JP2008262900A - 非水電解質およびこれを用いた非水電解質電池 - Google Patents

非水電解質およびこれを用いた非水電解質電池 Download PDF

Info

Publication number
JP2008262900A
JP2008262900A JP2008020773A JP2008020773A JP2008262900A JP 2008262900 A JP2008262900 A JP 2008262900A JP 2008020773 A JP2008020773 A JP 2008020773A JP 2008020773 A JP2008020773 A JP 2008020773A JP 2008262900 A JP2008262900 A JP 2008262900A
Authority
JP
Japan
Prior art keywords
compound
negative electrode
group
chemical formula
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008020773A
Other languages
English (en)
Other versions
JP4569639B2 (ja
Inventor
Toru Kotani
徹 小谷
Tadahiko Kubota
忠彦 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008020773A priority Critical patent/JP4569639B2/ja
Priority to US12/048,999 priority patent/US20080226983A1/en
Publication of JP2008262900A publication Critical patent/JP2008262900A/ja
Application granted granted Critical
Publication of JP4569639B2 publication Critical patent/JP4569639B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】サイクル特性を向上させることができる非水電解質およびこれを用いた非水電解質電池を提供する。
【解決手段】セパレータ23には、液状の非水電解質である非水電解液が含浸されている。非水電解液は、電解質塩と、溶媒と、化1で表された化合物のうちの少なくとも1種と、を含むものである。
【化1】
Figure 2008262900

