JP2008257753A - 磁気転写方法及び磁気記録媒体 - Google Patents

磁気転写方法及び磁気記録媒体 Download PDF

Info

Publication number
JP2008257753A
JP2008257753A JP2007095557A JP2007095557A JP2008257753A JP 2008257753 A JP2008257753 A JP 2008257753A JP 2007095557 A JP2007095557 A JP 2007095557A JP 2007095557 A JP2007095557 A JP 2007095557A JP 2008257753 A JP2008257753 A JP 2008257753A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic field
transfer
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007095557A
Other languages
English (en)
Inventor
Makoto Nagao
信 長尾
Naoto Fujiwara
直人 藤原
Tadashi Yasunaga
正 安永
Ryuji Sugita
龍二 杉田
Hiroshi Komine
啓史 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007095557A priority Critical patent/JP2008257753A/ja
Priority to EP08004707A priority patent/EP1975929A1/en
Priority to US12/058,740 priority patent/US20080239533A1/en
Publication of JP2008257753A publication Critical patent/JP2008257753A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/86Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers
    • G11B5/865Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers by contact "printing"

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

【課題】垂直磁気記録媒体の軟磁性下地層の磁壁に起因するノイズを低減する。
【解決手段】基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体(10)に対して垂直方向の直流磁界を印加する初期磁化工程と、初期磁化工程後の垂直磁気記録媒体(10)に対し、当該垂直磁気記録媒体の中心から外側に向かう半径方向に、100[Oe]から逆磁区核形成磁界Hnの以下値の面内磁界をかけて磁気的なクリーニングを行う初期磁化クーニング工程とを実施する。その後、マスター媒体を密着させ、初期磁化工程と逆方向の転写磁界を印加することで磁気転写を行う。上記初期磁化クリーニングに代えて、又はこれと組み合わせて、転写工程の後、若しくは転写工程と同時に、半径方向に、100[Oe]からHnの以下値の面内磁界をかけて磁気的なクリーニングを実施してもよい。
【選択図】 図11

Description

本発明は、磁気転写方法及びこれにより作製された磁気記録媒体に係り、特に、記録磁化の方向が媒体面に垂直な垂直磁気記録方式の磁気記録媒体(磁気ディスク)にサーボ情報等の磁気情報パターンを磁気転写する技術に関する。
近年、磁気記録再生装置は、小型でかつ大容量を実現するために、記録密度の高密度化の傾向にあり、特に、代表的な磁気記憶装置であるハードディスクドライブ(HDD)の分野では、技術の進歩が急激である。
このような情報量の増加に伴い、多くの情報を記録することができる大容量で、安価で、かつ、好ましくは短時間で必要な箇所が読み出せる、いわゆる高速アクセスが可能な高密度磁気記録媒体が望まれている。これらの高密度磁気記録媒体は、情報記録領域が狭トラックで構成されており、狭いトラック幅において正確に磁気ヘッドを走査させて高いS/Nで信号を再生するために、いわゆるトラッキングサーボ技術が大きな役割を担っている。このトラッキングサーボを行うためにセクターサーボ方式が広く採用されている。
セクターサーボ方式とは、磁気ディスク等の磁気記録媒体のデータ面に、一定角度等で正しく配列されたサーボフィールドに、トラック位置決めのためのサーボ信号や、そのトラックのアドレス情報信号、再生クロック信号等のサーボ情報を記録しておき、磁気ヘッドが、このサーボフィールドを走査してサーボ情報を読み取り自らの位置を確認しつつ修正する方式である。
サーボ情報は、磁気記録媒体の製造時にプリフォーマットとして予め磁気記録媒体に記録する必要があり、現在は専用のサーボ記録装置を用いてプリフォーマットが行われている。現在用いられているサーボ記録装置は、例えばトラックピッチの75%程度のヘッド幅を有する磁気ヘッドを備え、磁気ヘッドを磁気ディスクに近接させた状態で、磁気ディスクを回転させつつ、1/2トラック毎に磁気ディスクの外周から内周に移動させつつサーボ信号を記録する。そのため、1枚の磁気ディスクのプリフォーマット記録に長時間を要し、生産効率の点で問題があり、コストアップの要因となっている。
このため、特許文献1、2では、プリフォーマットを正確にかつ効率的に行う方法として、サーボ情報に対応したパターンが形成されているマスター記録媒体の情報を磁気記録媒体に磁気転写する方法が開示されている。
この磁気転写は、転写用磁気ディスク等の磁気記録媒体(スレーブ媒体)に転写すべき情報に応じて凹凸パターンからなる転写パターンを有するマスター記録媒体を用い、このマスター記録媒体と磁気記録媒体とを密着させた状態で、記録用磁界を印加することにより、マスター記録媒体の凹凸パターンにより記録されている情報(例えばサーボ情報)に対応する磁気パターンを磁気記録媒体に磁気的に転写するものである。この方法では、マスター記録媒体と磁気記録媒体との相対的な位置を変化させることなく静的に記録を行うことができ、正確なプリフォーマット情報の記録が可能であり、しかも記録に要する時間も極めて短時間であるという利点を有している。
特許文献1は記録される磁化の向きが媒体面と平行な面内磁気記録方式の磁気転写技術を開示しており、特許文献2は記録される磁化の向きが媒体面と垂直な垂直磁気記録方式の磁気転写技術を開示している。
垂直磁気記録方式は、面内磁気記録方式に比べて、記録密度の大幅な向上が期待できるため、近時の更なる高記録密度化の要望に伴い、垂直磁気記録技術の開発が進められ、実用化に至っている。
特開2003−272142号公報 特開2001−297435号公報
しかしながら、垂直磁気記録媒体は、記録層(磁性層)の下層に形成される軟磁性下地層(裏打ち層ともいう。)の磁壁に起因する磁界がノイズとして重畳されるという課題がある。
また、垂直磁気記録媒体に対してサーボ情報等を磁気転写する場合、記録層の保磁力Hc付近の磁界を印加することが行われているが、一層の高記録密度化のためには、より高い保磁力Hcが必要になり、これに適した高い転写磁界を印加する装置を用意することが必要となる。したがって、低い転写磁界で高品質に転写できる技術が望まれる。
本発明はこのような事情に鑑みてなされたものであり、垂直磁気記録媒体の軟磁性下地層に起因するノイズを低減し、良好な再生信号を得ることができる磁気転写方法及びこれにより作製された磁気記録媒体を提供することを目的とする。また、本発明は、垂直磁気記録媒体に対して低い転写磁界で高品質に転写できる磁気転写方法及びこれにより作製された磁気記録媒体を提供することを目的とする。
前記目的を達成するために、本発明に係る磁気転写方法(発明1)は、基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して垂直方向の直流磁界を印加することにより初期磁化を行う初期磁化工程と、前記初期磁化工程後の前記垂直磁気記録媒体に対し、当該垂直磁気記録媒体の中心から外側に向かう半径方向に、100[Oe]から前記磁性層の逆磁区核形成磁界Hnの以下値の面内磁界をかける初期磁化クーニング工程と、前記初期磁化クリーニング工程後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で磁界を印加し、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する転写工程と、を有することを特徴とする。
また、本発明による他の磁気転写方法(発明2)は、基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して垂直方向の直流磁界を印加することにより初期磁化を行う初期磁化工程と、前記初期磁化工程後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で前記初期磁化工程と逆方向の垂直磁界を印加して、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する転写工程と、前記転写工程後の前記垂直磁気記録媒体に対し、当該垂直磁気記録媒体の中心から外側に向かう半径方向に、100[Oe]から前記磁性層の逆磁区核形成磁界Hnの以下値の面内磁界をかける転写後クリーニング工程と、を有することを特徴とする。
更に本発明の他の磁気転写方法(発明3)は、基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して垂直方向の直流磁界を印加することにより初期磁化を行う初期磁化工程と、前記初期磁化工程後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で前記初期磁化工程と逆方向の垂直磁界を印加して、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する工程と同時に、前記垂直磁気記録媒体に対し、当該垂直磁気記録媒体の中心から外側に向かう半径方向に、100[Oe]から前記磁性層の逆磁区核形成磁界Hnの以下値の面内磁界をかける工程を実施する転写中クーニング工程と、を有することを特徴とする。
また、前記目的を達成するために、本発明(発明4)は、基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して、当該垂直磁気記録媒体の垂線を0度としたとき、当該垂線から円周方向に±50度の範囲で傾きを持たせた斜め方向の磁界を印加することにより初期磁化を行う初期磁化工程と、前記初期磁化後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で磁界を印加し、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する転写工程と、を有することを特徴とする磁気転写方法を提供する。
更に他の本発明(発明5)は、基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して垂直方向の成分を有する直流磁界を印加することにより初期磁化を行う初期磁化工程と、前記初期磁化工程後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で、前記初期磁化工程と逆方向の垂直方向の成分を有する磁界を印加して、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する転写工程と、を有し、前記転写工程は、前記垂直磁気記録媒体の垂線を0度としたとき、当該垂線から円周方向に±50度の範囲で傾きを持たせた斜め方向の磁界を印加することを特徴とする。
上述した各発明1〜5の構成は適宜組み合わせて実施する態様も可能である。
また、本発明は上記の発明1〜5の何れか1項に記載の磁気転写方法によりサーボ信号情報が記録されたことを特徴とする垂直磁気記録媒体を提供する。
本発明によれば、軟磁性下地層に起因するノイズを低減できるため、記録再生等の精度を向上させることができ、エラーの少ない高品質の垂直磁気記録媒体を製造することが可能である。また、本発明によれば、転写時の印加磁界の低減が可能であり、従来よりも低磁界で高精度に磁気転写することができ、磁界印加装置の小規模化や低消費電力化を達成できる。
以下、添付図面にしたがって本発明の好ましい実施の形態について詳説する。
初めに、図1を用いて垂直磁気記録の磁気転写技術を概説する。図1は垂直磁気記録の磁気転写方法の工程を示す概要図である。同図において、符号10は被転写用の磁気ディスクとしてのスレーブディスク(「垂直磁気記録媒体」に相当)、符号20はマスター媒体としてのマスターディスクを表す。
まず、図1(a)に示すように、スレーブディスク10に垂直方向の直流磁界(Hi)をかけて初期磁化を行い(初期磁化工程)、その後、図1(b)のように、マスターディスク20とスレーブディスク10を密着させ(密着工程)、両ディスク10,20を密着させた状態で、図1(c)のように、初期磁化の際とは逆方向の磁界(Hd)を印加することにより磁気転写を行う(転写工程)。
〔転写用磁気ディスク(スレーブディスク)の説明〕
本例で用いるスレーブディスク10は、円盤状の基板の表面の片面或いは、両面に垂直磁化膜からなる磁性層が形成されたものであり、具体的には、高密度ハードディスク等が挙げられる。
図2にスレーブディスク10の断面模式図を示す。図2に示すように、スレーブディスク10は、ガラスなど非磁性の基板12上に、軟磁性層(軟磁性下地層;SUL)13、非磁性層(中間層)14、磁性層(垂直磁気記録層)16が順次積層形成された構造からなり、磁性層16の上は更に保護層18と潤滑層19とで覆われている。なお、ここでは、基板12の片面に磁性層16を形成した例を示すが、基板12の表裏両面に磁性層を形成する態様も可能である。
円盤状の基板12は、ガラスやAl(アルミニウム)等の非磁性材料から構成されており、この基板12上に軟磁性層13を形成した後、非磁性層14と、磁性層16を形成する。
軟磁性層13は、磁性層16の垂直磁化状態を安定させ、記録再生時の感度を向上させるために有益である。軟磁性層13に用いられる材料は、CoZrNb、FeTaC、FeZrN、FeSi合金、FeAl合金、パーマロイなどFeNi合金、パーメンジュールなどのFeCo合金等の軟磁性材料が好ましい。この軟磁性層13は、ディスクの中心から外側に向かって半径方向に(放射状に)磁気異方性が付けられている。
軟磁性層13の厚さは、50nm〜2000nmであることが好ましく、80nm〜400nmであることが更に好ましい。
非磁性層14は、後に形成する磁性層16の垂直方向の磁気異方性を大きくする等の理由により設けられる。非磁性層14に用いられる材料は、Ti(チタン)、Cr(クロム)、CrTi、CoCr、CrTa、CrMo、NiAl、Ru(ルテニウム)、Pd(パラジウム)等が好ましい。非磁性層14は、スパッタリング法により上記材料を成膜することにより形成される。非磁性層14の厚さは、10nm〜150nmであることが好ましく、20nm〜80nmであることが更に好ましい。
磁性層16は、垂直磁化膜により形成されており、この磁性層16に情報が記録される。磁性層16に用いられる材料は、Co(コバルト)、Co合金(CoPtCr、CoCr、CoPtCrTa、CoPtCrNbTa、CoCrB、CoNi等)、Fe、Fe合金(FeCo、FePt、FeCoNi等)等が好ましい。これらの材料は、磁束密度が大きく、成膜条件や組成を調整することにより垂直の磁気異方性を有している。磁性層16は、スパッタリング法により上記材料を成膜することにより形成される。磁性層16の厚さは、10nm〜500nmであることが好ましく、20nm〜200nmであることが更に好ましい。
本実施の形態では、スレーブディスク10の基板12として、外形65mmの円盤状のガラス基板を用い、スパッタリング装置のチャンバー内にガラス基板を設置し、1.33×10−5Pa(1.0×10−7Torr)まで減圧した後、チャンバー内にAr(アルゴン)ガスを導入し、チャンバー内にあるCoZrNbターゲットを用い、同じくチャンバー内の基板の温度を室温として,80nm厚のSUL第1層をスパッタリング成膜する。次にその上に、チャンバー内にあるRuターゲットを用いて0.8nmのRu層をスパッタリング成膜する。さらにその上に、CoZrNbターゲットを用い、80nm厚のSUL第2層をスパッタリング成膜する。こうしてスパッタ成膜されたSULを、半径方向に50Oe以上の磁場を印加した状態で200℃まで昇温し室温に冷却する。
次に、CrTiターゲットを用い、基板温度が200℃の条件の下で放電させることによりスパッタリング成膜をおこなう。これによりCrTiからなる非磁性層14を60nm成膜する。
この後、上記と同様にArガスを導入し、同じチャンバー内にあるCoCrPtターゲットを用い、同じく基板温度が200℃の条件の下で放電させることによりスパッタリング成膜をおこなう。これによりCoCrPtからなる磁性層16を25nm成膜する。
以上のプロセスにより、ガラス基板に、軟磁性層、非磁性層と磁性層が成膜された転写用磁気ディスク(スレーブディスク)10を作製した。
〔スレーブディスクの初期磁化〕
次に、形成したスレーブディスク10の初期磁化を行う。図1(a)で説明したとおり、スレーブディスク10の初期磁化(直流磁化)は、スレーブディスク10の表面に対し垂直に直流磁界を印加することができる装置(不図示の磁界印加手段)により初期化磁界Hiを発生させることにより行う。具体的には、初期化磁界Hiとしてスレーブディスク10の保磁力Hc以上の強度の磁界を発生させることにより行う。この初期磁化工程により、図3に示すように、スレーブディスク10の磁性層16について、ディスク面と垂直な一方向に初期磁化Piさせる。尚、この初期磁化工程は、スレーブディスク10を磁界印加手段に対し相対的に回転させることにより行ってもよい。
また、本発明の実施形態では、この初期磁化の工程に続いて、上記の垂直方向の磁界印加後に、ディスク面と平行な半径方向に磁界(弱磁界)をかける工程が付加される。詳細は後述するが、この半径方向への弱磁界印加工程により、軟磁性層13の磁化を揃え、磁壁の発生を抑制する。
〔マスターディスクの説明〕
次に、マスター記録媒体であるマスターディスク20について説明する。
最初にマスターディスク20の製造方法について図4に基づき説明する。本実施の形態では、プレス原盤を用いるため、最初に、プレス原盤の作製工程について説明する。
図4(a)に示すように、表面が平滑なガラスや石英ガラスからなる円形の基板30上に、フォトレジストをスピンコーター等により塗布し、プリベーク後に、この円形の基板30を回転させながら、記録する信号に対応して変調したレーザ光(或いは電子ビーム)をフォトレジストに照射し、フォトレジストの略全面に所定のパターンを露光する。その後、露光した基板30を現像液に浸漬することにより、フォトレジストの露光された部分が除去され、基板30上の所定の領域にフォトレジスト層31が形成されたガラス原盤32が作製される。
次に、図4(b)に示すように、ガラス原盤32上のフォトレジスト層31が形成されている面の表面に、Niメッキ(電鋳)を行うことにより、表面にポジ状の凹凸パターンを有するNi原盤33を所定の厚さまで形成する。この後、このNi原盤33をガラス原盤32から剥離する。
このNi原盤33をスタンパー用のプレス原盤(金型)として用いることも可能であるが、必要に応じてこのNi原盤33に凹凸パターン上に軟磁性層、保護膜等を被覆してスタンパー用のプレス原盤(金型)とする。このように軟磁性層、保護膜等を形成することにより、その後に作製する転写用磁気ディスクの磁気特性が向上するからである。
Ni原盤33を構成する材料としては、Ni及びNi合金が主に用いられる。このNi原盤33を形成する方法としては、先に説明した無電解メッキ等によるメッキ法の他、スパッタリングやイオンプレーティングといった真空成膜法によっても作製することが可能である。また、上記真空成膜を行った後、電解メッキ等を行うことによっても作製可能である。尚、基板30上に塗布されるレジストはポジ型、ネガ型のどちらでも使用可能であるが、ポジ型とネガ型では、露光パターンが反転することに注意する必要がある。
次に、図4(c)に示すように、剥離したNi原盤33をプレス原盤として、射出成型等により樹脂基板37を作製する。樹脂基板37の樹脂材料としては、ポリカーボネート、ポリメチルメタクリレートなどのアクリル樹脂、ポリ塩化ビニル、塩化ビニル共重合体などの塩化ビニル樹脂、エポキシ樹脂、アモルファスポリオレフィン及びポリエステルなどが挙げられる。これらの樹脂材料の中では、耐湿性、寸法安定性及び価格などの点から、現在のところポリカーボネートが好ましい。
射出成型により樹脂基板37を形成した場合、成型品である樹脂基板37にバリ等が生じる場合があるが、このようなバリ等はバーニシュ又は研磨加工により除去する。
また、射出成型以外の方法により樹脂基板37を形成する方法として、紫外線硬化樹脂、電子線硬化樹脂などを使用する方法もある。この場合、プレス原盤に紫外線硬化樹脂、電子線硬化樹脂をスピンコート、バーコート等の手法により塗布した後、紫外線或いは電子線を照射することにより硬化させた後、プレス原盤より剥離することにより樹脂基板67が形成される。
以上の工程により、図4(d)に示すように。高さが、30〜150[nm]の突起状パターン(凹凸パターン)が形成された樹脂基板37が形成される。
樹脂基板37を製造するためのNi原盤33の製造方法については、これ以外の方法であってもよい。上記以外の方法の一例を図5に基づき説明する。
表面が平滑な略円形のSi基板40上に、フォトレジストをスピンコーター等により塗布し、プリベーク後に、このSi基板40を回転させながら、記録する信号に対して変調したレーザ光(或いは電子ビーム)をフォトレジストに照射し、フォトレジストの略全面について所定のパターンを露光する。その後、露光したSi基板70を現像液に浸漬させ、フォトレジストの露光された部分を除去することにより、図5(a)に示すように、Si基板40上の所定の領域にフォトレジスト層41が形成されたものが作製される。
次に、図5(b)に示すように、Si基板40のフォトレジスト層41が形成された面について、RIE(Reactive Ion Etching)等によるドライエッチングを行う。具体的には、フォトレジスト層41が形成されたSi基板40をRIE装置の減圧チャンバー内に設置した後、RIE装置の減圧チャンバーを減圧した後、減圧チャンバー内に塩素(Cl)ガスを導入し、RF電力を印加しプラズマを発生させることにより行った。RIEでは、フォトレジスト層41に対しSi基板40が選択的にエッチングされるため、Si基板40のフォトレジスト層41の形成されていない領域のみエッチングがなされる。この後、Si基板40上のフォトレジスト層41を有機溶剤等により除去することにより、表面に凹凸パターンの形成されたSi基板40が作製される。
この後、図5(c)に示すように、Si基板40の凹凸パターンの形成された面にスパッタリングにより金属材料等からなる導電膜を成膜し、更に、Ni電鋳を行うことにより、Ni原盤43を形成する。
この後、図5(d)に示すように、Si基板40から剥離することによりNi原盤43が作製される。ここで作製されるNi原盤43は、図4(b)において作製されるNi原盤33と同様のものであり、図4(c)で説明した方法と同様の方法により、射出成型により樹脂基板37の作製をすることができるものである。
次に、このように形成された樹脂基板37について、図6(a)に示すように、樹脂基板37の突起状パターンの形成されている面にスピンコーター等によりフォトレジスト45を塗布し、フォトレジスト45を硬化させる。具体的には、フォトレジスト45がネガレジストである場合には、紫外線等を照射して重合させる。一方、ポジレジストである場合には、ベーキング処理を行って重合させる。フォトレジスト45はスピンコーター等では均一に広がるため、樹脂基板37の表面の突起状パターンである凸部では薄く、それ以外の凹部では厚く形成される。
この後、図6(b)に示すように、酸素ガスを導入したアッシングを行うことにより、フォトレジスト45の表面の一部を除去する。具体的には、樹脂基板37の突起状パターンの表面が露出したところで、アッシングを停止する。アッシングでは、厚さ方向に均等にフォトレジスト45が除去されるが、樹脂基板37の突起状パターンの凸部の表面が露出しても、凹部ではフォトレジスト45が厚く形成されているため、この領域のフォトレジスト45は残存している。
この後、図6(c)に示すように、樹脂基板37のフォトレジスト45の形成された面に、軟磁性体からなる磁性膜47をメッキあるいは真空蒸着等による成膜をおこなう。磁性膜47を構成する材料は、保磁力Hcが48kA/m(≒600Oe)以下の軟磁性材料により構成されていることが好ましい。具体的には、Co、Co合金(CoNi、CoNiZr、CoNbTaZr等)、Fe、Fe合金(FeCo、FeCoNi、FeNiMo、FeAlSi、FeAl、FeTaN)、Ni、Ni合金(NiFe)等が挙げられる。特に好ましいのは、磁気特性からFeCo、FeCoNiである。又、磁性膜54の厚さは、40nm〜320nmの範囲が好ましく、特に、100nm〜300nmの範囲が更に好ましい。磁性膜47は、上記材料のターゲットを用いスパッタリングや無電解メッキ等により形成される。
この後、リフトオフによりフォトレジスト45上に形成されている磁性膜47の除去をおこなう。具体的には、磁性膜47が成膜された基板37を有機溶剤等に浸漬させることにより、フォトレジスト45の上に形成された磁性膜47が、フォトレジスト45とともに除去される。
以上のプロセスにより、図6(d)に示すように、凸領域の上面に磁性層48が設けられた凹凸パターンの形成されたマスターディスク20が作製される。このように形成されたマスターディスク20上の凹凸パターンは、凹領域のトラック方向(周方向)の幅がSa、凸領域のトラック方向(周方向)の幅がLaからなるものであり、本実施の形態では、Laに対するSaの幅(Sa/La)が、1.3〜1.9倍、好ましくは、1.45〜1.75倍となるように作製されている。
図7はマスターディスク20の上面図である。同図に示されるように、マスターディスク20の表面には、凹凸パターンからなるサーボパターン52が形成される。また、図には示さないが、マスターディスク20表面の磁性層48(図6(d)参照)の上にダイヤモンドライクカーボン等の保護膜や、更に、保護膜上に潤滑剤層を設けてもよい。
マスターディスク20は、スレーブディスク10と密着させるが、密着させた際に磁性層48が傷つきやすく、マスターディスク20として使用できなくなってしまうことを防止するためである。また、潤滑剤層は、スレーブディスク10との接触の際に生じる摩擦による傷の発生などを防止し、耐久性を向上させる効果がある。
具体的に、保護膜として、厚さが5〜30nmのダイヤモンドライクカーボン膜を形成し、更にその上に潤滑剤層を形成した構成が好ましい。また、磁性層48と、保護膜との密着性を強化するため、磁性層48上にSi等の密着強化層を形成し、その後に保護膜を形成してもよい。
〔密着工程〕
次に、上記工程により作製したマスターディスク20と、初期磁化工程後のスレーブディスク10とを図1(b)のように重ね合わせて両者を密着させる工程(密着工程)を行う。
図1(b)に示すように密着工程では、マスターディスク20の突起状パターン(凹凸パターン)の形成されている面と、スレーブディスク10の磁性層16の形成されている面とを所定の押圧力で密着させる。
スレーブディスク10には、マスターディスク20に密着させる前に、グライドヘッド、研磨体等により、表面の微少突起又は付着塵埃を除去するクリーニング処理(バーニッシング等)が必要に応じて施される。
尚、密着工程は、図1(b)に示すように、スレーブディスク10の片面のみにマスターディスク20を密着させる場合と、両面に磁性層が形成された転写用磁気ディスクについて、両面からマスターディスクを密着させる場合とがある。後者の場合では、両面を同時転写することができる利点がある。
〔磁気転写工程〕
次に、図1(c)に基づき磁気転写工程を説明する。
上記密着工程によりスレーブディスク10とマスターディスク20とを密着させたものについて、不図示の磁界印加手段により初期化磁界Hiの向きと反対方向に記録用磁界Hdを発生させる。記録用磁界Hdを発生させることにより生じた磁束がスレーブディスク10とマスターディスク20に進入することにより磁気転写が行われる。
本実施の形態では、記録用磁界Hdの大きさは、スレーブディスク10の磁性層16を構成する磁性材料のHcと略同じ値である。
磁気転写は、スレーブディスク10及びマスターディスク20を密着させたものを不図示の回転手段により回転させつつ、磁界印加手段によって記録用磁界Hdを印加し、マスターディスク20に記録されている突起状のパターンからなる情報をスレーブディスク10の磁性層16に磁気転写する。尚、この構成以外にも、磁界印加手段を回転させる機構を設け、スレーブディスク10及びマスターディスク20に対し、相対的に回転させる手法であってもよい。
磁気転写工程における、スレーブディスク10とマスターディスク20の断面の様子を図8に示す。同図に示すように、基板37表面に突起状のパターンが形成され、その上に磁性層48が形成されたマスターディスク20とスレーブディスク10とが密着した状態においては、マスターディスク20の凸領域では、マスターディスク20の磁性層48とスレーブディスク10の磁性層16とが接触している。
このため、記録用磁界Hdを印加すると、磁束Gは、マスターディスク20の凸領域、即ち、マスターディスク20の磁性層48とスレーブディスク10の磁性層16とが接触している領域では強く、記録用磁界Hdにより、マスターディスク20の磁性層48の磁化向きが記録用磁界Hdの方向に揃い、スレーブディスク10の磁性層16に磁気情報が転写される。一方、マスターディスク20の凹領域、即ち、マスターディスク20の磁性層48が形成されていない領域では、マスターディスク20の磁性層48が存在しないため、記録用磁界Hdの印加によって生じる磁束Gは弱く、スレーブディスク10の磁性層16の磁化向きが変わることはなく、初期磁化の状態を保ったままである。
図9は、磁気転写に用いられる磁気転写装置について詳細に示したものである。磁気転写装置は、コア62にコイル63が巻きつけられた電磁石からなる磁界印加手段60を有するものであり、このコイル63に電流を流すことによりギャップ64において、密着させたマスターディスク20とスレーブディスク10の磁性層16に対し垂直に磁界を発生する構造になっている。発生する磁界の向きは、コイル63に流す電流の向きによって変えることができる。従って、この磁気転写装置によって、スレーブディスク10の初期磁化を行うことも、磁気転写を行うことも可能である。この磁気転写装置により初期磁化させた後、磁気転写を行う場合には、磁界印加手段60のコイル63に、初期磁化したときにコイル63に流した電流の向きと逆向きの電流を流す。これにより、初期磁化の際の磁化向きとは反対の向きに記録用磁界を発生させることができる。磁気転写は、スレーブディスク10及びマスターディスク20を密着させたものを回転させつつ、磁界印加手段60によって記録用磁界Hdを印加し、マスターディスク20に記録されている突起状のパターンからなる情報をスレーブディスク10の磁性層16に磁気転写するため、不図示の回転手段が設けられている。尚、この構成以外にも、磁界印加手段60を回転させる機構を設け、スレーブディスク10及びマスターディスク20に対し、相対的に回転させる手法であってもよい。
本実施の形態では、記録用磁界Hdは、本実施の形態に用いられるスレーブディスク10の磁性層16の保磁力Hcの75〜105%、好ましくは、85〜95%の強度の磁界を印加することにより磁気転写を行う。
更に、本発明の実施形態では、上記の垂直磁気転写工程に続いて、または、この垂直磁気転写工程と同時に、ディスクの半径方向に磁界(100[Oe]から当該スレーブディスク10における磁性層16の逆磁区核形成磁界Hn以下値の弱磁界)をかける工程が付加される。詳細は後述するが、この半径方向への弱磁界印加工程により、転写後のスレーブディスク10を磁気的にクリーン化し、軟磁性層13の磁化を揃え、磁壁の影響による信号品質の劣化を抑制する。なお、スレーブディスク10の初期磁化工程後に付加される弱磁界印加工程(「初期磁化クリーニング工程」という。)と、垂直磁気転写工程後又はこれと同時に行われるHn以下の弱磁界印加工程(「転写後クリーニング工程」又は「転写中クリーニング工程」という。)とは、何れか一方の工程を実施してもよいし、両方の工程を実施してもよい。
磁気転写工程の後に「転写後クリーニング工程」を実施する場合には、上述の磁気転写工程の後に、スレーブディスク10をマスターディスク20から取り外し、スレーブディスク10単体で「転写後クリーニング工程」を実施する。
一方、磁気転写工程と同時に「転写中クリーニング工程」を実施する場合には、スレーブディスク10をマスターディスク20と重ねた状態これらの工程を実施し、その後にスレーブディスク10をマスターディスク20から取り外す。
これにより、スレーブディスク10の磁性層16には、サーボ信号等の磁気パターンの情報が、初期磁化Piの反対向きの磁化となる記録磁化Pdとして記録される(図10参照)。
なお、本発明の実施に際して、マスターディスク20の基板37に形成された突起状のパターンは、図6(d)で説明したポジパターンと反対のネガパターンであってもよい。この場合、初期化磁界Hiの方向及び記録用磁界Hdの方向を各々逆方向にすることにより、スレーブディスク10の磁性層16に、同様の磁化パターンを磁気転写することができるからである。また、本実施の形態では、磁界印加手段は、電磁石の場合について説明したが、同様に磁界が発生する永久磁石を用いても良い。
以下、本発明を用いた磁気転写方法の実施形態のバリエーションについて説明する。
〔第1形態〕
図11(a)に示すように、まず、スレーブディスク10単体で(マスターディスク20を重ね合わせていない状態で)、当該スレーブディスク10の垂直方向に初期化磁界Hi(直流磁界)を印加し、初期磁化を行う。この初期磁化工程の後に、図11(b)に示すように、ディスクの半径方向(中心から外周に向かう方向)に100[Oe]から磁性層16のHn以下値の面内磁界を印加し、スレーブディスク10を磁気的にクリーン化する。なお、この初期磁化クリーニング工程も、上記初期磁化工程と同様に、マスターディスク20を重ね合わせていない状態で実施される。
ディスクの半径方向に磁界を印加する手段として、例えば、磁石を斜めにすることで、半径方向の磁界成分を含む磁場を印加する方法がある。或いはまた、図12に示すように、らせん(渦巻線)状に電線65を配置し、その上にディスクを置き(らせんの中心とディスクの中心を一致させて載置)、電線65に電流を流すことで半径方向に磁界を印加する装置を用いる態様もある。
上記の初期磁化クリーニング工程後、図1(b),(c)で説明したように、マスターディスク20を重ね合わせ(密着工程)、初期磁化工程と逆方向の垂直磁界を印加して垂直磁気転写を行う(転写工程)。
図13は、図11(a),(b)で説明した工程によって得られるスレーブディスク10の模式図である。図13(a)は平面図、図13(b)は図13(a)中のb−b’線に沿う断面図である。ただし、図13(b)では説明の便宜上、軟磁性層13と磁性層16のみを示した。
図13に示したように、軟磁性層13は、ディスクの中心から外側に向かう半径方向に(放射状に)一様に磁化される。また、磁性層16はディスクの垂直方向(上向き)に一様に磁化される。
比較参考のために、図11(b)で説明した初期磁化クリーニング工程を実施しない場合(図11(a)の初期磁化工程のみを実施した場合)の結果を図14に示す。
図14は、ディスクを円周方向に沿う切断面で切断したときの断面模式図である。すなわち、図14の横方向はディスク円周方向を表す。図14に示すように軟磁性層13は、紙面垂直手前に向かう磁化成分(○の中に・の記号)と紙面垂直奥に向かう磁化成分(○の中に×の記号)が混在しており、これら逆方向の磁化成分の境界(磁壁)に対応する位置の磁性層16内にディスク垂直方向の磁界成分(符号66A,66B)が生じる。この磁界成分はノイズとなり信号品質が劣化する原因となる。
図11〜図13で説明した初期磁化クリーニング工程を行うことで、軟磁性層13の磁化が揃い(図13(b)、上記磁壁に起因するノイズ発生を防止することができる。
なお、図11(a)の初期磁化工程と図11(b)の初期化磁化クリーニング工程を同時に実施する態様も可能である。
この第1形態による効果の実証実験の結果を図15の表に示す。実験は、垂直方向の初期化磁界として5000[Oe]を印加して初期化した後、半径方向に印加する磁界を0〜4000[Oe]の範囲で変化させて、スレーブディスクの磁気的クリーン化処理を行った。実験に用いたスレーブディスクの記録層のHcは3000[Oe]である。そして、円周方向に50−300nm,半径方向に50〜nmの凹凸パターンを放射状に設けたマスターディスクを用いて、同パターンをスレーブディスクに磁気転写後、これを再生して再生信号出力の再生信号ノイズを測定した。なお、再生信号出力は比較例1-1の出力で規格化した。
スレーブディスクのサーボ信号の評価を行うための構成について以下に説明する。
スレーブディスクはスピンドルモータの軸に取り付けられ、所定の速度(回転数)で回転されるようになっている。スレーブディスクの表面に所定のフライングハイトで近接して磁気ヘッドが設けられる。この磁気ヘッドは、ポジショナにより所定の位置に移動可能となっている。この磁気ヘッドは、記録・再生を行うためのものである。
また、磁気ヘッドには、シンクロスコープ(オシロスコープ)が接続されており、磁気ヘッドからのリード信号波形がシンクロスコープ(オシロスコープ)のディスプレイに表示されるようになっている。このシンクロスコープ(オシロスコープ)には、更にスピンドルモータが接続されており、スピンドルモータの回転子が所定の回転角にあるときに出力するインデックス信号がトリガ信号として入力されるようになっている。
図15の表に示したとおり、垂直磁界による初期化磁化を印加後に、半径方向に100〜Hn[Oe]の磁界を印加したものについて(実施例1-1〜1-7)、再生信号ノイズの低減が確認された。また、半径方向にHcを超える磁界を印加すると(比較例1-3)、再生信号ノイズが再び増加する傾向が認められた。
ここでは、Hnが3000[Oe]の磁性層を例示したが、他の磁性材料について同様の傾向を示し、Hnを超える磁界を印加すると再生信号ノイズが増加する。
〔第2形態〕
図16は、転写処理後に磁気的なクリーニングを実施する形態を示す説明図である。スレーブディスク10について、既述した初期磁化工程の後、または、初期磁化工程及び初期磁化クリーニング工程を実施した後に、マスターディスク20を重ね合わせ(密着工程)、図16(a)に示すように、初期磁化工程と逆方向の垂直磁界を印加して垂直磁気転写を実施する(転写工程)。この後、図16(b)に示すように、ディスクの半径方向(中心から外周に向かう方向)に100[Oe]から磁性層16のHn以下値の面内磁界を印加し、スレーブディスク10を磁気的にクリーン化する。なお、この初期磁化クリーニング工程も、上記初期磁化工程と同様に、マスターディスク20を重ね合わせていない状態で実施される。本例ではスレーブディスク10単体で初期磁化クリーニング工程を実施するが、マスターディスク20と重ねた状態で実施することも可能である。
図17は、図11(a),(b)で説明した工程によって得られるスレーブディスク10の断面模式図である。なお、図17はディスク円周方向の断面を示す。図示のように、磁気転写によりマスターディスク20の凸部20Aに対応する位置の磁性層16の磁化が転写磁界と同じ方向に反転する(符号70で示す下向き矢印方向の磁化となる)。また、マスターディスク20の凹部20Bに対応する位置は、初期磁化の方向を保持する(符号72で示す上向き矢印方向の初期磁化を保持する)。
軟磁性層13は、ディスク円周方向に一様の磁化されており、磁壁に起因するノイズが発生せず、良好な信号品質を達成できる。
比較参考のために、図16(b)で説明した転写後クリーニング工程を実施しない場合(図11(b)の初期磁化クリーニング工程も実施しない場合)の結果を図18に示す。
図18に示すように、この場合、軟磁性層13は、紙面垂直手前に向かう磁化成分(○の中に・の記号)と紙面垂直奥に向かう磁化成分(○の中に×の記号)が混在しており、これら逆方向の磁化成分の境界(磁壁)に対応する位置の磁性層16内にディスク垂直方向の磁界成分(符号76A,76B)が生じる。この磁界成分はノイズとなり信号品質が劣化する原因となる。
この第2形態による効果の実証実験の結果を図19の表に示す。実験は、第1形態の実験と同様のスレーブディスクを用い、垂直方向の初期化磁界として5000[Oe]を印加して初期化した後、第1形態の実験と同様のマスターディスクを用いて、転写磁界5000[Oe]でスレーブディスクに磁気転写後、半径方向に印加する磁界を0〜4000[Oe]の範囲で変化させて、転写後クリーニングを実施した。その後、これを再生して再生信号出力と再生信号ノイズを測定した。
図19の表に示したとおり、転写磁界を印加後に、半径方向に100〜Hn[Oe]の磁界を印加したものについて(実施例2-1〜2-7)、再生信号ノイズの低減が確認された。また、半径方向にHnを超える磁界を印加すると(比較例2-3)、再生信号ノイズが再び増加する傾向が認められた。
〔第3形態〕
図20は、転写と同時に磁気的なクリーニング(転写中クリーニング)を実施する形態を示す説明図である。スレーブディスク10について、既述した初期磁化工程の後、または、初期磁化工程及び初期磁化クリーニング工程を実施した後に、マスターディスク20を重ね合わせ(密着工程)、図20に示すように、初期磁化工程と逆方向の垂直磁界を印加して垂直磁気転写を実施すると同時に、ディスクの半径方向(中心から外周に向かう方向)に100[Oe]から磁性層16のHn以下値の面内磁界を印加し、スレーブディスク10を磁気的にクリーン化する。この第3形態の結果は、既述した第2形態の結果と同等である(図17参照)。
この第3形態による効果の実証実験の結果を図21の表に示す。実験は、第1形態の実験と同様のスレーブディスクを用い、垂直方向の初期化磁界として5000[Oe]を印加して初期化した後、第1形態の実験と同様のマスターディスクを用いて、垂直方向に転写磁界5000[Oe]を印加すると同時に、0〜4000[Oe]の範囲で磁界を変化させながら半径方向に磁界を印加し、転写中クリーニングを実施した。その後、これを再生して再生信号出力と再生信号ノイズを測定した。
図21の表に示したとおり、転写磁界を印加と同時に、半径方向に100〜Hn[Oe]の磁界を印加したものについて(実施例3-1〜3-7)、再生信号ノイズの低減が確認された。また、半径方向にHcを超える磁界を印加すると(比較例3-3)、再生信号ノイズが再び増加する傾向が認められた。
〔第4形態〕
第1形態によって初期磁化および初期磁化クリーニングを実施した後のスレーブディスク10を用い、第2形態で説明した方法で転写および転写後クリーニングを実施してもよい。
〔第5形態〕
第1形態によって初期磁化および初期磁化クリーニングを実施した後のスレーブディスク10を用い、第3形態で説明した方法で転写と同時に転写中クリーニングを実施してもよい。
〔第6形態〕
図22は、初期磁化を行う際に、媒体の垂線に対して一定の角度範囲で傾斜した磁界を印加することで初期磁化を行う形態を示す説明図である。
図22に示すように、媒体の垂線を0度とした時、円周方向に一定の角度範囲(好ましくは、±50度の範囲)で傾きを持たせた磁界を印加することでスレーブディスクの初期磁化を行う工程を実施してもよい。
図23は図22に示した初期磁化の工程に用いる磁界印加装置の要部構成図である。図23に示すとおり、この磁界印加装置80は、スレーブディスク10の厚さ方向におけるギャップを有するコア82にコイル83が巻き付けられた電磁石装置であり、ディスクの円周(接線方向)に角度Pの大きさで傾けることが可能である。
スレーブディスク10は不図示のディスクホルダーに保持され、不図示の回転移動機構によりディスク中心を回転軸として面内方向(矢印θ方向)に回転移動する。なお、スレーブディスク10をθ方向に回転させる態様に代えて、静止しているスレーブディスク10に対して、磁界印加装置80を円周方向(矢印θ方向)に回転移動させる構造を採用してもよい。
図23のような構成により、コア82のギャップ間に発生する磁界(磁力線G)はスレーブディスク10の垂線に対して角度Pの斜め方向から印加され、スレーブディスク10と磁界印加装置80の相対的な回転移動(θ方向回転)により、図22で説明した傾き磁界による初期磁化が行われる。
図24は、図23の構成においてスレーブディスク10に印加される磁界を模式的に示した図であり、図23の矢印C方向から見た図となっている。図24のように、スレーブディスク10の垂直方向に対して磁力線Gを角度Pで傾斜させると、磁力線Gの水平成分Gh、及び垂直成分Gpが同時に印加される。
このような円周方向への傾き磁界の印加によって初期磁化を行うことにより、垂直磁界によって初期磁化を実施した場合と比較して、その後の転写磁界を印加する際に、低い転写磁界で信号品位の良い磁気転写が行える(高いS/Nの転写信号を得ることができる)ことが見出された。
垂直記録の磁性層は、垂直方向に磁界をかけることによって磁化反転させることが一般的であるが、磁化方向を反転させるための外部磁場の臨界曲線(アステロイド曲線)が示すように、アステロイド曲線の内側にある状態から外側の状態に変化させる際、磁化容易方向の磁界と、これに直交する磁化困難方向の磁界の2方向成分による合成磁界を用いることにより、従来の垂直転写磁界よりも低い磁界の大きさで磁化を反転させることができる。
この第6形態による効果の実証実験の結果を図25の表に示す。実験は、第1形態の実験と同様のスレーブディスクを用い、初期化磁界5000[Oe]の円周方向磁界角度を0〜60度(deg)の範囲で変化させながら初期磁化を行い、その後第1形態の実験と同様のマスターディスクを用いて、垂直方向に転写磁界5000[Oe]を印加して転写を行った。その後、これを再生して再生信号出力と再生信号ノイズを測定した。なお、垂線を基準としてどちらの方向の傾斜を+角度(−角度)と設定するかについては任意性があるため、ここでは図23で示した角度Pを+角度として取り扱った。
図25の表に示したとおり、円周方向の磁界角度の増加とともに再生信号出力が向上し(実施例6-1〜6-8)、その改善傾向は円周方向磁界角度が50度まで確認された(実施例6-8)。円周方向磁界角度が50度を超えると、再生信号出力が低下する傾向が確認された(比較例6-2)。なお、実施例6-1〜6-8における再生信号ノイズは、比較例6-1と対比すると僅かに増加しているが、再生信号出力がそれ以上に向上しており、S/Nは向上している。
〔第7形態〕
図26は、マスターディスクとスレーブディスクを重ね合わせて、初期磁化と逆方向の磁界を印加する磁気転写を行う際に、媒体の垂線に対して一定の角度範囲で傾斜した磁界を印加することで転写を行う形態を示す説明図である。
図26に示すように、媒体の垂線を0度とした時、円周方向に一定の角度範囲(好ましくは、±50度の範囲)で傾きを持たせた磁界を印加することで転写を行う工程を実施してもよい。
図26に示した転写工程に用いる磁界印加装置としては、図23で説明したものと同様の装置を適用できる。ただし、印加する磁界の方向が逆になる。
このような円周方向への傾き磁界の印加によって転写を行うことにより、垂直方向の磁界の印加による転写を実施した場合と比較して、低い転写磁界で信号品位の良い磁気転写が行える(高いS/Nの転写信号を得ることができる)ことが見出された。
この第7形態による効果の実証実験の結果を図27の表に示す。実験は、第1形態の実験と同様のスレーブディスクを用い、垂直方向の初期化磁界として5000[Oe]を印加して初期化した後、第1形態の実験と同様のマスターディスクを用いて、5000[Oe]の転写磁界で円周方向磁界角度を0〜60度の範囲で変化させて、転写を実施した。その後、これを再生して再生信号出力と再生信号ノイズを測定した。
図27の表に示したとおり、円周方向の磁界角度の増加とともに再生信号出力が向上し(実施例7-1〜7-8)、その改善傾向は円周方向磁界角度が50degまで確認された(実施例7-8)。円周方向磁界角度が50度を超えると、再生信号出力が低下する傾向が確認された(比較例7-2)。なお、実施例7-1〜7-8 における再生信号ノイズは、比較例7-1と対比すると僅かに増加しているが、再生信号出力がそれ以上に向上しており、S/Nは向上している。
〔第8形態〕
第6形態によって初期磁化を実施した後のスレーブディスク10を用い、第7形態で説明した方法で磁気転写を実施しても良い。
〔第9形態〕
第1形態によって初期磁化を実施した後のスレーブディスク10に対して、第7形態で説明した方法で磁気転写を実施してもよい。
〔第10形態〕
第6形態によって初期磁化を実施した後のスレーブディスク10を用い、第2形態で説明した方法で磁気転写を実施しても良い。
〔第11形態〕
第6形態によって初期磁化を実施した後のスレーブディスク10を用い、第3形態で説明した方法で磁気転写を実施してもよい。
〔第12形態〕
第1形態によって初期磁化を実施する際に、垂直方向磁界による初期磁化工程に代えて、第6形態で説明した傾き(垂直方向に対して円周方向に傾き)を持たせた初期磁化を実施してもよい。
〔第13形態〕
第2形態における磁気転写を実施する際に、垂直方向磁界による転写工程に代えて、第7形態で説明した傾き(垂直方向に対して円周方向に傾き)を持たせた磁気転写を実施してもよい。
〔第14形態〕
第12形態によって初期磁化を実施した後のスレーブディスク10を用い、第13形態の方法で磁気転写を実施し、その後さらに第2形態で説明した転写後のクリーニング(半径方向への弱磁界の印加)を実施してもよい。
以上説明したように、本発明の実施形態によれば、初期磁化工程の後、又は初期磁化工程と同時に実施される磁気的なクリーニング処理、或いは、転写工程後又は転写工程と同時に実施される磁気的なクリーニング処理、若しくはこれらの組み合わせにより、軟磁性下地層に起因するノイズを効果的に低減でき、記録再生等の精度を向上させることができる。これにより、エラーの少ない高品質の垂直磁気記録媒体を製造することが可能である。
また、本発明の実施態様によれば、初期磁化の際に印加する磁界の方向、または転写の際に印加する磁界の方向、若しくはこれらの両方について、媒体面の垂線(0度から)円周方向に一定の角度範囲で傾きを持たせ、磁性層の磁化困難軸方向の成分を含んだ磁界を印加する構成にしたので、磁化容易軸方向の成分のみの磁界を印加する構成と比較して、低い磁界で磁化反転を起こすことができる。これにより、従来よりも低磁界で高精度に磁気転写することができ、磁界印加装置の小規模化や低消費電力化を達成できる。
上述した本発明の実施形態に係る方法により製造された垂直磁気記録媒体は、例えば、ハードディスク装置等の磁気記録再生装置に組み込まれて使用される。これにより、サーボ精度が高く、良好な記録再生特性の高記録密度磁気記録再生装置を得ることができる。
本発明の実施形態における磁気転写方法の工程の概要図 スレーブディスクの模式断面図 初期磁化工程後の磁性層(記録層)の磁化方向を示した模式断面図 マスターディスクの形成方法を示す工程図 マスターディスクの別の形成方法を示す工程図 マスターディスクの形成方法の工程図 マスターディスクの平面図 磁気転写工程の説明図 磁気転写工程に用いる磁界印加装置の概略構成図 磁気転写工程後の磁性層の磁化方向を示した断面模式図 第1形態による初期磁化工程及び初期磁化クリーニング工程の説明図 ディスクの半径方向に磁界を印加する装置の構成例の説明図 第1形態による初期磁化クリーニングの結果得られるスレーブディスクの説明図 第1形態による初期磁化クリーニングを実施しない場合の比較例におけるスレーブディスクの断面模式図 第1形態の効果を示す実験結果のデータをまとめた図表 第2形態による転写工程及び転写後クリーニング工程の説明図 第2形態による転写後クリーニングの結果得られるスレーブディスクの説明図 第2形態による転写後クリーニングを実施しない場合の比較例におけるスレーブディスクの断面模式図 第2形態の効果を示す実験結果のデータをまとめた図表 第3形態による転写中クリーニング工程の説明図 第3形態の効果を示す実験結果のデータをまとめた図表 第6形態による斜め磁界を用いた初期磁化工程の説明図 斜め磁界を印加するための磁界印加装置の概要図 図23の矢印C方向から見た磁界方向を示す図 第6形態の効果を示す実験結果のデータをまとめた図表 第7形態による斜め磁界を用いた転写工程の説明図 第7形態の効果を示す実験結果のデータをまとめた図表
符号の説明
10…スレーブディスク、20…マスターディスク、12…基板、13…軟磁性層、16…磁性層、60…磁界印加手段、62…コア、63…コイル、80…磁界印加装置、Hi…初期化磁界、Hd…記録用磁界

Claims (6)

  1. 基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して垂直方向の直流磁界を印加することにより初期磁化を行う初期磁化工程と、
    前記初期磁化工程後の前記垂直磁気記録媒体に対し、当該垂直磁気記録媒体の中心から外側に向かう半径方向に、100[Oe]から前記磁性層の逆磁区核形成磁界Hnの以下値の面内磁界をかける初期磁化クーニング工程と、
    前記初期磁化クリーニング工程後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、
    前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で磁界を印加し、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する転写工程と、
    を有することを特徴とする磁気転写方法。
  2. 基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して垂直方向の直流磁界を印加することにより初期磁化を行う初期磁化工程と、
    前記初期磁化工程後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、
    前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で前記初期磁化工程と逆方向の垂直磁界を印加して、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する転写工程と、
    前記転写工程後の前記垂直磁気記録媒体に対し、当該垂直磁気記録媒体の中心から外側に向かう半径方向に、100[Oe]から前記磁性層の逆磁区核形成磁界Hnの以下値の面内磁界をかける転写後クリーニング工程と、
    を有することを特徴とする磁気転写方法。
  3. 基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して垂直方向の直流磁界を印加することにより初期磁化を行う初期磁化工程と、
    前記初期磁化工程後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、
    前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で前記初期磁化工程と逆方向の垂直磁界を印加して、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する工程と同時に、前記垂直磁気記録媒体に対し、当該垂直磁気記録媒体の中心から外側に向かう半径方向に、100[Oe]から前記磁性層の逆磁区核形成磁界Hnの以下値の面内磁界をかける工程を実施する転写中クーニング工程と、
    を有することを特徴とする磁気転写方法。
  4. 基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して、当該垂直磁気記録媒体の垂線を0度としたとき、当該垂線から円周方向に±50度の範囲で傾きを持たせた斜め方向の磁界を印加することにより初期磁化を行う初期磁化工程と、
    前記初期磁化後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、
    前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で磁界を印加し、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する転写工程と、
    を有することを特徴とする磁気転写方法。
  5. 基板上に軟磁性層と磁性層とが積層形成されてなる円盤状の垂直磁気記録媒体に対して垂直方向の成分を有する直流磁界を印加することにより初期磁化を行う初期磁化工程と、
    前記初期磁化工程後の前記垂直磁気記録媒体に対して、転写用の情報信号に対応する凹凸パターンを有するマスター媒体を重ね合わせ、前記垂直磁気記録媒体に前記凹凸パターンを密着させる密着工程と、
    前記垂直磁気記録媒体と前記マスター媒体を密着させた状態で、前記初期磁化工程と逆方向の垂直方向の成分を有する磁界を印加して、前記情報信号を前記垂直磁気記録媒体の前記磁性層に磁気転写する転写工程と、を有し、
    前記転写工程は、前記垂直磁気記録媒体の垂線を0度としたとき、当該垂線から円周方向に±50度の範囲で傾きを持たせた斜め方向の磁界を印加することを特徴とする磁気転写方法。
  6. 請求項1乃至5の何れか1項に記載の磁気転写方法によりサーボ信号情報が記録されたことを特徴とする磁気記録媒体。
JP2007095557A 2007-03-30 2007-03-30 磁気転写方法及び磁気記録媒体 Pending JP2008257753A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007095557A JP2008257753A (ja) 2007-03-30 2007-03-30 磁気転写方法及び磁気記録媒体
EP08004707A EP1975929A1 (en) 2007-03-30 2008-03-13 Method of magnetic transfer and magnetic recording medium
US12/058,740 US20080239533A1 (en) 2007-03-30 2008-03-30 Method of magnetic transfer and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095557A JP2008257753A (ja) 2007-03-30 2007-03-30 磁気転写方法及び磁気記録媒体

Publications (1)

Publication Number Publication Date
JP2008257753A true JP2008257753A (ja) 2008-10-23

Family

ID=39591325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095557A Pending JP2008257753A (ja) 2007-03-30 2007-03-30 磁気転写方法及び磁気記録媒体

Country Status (3)

Country Link
US (1) US20080239533A1 (ja)
EP (1) EP1975929A1 (ja)
JP (1) JP2008257753A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230826A (ja) * 2008-03-25 2009-10-08 Fujifilm Corp 磁気転写方法及び磁気記録媒体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259382A (ja) * 2008-03-25 2009-11-05 Fujifilm Corp 磁気転写方法及び磁気記録媒体
JP2010086606A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 磁気転写方法及び磁気記録媒体
KR20100114763A (ko) * 2009-04-16 2010-10-26 삼성전자주식회사 하드디스크 드라이브의 서보 패턴 기록방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3071260D1 (en) * 1979-07-02 1986-01-09 Toshiba Kk Magnetic transfer recording method
JP2001297435A (ja) 2000-04-17 2001-10-26 Matsushita Electric Ind Co Ltd マスター情報垂直磁気記録方法
JP4112789B2 (ja) * 2000-09-21 2008-07-02 株式会社東芝 垂直磁気記録方式の磁気ディスク装置
JP2002342923A (ja) * 2001-05-18 2002-11-29 Fuji Photo Film Co Ltd 磁気転写方法
JP4467210B2 (ja) * 2001-07-27 2010-05-26 株式会社日立グローバルストレージテクノロジーズ 磁気記録装置及び磁気ヘッド
JP2003272142A (ja) * 2002-03-20 2003-09-26 Fuji Photo Film Co Ltd 磁気転写用マスター担体
US6985322B2 (en) * 2003-07-30 2006-01-10 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular recording and read head assembly with in situ stand alone stabilizer for a magnetic medium underlayer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230826A (ja) * 2008-03-25 2009-10-08 Fujifilm Corp 磁気転写方法及び磁気記録媒体

Also Published As

Publication number Publication date
EP1975929A1 (en) 2008-10-01
US20080239533A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
EP2037454A1 (en) Master carrier for magnetic transfer, magnetic transfer method and magnetic recording medium
JP2008257753A (ja) 磁気転写方法及び磁気記録媒体
JP2008065910A (ja) マスター記録媒体、磁気転写方法、磁気転写装置、及びこれにより作製された磁気記録媒体、磁気記録再生装置
US7593175B2 (en) Magnetic transfer method, magnetic transfer apparatus, magnetic recording medium and magnetic record reproduction system
JP2009245555A (ja) 磁気転写用マスター担体の製造方法、磁気転写用マスター担体、磁気転写方法、及び磁気記録媒体
JP4847489B2 (ja) 磁気転写用マスター担体及びその製造方法
US7532420B2 (en) Master disk for magnetic transfer, magnetic recording medium and magnetic recording apparatus
JP2007242165A (ja) 垂直磁気転写用マスター媒体、垂直磁気転写方法、垂直磁気記録媒体、及び垂直磁気記録装置
JP2008010028A (ja) 垂直磁気記録媒体の磁気転写方法、垂直磁気記録媒体及び磁気記録装置
US7663827B2 (en) Method of initializing perpendicular magnetic recording medium, perpendicular magnetic recording medium and magnetic recording apparatus
JP2007012143A (ja) 磁気記録媒体の直流消磁方法、装置、及び磁気転写方法
JP2007317333A (ja) マスター記録媒体、磁気転写方法、及びこれにより作製された磁気記録媒体並びに磁気記録再生装置
JP2007310943A (ja) 磁気転写用マスター担体、磁気転写方法、及びこれにより作製された磁気記録媒体、磁気記録再生装置
JP2008165884A (ja) 磁気転写方法、マスター記録媒体、垂直磁気記録媒体及び磁気記録再生装置
JP2007012142A (ja) 磁気転写方法及び装置
JP2007299461A (ja) サーボ信号検査方法、磁気記録媒体及び磁気記録再生装置
JP2008165885A (ja) 磁気転写方法、磁気転写装置及び垂直磁気記録媒体
JP4089904B2 (ja) 磁気記録媒体の製造方法
JP4362730B2 (ja) 磁気転写用マスター記録媒体、磁気記録媒体製造方法
JP2009230826A (ja) 磁気転写方法及び磁気記録媒体
JP2010238301A (ja) 磁気転写方法および磁気転写用マスター担体
JP2006114104A (ja) 磁気転写方法、磁気記録媒体、及び磁気記録装置
JP2009252341A (ja) 磁気転写用マスター担体、磁気転写方法、及び垂直磁気記録媒体
JP2009245533A (ja) 磁気転写用マスター担体及び磁気記録媒体
JP2009259382A (ja) 磁気転写方法及び磁気記録媒体