JP2008236386A - 電気機械素子とその製造方法、並びに共振器 - Google Patents
電気機械素子とその製造方法、並びに共振器 Download PDFInfo
- Publication number
- JP2008236386A JP2008236386A JP2007073234A JP2007073234A JP2008236386A JP 2008236386 A JP2008236386 A JP 2008236386A JP 2007073234 A JP2007073234 A JP 2007073234A JP 2007073234 A JP2007073234 A JP 2007073234A JP 2008236386 A JP2008236386 A JP 2008236386A
- Authority
- JP
- Japan
- Prior art keywords
- electromechanical element
- protective film
- film
- mover
- electromechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Micromachines (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
【課題】マスクの合わせずれに起因する支柱の位置ずれを無くすことにより、共振周波数の変動を防止し、歩留まりの向上を図った電気機械素子及びその製造方法、さらに電気機械素子による共振器を提供する。
【解決手段】基板5上に空間27を介して配置された可動子10を有する電気機械素子25において、電気機械素子25を、空間26を介して封止する保護膜15を備え、保護膜15と可動子10が、可動子10を貫通する支柱16A,16Bにより支持されている。
【選択図】図1
【解決手段】基板5上に空間27を介して配置された可動子10を有する電気機械素子25において、電気機械素子25を、空間26を介して封止する保護膜15を備え、保護膜15と可動子10が、可動子10を貫通する支柱16A,16Bにより支持されている。
【選択図】図1
Description
本発明は、電気機械素子とその製造方法、並びに共振器に関する。
近年、基板上の微細化製造技術の進展に伴い、電気機械素子、いわゆるマイクロマシン(超小型電気的・機械的複合体:Micro Electro Mechanical Systems,以下、MEMSという)や、そのMEMS素子を組み込んだ小型機器等が注目されている。MEMS素子は、可動構造体である振動子と、その振動子の駆動を制御する半導体集積回路等とを、電気的・機械的に結合させた素子である。そして振動子が素子の一部に組み込まれており、その振動子の駆動を電極間のクーロン引力等を応用して電気的に行うようにしている。
このようなMEMS素子のうち、特に半導体プロセスを用いて形成されたものは、デバイスの占有面積が小さいこと、高いQ値(振動系の共振の鋭さを表す量)を実現できること、他の半導体デバイスとのインテグレーション(統合)が可能であること等の特徴を有することから、無線通信用の高周波フィルタとしての利用が提案されている(例えば、非特許文献1参照)。
ところで、MEMS素子を他の半導体デバイスとインテグレーションする場合には、そのMEMS素子における振動子の部分をカプセル封止して、これによりさらに上層に配線等の配置を可能とすることが提案されている(例えば、特許文献1の第7頁、第10頁参照)。ただし、振動子のカプセル封止にあたっては、その振動子の可動部周囲に空間を確保して、振動子を可動し得る状態にすることが必要である。この可動部周囲の空間確保は、通常、いわゆる犠牲層エッチングによって行われる(特許文献1参照)。
犠牲層エッチングとは、振動子の可動部周囲に予め薄膜を形成しておき、その後、この薄膜をエッチングにより取り除いて、当該可動部周囲に空間(隙間)を形成することをいう。また、犠牲層エッチングを行うために、可動部周囲に形成した薄膜を犠牲層という。
MEMS素子の研究開発は、高周波フィルタ以外にも、各種センサ、アクチュエータ、光学素子、その他のMEMS素子など様々な分野に展開されている。
しかしながら、MEMS素子と他の半導体デバイスとのインテグレーションは、幾つかの課題を抱えている。一般に、当該インテグレーションは、他の半導体デバイスについての製造プロセス(例えば、CMOSプロセス)の最終工程に、MEMS素子(特に、その振動子)の製造プロセスを付加する形で行われる。従って、MEMS素子の製造プロセスにおいては、既に形成されている半導体デバイスへの悪影響を回避するために、高温での加工を行うことができない。つまり、低温で振動子を形成する必要があり、その加工が容易でないものとなってしまう虞れがある。
これに対して、MEMS素子における振動子の部分をカプセル封止した場合には、これによりさらに上層に配線層等の配置が可能となるので、高温で振動子を形成しても、その高温加工の悪影響が配線層等に及ぶのを回避することができる。ところが、その場合には、犠牲層エッチングにより形成した振動子の可動部周囲の空間を真空封止するために、絶縁材料等による特殊なパッケージング技術が必要となる(例えば、特許文献1参照)。つまり、真空封止のためのパッケージング工程が必要となるため、既存の半導体プロセス(例えば、CMOSプロセス)の過程において行うことが困難である。結果としてMEMS素子を含むデバイスの生産効率低下を招いてしまうことが考えられる。
図12に、従来のカプセル封止した電気機械素子を示す。図12は無線通信用の高周波フィルタとして利用される共振器に適用した例である。この電気機械素子100は、例えばシリコン基板41表面にシリコン酸化膜42とシリコン窒化膜43の積層膜からなる絶縁膜44を形成して成る基板上32に、下部電極となる出力電極33と、この出力電極33に空間34を介して対向する振動子となる帯状のビーム35とを有して構成される。ビーム35は導電材料からなり、入力側の電極となる。ビーム35は、基板32上に形成した下部配線39A,39Bに支持部40A,40Bを介して支持され両持ち梁構造に形成される。下部配線39A,39Bの外側上には絶縁膜の例えばシリコン酸化膜46が形成され、その開口部47を通じてスパッタ膜による外部配線層48が形成される。
一方、出力電極33及びビーム35からなる共振器本体36は、全体が空間37を保持して例えばシリコン窒化膜による保護膜58によって被覆され気密封止される。この保護膜58は、製造上、空間34及び37に犠牲層が形成されている状態で全体にわたって成膜される。保護膜58の成膜後に開口49を形成し、開口49を通じて犠牲層を選択的にエッチング除去し、空間34及び37が形成される。開口49はスパッタ膜による封止膜50にて封止される。
この電気機械素子100では、振動子となるビーム35に直流バイアス電圧が印加されると共に、特定の周波数電圧が印加されると、ビーム35が固有振動周波数で振動し、出力電極33とビーム35との間の空間34で構成されるキャパシタの容量が変化し、出力電極33から特定の周波数信号が出力されるようになる。
一方、図12に示したカプセル封止された電気機械素子100においては、カプセル封止するための屋根となる保護膜58の剛性が弱いと振動子となるビーム35の上部に保護膜58が接触してしまい、共振周波数が変化したり、最悪の場合は、共振しないことも考えられる。
このカプセル封止に関する保護膜58の問題は、前述した高周波フィルタ以外のMEMSデバイスにおいても、可動子となるビームに保護膜が接触することによって動作不良などの不具合を生じることが考えられる。
本願発明者は、以上の問題を解決するために先の発明で保護膜と可動子の間に支柱を設けた電気機械素子を提案した。その電気機械素子の構成の一例を図10に示す。図10において、図12に対応する部分には同一符号を付し重複説明を省略する。
この電気機械素子31においては、特に、保護膜38と振動子であるビーム35との間に保護膜38の撓みを防ぐための支柱52が設けられる。この支柱52は、ビーム35の1箇所以上の位置に対応して設けられる。支柱52としては、保護膜38と一体に形成し、1箇所以上の位置でビーム35に接触するように、あるいは接触しないように、あるいはビームと一体化するようにして形成することができる。本例では、支柱52がビーム35の両端部分、すなわちビーム35の共振周波数に寄与する可動部の長さで規定される部分よりも外側のいわゆる支持部40A,40Bに対応する部分の2箇所で接触するように形成される。
以上の構成を有する電気機械素子によって、保護膜が支柱によって可動子に接触することがないので、カプセル封止における不具合が回避され、信頼性の向上をはかることができる。
しかしながら、以上の電気機械素子31においては、支持部40と支柱52とは、個々に形成されるため、リソグラフィ技術では不可避であるマスクの合わせずれに起因する柱の位置ずれが生じる。図11に、支持部40と支柱52を形成する際の概略製造工程を示す。図11は、要部の拡大図である。
先ず、図11Aに示すように、基板32上に形成された下部電極33及び下部配線39Bを埋めるように全面に第1の犠牲層67、例えばシリコン酸化膜を形成し、この第1の犠牲層67の下部配線39Bに対応して、振動子となるビームの支持部を形成するための開口部68を周知のリソグラフィ技術及びドライエッチング技術を利用して選択的にエッチング除去する。
次に、図11Bに示すように、開口部68を含んで第1の犠牲層67上に例えば減圧CVD法により不純物、例えば燐(P)を含有した多結晶シリコン膜を形成し、周知のリソグラフィ技術及びドライエッチング技術を利用してパターン加工し、帯状のビーム35とビーム35を支持する支持部40Bを形成する。
次に、図11Cに示すように、ビーム35上を被覆するように例えば減圧CVD法により第2の犠牲層69、例えばシリコン酸化膜を全面に形成する。
続いて、図11Dに示すように支柱形成用の開口部71となるように周知のリソグラフィ技術及びドライエッチング技術を利用してパターン加工する。このとき、開口部71は、支持部40Bに対応する部分に形成されるが、マスクずれなどにより、必ずしも支持部40Bに対応する部分に形成されず、図11Dの破線で示すようにずれてしまう。dはずれ量である。開口部71の形成がこのようにビーム35の支持部40Bとずれてしまうと、図11Eに示す、保護膜38の形成において、保護膜38の支柱52が、支持部40Bとはずれた位置に形成されてしまう。
続いて、図11Dに示すように支柱形成用の開口部71となるように周知のリソグラフィ技術及びドライエッチング技術を利用してパターン加工する。このとき、開口部71は、支持部40Bに対応する部分に形成されるが、マスクずれなどにより、必ずしも支持部40Bに対応する部分に形成されず、図11Dの破線で示すようにずれてしまう。dはずれ量である。開口部71の形成がこのようにビーム35の支持部40Bとずれてしまうと、図11Eに示す、保護膜38の形成において、保護膜38の支柱52が、支持部40Bとはずれた位置に形成されてしまう。
したがって、上述のようなビーム35の支持部40A,40Bと保護膜38の支柱52が個々のリソグラフィ技術及びドライエッチング技術によって形成される場合、支持部40A,40Bと支柱52の位置ズレに起因して、共振器の共振周波数がばらついてしまうという問題が起こる。また、支柱52の固定の仕方によっては、ビーム35の共振周波数が変動してしまう。
本発明は、上述の点に鑑み、マスクの合わせずれに起因する支柱の位置ずれを無くすことにより、共振周波数の変動を防止し、歩留まりの向上を図った電気機械素子及びその製造方法、さらに電気機械素子による共振器を提供するものである。
上記課題を解決し、本発明の目的を達成するため、本発明の電気機械素子は基板上に空間を介して配置された可動子を有する電気機械素子において、電気機械素子を、空間を介して封止する保護膜を備え、保護膜と可動子が、可動子を貫通する支柱により支持されていることを特徴とする。
また、本発明の共振器は、基板上に空間を介して配置された可動子を有する電気機械素子において、電気機械素子を、空間を介して封止する保護膜を備え、保護膜と可動子が、可動子を貫通する支柱により支持されていることを特徴とする。
また、本発明の電気機械素子の製造方法は、下部電極上に第1の犠牲層を介し、電気機械素子の可動子を形成する工程と、可動子の上部に第2の犠牲層を形成する工程と、第2の犠牲層、可動子及び第1の犠牲層に支柱形成用の貫通孔を形成する工程と、貫通孔を含む第2の犠牲層上に保護膜と支柱を形成する工程と、第1、第2の犠牲層を除去する工程とを有することを特徴とする。
本発明の電気機械素子及び共振器では、可動子を貫通する支柱により、可動子と保護膜が支持されるので、可動子の上側と下側の固定部分にずれが生じる。
本発明の電気機械素子の製造方法では、ビーム及び保護膜を支持する支柱を形成するための貫通孔を一回の工程によって形成するので、可動子に対してマスクの合わせずれに起因する支柱の信号ずれが生じない。
本発明に係る電気機械素子及び共振器によれば、可動子を固定する支柱の位置が上下間でずれので、位置ずれに起因する周波数変動が防止でき、歩留まりの向上が図られる。
本発明に係る電気機械素子の製造方法によれば、可動子の上下間で位置ずれのない支柱を形成できるので、周波数変動が生じない電気機械素子を歩留まりよく製造することができる。
以下、図面を参照して本発明の実施の形態を説明する。
図1に、本発明に係る電気機械素子の一実施の形態の概略構成を示す。図1における電気機械素子1は、無線通信用の高周波フィルタとして利用される共振器に適用した場合である。この電気機械素子1は、基板5上に下部電極となる出力電極7と、出力電極7に空間27を介して対向する可動子、例えば振動子となる帯状のビーム10とからなる電気機械素子本体25(本例では共振器本体)を有し、さらに、この電気機械素子本体25を、空間を介して封止する保護膜15を有して構成される。
基板5は、例えば半導体基板上に絶縁膜を形成した基板、石英基板やガラス基板のような絶縁性基板を用いることができるが、本例では、他の半導体デバイスとのインテグレーションを可能にするために、単結晶シリコンからなる半導体基板2上にシリコン酸化(SiO2)膜3及びシリコン窒化(SiN)膜4の積層膜による絶縁膜を形成した基板5を用いる。
ビーム10は、入力側の電極となるもので、導電材として例えば多結晶シリコン膜で形成される。ビーム10はいわゆる振動電極として構成される。また、本例では、製造上、空間に犠牲層が形成されている状態で保護膜15が形成され、保護膜15が形成された後、周知のリソグラフィ技術及びドライエッチング技術によって、ビーム10と保護膜15に共通の支柱16A,16Bが形成される。すなわち、基板5上に形成したそれぞれの下部配線6A,6Bに共通の支柱16A,16Bを介してビーム10及び保護膜15が支持される。ビーム10はこれを貫通する支柱6A,6Bの側面で接合されて支持される。支柱16A,16Bと保護膜15は同一の材料で形成されてもよく、その場合、ビーム10と下部配線6A,6Bとの導通を確保する為に、例えば燐(P)ドープの多結晶シリコンを用いる。不純物ドープの多結晶シリコンを用いるときは、支柱16A,16Bは全て導電層として形成される。
その他の方法、例えば、支柱16A,16Bに一部導電層を設けるなどして、ビーム10と下部配線6A,Bの導通が確保できる場合は、保護膜15及び支柱16A,16Bの材料は絶縁性のものであってもよい。
その他の方法、例えば、支柱16A,16Bに一部導電層を設けるなどして、ビーム10と下部配線6A,Bの導通が確保できる場合は、保護膜15及び支柱16A,16Bの材料は絶縁性のものであってもよい。
保護膜15とビーム10間には空間26が形成され、ビーム10と下部電極7間には空間27が形成される。この空間26、27は、開口17A,17Bを通じて犠牲層を選択エッチングで除去することにより形成される。その後、開口17A,17Bが例えばスパッタ膜による封止膜18A,18Bにより気密封止される。スパッタ膜としては、例えば、Al−Cu(アルミニウム−銅)膜またはAl−Si(アルミニウム−シリコン)膜などによるスパッタ膜を用いることができる。下部配線6A,6Bも例えば多結晶シリコンで形成される。下部電極6A,6Bの外側上には、絶縁膜の例えばシリコン酸化膜19が形成され、そのシリコン酸化膜19上に開口部30を介して下部配線6A,6Bに接続された例えばスパッタ膜による外部配線29が形成される。
この本実施形態に係る電気機械素子1では、振動子となるビーム10に下部配線6A、6Bを通じて直流バイアス電圧が印加されると共に、特定の周波数信号が印加されると、ビーム10が固有振動周波数で振動し、出力電極7とビーム10との間の空間27で構成されるキャパシタの容量が変化し、この特定の周波数信号が出力電極7から出力される。この電気機械素子1のビーム10は、一次振動モードで振動する。
本実施形態に係る電気機械素子1は、高周波フィルタとして利用した場合、表面弾性波(SAW)や薄膜弾性波(FBAR)を利用した高周波フィルタと比較して高いQ値を実現することができる。
次に、図2〜図5を参照して本発明に係る電気機械素子の製造方法の一実施の形態を説明する。本実施形態の製造方法は、図1に示す電気機械素子の製造に適用した場合である。
先ず、図2Aに示すように、基板、本例では単結晶シリコンによる半導体基板2上に、絶縁体としてシリコン酸化膜3及びシリコン窒化膜4を減圧CVD(Chemical Vapor Deposition)法により積層形成してなる基板5を用意する。
次に、図2Bに示すように、基板5上に選択エッチング可能な導電性膜、本例では不純物例えばリン(P)を含有した多結晶シリコン膜を形成する。この多結晶シリコンを周知のリソグラフィ技術及びドライエッチング技術を利用してパターニングし、下部電極となる出力電極7と下部配線6A,6Bを形成する。
次に、図2Cに示すように、出力電極7と下部配線6A,6B上を埋めるように、且つ、出力電極7上に所要の膜厚t1が形成されるように、全面例えばシリコン酸化膜8を形成する。このシリコン酸化膜8の一部は、後述する第1の犠牲層となるものである。
次に、図2Dに示すように、シリコン酸化膜8上に、例えばリン(P)を含有した多結晶シリコン膜を形成し、周知のリソグラフィ技術及びドライエッチング技術を利用してパターン加工し、多結晶シリコン膜からなり、後に帯状のビーム10となる膜を形成する。
次に、図3Eに示すように、ビーム10上を被覆するように、例えば減圧CVD法によりシリコン酸化膜11を全面に形成する。このシリコン酸化膜11も一部が第2の犠牲層として機能し、少なくともビーム10上に所要の膜厚t2で形成される。ここで、積層されたシリコン酸化膜8及び11をまとめてシリコン酸化膜12とする。
次に、図3Fに示すように、シリコン酸化膜12及びビーム10を周知のリソグラフィ技術及びドライエッチング技術を利用して、パターン加工し、後に支柱に対応する部分に下部配線6A,6Bに達する貫通孔13A,13Bを形成する。貫通孔13A,13Bは、後のビーム10及び保護膜15に共通の支柱形成用の貫通孔となるものである。また、この貫通孔13A,13Bを形成するためのエッチング処理では、シリコン酸化膜12とビーム10においてはその材料が異なる為、段階別にエッチングが行われるが、マスク合わせは例えば第2の犠牲層上に形成したレジストマスクを用いて共通に行われるので、マスク合わせずれなどの問題は起こらない。また、下部配線6A,6B上の犠牲層となるシリコン酸化膜12に開口14A,14Bを形成する。
次に、図3Gに示すように、貫通孔13A,13B、開口14A,14Bを含んで、犠牲層として機能するシリコン酸化膜12上の全面に例えば減圧CVD法により例えば、燐(P)がドープされた多結晶シリコン膜90を形成する。この多結晶シリコン膜90は保護膜15として機能するものである。また、この多結晶シリコン膜は貫通孔13A,13Bを通じて、ビーム10と保護膜15の共通の支柱16A,16Bとして機能する。すなわち、ビーム10を貫通する支柱16A,16Bがビーム10と保護膜15を支持する。支柱16A,16Bの形成が減圧CVD法により行われることによって、支柱構造がボイドレスとすることができるので、機械的強度のばらつきを抑制することができる。
また、この燐(P)がドープされた多結晶シリコンからなる支柱16A,16Bを介して、下部配線6A,6Bから、ビーム10に導通がとられる。さらに、ビーム10と支柱16A,16Bが同じ熱膨張係数を有する材料で形成することが望ましい。支柱とビームを熱膨張係数が同じ材料とすることで、熱膨張係数の差に起因するデバイス特性の温度依存性を小さくすることができる。
また、この燐(P)がドープされた多結晶シリコンからなる支柱16A,16Bを介して、下部配線6A,6Bから、ビーム10に導通がとられる。さらに、ビーム10と支柱16A,16Bが同じ熱膨張係数を有する材料で形成することが望ましい。支柱とビームを熱膨張係数が同じ材料とすることで、熱膨張係数の差に起因するデバイス特性の温度依存性を小さくすることができる。
次に、図3Hに示すように、保護膜15として機能する多結晶シリコン膜90の一部を、周知のリソグラフィ技術及びドライエッチング技術を利用して選択的にエッチング除去し、犠牲層へ通じる開口17A,17Bを形成する。その後、開口17A,17Bを用いて犠牲層9A及び9Bを選択的にエッチング除去し、ビーム10の上下部に空間26及び27を形成する。
次に、図4Iに示すように、減圧下における成膜処理で開口17A,17Bに封止膜18A,18Bを形成して電気機械素子本体25を気密封止する。すなわち、例えば、真空中にてスパッタリングにより成膜処理を行い開口17A,17Bを封止するスパッタ膜により封止膜18A,18Bを形成する。このとき用いる反応ガスとしては、アルゴン(Ar)ガスが挙げられる。また、スパッタ膜としては、Al−Cu膜、Al−Si膜等といった、金属または金属化合物による薄膜が挙げられる。スパッタ膜を形成したら、周知のリソグラフィ技術及びドライエッチング技術を利用して、封止膜18A,18Bを残すパターニング処理を行う。なお、このスパッタ膜のパターニング工程で、封止膜18A,18Bと同時に、他の配線層等も形成することもできる。また、他の配線等を形成しない場合は、絶縁膜(シリコン酸化膜)19で表面を保護する。
次に、図4Jに示すように、下部配線6Aに達するように、絶縁膜(例えばシリコン酸化膜)19、保護膜15、及びその下のシリコン酸化膜12を周知のリソグラフィ技術及びドライエッチング技術を利用して開口30を形成し、その後、上記と同様のスパッタ膜を形成し、これを周知のリソグラフィ技術及びドライエッチング技術を利用してパターニングし、下部配線6Aに接続した外部配線29を形成する。なお、電気機械素子本体25の周囲に形成されたシリコン酸化膜は、図1で説明した絶縁膜に相当する。このようにして、電気機械素子本体25が保護膜15で気密封止されると共に、保護膜15とビーム10が共通の支柱16A,16Bにより支持される。このようにして、本実施形態の電気機械素子1が完成する。
本実施形態によれば、1回のリソグラフィ工程により、ビームと保護膜を支持する支柱のための貫通孔を形成することができるので、従来のように、ビームの支持部と保護膜の支柱の位置がずれるという問題が無くなり、ビームの周波数変動を防止することができ、歩留まりの向上が図られる。すなわち、ビームを貫通する支柱により可動子と保護膜が支持されるので、ビームの上側と下側でずれが生じない。
また、ビーム及び保護膜を支持する支柱を形成するための貫通孔を一回の工程によって形成するので、可動子に対してマスクの合わせずれに起因する支柱の信号ずれが生じない。そして、リソグラフィが一回の工程で行われるので、マスク枚数が削減され、コストが削減される。
また、ビーム及び保護膜を支持する支柱を形成するための貫通孔を一回の工程によって形成するので、可動子に対してマスクの合わせずれに起因する支柱の信号ずれが生じない。そして、リソグラフィが一回の工程で行われるので、マスク枚数が削減され、コストが削減される。
ところで、上述した本実施形態においては、下部配線6A,6Bとビーム10の導通を確保するために、保護膜15と支柱16A,16Bは、燐(P)をドープした多結晶シリコンとした。この電気機械素子1は、保護膜15で全体が気密封止されている為に、電気機械素子1の図示されない端部で、出力電極7の外部導出部と入力電極となるビーム10に繋がる保護膜15が交差する部分が存在する場合があり、そのまま交差してしまうと、ショートの原因となる。
図5に、本実施形態の電気機械素子1において、図1の紙面に直交する断面において、保護膜15が基板5に封止される部分の概略構成を示す。本実施形態のように、保護膜15及び支柱16A,16Bの材料として、導電性の材料を用いた場合は、図5に示すように、出力電極7を、保護膜15が基板5側に気密に封止されている部分において、下層に形成した配線層22に繋げる構成とする。図5に示す例では、出力電極7は、Al等よりなる電極パッド23を介して、半導体基板2内に形成した下層の配線層22(いわゆる不純物拡散層)に導通され、その後、上部に保護膜15が無い位置で、取り出し電極24を介して出力される。このように、下層の配線層22を用いることによって、保護膜15と下部電極7内でショートすることがない。
以上のように、本実施形態においては、保護膜15及び支柱16A、16Bに導電性の材料を用いたが、絶縁性のものを用いてもよい。図6に、保護膜に絶縁性の材料を用いた場合の、保護膜を形成した段階における概略構成を示す。この場合は、上部電極となるビーム10と下部配線6A,6Bとの導通を得るために、図6に示すように、支柱16A,16Bを形成する際の貫通孔13A,13Bにおいて、導電性のサイドウォール21を形成する。このサイドウォール21は、貫通孔13A、13Bが形成された後、例えば燐(P)をドープした多結晶シリコンを埋め込み、エッチバックにより形成する。その後、例えばノンドープのシリコン膜により絶縁性の保護膜20を形成することによって、ビーム10と下部配線6A,6Bの導通が得られ、且つ、保護膜20がノンドープシリコン膜で形成されるので、上部電極と下部電極のショートも起こらない。
また、本実施形態においては、支柱を介して上部電極となるビームに給電を行う構成としたが、他の実施形態として、保護膜15及び共通の支柱16A,16Bをノンドープの多結晶シリコンで形成し、支柱16A,16Bとは別の経路により、例えばビームと下部配線間に形成した導電部により、下部配線からビームに給電する構成を有するものとすることもできる。
さらに、本実施形態においては、ビーム及び保護膜の支柱16A,16Bは、それぞれ1本ずつであるが、図7に示すように、すだれ状に複数形成してもよい。このようにすだれ状の複数の貫通孔16A,16Bを形成する場合、ここに導電性の材料を充填して支柱16A,16Bを形成して、その後、保護膜となる部分を絶縁性の材料で形成すればよい。この場合、支柱16A,16Bを導電性材料で形成した後、CMP処理等により平坦化するのが望ましい。
また、本実施形態において、犠牲層をシリコン酸化膜で形成する例を示したが、シリコン酸化膜又は多結晶シリコン膜のいずれか、もしくは両方を用いる構成としても良い。
さらに、本実施形態においては、ビーム及び保護膜の支柱16A,16Bは、それぞれ1本ずつであるが、図7に示すように、すだれ状に複数形成してもよい。このようにすだれ状の複数の貫通孔16A,16Bを形成する場合、ここに導電性の材料を充填して支柱16A,16Bを形成して、その後、保護膜となる部分を絶縁性の材料で形成すればよい。この場合、支柱16A,16Bを導電性材料で形成した後、CMP処理等により平坦化するのが望ましい。
また、本実施形態において、犠牲層をシリコン酸化膜で形成する例を示したが、シリコン酸化膜又は多結晶シリコン膜のいずれか、もしくは両方を用いる構成としても良い。
尚、本実施形態はビーム10を両持梁構造とした電気機械素子を例としたが、片持ち梁構造など、これに類する構造についても同様に考えられることは言うまでもない。また、本実施形態においては、一次振動モードで振動する電気機械素子を用いたが、二次振動モードで振動する電気機械素子においても同様の構成とすることができる。
図8に、二次振動モードで振動する電気機械素子の実施の形態を示す。本実施形態に係る電気機械素子92は、下部電極として、入力電極7Aと出力電極7Bを形成し、ビーム10に直流バイアス電圧を印加するように構成される。その他の構成は、図1と同様であるから、図8において、図1に対応する部分には同一符号を付し重複説明を省略する。本実施の形態においても、前述の図5、図6、図7の構成を通用することができる。
本実施形態の電気機械素子92では入力電極7Aに所要の周波数信号が入力されると、ビーム10が共振し、出力電極7Bから上記所要の周波数信号が出力される。このとき、ビームは二次振動モードで振動する。
本実施形態の電気機械素子92においても、ビーム10及び保護膜15に対する支持が貫通した共通の支柱16A,16Bでなされるので、前述と同様に、周波数変動が防止され、歩留まりの向上がはかられる。
本実施形態の電気機械素子及びその製造方法は、高周波フィルタ等の共振器以外の、各種センサ、アクチュエータ、光学素子(光変調素子となるGLV素子を含む)、その他等の様々な分野に用いられる電気機械素子に適用できる。
上述した実施の形態の電気機械素子は、例えば共振器は、高周波(RF)フィルタ、中間周波数(IF)フィルタなどの帯域信号フィルタとして用いることができる。
また、本発明の他の実施の形態として、このような電気機械素子によるフィルタを用いた通信装置を提供できる。すなわち、上述の実施の形態に係る電気機械素子によるフィルタを用いて構成される携帯電話、無線LAN機器、無線トランシーバ、テレビチューナ、ラジオチューナ等の電磁波を利用して通信する通信装置を提供することもできる。
また、本発明の他の実施の形態として、このような電気機械素子によるフィルタを用いた通信装置を提供できる。すなわち、上述の実施の形態に係る電気機械素子によるフィルタを用いて構成される携帯電話、無線LAN機器、無線トランシーバ、テレビチューナ、ラジオチューナ等の電磁波を利用して通信する通信装置を提供することもできる。
次に、本例のフィルタを適用した通信装置の構成例を、図9を参照して説明する。
まず送信系の構成について説明すると、Iチャンネルの送信データとQチャンネルの送信データを、それぞれデジタル/アナログ変換器(DAC)201I及び201Qに供給してアナログ信号に変換する。変換された各チャンネルの信号は、バンド・パス・フィルタ202I及び202Qに供給して、送信信号の帯域以外の信号成分を除去し、バンド・パス・フィルタ202I及び202Qの出力を、変調器210に供給する。
まず送信系の構成について説明すると、Iチャンネルの送信データとQチャンネルの送信データを、それぞれデジタル/アナログ変換器(DAC)201I及び201Qに供給してアナログ信号に変換する。変換された各チャンネルの信号は、バンド・パス・フィルタ202I及び202Qに供給して、送信信号の帯域以外の信号成分を除去し、バンド・パス・フィルタ202I及び202Qの出力を、変調器210に供給する。
変調器210では、各チャンネルごとにバッファアンプ211I及び211Qを介してミキサ212I及び212Qに供給して、送信用のPLL(phase-locked loop)回路203から供給される送信周波数に対応した周波数信号を混合して変調し、両混合信号を加算器214で加算して1系統の送信信号とする。この場合、ミキサ212Iに供給する周波数信号は、移相器213で信号位相を90°シフトさせてあり、Iチャンネルの信号とQチャンネルの信号とが直交変調されるようにしてある。
加算器214の出力は、バッファアンプ215を介して電力増幅器204に供給し、所定の送信電力となるように増幅する。電力増幅器204で増幅された信号は、送受信切換器205と高周波フィルタ206を介してアンテナ207に供給し、アンテナ207から無線送信させる。高周波フィルタ206は、この通信装置で送信及び受信する周波数帯域以外の信号成分を除去するバンド・パス・フィルタである。
受信系の構成としては、アンテナ207で受信した信号を、高周波フィルタ206及び送受信切換器205を介して高周波部220に供給する。高周波部220では、受信信号を低ノイズアンプ(LNA)221で増幅した後、バンド・パス・フィルタ222に供給して、受信周波数帯域以外の信号成分を除去し、除去された信号をバッファアンプ223を介してミキサ224に供給する。そして、チャンネル選択用PLL回路251から供給される周波数信号を混合して、所定の送信チャンネルの信号を中間周波信号とし、その中間周波信号をバッファアンプ225を介して中間周波回路230に供給する。
中間周波回路230では、供給される中間周波信号をバッファアンプ225を介してバンド・パス・フィルタ232に供給して、中間周波信号の帯域以外の信号成分を除去し、除去された信号を自動ゲイン調整回路(AGC回路)233に供給して、ほぼ一定のゲインの信号とする。自動ゲイン調整回路233でゲイン調整された中間周波信号は、バッファアンプ234を介して復調器240に供給する。
復調器240では、供給される中間周波信号をバッファアンプ241を介してミキサ242I及び242Qに供給して、中間周波用PLL回路252から供給される周波数信号を混合して、受信したIチャンネルの信号成分とQチャンネルの信号成分を復調する。この場合、I信号用のミキサ242Iには、移相器243で信号位相を90°シフトさせた周波数信号を供給するようにしてあり、直交変調されたIチャンネルの信号成分とQチャンネルの信号成分を復調する。
復調されたIチャンネルとQチャンネルの信号は、それぞれバッファアンプ244I及び244Qを介してバンド・パス・フィルタ253I及び253Qに供給して、Iチャンネル及びQチャンネルの信号以外の信号成分を除去し、除去された信号をアナログ/デジタル変換器(ADC)254I及び254Qに供給してサンプリングしてデジタルデータ化し、Iチャンネルの受信データ及びQチャンネルの受信データを得る。
ここまで説明した構成において、各バンド・パス・フィルタ202I,202Q,206,222,232,253I,253Qの一部又は全てとして、本例の構成のフィルタを適用して帯域制限することが可能である。図9の例では、各フィルタをバンド・パス・フィルタとして構成したが、所定の周波数よりも下の周波数帯域だけを通過させるロー・パス・フィルタや、所定の周波数よりも上の周波数帯域だけを通過させるハイ・パス・フィルタとして構成して、それらのフィルタに本例の構成のフィルタを適用してもよい。また、図9の例では、無線送信及び無線受信を行う通信装置としたが、有線の伝送路を介して送信及び受信を行う通信装置が備えるフィルタに適用してもよく、さらに送信処理だけを行う通信装置や受信処理だけを行う通信装置が備えるフィルタに、本例の構成のフィルタを適用してもよい。
1,31,100・・電気機械素子、2・・半導体基板、3,8,11,19,12,42,67,69・・シリコン酸化膜、4,43・・シリコン窒化膜、5,32・・基板、6A,6B,39A,39B・・下部配線、7,33・・出力電極、10,35・・ビーム、13A,13B・・貫通孔、14A,14B,68・・開口、30・・開口部、15,38,58・・保護膜、25・・電気機械素子本体、27,34,37・・空間、16A,16B,52・・支柱、17A,17B・・開口、18A,18B,50・・封止膜、22・・配線層、23・・電極パッド、24・・取り出し電極、25・・電気機械素子本体、40A,40B・・支持部、48・・外部配線層、201I,201Q・・デジタル/アナログ変換器、202I,202Q,222,232,253I,253Q・・バンド・パス・フィルタ、204・・電力増幅器、205・・送受信切換器、206・・高周波フィルタ、207・・アンテナ、210・・変調器、211I,211Q,225,241・・バッファアンプ、212I,212Q,224,242,242Q・・ミキサ、213・・移相器、214・・加算器、220・・高周波部、221・・低ノイズアンプ
Claims (8)
- 基板上に空間を介して配置された可動子を有する電気機械素子において、
前記電気機械素子を、空間を介して封止する保護膜を備え、
前記保護膜と前記可動子が、前記可動子を貫通する支柱により支持されている
ことを特徴とする電気機械素子。 - 前記支柱は導電層を有する
ことを特徴とする請求項1に記載の電気機械素子。 - 前記可動子及び前記支柱とが、同じ熱膨張係数を有する材料から成る
ことを特徴とする請求項1に記載の電気機械素子。 - 基板上に空間を介して配置された可動子を有する電気機械素子において、
前記電気機械素子を、空間を介して封止する保護膜を備え、
前記保護膜と前記可動子が、前記可動子を貫通する支柱により支持されている
ことを特徴とする共振器。 - 下部電極上に第1の犠牲層を介し、電気機械素子の可動子を形成する工程と、
前記可動子の上部に第2の犠牲層を形成する工程と、
前記第2の犠牲層、前記可動子及び前記第1の犠牲層に支柱形成用の貫通孔を形成する工程と、
前記貫通孔を含む前記第2の犠牲層上に保護膜と支柱を形成する工程と、
前記第1、第2の犠牲層を除去する工程とを有する
ことを特徴とする電気機械素子の製造方法。 - 前記貫通孔を形成する工程は、複数段階のエッチング処理により行う
ことを特徴とする請求項5に記載の電気機械素子の製造方法。 - 前記支柱を、CVD法により形成する
ことを特徴とする請求項5に記載の電気機械素子の製造方法。 - 前記支柱の一部又は全部を導電層で形成する
ことを特徴とする請求項5に記載の電気機械素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007073234A JP2008236386A (ja) | 2007-03-20 | 2007-03-20 | 電気機械素子とその製造方法、並びに共振器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007073234A JP2008236386A (ja) | 2007-03-20 | 2007-03-20 | 電気機械素子とその製造方法、並びに共振器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008236386A true JP2008236386A (ja) | 2008-10-02 |
Family
ID=39908624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007073234A Pending JP2008236386A (ja) | 2007-03-20 | 2007-03-20 | 電気機械素子とその製造方法、並びに共振器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008236386A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009018387A (ja) * | 2007-07-12 | 2009-01-29 | Hitachi Ltd | 微小電気機械システム素子の製造方法 |
WO2010113746A1 (ja) * | 2009-03-30 | 2010-10-07 | 株式会社村田製作所 | 可変容量モジュールおよび整合回路モジュール |
JP2015145036A (ja) * | 2014-02-03 | 2015-08-13 | セイコーエプソン株式会社 | Mems素子及びその製造方法 |
JP2015145037A (ja) * | 2014-02-03 | 2015-08-13 | セイコーエプソン株式会社 | Mems素子及びその製造方法 |
JP2015145038A (ja) * | 2014-02-03 | 2015-08-13 | セイコーエプソン株式会社 | Mems素子及びその製造方法 |
JP2016014888A (ja) * | 2009-08-24 | 2016-01-28 | キャベンディッシュ・キネティックス・インコーポレイテッドCavendish Kinetics, Inc. | 光変調用浮動ロッカーmemsデバイスの製造方法および動作方法 |
JP2020092270A (ja) * | 2014-10-03 | 2020-06-11 | 日本板硝子株式会社 | 導電部付ガラス基板 |
-
2007
- 2007-03-20 JP JP2007073234A patent/JP2008236386A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009018387A (ja) * | 2007-07-12 | 2009-01-29 | Hitachi Ltd | 微小電気機械システム素子の製造方法 |
JP4607153B2 (ja) * | 2007-07-12 | 2011-01-05 | 株式会社日立製作所 | 微小電気機械システム素子の製造方法 |
WO2010113746A1 (ja) * | 2009-03-30 | 2010-10-07 | 株式会社村田製作所 | 可変容量モジュールおよび整合回路モジュール |
CN102356440A (zh) * | 2009-03-30 | 2012-02-15 | 株式会社村田制作所 | 可变电容模块及匹配电路模块 |
US8390392B2 (en) | 2009-03-30 | 2013-03-05 | Murata Manufacturing Co., Ltd. | Variable capacitance module and matching circuit module |
JP5218646B2 (ja) * | 2009-03-30 | 2013-06-26 | 株式会社村田製作所 | 可変容量モジュールおよび整合回路モジュール |
JP2016014888A (ja) * | 2009-08-24 | 2016-01-28 | キャベンディッシュ・キネティックス・インコーポレイテッドCavendish Kinetics, Inc. | 光変調用浮動ロッカーmemsデバイスの製造方法および動作方法 |
JP2015145036A (ja) * | 2014-02-03 | 2015-08-13 | セイコーエプソン株式会社 | Mems素子及びその製造方法 |
JP2015145037A (ja) * | 2014-02-03 | 2015-08-13 | セイコーエプソン株式会社 | Mems素子及びその製造方法 |
JP2015145038A (ja) * | 2014-02-03 | 2015-08-13 | セイコーエプソン株式会社 | Mems素子及びその製造方法 |
JP2020092270A (ja) * | 2014-10-03 | 2020-06-11 | 日本板硝子株式会社 | 導電部付ガラス基板 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007276089A (ja) | 電気機械素子とその製造方法、並びに共振器とその製造方法 | |
JP4466563B2 (ja) | Mems型共振器及びその製造方法、並びに通信装置 | |
JP4501860B2 (ja) | Mems型振動子とその製造方法、フィルタ、並びに通信装置 | |
TWI309107B (en) | Micro-resonator, frequency filter and communication apparatus | |
JP2011004250A (ja) | 共振器およびその製造方法、発振器ならびに電子機器 | |
JP2008236386A (ja) | 電気機械素子とその製造方法、並びに共振器 | |
US7463105B2 (en) | Microresonator, band-pass filter, semiconductor device, and communication apparatus | |
KR101074562B1 (ko) | 미소 공진기 및 그 제조 방법, 및 전자 기기 | |
US7489212B2 (en) | Microresonator, band-pass filter, semiconductor device, and communication apparatus | |
US7420439B2 (en) | Micro-resonator, band-pass filter, semiconductor device and communication apparatus | |
JP2008062319A (ja) | 機能素子、半導体デバイスおよび電子機器 | |
JP2007013447A5 (ja) | ||
JP4655919B2 (ja) | 静電駆動素子とその製造方法、半導体装置、フィルタ、並びに通信装置 | |
JP2009088685A (ja) | 電気機械素子および半導体デバイス | |
JP2006231439A (ja) | 微小機械素子とその製造方法、半導体装置、ならびに通信装置 | |
JP4608984B2 (ja) | 微小共振器およびその製造方法、ならびに電子機器 | |
US7728682B2 (en) | Micro-oscillator, semiconductor device and communication apparatus | |
JP2007142533A (ja) | 静電容量型共振素子、静電容量型共振素子の製造方法および通信装置 | |
JP2008012631A (ja) | 電気機械素子及びその製造方法 | |
JP2011004251A (ja) | 共振器およびその製造方法、発振器ならびに電子機器 | |
JP2009117903A (ja) | フィルタ素子、半導体デバイスおよび電子機器 |