(R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。nは1以上の整数である。)
【選択図】図2

Description

この発明は、非水電解質およびこれを用いた非水電解質電池に関し、さらに詳しくは、非水溶媒と、電解質塩とを備える非水電解質およびこれを用いた非水電解質電池に関する。
リチウムイオン二次電池は、充放電反応にリチウムの吸蔵および放出を利用する二次電池であり、鉛電池やニッケルカドミウム電池と比較して大きなエネルギー密度が得られるため、大いに期待されている。
リチウムイオン二次電池では、負極活物質として炭素材料が広く用いられている。例えば、コークス、人造黒鉛、天然黒鉛などのリチウムイオンを吸蔵および放出することが可能な炭素材料を用いたリチウムイオン二次電池が提案されている。このようなリチウムイオン二次電池では、リチウムが金属状態で存在しないためデンドライトの形成が抑制され、電池寿命と安全性を向上することができる。特に、人造黒鉛や天然黒鉛などの黒鉛系炭素材料は、単位体積当たりのエネルギー密度を向上させることができる材料として期待されている。
黒鉛系炭素材料を単独で負極に用いたリチウムイオン二次電池、または黒鉛系炭素材料と、リチウムを吸蔵および放出することが可能な他の負極材料と、を混合して負極に用いたリチウムイオン二次電池では、リチウム一次電池で一般に好んで使用される炭酸エステルを電解液の溶媒に使用している。しかしながら、炭酸エステルを電解液の溶媒として使用した場合には、充放電過程において電極表面で電解液が分解するため、充放電効率の低下やサイクル特性の低下などの問題がある。
そこで、充放電効率の低下やサイクル特性の低下などを抑制するために、例えば、特許文献1、特許文献2では、電極表面で電解液よりも先に分解して被膜を作ることで溶媒の分解を抑制する添加剤が提案されており、例えば、炭酸ビニレンや炭酸(4-ビニル)エチレンなどの不飽和基を有する環状カーボネートを電解液に添加する方法が提案されている。
特開平5−744886号公報 特開平8−45545号公報
ところで、最近では、電池容量をさらに向上することが求められており、例えば、電池容量をさらに向上するために、炭素材料に代えてケイ素(Si)またはスズ(Sn)などを負極に用いることが検討されている。ケイ素(Si)の理論容量(4199mAh/g)およびスズ(Sn)の理論容量(994mAh/g)は、黒鉛の理論容量(372mAh/g)よりも格段に大きいため、電池容量の大幅な向上を期待できる。
例えば、特許文献3に記載されているように、負極活物質として、ケイ素(Si)またはスズ(Sn)の薄膜を用いた二次電池では、リチウム(Li)が吸蔵および放出された場合においても負極活物質の微粉化が抑制されるため、高い放電容量を得ることができる。
国際公開第01/031724号パンフレット
また、特許文献4では、負極活物質として、スズ(Sn)、ケイ素(Si)のようなリチウムと化合可能な金属、元素または合金およびこれらの化合物を用いた場合において、サイクル特性を向上させる方法として、例えば、ハロゲンを構成元素として有する環状または鎖状の炭酸エステルを電解液に含有させる方法が提案されている。この方法によって特性が向上する理由としては、初期の充電時において負極の表面に高イオン透過性および高安定性の被膜が形成されるため、電解液の分解反応が抑制されるからであると推測される。
特開2004−47131号公報
しかしながら、負極活物質として、ケイ素(Si)またはスズ(Sn)を用いた場合には、リチウム(Li)が吸蔵された場合に活性が高くなるため、電解液の溶媒として環状炭酸エステルなどの高誘電率溶媒と鎖状炭酸エステルなどの低粘度溶媒とを併用すると、主に鎖状炭酸エステルが分解されやすく、しかもリチウムが不活性化しやすいことが懸念される。この場合には、充放電過程において負極活物質の微粉化が十分に抑制されないと、充放電効率が低下するため、十分なサイクル特性および保存特性が得られない。
特許文献4では、ハロゲンを構成元素として有する環状または鎖状の炭酸エステルを電解液に含有させることによって、電解液の分解反応を抑制できるが、負極活物質として、ケイ素(Si)またはスズ(Sn)を用いた場合には、十分なサイクル特性が得られていない。また、負極活物質として、炭素材料を用いた場合でも、サイクル特性をより向上させることが求められている。
したがって、この発明の目的は、サイクル特性を向上させることができる非水電解質およびこれを用いた非水電解質電池を提供することにある。
上述した課題を解決するために、第1の発明は、
化1で表された化合物のうちの少なくとも1種を含むこと
を特徴とする非水電解質である。
Figure 2008262900
(R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。nは1以上の整数である。)
第2の発明は、
正極および負極と、非水電解質と、を備え、
非水電解質は、化2で表された化合物のうちの少なくとも1種を含むこと
を特徴とする非水電解質電池である。
Figure 2008262900
(R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。nは1以上の整数である。)
この発明では、電池などの電気化学デバイスに用いた場合に、非水電解質に含まれる化1で表された化合物は、溶媒よりも先に分解して電極上で被膜を作るので、溶媒の分解反応を抑制できる。
この発明によれば、非水電解質を電気化学的に安定化することによって、サイクル特性を向上させることができる。
以下、この発明の実施の形態について図面を参照して説明する。この発明の一実施形態による非水電解質は、例えば、液状の溶媒と、溶媒に溶解された電解質塩と、化3で表されたオキソカーボン酸またはオキソカーボン酸誘導体と、を含む非水電解液である。
Figure 2008262900
(R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。nは1以上の整数である。)
化3で表された化合物は、電極上で分解することで膜を形成できる。この膜はオキソカーボン酸の環全体に電子共役が広がっているため安定であると推測される。これにより、電池などに用いた場合には、電解液が電気化学的に安定化するため、サイクル特性を向上させることができる。
化3中のR1およびR2において、炭化水素基としては、具体的には、飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、芳香族炭化水素基、脂環式炭化水素基が挙げられ、より具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、アリル基、フェニル基などが挙げられる。また、アルキルシリル基としては、具体的には、トリアルキルシリル基などが挙げられ、より具体的には、トリメチルアルキルシリル基、トリエチルアルキルシリル基などが挙げられる。
化3で表された化合物としては、化3においてnが1〜6のものが合成し易く、より具体的には、例えば、化4で表されたスクアリン酸または3,4−アルコキシ−3−シクロブテン−1,2−ジオンなどのスクアリン酸誘導体、化5で表されたクロコン酸または4,5−ジアルコキシ−4−シクロペンテン−1,2,3−トリオンなどのクロコン酸誘導体、化6で表されたロジゾン酸または5,6−ジアルコキシ−5−シクロヘキセン−1,2,3,4−テトラオンなどのロジゾン酸誘導体などが挙げられる。
Figure 2008262900
(R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。)
Figure 2008262900
(R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。)
Figure 2008262900
(R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。)
化3で表された化合物としては、化3において、R1およびR2が、それぞれアリル基、トリメチルシリル基などのトリアルキルシリル基、「−CH2CF3」などの炭化水素基の少なくとも一部の水素をフッ素で置換したフッ素置換炭化水素基である化合物が好ましい。非水電解質電池に、化3において、R1およびR2が、それぞれアリル基、トリアルキルシリル基、フッ素置換炭化水素基である化合物を含む非水電解液を用いた場合に、より優れたサイクル特性向上の効果を得ることができるからである。また、優れた溶解性が得られる点から、R1およびR2は、炭化水素基であることが好ましく、より優れた溶解性を得られる点から、R1とR2とが異なる炭化水素基であることがより好ましい。
溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,3−ジオキサン、1,4−ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、N,N−ジメチルホルムアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N’−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、リン酸トリメチル、ジメチルスルホキシドなどを用いることができる。電解液を備えた、電池などの電気化学デバイスにおいて、優れた容量特性、サイクル特性および保存特性が得られるからである。これらは単独で用いてもよいし、複数種を混合して用いてもよい。
中でも、溶媒としては、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルからなる群のうちの少なくとも1種を含むものを用いることが好ましい。十分な効果が得られるからである。この場合には、特に、高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)である炭酸エチレンまたは炭酸プロピレンと、低粘度溶媒(例えば、粘度≦1mPa・s)である炭酸ジメチル、炭酸ジエチルまたは炭酸エチルメチルとを混合して含むものを用いることが好ましい。電解質塩の解離性およびイオンの移動度が向上するため、より高い効果が得られるからである。
また、溶媒としては、4−フルオロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オンなどの環状炭酸エステル誘導体をさらに含むことが好ましい。サイクル特性をより向上できるからである。
さらに、溶媒としては、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)などの不飽和結合を有する環状炭酸エステルをさらに含むことが好ましい。
さらに、溶媒としては、プロパンスルトン、プロペンスルトン(PRS)などの環状スルトン誘導体をさらに含むものであることが好ましい。
さらに、溶媒としては、無水コハク酸、2−スルホ安息香酸無水物などの酸無水物をさらに含むものであることが好ましい。
電解質塩であるリチウム塩としては、ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、ヘキサフルオロヒ酸リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(CF3SO3Li)、ビス(トリフルオロメタンスルホニル)イミドリチウム〔(CF3SO22NLi〕〕(LiTFSI)、トリス(トリフルオロメタンスルホニル)メチルリチウム〔(CF3SO23CLi〕〕、リチウムビスオキサレートボレート(LiBOB)、1,3−パーフルオロプロパンジスルホニルイミドリチウムなどを用いることができる。これらはいずれか1種を用いてもよく、2種以上を混合して用いてもよい。
また、非水電解質としては、高分子化合物に非水電解液を保持させたゲル状の電解質を用いてもよい。ゲル状の電解質は、イオン伝導度が室温で1mS/cm以上であるものであればよく、組成および高分子化合物の構造に特に限定はない。非水電解液に含まれる溶媒、電解質塩および化3で表された化合物については、上述のとおりであるので、詳しい説明を省略する。
高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレンまたはポリカーボネートなどを用いることができる。特に、電気化学的安定性の点からは、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンまたはポリエチレンオキサイドの構造を持つ高分子化合物を用いることが好ましい。
なお、ここで溶媒というのは、液状の溶媒のみを意味するのではなく、電解質塩を解離させることができ、イオン伝導性を有するものを広く含む概念である。よって、高分子化合物にイオン伝導性を有するものを用いる場合には、その高分子化合物も溶媒に含まれる。
この発明の一実施形態による非水電解質は、負極にケイ素(Si)およびスズ(Sn)のうちの少なくとも1種を構成元素として含む材料を用いた非水電解質電池に好適に使用できる。負極にケイ素(Si)およびスズ(Sn)のうちの少なくとも1種を構成元素として含む材料を用いた電池では、負極の活性が高く電解液が分解されやすいので、負極に炭素材料を用いた場合よりも、サイクル特性が劣化しやすい傾向にあるため、より高い効果が得られるからである。
また、特に、負極にケイ素(Si)およびスズ(Sn)のうちの少なくとも1種を構成元素として含む材料を用いた非水電解質電池に、化3において、R1およびR2が、それぞれアリル基、トリアルキルシリル基、フッ素置換炭化水素である化合物を含む非水電解質を用いた場合に、特に優れたサイクル特性向上の効果を得ることができる。
また、化3で表された化合物は、電池特性などを考慮すると、非水電解質中に0.01wt%〜10wt%含まれることが好ましい。なお、1wt%〜5wt%の範囲では、ほぼ同等のサイクル特性向上の効果を得られる傾向にある。
この発明の一実施形態による非水電解質を用いて、例えば、種々の形状およびサイズのリチウム電池などの二次電池を作製することが可能である。
この発明の一実施形態による非水電解質を用いた非水電解質電池の第1の例について説明する。図1は、この発明の一実施形態による非水電解質電池の一構成例を示す。この非水電解質電池は、いわゆるコイン型形状を有し、例えば非水電解質二次電池であり、例えば、リチウムイオン二次電池である。
図1に示すように、この非水電解質電池は、正極2と、この正極2を収容する外装缶6と、負極4と、この負極4を収容する外装カップ5と、正極2と負極4との間に配されたセパレータ3と、外装カップ5と、外装缶6と、の間を絶縁するガスケット7と、を有する。
正極2は、正極集電体2A上に正極活物質層2Bが設けられた構造を有している。正極活物質層2Bは、例えば、正極活物質として、電極反応物質であるリチウムを吸蔵および放出可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて炭素材料などの導電剤およびポリフッ化ビニリデンなどの結着剤を含んでいてもよい。
リチウムを吸蔵および放出可能な正極材料としては、例えば、コバルト酸リチウム、ニッケル酸リチウムまたはそれらを含む固溶体(Li(NixCoyMnz)O2);x、yおよびzの値はそれぞれ0<x<1、0<y<1、0<z<1、x+y+z=1である。)、またはスピネル構造を有するマンガン酸リチウム(LiMn24)またはその固溶体(Li(Mn2-vNiv)O4;vの値はv<2である。)などのリチウム複合酸化物や、リン酸鉄リチウム(LiFePO4)などのオリビン構造を有するリン酸化合物などが好ましい。高いエネルギー密度を得ることができるからである。また、上記の正極材料の他には、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガンなどの酸化物や、二硫化鉄、二硫化チタンまたは硫化モリブデンなどの二硫化物、硫黄などの硫化物や、ポリアニリンまたはポリチオフェンなどの導電性高分子が挙げられる。
正極集電体2Aとしては、例えば網状や箔状のアルミニウム(Al)などを用いることができる。結合剤としては、この種の非水電解質電池に通常用いられる公知の樹脂材料を用いることができる。より具体的には、例えばポリフッ化ビニリデン(PVdF)などを用いることができる。また、導電剤としては、この種の非水電解質電池に通常用いられている公知のものを用いることができる。より具体的には、導電剤として例えばカーボンブラック、グラファイトなどを用いることができる。
外装缶6は、導電性金属からなる容器であり、例えば、ステンレス(SUS)、アルミニウム(Al)などの金属によって、構成されている。
負極4は、負極集電体4A上に、負極活物質として、リチウム(Li)を吸蔵および放出することが可能な負極材料を含む負極活物質層4Bが形成されている。
リチウム(Li)を吸蔵および放出することが可能な負極材料としては、例えば、炭素材料、金属酸化物または高分子化合物などが挙げられる。炭素材料としては、例えば、易黒鉛化炭素、(002)面の面間隔が0.37nm以上の難黒鉛化炭素、または(002)面の面間隔が0.340nm以下の黒鉛が挙げられる。より具体的には、熱分解炭素類、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維または活性炭などがある。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークスなどがあり、有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子化合物を適当な温度で焼成して炭素化したものをいう。また、金属酸化物としては、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどが挙げられ、高分子化合物としてはポリアセチレンまたはポリピロールなどが挙げられる。
また、負極活物質層4Bは、例えば、負極活物質として、電極反応物質であるリチウム(Li)を吸蔵および放出することが可能な金属元素の単体、合金および化合物と、リチウム(Li)を吸蔵および放出することが可能な半金属元素の単体、合金および化合物とからなる群のうちの少なくとも1種の負極材料を含んでいてよい。これにより、高いエネルギー密度を得ることができるようになる。さらに、上述した炭素材料と、共に用いるようにしてもよい。炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、例えば上述した負極材料と共に用いるようにすればようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができ、更に導電剤としても機能するので好ましい。なお、本明細書において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とからなるものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物またはそれらのうちの2種以上が共存するものがある。
この負極材料を構成する金属元素または半金属元素としては、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)または白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
また、これらの金属元素または半金属元素の合金または化合物としては、例えば、化学式MasMbtLiu、または化学式MapMcqMdrで表されるものが挙げられる。これらの化学式において、Maはリチウム(Li)と合金を形成可能な金属元素および半金属元素のうちの少なくとも1種を表し、Mbはリチウム(Li)およびMa以外の金属元素および半金属元素のうちの少なくとも1種を表し、Mcは非金属元素の少なくとも1種を表し、MdはMa以外の金属元素および半金属元素のうちの少なくとも1種を表す。また、s、t、u、p、qおよびrの値はそれぞれs>0、t≧0、u≧0、p>0、q>0、r≧0である。
中でも、この負極材料としては、短周期型周期表における4B族の金属元素または半金属元素の単体、合金または化合物が好ましく、特に好ましいのはケイ素(Si)またはスズ(Sn)の単体、またはこれらの合金または化合物である。ケイ素(Si)またはスズ(Sn)の単体、合金および化合物は、リチウム(Li)を吸蔵および放出する能力が大きく、組み合わせによっては、従来の黒鉛と比較して負極22のエネルギー密度を高くすることができるからである。
このような合金または化合物について具体的に例を挙げれば、SiB4、SiB6、Mg2Si、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si34、Si22O、SiOv(0<v≦2)、SnOw(0<w≦2)、SnSiO3、LiSiO、LiSnO、Mg2Sn、またはスズ(Sn)とコバルト(Co)とを含む合金などがある。
中でも、この負極材料としては、スズ(Sn)と、コバルト(Co)と、炭素(C)とを構成元素として含み、炭素の含有量が9.9質量%以上29.7質量%以下であり、かつスズ(Sn)とコバルト(Co)との合計に対するコバルト(Co)の割合Co/(Sn+Co)が30質量%以上70質量%以下であるCoSnC含有材料が好ましい。このような組成範囲において高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるからである。
このCoSnC含有材料は、必要に応じて更に他の構成元素を含んでいてもよい。他の構成元素としては、例えば、ケイ素(Si)、鉄(Fe)、ニッケル(Ni)、クロム(Cr)、インジウム(In)、ニオブ(Nb)、ゲルマニウム(Ge)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、リン(P)、ガリウム(Ga)またはビスマス(Bi)が好ましく、2種以上を含んでいてもよい。容量またはサイクル特性を更に向上させることができるからである。
なお、このCoSnC含有材料は、スズ(Sn)と、コバルト(Co)と、炭素(C)とを含む相を有しており、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、このCoSnC含有材料では、構成元素である炭素の少なくとも一部が、他の構成元素である金属元素または半金属元素と結合していることが好ましい。サイクル特性の低下はスズ(Sn)などが凝集または結晶化することによるものであると考えられるが、炭素が他の元素と結合することにより、そのような凝集または結晶化を抑制することができるからである。
元素の結合状態を調べる測定方法としては、例えばX線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)が挙げられる。XPSでは、炭素の1s軌道(C1s)のピークは、グラファイトであれば、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば炭素が金属元素または半金属元素と結合している場合には、C1sのピークは、284.5eVよりも低い領域に現れる。すなわち、CoSnC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、CoSnC含有材料に含まれる炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合している。
なお、XPS測定では、スペクトルのエネルギー軸の補正に、例えばC1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPS測定では、C1sのピークの波形は、表面汚染炭素のピークとCoSnC含有材料中の炭素のピークとを含んだ形として得られるので、例えば市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、CoSnC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
負極活物質層4Bは、例えば、気相法、液相法、焼成法、または塗布のいずれにより形成してもよく、それらの2以上を組み合わせてもよい。焼成法というのは、粒子状の負極活物質を結着剤または溶剤などと混合して成形したのち、例えば結着剤などの融点よりも高い温度で熱処理する方法である。
気相法、液相法または焼成法により形成する場合には、形成時に負極活物質層4Bと負極集電体4Aとが界面の少なくとも一部において合金化することがあり好ましい。さらに、真空雰囲気下または非酸化性雰囲気下で熱処理を行い、合金化するようにしてもよい。具体的には、界面において負極集電体4Aの構成元素が負極活物質層4Bに、または負極活物質の構成元素が負極集電体4Aに、またはそれらが互いに拡散していることが好ましい。充放電に伴う負極活物質層4Bの膨張・収縮による破壊を抑制することができると共に、負極活物質層4Bと負極集電体4Aとの間の電子伝導性を向上させることができるからである。
気相法としては、例えば、物理堆積法または化学堆積法を用いることができ、具体的には、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱CVD(Chemical Vapor Deposition ;化学気相成長)法またはプラズマCVD法などが利用可能である。液相法としては電解鍍金または無電解鍍金などの公知の手法が利用可能である。焼成法に関しても公知の手法が利用可能であり、例えば、雰囲気焼成法、反応焼成法またはホットプレス焼成法が利用可能である。塗布の場合には、正極2と同様にして形成することができる。
外装カップ5は、負極4を収容する導電性金属からなる容器であり、外部負極となる。具体的には、この外装カップ5は、例えば、アルミニウム(Al)、ステンレス(SUS)や、表面にニッケル(Ni)めっきが施された鉄(Fe)などからなる金属容器を用いる。
セパレータ3は、正極2と、負極4とを隔離し、両極の接触による電流の短絡を防止つつ非水電解液中のリチウムイオンを通過させるものである。このセパレータ3は、微小な孔を多数有する微多孔性膜からなる。ここで、微多孔性膜とは、孔の平均孔径が5μm以下程度微孔を多数有する樹脂膜のことである。また、セパレータ3としては、材料として従来の電池に使用されてきたものを利用することが可能である。そのなかでも、ショート防止効果に優れ、且つシャットダウン効果による電池の安全性向上が可能なポリプロピレンやポリオレフィンなどからなる微多孔性フィルムを用いる。
ガスケット7は、外装カップ5に組み込まれ一体化された構成となっており、例えばポリプロピレンなどの有機樹脂で形成されている。ガスケット7は、外部正極となる外装缶6と、外部負極となる外装カップ5とを絶縁させているとともに、外装カップ5および外装缶6内に充填された非水電解液の漏出を防止させるように機能する。
次に、非水電解質電池の第1の例の製造方法について説明する。正極2は、例えば、以下に説明するようにして作製する。まず、例えば、正極活物質と、導電剤と、結合剤とを非水溶媒などに分散させ正極合剤塗液を調製する。次に、この正極合剤塗液を、例えば、アルミニウム(Al)箔などの金属箔状の正極集電体2Aに均一に塗布し、乾燥させた後、圧縮成型して正極活物質層2Bを形成する。これにより、正極2が得られる。
負極4は、例えば、以下に説明するようにして作製する。まず、例えば、負極活物質と、結合剤とを非水溶媒などに分散させ負極合剤塗液を調製する。この負極合剤塗液を、例えば銅(Cu)箔などの金属箔状の負極集電体4Aに均一に塗布し、乾燥させた後、圧縮して負極活物質層4Bを形成する。これにより、負極4が得られる。
次に、正極2を外装缶6に収容し、負極4を外装カップ5に収容し、正極2と負極4との間に、ポリプロピレン製の多孔質膜などからなるセパレータ3を配置する。これにより、非水電解質電池は、正極2と、セパレータ3と、負極4とが順次に積層された内部構造となる。
次に、非水電解液を、外装缶6および外装カップ5に注液し、ガスケット7を介して外装缶6と外装カップ5とを固定する。以上のようにして非水電解質電池が得られる。
次に、この発明の一実施形態による非水電解質を用いた非水電解質電池の第2の例について説明する。図2は、非水電解質電池の第2の例の構成を示す断面図である。
この非水電解質電池は、例えば、非水電解質二次電池であり、例えば、リチウムイオン二次電池である。この非水電解質電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、一対の帯状の正極21と帯状の負極22とがセパレータ23を介して巻回された巻回電極体20を有している。セパレータ23には、液状の非水電解質である非水電解液が含浸されている。電池缶11は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、絶縁板13がそれぞれ配されている。
電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、ガスケット17を介してかしめられることにより取り付けられており、電池缶11の内部は密閉されている。
電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されており、内部短絡または外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。熱感抵抗素子16は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
巻回電極体20は、例えば、センターピン24を中心に巻回されている。巻回電極体20の正極21にはアルミニウム(Al)などよりなる正極リード25が接続されており、負極22にはニッケルなどよりなる負極リード26が接続されている。正極リード25は安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接され電気的に接続されている。
図3は、図2に示した巻回電極体20の一部を拡大して示す断面図である。以下、図3を参照しながら、非水電解質電池を構成する正極21、負極22、セパレータ23について順次説明する。
正極21は、例えば、対向する一対の面を有する正極集電体21Aの両面に正極活物質層21Bが設けられた構造を有している。なお、図示はしないが、正極集電体21Aの片面のみに正極活物質層21Bが設けられた領域を有するようにしてもよい。正極集電体21Aは、例えば、アルミニウム箔などの金属箔により構成されている。
正極活物質層21Bは、例えば、リチウム(Li)を吸蔵および放出することが可能な正極材料を含んで構成されており、必要に応じてグラファイトなどの導電剤およびポリフッ化ビニリデン(PVDF)などの結着剤を含んで構成されている。リチウムを吸蔵および放出することが可能な正極材料は、上述の第1の例で説明したものと同様であるので、詳細な説明を省略する。
負極22は、例えば、対向する一対の面を有する負極集電体22Aの両面に負極活物質層22Bが設けられた構造を有している。なお、図示はしないが、負極集電体22Aの片面のみに負極活物質層22Bが設けられた領域を有するようにしてもよい。負極集電体22Aは、例えば、銅箔などの金属箔により構成されている。
負極活物質層22Bは、例えば、リチウム(Li)を吸蔵および放出することが可能な負極材料を含んで構成されており、必要に応じて正極活物質層21Bと同様の結着剤を含んで構成されている。リチウム(Li)を吸蔵および放出することが可能な負極材料は、上述の第1の例で説明したものと同様であるので、詳細な説明を省略する。
セパレータ23は、上述の第1の例で説明したセパレータ3と同様であるので詳細な説明を省略する。
次に、非水電解質電池の第2の例の製造方法の一例について説明する。まず、例えば、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより正極活物質層21Bを形成する。これにより、正極21が得られる。
また、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体22Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより負極活物質層22Bを形成する。これにより、負極22が得られる。
次に、正極集電体21Aに正極リード25を溶接などにより取り付けると共に、負極集電体22Aに負極リード26を溶接などにより取り付ける。そののち、正極21と負極22とをセパレータ23を介して巻回し、正極リード25の先端部を安全弁機構15に溶接すると共に、負極リード26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12、13で挟み電池缶11の内部に収納する。正極21および負極22を電池缶11の内部に収納したのち、非水電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。そののち、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をガスケット17を介してかしめることにより固定する。これにより、図2に示した非水電解質電池が得られる。
次に、非水電解質電池の第3の例について説明する。図4は、非水電解質電池の第3の例の一構成例を示す断面図である。この非水電解質電池は、正極リード31および負極リード32が取り付けられた巻回電極体30をフィルム状の外装部材40の内部に収容したものであり、小型化、軽量化および薄型化が可能となっている。
正極リード31および負極リード32は、それぞれ外装部材40の内部から外部に向かい例えば同一方向に導出されている。正極リード31および負極リード32は、例えば、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)またはステンレス(SUS)などの金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。
外装部材40は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材40は、例えば、ポリエチレンフィルム側と巻回電極体30とが対向するように配設されており、各外縁部が融着または接着剤により互いに密着されている。外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。
なお、外装部材40は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム、ポリプロピレンなどの高分子フィルムまたは金属フィルムにより構成するようにしてもよい。
図4は、図3に示した巻回電極体30のI−I線に沿った断面図である。巻回電極体30は、正極33と負極34とをセパレータ35および電解質層36を介して積層し、巻回したものであり、最外周部は保護テープ37により保護されている。
正極33は、正極集電体33Aの片面または両面に正極活物質層33Bが設けられた構造を有している。負極34は、負極集電体34Aの片面または両面に負極活物質層34Bが設けられた構造を有しており、負極活物質層34Bと正極活物質層33Bとが対向するように配置されている。正極集電体33A、正極活物質層33B、負極集電体34A、負極活物質層34Bおよびセパレータ35の構成は、それぞれ第1の例または第2の例で説明した正極集電体21A、正極活物質層21B、負極集電体22A、負極活物質層22Bおよびセパレータ23と同様であるので詳細な説明を省略する。
電解質層36は、上述した非水電解液と、この非水電解液を保持する保持体となる高分子化合物とを含み、いわゆるゲル状の非水電解質となっている。ゲル状の電解質層36は高いイオン伝導率を得ることができると共に、電池の漏液を防止することができるので好ましい。なお、電解質層36には、非水電解液を高分子化合物に保持させることなく、そのまま用いてもよい。
次に、電池の第3の例の製造方法の一例について説明する。まず、正極33および負極34のそれぞれに、溶媒と、電解質塩と、高分子化合物と、混合溶剤とを含む前駆溶液を塗布し、混合溶剤を揮発させて電解質層36を形成する。そののち、正極集電体33Aの端部に正極リード31を溶接により取り付けると共に、負極集電体34Aの端部に負極リード32を溶接により取り付ける。
次に、電解質層36が形成された正極33と負極34とをセパレータ35を介して積層し積層体としたのち、この積層体をその長手方向に巻回して、最外周部に保護テープ37を接着して巻回電極体30を形成する。最後に、例えば、外装部材40の間に巻回電極体30を挟み込み、外装部材40の外縁部同士を熱融着などにより密着させて封入する。その際、正極リード31および負極リード32と外装部材40との間には密着フィルム41を挿入する。これにより、図4に示した二次電池が得られる。
また、この二次電池は、次のようにして作製してもよい。まず、上述したようにして正極33および負極34を作製し、正極33および負極34に正極リード31および負極リード32を取り付けたのち、正極33と負極34とをセパレータ35を介して積層して巻回し、最外周部に保護テープ37を接着して、巻回電極体30を形成する。次に、この巻回電極体30を外装部材40に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装部材40の内部に収納する。続いて、溶媒と、電解質塩と、化3で表された化合物と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を用意し、外装部材40の内部に注入する。
電解質用組成物を注入したのち、外装部材40の開口部を真空雰囲気下で熱融着して密封する。次に、熱を加えてモノマーを重合させて高分子化合物とすることにより電解質層36を形成する。以上により、図4に示した二次電池が得られる。
この発明の具体的な実施例について、図1を参照しながら説明する。ただし、この発明は、これらの実施例のみに限定されるものではない。ここで、以下の説明で、化合物1〜化合物15とは、それぞれ以下に示す化7の(7−1)〜(7−15)で表された化合物とする。なお、化合物1から化合物5および化合物11は市販のものを用いた。化合物6、化合物8〜化合物10および化合物12〜化合物14は、相当するオキソカーボン酸とアルコールを原料にして、「Tetrahedron 2001年、56巻、9325-9333ページ」に記載の方法を参考に合成した。化合物7は、スクアリン酸とN,O−ビス(トリメチルシリル)アセトアミドから「Journal of American Chemical Society, 1976年、98巻、3641-3644ページ」に記載の方法を参考に合成した。化合物15はスクアリン酸とN,O−ビス(tert−ブチルジメチルシリル)アセトアミドから化合物7と同様の方法で合成した。
Figure 2008262900
Figure 2008262900
<実施例1−1>
実施例1−1の非水電解質二次電池として、図1に示したコイン型の二次電池を作製した。この二次電池は、正極2と、負極4とを電解液を含浸させた微多孔性ポリプロピレンフィルムよりなるセパレータ3を介して積層し、外装缶6と外装カップ5との間に挟み、ガスケット7を介してかしめたものである。
まず、正極活物質としてリチウムコバルト複合酸化物(LiCoO2)94質量部と、導電剤としてグラファイト3質量部と、結着剤としてポリフッ化ビニリデン3質量部とを混合したのち、N−メチル−2−ピロリドンを添加し正極合剤スラリーを得た。
次に、得られた正極合剤スラリーを、厚み20μmのアルミニウム箔よりなる正極集電体2Aに均一に塗布し乾燥させて厚みが70μmの正極活物質層2Bを形成した。そののち、正極活物質層2Bが形成された正極集電体2Aを直径15mmの円形に打ち抜き、これにより正極2を得た。
また、負極活物質として黒鉛を用い、この黒鉛97質量部と、結着剤としてポリフッ化ビニリデン3質量部とを混合し、N−メチル−2−ピロリドンを添加して、厚み15μmの銅箔よりなる負極集電体4Aに均一に塗布し乾燥させることにより厚み70μmの負極活物質層4Bを形成した。そののち、負極活物質層4Bが形成された負極集電体4Aを直径16mmの円形に打ち抜き、これにより負極4を得た。
次に、正極2と、負極4とを、厚み25μmの微多孔性ポリプロピレンフィルムよりなるセパレータ3を介して積層したのち、セパレータ3に電解液を注液し、これらをステンレス製の外装カップ5と、外装缶6の中に入れ、それらをかしめることにより、実施例1−1の二次電池を得た。電解液としては、エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを、重量比(EC:DEC)3:7の組成で混合した溶媒に、電解質塩として、LiPF6を1.0mol/kgとなるように溶解させ、化合物1を1wt%となるように添加したものを用いた。
<実施例1−2>
化合物1を加える代わりに、化合物2を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−2の二次電池を作製した。
<実施例1−3>
化合物1を加える代わりに、化合物3を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−3の二次電池を作製した。
<実施例1−4>
化合物1を加える代わりに、化合物4を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−4の二次電池を作製した。
<実施例1−5>
化合物1を加える代わりに、化合物5を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−5の二次電池を作製した。
<実施例1−6>
化合物1を加える代わりに、化合物6を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−6の二次電池を作製した。
<実施例1−7>
化合物1を加える代わりに、化合物7を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−7の二次電池を作製した。
<実施例1−8>
化合物1を加える代わりに、化合物8を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−8の二次電池を作製した。
<実施例1−9>
化合物1を加える代わりに、化合物9を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−9の二次電池を作製した。
<実施例1−10>
化合物1を加える代わりに、化合物10を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−10の二次電池を作製した。
<実施例1−11>
化合物1を加える代わりに、化合物12を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−11の二次電池を作製した。
<実施例1−12>
化合物1を加える代わりに、化合物13を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−12の二次電池を作製した。
<実施例1−13>
化合物1を加える代わりに、化合物14を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−13の二次電池を作製した。
<実施例1−14>
化合物1を加える代わりに、化合物15を1wt%加えた点以外は、実施例1−1と同様にして、実施例1−14の二次電池を作製した。
<実施例1−15>
電解液として、さらにビニレンカーボネート(VC)を1wt%加えたものを用いた点以外は、実施例1−2と同様にして、実施例1−15の二次電池を作製した。
<実施例1−16>
電解液として、さらに4−フルオロ−1,3−ジオキソラン−2−オン(FEC)を1wt%加えたものを用いた点以外は、実施例1−2と同様にして、実施例1−16の二次電池を作製した。
<実施例1−17>
電解液として、さらに4,5−ジフルオロ−1,3−ジオキソラン−2−オン(DFEC)を1wt%加えたものを用いた点以外は、実施例1−2と同様にして、実施例1−17の二次電池を作製した。
<実施例1−18>
電解液として、さらにプロペンスルトン(PRS)を1wt%加えたものを用いた点以外は、実施例1−2と同様にして、実施例1−18の二次電池を作製した。
<実施例1−19>
電解液として、さらにコハク酸無水物を1wt%加えたものを用いた点以外は、実施例1−2と同様にして、実施例1−19の二次電池を作製した。
<実施例1−20>
電解液として、さらに2−スルホ安息香酸無水物を1wt%加えたものを用いた点以外は、実施例1−2と同様にして、実施例1−20の二次電池を作製した。
<実施例1−21>
電解液として、さらにエチレンサルファイトを1wt%加えたものを用いた点以外は、実施例1−2と同様にして、実施例1−21の二次電池を作製した。
<実施例1−22>
電解質塩として、LiPF6を0.9mol/kg、LiBF4を0.1mol/kgとなるように溶解させた点以外は、実施例1−2と同様にして、実施例1−22の二次電池を作製した。
<実施例1−23>
電解質塩として、LiPF6を0.9mol/kg、リチウムビスオキサレートボレート(LiBOB)を0.1mol/kgとなるように溶解させた点以外は、実施例1−2と同様にして、実施例1−23の二次電池を作製した。
<実施例1−24>
電解質塩として、LiPF6を0.9mol/kg、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)を0.1mol/kgとなるように溶解させた点以外は、実施例1−2と同様にして、実施例1−24の二次電池を作製した。
<実施例1−25>
電解質塩として、LiPF6を0.9mol/kg、1,3−パーフルオロプロパンジスルホニルイミドリチウム0.1mol/kgとなるように溶解させた点以外は、実施例1−2と同様にして、実施例1−25の二次電池を作製した。
<比較例1−1>
化合物1を加えなかった点以外は、実施例1−1と同様にして、比較例1−1の二次電池を作製した。
<比較例1−2>
化合物1を加える代わりに、化合物11を1wt%加えた点以外は、実施例1−1と同様にして、比較例1−2の二次電池を作製した。
<実施例2−1>
以下に説明するように作製した負極4を用いた点以外は、実施例1−1と同様にして、実施例2−1の二次電池を作製した。厚み15μmの銅箔よりなる負極集電体4Aの上に蒸着法により厚み5μmのケイ素(Si)よりなる負極活物質層4Bを形成した。そののち、負極活物質層4Bが形成された負極集電体4Aを直径16mmの円形に打ち抜き、これにより負極4を得た。
<実施例2−2>
化合物1を加える代わりに、化合物2を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−2の二次電池を作製した。
<実施例2−3>
化合物1を加える代わりに、化合物3を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−3の二次電池を作製した。
<実施例2−4>
化合物1を加える代わりに、化合物3を5wt%加えた点以外は、実施例2−1と同様にして、実施例2−4の二次電池を作製した。
<実施例2−5>
化合物1を加える代わりに、化合物4を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−5の二次電池を作製した。
<実施例2−6>
化合物1を加える代わりに、化合物5を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−6の二次電池を作製した。
<実施例2−7>
化合物1を加える代わりに、化合物5を5wt%加えた点以外は、実施例2−1と同様にして、実施例2−7の二次電池を作製した。
<実施例2−8>
化合物1を加える代わりに、化合物6を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−8の二次電池を作製した。
<実施例2−9>
化合物1を加える代わりに、化合物6を5wt%加えた点以外は、実施例2−1と同様にして、実施例2−9の二次電池を作製した。
<実施例2−10>
化合物1を加える代わりに、化合物7を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−10の二次電池を作製した。
<実施例2−11>
化合物1を加える代わりに、化合物7を5wt%加えた点以外は、実施例2−1と同様にして、実施例2−11の二次電池を作製した。
<実施例2−12>
化合物1を加える代わりに、化合物8を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−12の二次電池を作製した。
<実施例2−13>
化合物1を加える代わりに、化合物9を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−13の二次電池を作製した。
<実施例2−14>
化合物1を加える代わりに、化合物10を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−14の二次電池を作製した。
<実施例2−15>
化合物1を加える代わりに、化合物12を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−15の二次電池を作製した。
<実施例2−16>
化合物1を加える代わりに、化合物13を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−16の二次電池を作製した。
<実施例2−17>
化合物1を加える代わりに、化合物14を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−17の二次電池を作製した。
<実施例2−18>
化合物1を加える代わりに、化合物15を1wt%加えた点以外は、実施例2−1と同様にして、実施例2−18の二次電池を作製した。
<実施例2−19>
電解液として、4−フルオロ−1,3−ジオキソラン−2−オン(FEC)とジエチルカーボネート(DEC)とを重量比(FEC:DEC)50:50の組成で混合した溶媒に、電解質塩として、LiPF6を1.0mol/kgとなるように溶解させ、化合物2を1wt%となるように添加したものを用いた点以外は、実施例2−2と同様にして、実施例2−19の二次電池を作製した。
<実施例2−20>
化合物2を加える代わりに、化合物6を1wt%加えた点以外は、実施例2−19と同様にして、実施例2−20の二次電池を作製した。
<実施例2−21>
化合物2を加える代わりに、化合物7を1wt%加えた点以外は、実施例2−19と同様にして、実施例2−21の二次電池を作製した。
<実施例2−22>
化合物2を加える代わりに、化合物8を1wt%加えた点以外は、実施例2−19と同様にして、実施例2−22の二次電池を作製した。
<実施例2−23>
電解液として、プロピレンカーボネート(PC)と4,5−ジフルオロ−1,3−ジオキソラン−2−オン(DFEC)とジエチルカーボネート(DEC)とを重量比(PC:DFEC:DEC)40:10:50の組成で混合した溶媒に、電解質塩として、LiPF6を1.0mol/kgとなるように溶解させ、化合物2を1wt%となるように添加したものを用いた点以外は、実施例2−2と同様にして、実施例2−23の二次電池を作製した。
<実施例2−24>
化合物2を加える代わりに、化合物6を1wt%加えた点以外は、実施例2−23と同様にして、実施例2−24の二次電池を作製した。
<実施例2−25>
化合物2を加える代わりに、化合物7を1wt%加えた点以外は、実施例2−23と同様にして、実施例2−25の二次電池を作製した。
<実施例2−26>
化合物2を加える代わりに、化合物8を1wt%加えた点以外は、実施例2−23と同様にして、実施例2−26の二次電池を作製した。
<実施例2−27>
電解液として、プロピレンカーボネート(PC)と4−フルオロ−1,3−ジオキソラン−2−オン(FEC)と4,5−ジフルオロ−1,3−ジオキソラン−2−オン(DFEC)とジエチルカーボネート(DEC)とを重量比(PC:FEC:DFEC:DEC)30:10:10:50の組成で混合した溶媒に、電解質塩として、LiPF6を1.0mol/kgとなるように溶解させ、化合物2を1wt%となるように添加したものを用いた点以外は、実施例2−2と同様にして、実施例2−27の二次電池を作製した。
<実施例2−28>
化合物2を加える代わりに、化合物6を1wt%加えた点以外は、実施例2−27と同様にして、実施例2−28の二次電池を作製した。
<実施例2−29>
化合物2を加える代わりに、化合物7を1wt%加えた点以外は、実施例2−27と同様にして、実施例2−29の二次電池を作製した。
<実施例2−30>
化合物2を加える代わりに、化合物8を1wt%加えた点以外は、実施例2−27と同様にして、実施例2−30の二次電池を作製した。
<実施例2−31>
電解液として、さらにビニレンカーボネート(VC)を1wt%加えたものを用いた点以外は、実施例2−2と同様にして、実施例2−31の二次電池を作製した。
<実施例2−32>
電解液として、さらにプロペンスルトン(PRS)を1wt%加えたものを用いた点以外は、実施例2−2と同様にして、実施例2−32の二次電池を作製した。
<実施例2−33>
電解液として、さらにコハク酸無水物を1wt%加えたものを用いた点以外は、実施例2−2と同様にして、実施例2−33の二次電池を作製した。
<実施例2−34>
電解液として、さらに2−スルホ安息香酸無水物を1wt%加えたものを用いた点以外は、実施例2−2と同様にして、実施例2−34の二次電池を作製した。
<実施例2−35>
電解液として、さらにエチレンサルファイトを1wt%加えたものを用いた点以外は、実施例2−2と同様にして、実施例2−35の二次電池を作製した。
<実施例2−36>
電解質塩として、LiPF6を0.9mol/kg、LiBF4を0.1mol/kgとなるように溶解させた点以外は、実施例2−2と同様にして、実施例2−36の二次電池を作製した。
<実施例2−37>
電解質塩として、LiPF6を0.9mol/kg、リチウムビスオキサレートボレート(LiBOB)を0.1mol/kgとなるように溶解させた点以外は、実施例2−2と同様にして、実施例2−37の二次電池を作製した。
<実施例2−38>
電解質塩として、LiPF6を0.9mol/kg、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)を0.1mol/kgとなるように溶解させた点以外は、実施例2−2と同様にして、実施例2−38の二次電池を作製した。
<実施例2−39>
電解質塩として、LiPF6を0.9mol/kg、1,3−パーフルオロプロパンジスルホニルイミドリチウム0.1mol/kgとなるように溶解させた点以外は、実施例2−2と同様にして、実施例2−39の二次電池を作製した。
<比較例2−1>
化合物1を加えなかった点以外は、実施例2−1と同様にして、比較例2−1の二次電池を作製した。
<比較例2−2>
化合物1を加える代わりに、化合物11を1wt%加えた点以外は、実施例2−1と同様にして、比較例2−2の二次電池を作製した。
<比較例2−3>
化合物2を加えなかった点以外は、実施例2−19と同様にして、比較例2−3の二次電池を作製した。
<比較例2−4>
化合物2を加えなかった点以外は、実施例2−23と同様にして、比較例2−4の二次電池を作製した。
<比較例2−5>
化合物2を加えなかった点以外は、実施例2−27と同様にして、比較例2−5の二次電池を作製した。
<実施例3−1>
負極4を以下に説明するように作製した点以外は、実施例1−1と同様にして、実施例3−1の二次電池を作製した。負極4を作製する際には、まず、スズ・コバルト・インジウム・チタン合金粉末と、炭素粉末とを混合したのち、メカノケミカル反応を利用してCoSnC含有材料を合成した。このCoSnC含有材料の組成を分析したところ、スズの含有量は48質量%、コバルトの含有量は23質量%、炭素の含有量は20質量%であり、スズとコバルトとの合計に対するコバルトの割合Co/(Sn+Co)は32質量%であった。
次に、負極活物質として、上述のCoSnC含有材料粉末80質量部と、導電剤として黒鉛12質量部と、結着剤としてポリフッ化ビニリデン8質量部とを混合し、溶剤であるN−メチル−2−ピロリドンに分散させた。最後に、銅箔(15μm厚)からなる負極集電体4Aに塗布して乾燥させたのちに圧縮成形することにより、負極活物質層4Bを形成した。次に、負極活物質層4Bを形成した負極集電体4Aを直径16mmの円形に打ち抜き、これにより、負極4を得た。
<実施例3−2>
化合物1を加える代わりに、化合物2を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−2の二次電池を作製した。
<実施例3−3>
化合物1を加える代わりに、化合物3を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−3の二次電池を作製した。
<実施例3−4>
化合物1を加える代わりに、化合物3を5wt%加えた点以外は、実施例3−1と同様にして、実施例3−4の二次電池を作製した。
<実施例3−5>
化合物1を加える代わりに、化合物4を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−5の二次電池を作製した。
<実施例3−6>
化合物1を加える代わりに、化合物5を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−6の二次電池を作製した。
<実施例3−7>
化合物1を加える代わりに、化合物5を5wt%加えた点以外は、実施例3−1と同様にして、実施例3−7の二次電池を作製した。
<実施例3−8>
化合物1を加える代わりに、化合物6を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−8の二次電池を作製した。
<実施例3−9>
化合物1を加える代わりに、化合物6を5wt%加えた点以外は、実施例3−1と同様にして、実施例3−9の二次電池を作製した。
<実施例3−10>
化合物1を加える代わりに、化合物7を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−10の二次電池を作製した。
<実施例3−11>
化合物1を加える代わりに、化合物7を5wt%加えた点以外は、実施例3−1と同様にして、実施例3−11の二次電池を作製した。
<実施例3−12>
化合物1を加える代わりに、化合物8を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−12の二次電池を作製した。
<実施例3−13>
化合物1を加える代わりに、化合物9を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−13の二次電池を作製した。
<実施例3−14>
化合物1を加える代わりに、化合物10を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−14の二次電池を作製した。
<実施例3−15>
化合物1を加える代わりに、化合物12を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−15の二次電池を作製した。
<実施例3−16>
化合物1を加える代わりに、化合物13を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−16の二次電池を作製した。
<実施例3−17>
化合物1を加える代わりに、化合物14を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−17の二次電池を作製した。
<実施例3−18>
化合物1を加える代わりに、化合物15を1wt%加えた点以外は、実施例3−1と同様にして、実施例3−18の二次電池を作製した。
<比較例3−1>
化合物1を加えなかった点以外は、実施例3−1と同様にして、比較例3−1の二次電池を作製した。
<比較例3−2>
化合物1を加える代わりに、化合物11を1wt%加えた点以外は、実施例3−1と同様にして、比較例3−2の二次電池を作製した。
次に作製した実施例1−1〜実施例3−18および比較例1−1〜比較例3−2の二次電池について、以下に説明するようにして、50サイクル後の放電容維持率を測定し、サイクル特性を評価した。
まず、23℃の雰囲気中において2サイクル充放電することにより、2サイクル目の放電容量を求めた。続いて、同雰囲気中において48サイクル充放電することにより、50サイクル目の放電容量を求めた。最後に、(式)放電容量維持率(%)=(50サイクル目の放電容量/2サイクル目の放電容量)×100(%)により、放電容量維持率を算出した。1サイクルの充放電条件としては、0.2Cの充電電流で上限電圧4.2Vまで定電流定電圧充電したのち、0.2Cの放電電流で終止電圧2.5Vまで定電流放電した。なお、0.2Cとは、理論容量を5時間で放電(充電)しきる電流値である。
実施例1−1〜実施例1−14および比較例1−1〜比較例1−2の放電容量維持率を表1に示す。実施例1−2、実施例1−15〜実施例1−21の放電容量維持率を表2に示す。実施例1−2、実施例1−22〜実施例1−25の放電容量維持率を表3に示す。
実施例2−1〜実施例2−18および比較例2−1〜比較例2−2の放電容量維持率を表4に示す。実施例2−19〜実施例2−30および比較例2−3〜比較例2−5の放電容量維持率を表5に示す。実施例2−2、実施例2−31〜実施例2−35の放電容量維持率を表6に示す。実施例2−2、実施例2−36〜実施例2−39の放電容量維持率を表7に示す。実施例3−1〜実施例3−18および比較例3−1〜比較例3−2の放電容量維持率を表8に示す。
Figure 2008262900
Figure 2008262900
Figure 2008262900
Figure 2008262900
Figure 2008262900
Figure 2008262900
Figure 2008262900
Figure 2008262900
表1に示すように、実施例1−1〜実施例1−14では、添加剤を含まない比較例1−1および化合物11を含む比較例1−2と比べて、放電容量維持率が高かった。すなわち、負極に炭素材料を用いた場合において、電解液に化3で表された化合物を含むようにすることで、サイクル特性を向上させることができることがわかった。
また、実施例1−1〜実施例1−8のなかで、R1およびR2が、それぞれアリル基、トリメチルシリル基またはフッ素置換炭化水素基である化合物を電解液に含む実施例1−6〜実施例1−8が、より放電容量維持率が高かった。すなわち、負極に炭素材料を用いる場合において、電解液に化3において、R1およびR2が、それぞれアリル基、トリアルキルシリル基またはフッ素置換炭化水素基である化合物を含むようにすることで、サイクル特性をより向上させることができることがわかった。
表2に示すように、実施例1〜15〜実施例1−20では、実施例1−2と比べて、放電容量維持率が高かった。また、実施例1−21は、実施例1−2と比べて、放電容量維持率が低かった。すなわち、負極に炭素材料を用いる場合において、化3で表された化合物と、ビニレンカーボネート(VC)、4−フルオロ−1,3−ジオキソラン−2−オン(FEC)、4,5−ジフルオロ−1,3−ジオキソラン−2−オン(DFEC)、プロペンスルトン(PRS)、コハク酸無水物または2−スルホ安息香酸無水物とを、サイクル特性を劣化することなく併用できることがわかった。
表3に示すように、実施例1−22〜実施例1−25では、実施例1−2と比べて、放電容量維持率が高かった。すなわち、負極に炭素材料を用いる場合において、化3で表された化合物と、電解質塩としてLiBF4、リチウムビスオキサレートボレート(LiBOB)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)または1,3−パーフルオロプロパンジスルホニルイミドリチウムとを併用することで、さらに、サイクル特性を向上できることがわかった。
表4に示すように、実施例2−1〜実施例2−18では、添加剤を含まない比較例2−1および化合物11を含む比較例2−2と比べて、放電容量維持率が高かった。すなわち、負極にケイ素(Si)を構成元素として含む材料を用いる場合において、電解液に化3で表された化合物を含むようにすることで、サイクル特性を向上させることができることがわかった。
また、実施例2−1〜実施例2−12のなかで、化3において、R1およびR2が、それぞれアリル基、トリメチルシリル基またはフッ素置換炭化水素基である化合物を電解液に含む実施例2−8〜実施例2−12が、放電容量維持率が特に高かった。すなわち、負極にケイ素(Si)を構成元素として含む材料を用いる場合において、電解液に、化3において、R1およびR2が、それぞれアリル基、トリアルキルシリル基またはフッ素置換炭化水素基である化合物を含むようにすることで、サイクル特性をより向上させることができることがわかった。
表5に示すように、実施例2−19〜実施例2−22では、比較例2−3と比べて、放電容量維持率が高かった。実施例2−23から実施例2−26では、比較例2−4と比べて、放電容量維持率が高かった。実施例2−27〜実施例2−30では、比較例2−5と比べて、放電容量維持率が高かった。
表6に示すように、実施例2〜31〜実施例2−34では、実施例2−2と比べて、放電容量維持率が高かった。また、実施例2−35は、実施例2−2と比べて、放電容量維持率が低かった。すなわち、負極にケイ素(Si)を構成元素として含む材料を用いる場合において、化3で表された化合物と、ビニレンカーボネート(VC)、4−フルオロ−1,3−ジオキソラン−2−オン(FEC)、4,5−ジフルオロ−1,3−ジオキソラン−2−オン(DFEC)、プロペンスルトン(PRS)、コハク酸無水物または2−スルホ安息香酸無水物とを併用することで、サイクル特性を向上できることがわかった。
表7に示すように、実施例2−36〜実施例2−39では、実施例2−2と比べて、放電容量維持率が同等または高かった。すなわち、負極にケイ素(Si)を構成元素として含む材料を用いる場合において、化3で表された化合物と、電解質塩としてLiBF4、リチウムビスオキサレートボレート(LiBOB)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)または1,3−パーフルオロプロパンジスルホニルイミドリチウムとを、サイクル特性を劣化することなく併用できることがわかった。
表8に示すように、実施例3−1〜実施例3−18では、添加剤を含まない比較例3−1および化合物11を含む比較例3−2と比べて、放電容量維持率が高かった。すなわち、負極にスズ(Sn)を構成元素として含む材料を用いる場合において、化3で表された化合物を含むようにすることで、サイクル特性を向上させることができることがわかった。
実施例3−1〜実施例3−12のなかで、化3において、R1およびR2が、それぞれアリル基、トリメチルシリル基またはフッ素置換炭化水素基である化合物を電解液に含む実施例3−8〜実施例3−12が、放電容量維持率が特に高かった。すなわち、負極にスズ(Sn)を構成元素として含む材料を用いる場合において、電解液に、化3において、R1およびR2が、それぞれアリル基、トリアルキルシリル基またはフッ素置換炭化水素基である化合物を含むようにすることで、サイクル特性をより向上させることができることがわかった。
また、表1〜表8に示すように、負極に炭素材料を用いた場合より、負極にケイ素(Si)を構成元素として含む材料または負極にスズ(Sn)を構成元素として含む材料を用いた場合のほうが、より高いサイクル特性向上の効果を得られることがわかった。
なお、上述した実施例では、非水電解質として、非水電解液を用いる場合について説明したが、ゲル状の非水電解質を用いても同様の結果を得られる傾向にある。
この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、上述した実施形態では、コイン型電池、円筒型電池、外装材にラミネートフィルムなどを用いた扁平型電池を例に挙げて説明したが、この発明はこれらに限定されるものではなく、例えば、角型電池など、様々な種類の形状や大きさにすることも可能である。
また、上述した実施形態では、一例として、リチウムイオン二次電池を挙げて説明したが、他の二次電池にも適用することができる。他の二次電池としては、例えば、負極活物質として金属リチウムを用いたいわゆる金属リチウム二次電池、さらには、実用化が検討されているマグネシウム二次電池またはアルミニウム二次電池などが挙げられる。さらに、化学反応を伴う電池だけでなく、電解液を使用する電気二重層キャパシタなどの他の電気化学デバイスにも適用可能である。
さらに、非水電解質としては、イオン伝導性高分子を利用した高分子固体電解質、またはイオン伝導性無機材料を利用した無機固体電解質など用いてもよく、これらを単独または他の電解質と組み合わせて用いてもよい。高分子固体電解質に用いることができる高分子化合物としては、例えば、ポリエーテル、ポリエステル、ポリフォスファゼン、またはポリシロキサンなどが挙げられる。無機固体電解質としては、イオン伝導性セラミックス、イオン伝導性結晶、またはイオン伝導性ガラスなどが挙げられる。
この発明の一実施形態による非水電解質を用いた非水電解質電池の第1の例の構成を表す断面図である。 この発明の一実施形態による非水電解質を用いた非水電解質電池の第2の例の構成を表す断面図である。 図2に示した巻回電極体の一部を拡大して表す断面図である。 この発明の一実施形態による非水電解質を用いた非水電解質電池の第3の例の構成を表す断面図である。 図3で示した巻回電極体のI−I線に沿った断面図である。
符号の説明
2・・・正極
2A・・・正極集電体
2B・・・正極活物質層
3・・・セパレータ
4・・・負極
4A・・・負極集電体
4B・・・負極活物質層
5・・・外装カップ
6・・・外装缶
7・・・ガスケット
11・・・電池缶
12、13・・・絶縁板
14・・・電池蓋
15・・・安全弁機構
15A・・・ディスク板
16・・・熱感抵抗素子
17・・・ガスケット
20・・・巻回電極体
21・・・正極
21A・・・正極集電体
21B・・・正極活物質層
22・・・負極
22A・・・負極集電体
22B・・・負極活物質層
23・・・セパレータ
24・・・センターピン
25・・・正極リード
26・・・負極リード
30・・・巻回電極体
31・・・正極リード
32・・・負極リード
33・・・正極
33A・・・正極集電体
33B・・・正極活物質層
34・・・負極
34A・・・負極集電体
34B・・・負極活物質層
35・・・セパレータ
36・・・電解質層
37・・・保護テープ
40・・・外装部材
41・・・密着フィルム

Claims (13)

  1. 化1で表された化合物のうちの少なくとも1種を含むこと
    を特徴とする非水電解質。
    Figure 2008262900
    (R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。nは1以上の整数である。)
  2. 上記化1で表された化合物は、上記化1においてn=1〜6である化合物であること
    を特徴とする請求項1記載の非水電解質。
  3. 上記化1で表された化合物は、上記化1において、R1およびR2が、それぞれアリル基、トリアルキルシリル基、または、炭化水素基の一部または全部の水素をフッ素で置換した基、とされた化合物であること
    を特徴とする請求項1記載の非水電解質。
  4. 上記化1で表された化合物は、化2で表されたスクアリン酸またはスクアリン酸誘導体であること
    を特徴とする請求項1記載の非水電解質。
    Figure 2008262900
    (R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。)
  5. 上記非水電解質は、さらに4−フルオロ−1,3−ジオキソラン−2−オンおよび4,5−ジフルオロ−1,3−ジオキソラン−2−オンのうちの少なくとも1種を含むこと
    を特徴とする請求項1記載の非水電解質。
  6. 上記非水電解質は、さらに環状スルトン誘導体を含むこと
    を特徴とする請求項1記載の非水電解質。
  7. 上記非水電解質は、さらに酸無水物を含むこと
    を特徴とする請求項1記載の非水電解質。
  8. 上記非水電解質は、さらに不飽和結合を有する環状炭酸エステル化合物を含むこと
    を特徴とする請求項1記載の非水電解質。
  9. 正極および負極と、非水電解質と、を備え、
    上記非水電解質は、化3で表された化合物のうちの少なくとも1種を含むこと
    を特徴とする非水電解質電池。
    Figure 2008262900
    (R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。nは1以上の整数である。)
  10. 上記化3で表された化合物は、上記化3においてn=1〜6である化合物であること
    を特徴とする請求項9記載の非水電解質電池。
  11. 上記化3で表された化合物は、上記化3において、R1およびR2が、それぞれアリル基、トリアルキルシリル基、または、炭化水素基の一部または全部の水素をフッ素で置換した基、とされた化合物であること
    を特徴とする請求項9記載の非水電解質電池。
  12. 上記化1で表された化合物は、化4で表されたスクアリン酸またはスクアリン酸誘導体であること
    を特徴とする請求項9記載の非水電解質電池。
    Figure 2008262900
    (R1およびR2は、それぞれ水素基、または、炭化水素基、アルキルシリル基若しくはこれらの基の一部または全部の水素をハロゲンで置換した基である。R1およびR2は互いに結合していてもよい。)
  13. 上記負極は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも1種を構成元素として含む材料を有すること
    を特徴とする請求項9記載の非水電解質電池。
JP2008020773A 2007-03-16 2008-01-31 非水電解質二次電池用非水電解質およびこれを用いた非水電解質二次電池 Expired - Fee Related JP4569639B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008020773A JP4569639B2 (ja) 2007-03-16 2008-01-31 非水電解質二次電池用非水電解質およびこれを用いた非水電解質二次電池
US12/048,999 US20080226983A1 (en) 2007-03-16 2008-03-14 Non-aqueous electrolyte and non-aqueous electrolyte battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007069113 2007-03-16
JP2008020773A JP4569639B2 (ja) 2007-03-16 2008-01-31 非水電解質二次電池用非水電解質およびこれを用いた非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2008262900A true JP2008262900A (ja) 2008-10-30
JP4569639B2 JP4569639B2 (ja) 2010-10-27

Family

ID=39985195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020773A Expired - Fee Related JP4569639B2 (ja) 2007-03-16 2008-01-31 非水電解質二次電池用非水電解質およびこれを用いた非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP4569639B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070861A (ja) * 2009-03-31 2011-04-07 Equos Research Co Ltd 電池ケース及びそれを用いたリチウムイオン電池
JP2012109089A (ja) * 2010-11-16 2012-06-07 Toyota Motor Corp 非水電解質およびその利用
JP2013105649A (ja) * 2011-11-15 2013-05-30 Shin Etsu Chem Co Ltd 非水電解質二次電池
WO2016017362A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
JP2019160683A (ja) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 非水電解液二次電池
CN111373593A (zh) * 2018-04-11 2020-07-03 株式会社Lg化学 锂二次电池用非水性电解液和包含它的锂二次电池
WO2024111310A1 (ja) * 2022-11-22 2024-05-30 パナソニックIpマネジメント株式会社 電解液、および、それを用いた蓄電素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340097A (ja) * 1998-05-22 1999-12-10 Nichicon Corp 電解コンデンサの駆動用電解液
JP2005108459A (ja) * 2003-09-26 2005-04-21 Sony Corp 電解質およびそれを用いた電池
WO2006135029A1 (ja) * 2005-06-17 2006-12-21 Sumitomo Chemical Company, Limited オキソカーボン類を含有する電解質およびその用途
JP2007027105A (ja) * 2005-06-17 2007-02-01 Sumitomo Chemical Co Ltd オキソカーボン酸及び/又はその誘導体を含有する電解質及びその用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340097A (ja) * 1998-05-22 1999-12-10 Nichicon Corp 電解コンデンサの駆動用電解液
JP2005108459A (ja) * 2003-09-26 2005-04-21 Sony Corp 電解質およびそれを用いた電池
WO2006135029A1 (ja) * 2005-06-17 2006-12-21 Sumitomo Chemical Company, Limited オキソカーボン類を含有する電解質およびその用途
JP2007027105A (ja) * 2005-06-17 2007-02-01 Sumitomo Chemical Co Ltd オキソカーボン酸及び/又はその誘導体を含有する電解質及びその用途

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070861A (ja) * 2009-03-31 2011-04-07 Equos Research Co Ltd 電池ケース及びそれを用いたリチウムイオン電池
JP2012109089A (ja) * 2010-11-16 2012-06-07 Toyota Motor Corp 非水電解質およびその利用
JP2013105649A (ja) * 2011-11-15 2013-05-30 Shin Etsu Chem Co Ltd 非水電解質二次電池
WO2016017362A1 (ja) * 2014-07-31 2016-02-04 日本電気株式会社 シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
JPWO2016017362A1 (ja) * 2014-07-31 2017-07-06 日本電気株式会社 シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
US10374258B2 (en) 2014-07-31 2019-08-06 Nec Corporation Cyclobutenedione derivative, nonaqueous electrolytic solution, and lithium ion secondary battery
JP2019160683A (ja) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 非水電解液二次電池
CN111373593A (zh) * 2018-04-11 2020-07-03 株式会社Lg化学 锂二次电池用非水性电解液和包含它的锂二次电池
EP3696900A4 (en) * 2018-04-11 2021-03-10 Lg Chem, Ltd. NON-AQUEOUS ELECTROLYTE FOR SECONDARY LITHIUM BATTERY AND SECONDARY LITHIUM BATTERY INCLUDING IT
US11437650B2 (en) 2018-04-11 2022-09-06 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
CN111373593B (zh) * 2018-04-11 2023-04-14 株式会社Lg新能源 锂二次电池用非水性电解液和包含它的锂二次电池
WO2024111310A1 (ja) * 2022-11-22 2024-05-30 パナソニックIpマネジメント株式会社 電解液、および、それを用いた蓄電素子

Also Published As

Publication number Publication date
JP4569639B2 (ja) 2010-10-27

Similar Documents

Publication Publication Date Title
KR101438185B1 (ko) 전지
US8940439B2 (en) Secondary battery, electronic device, electric power tool, electrical vehicle, and electric power storage system
JP4836767B2 (ja) リチウムイオン二次電池
US9401529B2 (en) Nonaqueous electrolytic solution and battery including a heteropolyacid and/or a heteropolyacid compound
JP5211446B2 (ja) 非水電解質電池用電解質およびこれを用いた電池
JP5109359B2 (ja) 非水電解質二次電池
US20080226983A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2011238373A (ja) 二次電池、二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
KR20110020181A (ko) 전해질 및 전지
JP4569639B2 (ja) 非水電解質二次電池用非水電解質およびこれを用いた非水電解質二次電池
JP2009054287A (ja) 電解液および電池
JP2007242545A (ja) 電解質および電池
JP2012054156A (ja) 二次電池用電解液、二次電池、電動工具、電気自動車および電力貯蔵システム
US8148006B2 (en) Electrolytic solution and battery
JP2013118069A (ja) リチウム二次電池
JP2011044339A (ja) 非水電解質二次電池
JP2011124123A (ja) 二次電池、二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
JP2011119183A (ja) 二次電池、二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
JP4867218B2 (ja) リチウムイオン二次電池
JP2011028860A (ja) 非水電解質二次電池
JP5169435B2 (ja) 二次電池およびその製造方法
JP5168593B2 (ja) リチウムイオン二次電池
JP4415974B2 (ja) 電池
JP2009054286A (ja) 電解液および電池
JP7127692B2 (ja) リチウムイオン二次電池用電解液およびリチウムイオン二次電池

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees