陥による欠陥検出信号を発生させる。尚、ミラー35には、開口35aを形成し、ガラス基板3を透過した透過ビームを外部に出射させ、散乱光検出の妨げになるのを防止する。
次に、第1の光検出手段からの出力信号を用いて試料表面の凹凸欠陥を検出する例について説明する。図4A及びBはフォトダイオード22〜26から出力される出力信号波形を示し、図4Aはガラス基板の表面に凸状欠陥が存在する場合の出力信号波形を示し、図4Bは欠陥が存在しない場合の出力信号波形を示し、図4Eはガラス基板の表面に凹状欠陥が存在する場合の出力信号波形を示す。ガラス基板の表面に凸状又は凹状欠陥が存在する場合、走査ビームに対して欠陥の高さ又は深さに応じた位相差が形成され、常光線と異常光線の電界ベクトル成分が干渉し合い、ガラス基板からの反射光に位相差に応じた輝度変化が形成される。この輝度変化は、走査ビームの進行方向に対して試料表面が凸に変化するか又は凹に変化するかに応じて輝度が反転し、凸状欠陥の場合欠陥の最も高い凸部で輝度変化が反転し、凹状欠陥の場合最も深い底部で輝度変化が反転する。従って、走査ビームが1個の凸状欠陥上を走査する場合、図4Aに示すように、明の画像部分40と暗の画像部分41とが結合した形態の輝度信号(欠陥画像)が発生する。また、凹状欠陥上を走査する場合、図4Eに示すように、暗の画像部分42と明の画像部分43とが結合した形態の輝度信号(欠陥画像)が発生する。これら明が画像部分と暗の画像部分との間の間隔は、ノマルスキープリズム14における常光線と異常光線との分離角度により規定されるので、ノマルスキープリズムの分離角度を適切に設定することにより、明の画像部分と暗の画像部分とを鮮明に発生させることが可能である。
本発明では、この微分干渉画像特有の性質を利用して欠陥判定を行う。すなわち、明の画像部分と暗の画像部分とが連続して発生した場合、凸状欠陥であると判定し、暗の画像部分と明の画像部分とが連続して発生した場合凹状欠陥であると判定する。尚、明暗画像部分の発生順序は、設定の仕方により変わるため、明の画像部分と暗の画像部分とが連続して発生した場合、凹状欠陥であると判定し、暗の画像部分と明の画像部分とが連続して発生した場合凸状欠陥であると判定するように設定することも可能である。
輝度変化の検出方法として、本例では、ポリゴンミラーの各反射面の偏向期間中のポリゴンミラーが1回転する前後の出力信号同士の差分を検出し、その差分信号について閾値+Thと−Th を用いて2値化処理を行い、その結果に基づいて欠陥判定を行う。すなわち、ポリゴンミラーの第1の反射面の偏向期間中の走査ビームの出力信号波形を図4Aに示す信号波形とし、当該第1の反射面の1回転前の偏向期間中に出力された出力信号の信号波形を図4Bに示す信号波形とする。図4Aに示す信号と図4Bに示す信号との差分をとると、図4Cに示す差分信号が出力される。この差分信号について閾値+Thと−Thとで2値化処理を行うと、図4Dに示す2値化信号が出力され、当該出力信号は、正のパルス信号と負のパルス信号とが連続して出力されるため、凸状欠陥が存在するものと判定する。また、凹状欠陥を走査した場合、図4Fに示す形態の2値化信号が出力されるので、負のパルスと正のパルスとが連続する場合凹状欠陥が存在するものと判定する。このように、ポリゴンミラーの各反射面のポリゴンミラーが1回転する前後の偏向期間中の出力信号同士を比較することにより、同一反射面の出力信号同士が比較されることになり、ポリゴンミラーの反射面に付着したゴミや傷等による影響が除去される。
第2及び第3の光検出手段において、散乱光を検出して欠陥判定する場合、光検出器からの出力信号の振幅を所定の閾値と比較し、閾値を超えた場合欠陥が存在するものと判定することができる。また、後方散乱光を検出する第2の光検出手段は主として試料の表面に付着した異物による散乱光であるため、第2の光検出手段からの出力信号の振幅が所定の閾値を超えた場合、異物欠陥が存在するものと判定され、第3の光検出手段からの出力信号が閾値を超えた場合ボイド等の内部欠陥が存在するものと判定することができる。第2及び第3の光検出手段からの出力信号についても、ポリゴンミラーの各反射面の1回転する前後の出力信号同士の差分を検出し、得られた差分を所定の閾値と比較して欠陥判定することにより、ポリゴンミラーの影響が除去された正確を欠陥検出を行うことができる。
図5は欠陥判定を行う信号処理回路の一例を示す線図である。信号処理回路には、第1の光検出手段の5チャネルの検出系からの出力信号と、第2及び第3の光検出手段からの出力信号が供給され、これらの出力信号に基づいて欠陥判定を行う。尚、第1の光検出手段からの出力信号については、5個のチャネルは同一の回路構成であるため、1つのチャネルの検出系について説明する。フォトダイオードからの出力信号は、バンドパスフィルタ50を通過させてからA/D変換器51に供給し、デジタル信号に変換する。バンドパスフィルタ(BPF)を通過することにより、レーザ光学系にありがちな干渉ノイズ等の低周波数のノイズ並びに電気的なノイズである高周波数のノイズが低減される。A/D変換器51からの出力信号は、遅延メモリ52及び減算器53に供給する。遅延メモリ52には、光センサ17からの出力信号であるポリゴンミラー15の各反射面のスキャンタイミング情報が供給され、連続する16個の反射面の各偏向期間中に出力される出力信号が記憶される。そして、減算器53において、ポリゴンミラーが1回転する前の同一反射面の偏向期間中に出力される出力信号との差分が検出され、差分信号が出力される。このように、同一反射面の1回転前の出力信号との差分をとることにより、ポリゴンミラーの反射面に存在する汚れや傷等による影響が除去される。差分信号は、閾値+Th-1の第1の2値化回路54及び閾値−Th-1の第2の2値化回路55にそれぞれ供給する。第1及び第2の2値化回路の出力信号を欠陥判定回路56に供給し、例えば正のパルスと負のパルスが連続した場合、凸状欠陥が存在するものと判定し、負のパルスと正のパルスとが連続した場合凹状欠陥が存在するものと判定する。尚、ポリゴンミラーの1回転分の遅延信号との差分を形成すると、例えば凸状欠陥信号に続いてポリゴンミラーの1回転後に凹状欠陥信号が出力されるが、欠陥判定回路において後に発生する欠陥信号をマスキングすることにより欠陥によるゴーストを消すことができる。判定結果は、欠陥分類回路57に供給する。
第2の光検出手段からの出力信号である第1のPMT33からの出力信号も同様にバンドパスフィルタ50を介してA/D変換器51に供給し、デジタル信号に変換する。当該デジタル信号は、第1の光検出手段と同様に、遅延メモリ52及び減算器53に供給する。そして、遅延メモリには、16個の反射面の各偏向期間中の出力信号が記憶され、ポリゴンミラーの1回転前分遅延した信号と比較する。その比較結果は、閾値+Th-2の第3の2値化回路60及び閾値−Th-2の第4の2値化回路61にそれぞれ供給する。これらの比較結果を欠陥判定回路62に供給し、異物欠陥が検出されたものと判定すると共に第4の2値化回路61の出力をマスキングする。
第3の光検出手段からの出力信号である第2のPMT36からの出力信号も同様にバンドパスフィルタ50を介してA/D変換器51に供給し、デジタル信号に変換する。当該デジタル信号は、第1の光検出手段と同様に、遅延メモリ52及び減算器53に供給する。そして、遅延メモリには、16個の反射面の各偏向期間中の出力信号が順次記憶され、ポリゴンミラーの1回転前分遅延した信号と比較する。その比較結果は、閾値+Th-3の第5の2値化回路63及び閾値−Th-3の第6の2値化回路64にそれぞれ供給する。これらの比較結果を欠陥判定回路65に供給する。そして、ボイド等の内部欠陥が検出されたものと判定し、その結果を分類回路57に供給する。
欠陥分類回路57では、各光検出手段の欠陥検出チャネルから出力される信号に基づいて検出された欠陥を分類し、識別ラベルを付して出力する。例えば、第1光検出手段の欠陥検出チャネルからの出力信号については、試料表面の凹凸欠陥を示すラベルを付した欠陥信号を出力する。また、第2の光検出手段の欠陥検出チャネルからの出力信号については、異物欠陥を示すラベルを付してた欠陥信号を出力する。さらに、第3の光検出手段の欠陥検出チャネルからの出力信号については、内部欠陥を示すラベルを付した欠陥信号を出力する。
図6は第2の光検出手段の変形例を示す線図である。上述した実施例では、対物レンズの有効径の外側に入射した散乱光を受光して欠陥を検出する例について説明したが、本例では、対物レンズの有効径内に入射した後方散乱光を検出して欠陥検出を行う。対物レンズ20とチューブレンズ19との間に、走査ビームが通過する円形の開口部70aが形成されているミラー70を配置する。走査ビームは円形の開口部70aを介してガラス基板に入射し、ガラス基板からの正反射光は、対物レンズ20及びミラーの開口部70aを介して進行する。一方、ガラス基板から発生した後方散乱光のうち、一部の散乱光は、対物レンズ20の有効径の内側に入射し、対物レンズ20を通過し、ミラー70の開口部の外側の反射面70bに入射する。そして、反射面70bで反射し、ヘッドオン型のPMT71に入射し、電気信号に変換され、発生した電気信号は信号処理回路に供給する。このように、対物レンズの有効径の内側に入射する後方散乱光を受光することにより、ガラス基板の表面に存在する異物欠陥を検出することも可能である。尚、対物レンズ20とミラー70との間の光路中に円筒状の遮光体72を配置し、強い照明光に起因する散乱光がPMT71に入射するのを防止することができる。
図7は第3の光検出手段の詳細な構成を示す線図である。ガラス厚み補正機構を有する集光レンズ34の後段に穴付きミラー35を配置し、このミラー35はガラス基板3に対して共役な位置に配置する。ミラー35の開口部35aは、ガラス基板3から出射した透過ビームが通過できる長円形に形成する。走査ビームは、ガラス基板の表面近傍に焦点が形成されるように設定されているので、ガラス基板3を透過した透過ビームは、集光レンズ34により集光され、ミラー35の開口部35aを通過して出射する。一方、ガラス基板3の内部に気泡や局所的な屈折率分布が存在すると、これらのボイドが起点となり、前方に広がる方向に散乱光が発生する。この前方散乱光のうち、ミラー35の反射面35bに入射した散乱光は反射面で反射し、ヘッドオン型のPMT36により受光される。従って、PMT36は、ボイドに起因する前方散乱光だけを受光することができ、ガラス基板の内部欠陥を正確に検出することができる。
図8は検査光学系の変形例を示す線図である。本例では、フレヤが大幅に軽減された実際的な検査光学系について説明する。尚、図2及び図6で用いた構成要素と同一の構成要素については同一符号を付して説明する。レーザ光源10から発生したレーザビームは、エキスパンダ11により拡大平行光束に変換され、シリンドリカル12により断面が楕円形の走査ビームに変換される。楕円ビームの短軸は紙面上垂直方向に延在し、長軸は水平方向に延在する。走査ビームは偏光ビームスプリッタ13の偏光面で反射し、結像レンズ81を経て全反射ミラー81に入射する。全反射ミラーは、後述するf−θレンズ18光路の半分の領域に挿入され、ナイフエッジ型の全反射ミラーとする。全反射ミラー81で反射した走査ビームは、f−θレンズ18の片側半分の光路を経てポリゴンミラー15に入射する。ポリゴンミラー15の回転軸線は水平方向に延在し、走査ビームはポリゴンミラーの16個の反射面で周期的に偏向される。その偏向方向は、紙面の垂直方向(上下方向)とする。ポリゴンミラーから出射した走査ビームは、f−θレンズ18の入射ビームの光路とは反対側の半分の領域を通過し、チューブレンズ19を経てノマルスキープリズム82に入射し、常光線と異常光線とに分離される。ノマルスキープリズムから出射した2本の走査ビームは、開口部が形成されているミラー70(図6参照)を経て対物レンズ20に入射する。
ガラス基板の表面に存在する異物欠陥により発生した後方散乱光は、対物レンズのレンズ内を通過し、ミラー70の反射面で反射し、集光レンズ83を介してPMT71により受光される。また、ガラス基板の表面からの反射光は、対物レンズ20により集光され、ミラー70の開口部を通過し、ノマルスキープリズム82により合成される。合成されたビームは、チューブレンズ19を通過し、f−θレンズ18の片側半分の領域を通過してポリゴンミラー15に入射し、デスキャンされる。ポリゴンミラーから出射した合成ビームは、f−θレンズ18の反対側の半分の領域、すなわち光源からポリゴンミラーに向かう走査ビームの光路を伝搬し、全反射ミラー81で反射し、結像レンズ80及び偏向ビームスプリッタ13を透過し、集束性レンズ21を経て水平方向に配列した5本の光ファイバを介して5個のフォトダイオードのアレイ27a〜27eに入射する。各フォトダイオードからの出力信号は、信号処理回路に供給され、欠陥検出が行われる。尚、f−θレンズ18以外のレンズについても、走査ビーム及び反射ビームがレンズ中心を通過しないように、すなわち光軸を通過しないように設定する。
本例の検査光学系では、ポリゴンミラーに入射するビームとポリゴンミラーから出射するビームとがf−θレンズの各片側半分の領域を通過し、f−θレンズの光軸を通過しない光路構成としているので、フレヤの発生が大幅に軽減される。
本発明は上述した実施例だけに限定されず種々の変形や変更が可能である。例えば、上述した実施例では、ガラス基板の欠陥検査について説明したが、ガラス基板以外に、フォトマスクの保護に用いられるペリクルの欠陥検査についても適用することができる。ペリクルは、薄い透明膜であり剛体ではないため、検査中に変形し易い特性がある。このため、共焦点光学系を用いて欠陥検査したのでは、検査中にペリクルが局所的に変位し、ペリクルからの反射光が光検出手段に適正に入射せず、有効な欠陥検査を行うことができない。これに対して、本発明の検査光学系は非共焦点光学系であり、検査中にペリクル面が変位ないし変形しても、ペリクルからの反射光が光検出手段に入射するので、正確な欠陥検査を行うことができる。
上述した実施例では、5個のフォトダイオードを用いた5チャネルで欠陥検査を行ったが、5個のチャネル数に限定されず、適切な数のチャネル数を設定することが可能である。また、ノマルスキープリズムの分離角度として、検出すべき欠陥の形態や欠陥画像の特性を考慮して種々の分離角度に設定することができる。さらに、微分干渉光学系としてノマルスキープリズムを用いたが、ウオルストンプリズムやロッションプリズム等のノマルスキープリズム以外の各種の微分干渉光学系を用いることもできる。
さらに、上述した実施例では、ノマルスキープリズムを偏向ビームスプリッタとポリゴンミラーとの間の光路中に配置したが、対物レンズ20とチューブレンズ19との間の光路中に配置することも可能である。
上述した実施例では、ビーム偏向装置としてポリゴンミラーを用いたが、振動ミラー等の各種スキャナを用いることも可能である。
本発明による欠陥検査装置の全体構成を示す線図である。 検査光学系の一例の構成を示す線図である。 光ファイバの入射面と試料からの反射ビームとの関係を示す線図である。 第1の光検出手段からの出力信号に基づいて欠陥判定を行う処理工程における出力信号波形を示す線図である。 欠陥検出を行う信号処理回路の一例を示す回路図である。 第2の光検出手段の変形例を示す線図である。 第3の光検出手段の作用を説明するための線図である。 本発明による欠陥検査装置の実際的な実施例を示す線図である。
符号の説明
1 基台
2 ステージ
3 ガラス基板
4a,4b Yレール
5 Xレール
6 検査ヘッド
7 サブ検査ヘッド
10 レーザ光源
11 エキスパンダ
12 シリンドリカルレンズ
13 偏光ビームスプリッタ
14 ノマルスキープリズム
15 ポリゴンミラー
16 駆動回路
17 光センサ
18 f−θレンズ
19 チューブレンズ
20 対物レンズ
21 集束性レンズ
22〜27 光ファイバ
26a〜26e フォトダイオード
30 第2の光検出手段
31 第3の光検出手段
32 光ファイババンドル
33,36 フォトマルチプライヤ
34 集光レンズ
35 ミラー
50 バンドパスフィルタ
51 A/D変換器
52 遅延メモリ
53 減算器
54,55,60,61,63,64 2値化回路
56,62,64 欠陥判定回路
57 欠陥分類回路

Claims (13)

  1. 第1の方向に延在する長軸と、長軸と直交する方向に延在する短軸とを有する断面がほぼ楕円形をした走査ビームを発生する走査ビーム発生装置と、
    入射する走査ビームの楕円形断面の長軸と平行な回転軸及び当該回転軸のまわりで回転する1個又は複数個の反射面を有し、入射する走査ビームを周期的に偏向するビーム偏向装置と、
    ビーム偏向装置から出射した走査ビームを集束して検査すべき試料に向けて投射する対物レンズと、
    前記走査ビーム発生装置とビーム偏向装置との間又はビーム偏向装置と対物レンズとの間の光路中に配置した微分干渉光学系と、
    複数の受光素子を有し、 前記試料表面で反射し、前記対物レンズ、ビーム偏向装置及び微分干渉光学系を介して入射する試料表面からの反射光を受光する光検出手段と、
    光検出手段からの出力信号に基づいて欠陥検出信号を発生する信号処理回路とを具えることを特徴とする欠陥検査装置。
  2. 請求項1に記載の欠陥検査装置において、前記ビーム偏向装置は、複数の反射面を有するポリゴンミラーで構成され、ポリゴンミラーの回転軸は、入射する断面楕円形の走査ビームの長軸と平行に設定されていることを特徴とする欠陥検査装置。
  3. 請求項2に記載の欠陥検査装置において、前記信号処理回路は、ポリゴンミラーの1つの反射面の偏向期間中に光検出手段から出力される出力信号と、ポリゴンミラーの1回転前の当該反射面の偏向期間中に光検出手段から出力される出力信号との差分を検出して差分信号を発生する手段と、
    差分信号を+Thの閾値で2値化する第1の2値化手段及び差分信号を−Thの閾値で2値化する第2の2値化手段と、
    第1及び第2の2値化手段からの出力信号に基づき、検出された欠陥が凸状欠陥であるか又は凹状欠陥であるかを判別する手段とを有することを特徴とする欠陥検査装置。
  4. 請求項2又は3に記載の欠陥検査装置において、前記光検出手段は、複数の光ファイバと、各光ファイバの出射側にそれぞれ配置したフォトダイオードのアレイとを有し、各光ファイバの光入射面が前記第1の方向と対応する方向に配列されていることを特徴とする欠陥検査装置。
  5. 請求項2、3又は4に記載の欠陥検査装置において、前記走査ビーム発生装置は、レーザ光源と、レーザ光源から出射したレーザ光を拡大平行ビームに変換するエキスパンダ光学系と、前記第1の方向と直交する第2の方向についてだけ光ビームを集束する作用を有するシリンドリカルレンズとを有することを特徴とする欠陥検査装置。
  6. 請求項2から5までのいずれか1項に記載の欠陥検査装置において、前記微分干渉光学系をノマルスキープリズムで構成し、当該ノマルスキープリズムを
    走査ビーム発生装置とポリゴンミラーとの間の光路中に配置し、ノマルスキープリズムから出射する常光線と異常光線とが前記ポリゴンミラーの反射面上で交差するように設定したことを特徴とする欠陥検査装置。
  7. 第1の方向に延在する長軸と、長軸と直交する方向に延在する短軸とを有する断面がほぼ楕円形をした走査ビームを発生する走査ビーム発生装置と、
    走査ビームの楕円形断面の長軸と平行な回転軸及び当該回転軸のまわりで回転する複数個の反射面を有し、回転する反射面により走査ビームを周期的に偏向するポリゴンミラーと、
    ポリゴンミラーから出射した走査ビームを検査すべき試料に向けて投射する対物レンズと、
    前記走査ビーム発生装置とポリゴンミラーとの間の光路中又はポリゴンミラーと対物レンズとの間の光路中に配置した微分干渉光学系と、
    複数の受光素子を有し、 前記試料表面で反射し、前記対物レンズ、ポリゴンミラー及び微分干渉光学系を介して入射する試料からの反射光を受光する第1の光検出手段と、
    試料から出射し、走査ビームの進行方向とは反対方向に向けて伝搬する後方散乱光を受光する第2の光検出手段と、
    試料をはさんで対物レンズとは反対側に配置され、試料から出射し走査ビームの進行方向にそって伝搬する前方散乱光を受光する第3の光検出手段と、
    前記第1〜第3の光検出手段からの出力信号に基づいて欠陥検出信号を発生する信号処理回路とを具えることを特徴とする欠陥検査装置。
  8. 請求項7に記載の欠陥検査装置において、前記第2の光検出手段は、対物レンズの周囲に沿って配列した複数の光ファイバと、光ファイバを伝搬する光を受光する光検出器とを有することを特徴とする欠陥検査装置。
  9. 請求項7に記載の欠陥検査装置において、前記第2の光検出手段は、前記対物レンズとポリゴンミラーとの間の光路中に配置され、走査ビームを通過させる開口部を有するミラーと、ミラーで反射した後方散乱光を受光する光検出器とを有し、試料から出射した後方散乱光を対物レンズ及びミラーを介して光検出器により受光することを特徴とする欠陥検査装置。
  10. 請求項7、8又は9に記載の欠陥検査装置において、前記第3の光検出手段は、試料を透過した光を受光する集光レンズと、試料とほぼ共役の位置に配置されると共に集光レンズの光軸に対して傾斜するように配置され、試料から出射した透過ビームを通過させる開口部を有するミラーと、ミラーからの反射光を受光する光検出器とを有し、試料から出射した前方散乱光を前記集光レンズ及びミラーを介して光検出器により受光することを特徴とする欠陥検査装置。
  11. 請求項7、8、9又は10に記載の欠陥検査装置において、前記信号処理回路は、前記第1〜3の光検出手段からの出力信号に基づいて検出された欠陥を分類する欠陥分類手段を有し、当該分類手段は、第1の光検出手段からの出力信号に基づいて検出された欠陥については、試料表面の傷又は凹凸欠陥と判定し、第2の光検出手段からの出力信号に基づいて検出された欠陥については、試料表面に付着した異物による異物欠陥と判定し、第3の光検出手段からの出力信号に基づいて検出された欠陥については試料内部のボイド欠陥と判定することを特徴とする欠陥検査装置。
  12. 検査すべきガラス基板を支持するステージと、ステージの両側にそれぞれ配置され、Y方向に延在する2本のYレールと、Yレール上に移動可能に配置され、Y方向と直交するX方向に延在するXレールと、Xレール上に移動可能に装着され、検査光学系が搭載されている検査ヘッドと、前記Xレールを駆動する駆動機構と、前記検査ヘッドを駆動する駆動機構と、前記検査光学系から出力される出力信号を受け取り、欠陥検出を行う信号処理回路とを具え、
    前記検査ヘッドは、
    第1の方向に延在する長軸と、長軸と直交する方向に延在する短軸とを有する断面がほぼ楕円形をした走査ビームを発生する走査ビーム発生装置と、
    走査ビームの楕円形断面の長軸と平行な回転軸及び当該回転軸のまわりで回転する複数個の反射面を有し、回転する反射面により走査ビームを周期的に偏向するポリゴンミラーと、
    ポリゴンミラーから出射した走査ビームを検査すべき試料に向けて投射する対物レンズと、
    前記走査ビーム発生装置とポリゴンミラーとの間の光路中又はポリゴンミラーと対物レンズとの間の光路中に配置した微分干渉光学系と、
    複数の受光素子を有し、 前記試料表面で反射し、前記対物レンズ、ポリゴンミラー及び微分干渉光学系を介して入射する試料からの反射光を受光する第1の光検出手段と、
    試料から出射し、走査ビームの進行方向とは反対方向に向けて伝搬する後方散乱光を受光する第2の光検出手段と有することを特徴とする欠陥検査装置。
  13. 請求項12に記載の欠陥検査装置において、さらに、ガラス基板をはさんで検査ヘッドとは反対側に配置され、検査ヘッドと同期して移動するサブ検査ヘッドを具え、当該サブ検査ヘッドは、試料から出射し走査ビームの進行方向にそって伝搬する前方散乱光を受光する第3の光検出手段を有し、当該第3の光検出手段からの出力信号を前記信号処理回路に供給し、信号処理回路は、第1、第2及び第3の光検出手段からの出力信号に基づいて欠陥検出を行うことを特徴とする欠陥検査装置。

JP2007112557A 2007-04-23 2007-04-23 欠陥検査装置 Expired - Fee Related JP4822548B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007112557A JP4822548B2 (ja) 2007-04-23 2007-04-23 欠陥検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007112557A JP4822548B2 (ja) 2007-04-23 2007-04-23 欠陥検査装置

Publications (2)

Publication Number Publication Date
JP2008268041A true JP2008268041A (ja) 2008-11-06
JP4822548B2 JP4822548B2 (ja) 2011-11-24

Family

ID=40047736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007112557A Expired - Fee Related JP4822548B2 (ja) 2007-04-23 2007-04-23 欠陥検査装置

Country Status (1)

Country Link
JP (1) JP4822548B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112803A (ja) * 2008-11-05 2010-05-20 Lasertec Corp 基板検査装置及び光検出装置
JP2011209271A (ja) * 2011-01-19 2011-10-20 Lasertec Corp 検査装置及び欠陥分類方法
JP2017096912A (ja) * 2016-06-09 2017-06-01 列真株式会社 欠陥検査装置
CN112639447A (zh) * 2018-08-27 2021-04-09 西铁城时计株式会社 光检测模块以及光检测装置
WO2022260296A1 (ko) * 2021-06-10 2022-12-15 주식회사 에프에스티 극자외선 리소그라피용 펠리클 막의 결함 제거방법

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260211A (ja) * 1985-05-15 1986-11-18 Hitachi Ltd 自動異物検出方法及びその装置
JPS6425747A (en) * 1978-06-19 1989-01-27 Syntex Inc 7a beta-methyl-2,3,3a alpha,4,5,6,7,7a- octahydro-1h-indene-1,5-dione-4alpha-(3- propionic acid)-pivalic acid mixed acid anhydride
JPH052262A (ja) * 1991-06-26 1993-01-08 Hitachi Ltd 異物検査装置
JPH05209732A (ja) * 1992-01-31 1993-08-20 Mazda Motor Corp 表面状態検査装置
JPH05296941A (ja) * 1992-04-17 1993-11-12 Dainippon Ink & Chem Inc 表面欠陥検査装置
JPH0735701A (ja) * 1993-07-23 1995-02-07 Sharp Corp パターン目視検査装置
JPH0868760A (ja) * 1994-08-31 1996-03-12 Fuji Xerox Co Ltd 表面層欠陥検出装置
JPH0972721A (ja) * 1995-09-05 1997-03-18 Kobe Steel Ltd 連続処理ラインにおける薄板材の溶接部診断方法及び装置
JPH09138198A (ja) * 1995-11-15 1997-05-27 Nikon Corp 欠陥検査装置
JPH10282007A (ja) * 1997-04-04 1998-10-23 Hitachi Ltd 異物等の欠陥検査方法およびその装置
JPH11101619A (ja) * 1997-09-25 1999-04-13 Nec Corp 外観検査装置および外観検査方法
JPH11304715A (ja) * 1998-04-16 1999-11-05 Lasertec Corp パターン欠陥検査装置及びレーザ顕微鏡
JP2002357564A (ja) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd 基板表面欠陥検出の方法とその装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425747A (en) * 1978-06-19 1989-01-27 Syntex Inc 7a beta-methyl-2,3,3a alpha,4,5,6,7,7a- octahydro-1h-indene-1,5-dione-4alpha-(3- propionic acid)-pivalic acid mixed acid anhydride
JPS61260211A (ja) * 1985-05-15 1986-11-18 Hitachi Ltd 自動異物検出方法及びその装置
JPH052262A (ja) * 1991-06-26 1993-01-08 Hitachi Ltd 異物検査装置
JPH05209732A (ja) * 1992-01-31 1993-08-20 Mazda Motor Corp 表面状態検査装置
JPH05296941A (ja) * 1992-04-17 1993-11-12 Dainippon Ink & Chem Inc 表面欠陥検査装置
JPH0735701A (ja) * 1993-07-23 1995-02-07 Sharp Corp パターン目視検査装置
JPH0868760A (ja) * 1994-08-31 1996-03-12 Fuji Xerox Co Ltd 表面層欠陥検出装置
JPH0972721A (ja) * 1995-09-05 1997-03-18 Kobe Steel Ltd 連続処理ラインにおける薄板材の溶接部診断方法及び装置
JPH09138198A (ja) * 1995-11-15 1997-05-27 Nikon Corp 欠陥検査装置
JPH10282007A (ja) * 1997-04-04 1998-10-23 Hitachi Ltd 異物等の欠陥検査方法およびその装置
JPH11101619A (ja) * 1997-09-25 1999-04-13 Nec Corp 外観検査装置および外観検査方法
JPH11304715A (ja) * 1998-04-16 1999-11-05 Lasertec Corp パターン欠陥検査装置及びレーザ顕微鏡
JP2002357564A (ja) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd 基板表面欠陥検出の方法とその装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112803A (ja) * 2008-11-05 2010-05-20 Lasertec Corp 基板検査装置及び光検出装置
JP2011209271A (ja) * 2011-01-19 2011-10-20 Lasertec Corp 検査装置及び欠陥分類方法
JP2017096912A (ja) * 2016-06-09 2017-06-01 列真株式会社 欠陥検査装置
CN112639447A (zh) * 2018-08-27 2021-04-09 西铁城时计株式会社 光检测模块以及光检测装置
CN112639447B (zh) * 2018-08-27 2023-10-13 西铁城时计株式会社 光检测模块以及光检测装置
WO2022260296A1 (ko) * 2021-06-10 2022-12-15 주식회사 에프에스티 극자외선 리소그라피용 펠리클 막의 결함 제거방법

Also Published As

Publication number Publication date
JP4822548B2 (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
KR102136959B1 (ko) 웨이퍼 검사
US7053395B2 (en) Wafer defect detection system with traveling lens multi-beam scanner
KR102119297B1 (ko) 다중 스팟 주사 수집 광학장치
JP5268061B2 (ja) 基板検査装置
KR100228026B1 (ko) 이물질 검사를 위한 방법 및 장치
JP5637841B2 (ja) 検査装置
JP3978528B2 (ja) パターン欠陥検査装置及びレーザ顕微鏡
JP2010112803A5 (ja)
JP4359689B2 (ja) 検査装置及び検査方法、パターン基板の製造方法
JP4822548B2 (ja) 欠陥検査装置
JP3105702B2 (ja) 光学式欠陥検査装置
JP2016024042A (ja) 検査装置及びオートフォーカス方法
JP2001027611A (ja) 欠陥検査装置
JP2013019766A (ja) 検査装置及び検査方法
KR970000781B1 (ko) 이물 검사 장치
JP3453128B2 (ja) 光学式走査装置及び欠陥検出装置
JP4325909B2 (ja) 欠陥検査装置、欠陥検査方法、光学式走査装置、半導体デバイス製造方法
JP3282790B2 (ja) 位相シフトマスクの欠陥検査装置
JP5046054B2 (ja) 欠陥検査装置、欠陥検査方法、光学式走査装置、半導体デバイス製造方法
US7528940B2 (en) System and method for inspecting an object using an acousto-optic device
JP5614759B2 (ja) 検査装置
KR0154559B1 (ko) 결함 레티클 검사장치 및 방법
JPH0682373A (ja) 欠陥検査方法
JP2006313107A (ja) 検査装置及び検査方法並びにそれを用いたパターン基板の製造方法
JPH05215690A (ja) 異物検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4822548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees