JP2008124293A - Imaging device with image processing function, and inspection system - Google Patents

Imaging device with image processing function, and inspection system Download PDF

Info

Publication number
JP2008124293A
JP2008124293A JP2006307507A JP2006307507A JP2008124293A JP 2008124293 A JP2008124293 A JP 2008124293A JP 2006307507 A JP2006307507 A JP 2006307507A JP 2006307507 A JP2006307507 A JP 2006307507A JP 2008124293 A JP2008124293 A JP 2008124293A
Authority
JP
Japan
Prior art keywords
image
camera
suction
mounting machine
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006307507A
Other languages
Japanese (ja)
Other versions
JP4845032B2 (en
Inventor
Takahiro Shindo
高広 神藤
Yasuhiro Yamashita
泰弘 山下
Nobuo Nagasaka
伸夫 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2006307507A priority Critical patent/JP4845032B2/en
Publication of JP2008124293A publication Critical patent/JP2008124293A/en
Application granted granted Critical
Publication of JP4845032B2 publication Critical patent/JP4845032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To largely shorten time required for data communication processing between a camera side and a control computer side of a production facility such as an electronic component mounting machine to meet a need of high-speed processing. <P>SOLUTION: A CPU of an imaging device 11 picks up an image of a reference jig by a camera 15 from a horizontal direction before the electronic component mounting machine works, detects a measuring reference position (a height position of the lowermost point) of the reference jig, and stores the data in a RAM or the like. It picks up an image of an object to be imaged (suction nozzle 13 or a sucked component 20) by the camera 15 from the horizontal direction while the mounting machine works, detects a measuring object position (the height position of the lowermost point) of the object, calculates differential data between the measuring object position and the measuring reference position, and sends it to the control computer of the mounting machine. The control computer of the mounting machine examines whether the sucked component 20 is sucked well or whether the component 20 is present based on the received differential data, and detects the thickness of the component 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、画像処理後のデータを出力する機能を備えた画像処理機能付き撮像装置及び検査システムに関する発明である。   The present invention relates to an imaging apparatus with an image processing function and an inspection system having a function of outputting data after image processing.

例えば、電子部品実装機においては、電子部品実装機の吸着ノズルに吸着された電子部品(以下「吸着部品」という)をその下方からカメラで撮像し、このカメラから出力される画像データを電子部品実装機の制御コンピュータに転送し、この制御コンピュータで画像処理して吸着部品の吸着状態の良否を検査するようにしたものがある。   For example, in an electronic component mounting machine, an electronic component sucked by a suction nozzle of the electronic component mounting machine (hereinafter referred to as “suction component”) is imaged from below by a camera, and image data output from the camera is electronic component Some of them are transferred to a control computer of a mounting machine, and image processing is performed by the control computer to check whether the suction state of the suction component is good.

また、特許文献1(特開2002−232193号公報)に記載されているように、吸着ノズルの下端部を水平方向からカメラで撮像して吸着ノズルの下端位置を検出し、この吸着ノズルの下端位置が予め設定した所定値以内であるか否かで吸着ノズルの良否を検査するようにしたものがある。
特開2002−232193号公報(第1頁)
Further, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2002-232193), the lower end portion of the suction nozzle is imaged with a camera from the horizontal direction to detect the lower end position of the suction nozzle, and the lower end of the suction nozzle is detected. There is one in which the quality of the suction nozzle is inspected based on whether or not the position is within a predetermined value set in advance.
JP 2002-232193 A (first page)

上述したカメラを用いた検査システムでは、カメラから出力される画像データを電子部品実装機の制御コンピュータに転送し、この制御コンピュータで画像処理して吸着部品の吸着状態の良否や吸着ノズルの良否を検査するようにしているが、カメラから出力される画像データは、データ容量が大きいため、電子部品実装機の制御コンピュータに画像データを転送する処理にかなりの時間がかかってしまう。このため、画像データの転送時間(通信処理時間)が電子部品実装機の高速化を妨げる要因となっていた。   In the inspection system using the camera described above, image data output from the camera is transferred to a control computer of the electronic component mounting machine, and image processing is performed by the control computer to determine whether the suction state of the suction component and the suction nozzle are good. Although the inspection is performed, the image data output from the camera has a large data capacity, and therefore it takes a considerable time to transfer the image data to the control computer of the electronic component mounting machine. For this reason, the transfer time (communication processing time) of the image data has been a factor that hinders the speeding up of the electronic component mounting machine.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、カメラ側(撮像装置側)と電子部品実装機等の生産装置の制御コンピュータ側との間のデータの通信処理に要する時間を大幅に短縮することができ、高速処理化の要求を満たすことができる画像処理機能付き撮像装置及び検査システムを提供することにある。   The present invention has been made in consideration of such circumstances. Therefore, the object of the present invention is to perform data communication processing between the camera side (imaging device side) and the control computer side of a production apparatus such as an electronic component mounting machine. It is an object of the present invention to provide an imaging apparatus with an image processing function and an inspection system that can significantly reduce the time required for the above processing and can satisfy the demand for high-speed processing.

上記目的を達成するために、請求項1に係る発明は、電子部品実装機等の生産装置に取り付けて使用する画像処理機能付き撮像装置であって、被撮像物を撮像するカメラと、基準画像の計測基準位置のデータを記憶する記憶手段と、前記カメラの撮像動作を制御すると共に前記カメラから出力される前記被撮像物の画像データを取り込んで前記被撮像物の計測対象位置と前記基準画像の計測基準位置との差分データを出力する画像処理手段とを備えた構成となっている。   In order to achieve the above object, an invention according to claim 1 is an imaging apparatus with an image processing function that is used by being attached to a production apparatus such as an electronic component mounting machine, the camera for imaging an object to be imaged, and a reference image Storage means for storing the data of the measurement reference position, and the image pickup object image data output from the camera while controlling the imaging operation of the camera, and the measurement target position of the image pickup object and the reference image Image processing means for outputting difference data from the measurement reference position.

この構成では、画像処理機能付き撮像装置から生産装置の制御コンピュータに送信するデータは、大容量の画像データではなく、画像処理手段で処理された少数の差分データであるため、撮像装置側と生産装置の制御コンピュータ側との間のデータの通信処理に要する時間を大幅に短縮することができ、高速処理化の要求を満たすことができる。しかも、撮像装置側や生産装置の制御コンピュータ側に高価な高速通信機能を搭載する必要がなく、通信機能を低コスト化できるという利点もある。   In this configuration, the data to be transmitted from the imaging apparatus with an image processing function to the control computer of the production apparatus is not large-capacity image data but a small number of difference data processed by the image processing means. The time required for data communication processing with the control computer side of the apparatus can be greatly reduced, and the demand for high-speed processing can be satisfied. In addition, it is not necessary to mount an expensive high-speed communication function on the imaging apparatus side or the control computer side of the production apparatus, and there is an advantage that the communication function can be reduced in cost.

この場合、請求項2のように、被撮像物の計測対象位置は、当該被撮像物の最下点の高さ位置とすると良い。例えば、被撮像物が吸着ノズルの場合は、吸着ノズルの最下点の高さ位置が計測対象位置となる。   In this case, the measurement target position of the object to be imaged is preferably the height position of the lowest point of the object to be imaged. For example, when the object to be imaged is a suction nozzle, the height position of the lowest point of the suction nozzle is the measurement target position.

また、請求項3のように、カメラは、走査方向が被撮像物の長手方向となるように設置すると良い。例えば、被撮像物が吸着ノズルの場合は、被撮像物の長手方向が上下方向となるため、カメラは、走査方向が上下方向となるように設置すれば良い。このようにすれば、吸着ノズル等の縦長の被撮像物に対しては、カメラの撮像エリア全体を走査しなくても、被撮像物が存在する一部のエリアのみに限定して走査するだけで被撮像物の計測に必要な画像データを得ることができ、撮像装置側の画像処理時間を短くすることができる。   Further, as in claim 3, the camera is preferably installed so that the scanning direction is the longitudinal direction of the object to be imaged. For example, when the object to be imaged is a suction nozzle, the longitudinal direction of the object to be imaged is the vertical direction, so the camera may be installed so that the scanning direction is the vertical direction. In this way, for a vertically long object to be picked up, such as a suction nozzle, only a part of the area where the object to be picked exists is scanned without scanning the entire image pickup area of the camera. Thus, image data necessary for measurement of the object to be imaged can be obtained, and the image processing time on the imaging device side can be shortened.

また、請求項4のように、基準治具をカメラで撮像して取り込んだ画像を基準画像として用いるようにすると良い。このようにすれば、被撮像物の種類に応じて基準治具を取り替えることで、実際の被撮像物に合った基準画像を用いて計測基準位置のデータを記憶手段に記憶させることができる。   Further, as described in claim 4, it is preferable to use an image captured by capturing the reference jig with a camera as the reference image. In this way, by replacing the reference jig according to the type of the object to be imaged, the data of the measurement reference position can be stored in the storage unit using the reference image that matches the actual object to be imaged.

また、請求項5のように、本発明の画像処理機能付き撮像装置を電子部品実装機に取り付け、この電子部品実装機の吸着ノズルに吸着された電子部品(以下「吸着部品」という)を被撮像物とし、前記吸着部品を水平方向からカメラで撮像し、前記画像処理機能付き撮像装置から出力される差分データを前記電子部品実装機の制御コンピュータに取り込み、この制御コンピュータで前記差分データに基づいて前記吸着部品の吸着状態の良否又は吸着部品の有無を検査し若しくは吸着部品の厚みを検出するようにしても良い。このようにすれば、撮像装置側と電子部品実装機の制御コンピュータ側との間のデータの通信処理に要する時間を大幅に短縮することができ、電子部品実装機の高速化の要求を満たすことができる。   Further, as in claim 5, the imaging apparatus with an image processing function of the present invention is attached to an electronic component mounting machine, and an electronic component (hereinafter referred to as "suction component") sucked by a suction nozzle of the electronic component mounting machine is covered. The picked-up object is picked up by a camera from the horizontal direction, and difference data output from the image pickup device with an image processing function is taken into a control computer of the electronic component mounting machine, and the control computer uses the difference data based on the difference data. Then, it may be possible to inspect whether the suction part is in the suction state or not, or to detect the thickness of the suction part. In this way, the time required for data communication processing between the imaging device side and the control computer side of the electronic component mounting machine can be greatly shortened, and the speed of the electronic component mounting machine must be met. Can do.

更に、請求項6のように、電子部品実装機の吸着ノズルを被撮像物とし、前記吸着ノズルを水平方向から前記カメラで撮像し、前記撮像装置から出力される差分データを前記電子部品実装機の制御コンピュータに取り込み、この制御コンピュータで前記差分データに基づいて前記吸着ノズルの良否を検査するようにしても良い。この場合も、上記請求項5と同様の効果を得ることができる。   Further, as in claim 6, the suction nozzle of the electronic component mounting machine is an object to be imaged, the suction nozzle is imaged by the camera from the horizontal direction, and the difference data output from the imaging device is used as the electronic component mounting machine. The control computer may check the quality of the suction nozzle based on the difference data. In this case, the same effect as that of the fifth aspect can be obtained.

この場合、請求項7のように、撮像装置の画像処理手段は、吸着ノズルを吸着保持する吸着ホルダに、当該吸着ノズルに代えて基準治具を吸着した状態で、当該基準治具を水平方向からカメラで撮像して取り込んだ画像を基準画像として記憶手段に記憶するようにすれば良い。このようにすれば、吸着ノズルに吸着した電子部品を撮像する場合と同じ条件で基準治具を撮像して基準画像を取り込むことができ、実際の吸着ノズルに合った基準画像を記憶手段に記憶させることができる。   In this case, as in claim 7, the image processing means of the image pickup device moves the reference jig in the horizontal direction in a state where the reference jig is adsorbed to the adsorption holder that adsorbs and holds the adsorption nozzle instead of the adsorption nozzle. The image captured by the camera and captured by the camera may be stored in the storage means as a reference image. By doing this, it is possible to capture the reference image by capturing the reference jig under the same conditions as when imaging the electronic component sucked by the suction nozzle, and store the reference image that matches the actual suction nozzle in the storage means. Can be made.

また、請求項8のように、基準治具の最下点の高さ位置を計測基準位置として記憶手段に記憶し、撮像装置の画像処理手段は、カメラで撮像した吸着ノズルの最下点の高さ位置と基準治具の計測基準位置との高低差を差分データとして出力し、電子部品実装機の制御コンピュータは、吸着ホルダに基準治具を吸着した状態で該基準治具を基板実装面に当接させるまでの下降量を基準ストロークとして検出し、この基準ストロークを前記差分データで補正して実装作業時の吸着ノズルのストロークを決定するようにしても良い。このようにすれば、撮像装置から出力される差分データを利用して実装作業時の吸着ノズルのストロークを算出することができ、実装作業開始前の吸着ノズルのストロークの確認作業が容易となる。   Further, as in claim 8, the height position of the lowest point of the reference jig is stored in the storage means as the measurement reference position, and the image processing means of the imaging device is configured to store the lowest point of the suction nozzle imaged by the camera. The difference in height between the height position and the measurement reference position of the reference jig is output as difference data, and the control computer of the electronic component mounting machine places the reference jig on the board mounting surface while the reference jig is sucked into the suction holder. It is also possible to detect the amount of descent until contact is made as a reference stroke, and correct the reference stroke with the difference data to determine the suction nozzle stroke during the mounting operation. In this way, the suction nozzle stroke at the time of the mounting operation can be calculated using the difference data output from the imaging apparatus, and the confirmation operation of the suction nozzle stroke before the start of the mounting operation is facilitated.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
本実施例では、電子部品実装機に画像処理機能付き撮像装置11を取り付けて使用する例を説明するが、本発明の画像処理機能付き撮像装置11は、電子部品実装機以外の様々な生産装置に取り付けて使用可能である。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
In this embodiment, an example in which the imaging device 11 with an image processing function is attached to an electronic component mounting machine will be described. However, the imaging device 11 with an image processing function according to the present invention is a variety of production apparatuses other than the electronic component mounting machine. It can be used by attaching to

電子部品実装機は、図1に示すように、レボルバー型(ロータリ型)の装着ヘッド12を備え、この装着ヘッド12の下面側に複数本の吸着ノズル13が円周方向に所定間隔で配列されている。各吸着ノズル13は、装着ヘッド12に昇降可能に設けられた吸着ホルダ14に下向きに吸着保持され、各吸着ホルダ14には、後述する基準治具41(図3、図4参照)を吸着ノズル13と取り替えて吸着保持できるようになっている。尚、装着ヘッド12は、図示はしないが、XYスライド機構のうちのY方向に移動するYスライドに支持され、Yスライドは、X方向に移動するXスライド上に搭載されている。   As shown in FIG. 1, the electronic component mounting machine includes a revolver type (rotary type) mounting head 12, and a plurality of suction nozzles 13 are arranged at predetermined intervals in the circumferential direction on the lower surface side of the mounting head 12. ing. Each suction nozzle 13 is suctioned and held downward by a suction holder 14 provided on the mounting head 12 so as to be movable up and down, and a reference jig 41 (see FIGS. 3 and 4) described later is attached to each suction holder 14. It can be replaced with 13 and held by suction. Although not shown, the mounting head 12 is supported by a Y slide that moves in the Y direction of the XY slide mechanism, and the Y slide is mounted on the X slide that moves in the X direction.

一方、画像処理機能付き撮像装置11は、Yスライドに着脱可能に支持された装着ヘッド12に取り付けられ、装着ヘッド12と一体的に移動するようになっている。この画像処理機能付き撮像装置11は、CCDカメラ等のカメラ15、液晶表示器(LCD)等の表示器16、被撮像物(吸着ノズル13や吸着部品20)を照明するLED等の照明光源17、これらの動作を制御するメインコントロール基板18、カメラ15の光軸を被撮像物に合わせるプリズム19を備えている。本実施例では、照明光源17は、UV光を照射するUV照明用LEDであり、装着ヘッド12の中心部下方には、照明光源17からのUV光により蛍光を発生して被撮像物(吸着ノズル13や吸着部品20)を裏側から照明する円筒型の蛍光反射板21が設けられている。   On the other hand, the imaging device 11 with an image processing function is attached to a mounting head 12 that is detachably supported by a Y slide, and moves integrally with the mounting head 12. The imaging device 11 with an image processing function includes a camera 15 such as a CCD camera, a display 16 such as a liquid crystal display (LCD), and an illumination light source 17 such as an LED that illuminates an object to be imaged (the suction nozzle 13 and the suction component 20). A main control board 18 for controlling these operations and a prism 19 for aligning the optical axis of the camera 15 with the object to be imaged are provided. In this embodiment, the illumination light source 17 is a UV illumination LED that irradiates UV light, and fluorescent light is generated by the UV light from the illumination light source 17 below the center of the mounting head 12 to capture an object to be imaged (adsorption). A cylindrical fluorescent reflector 21 for illuminating the nozzle 13 and the suction component 20) from the back side is provided.

図2に示すように、メインコントロール基板18には、CPU22(画像処理手段)、ROM23、RAM24(記憶手段)、制御用ネットワークIC25、照明光源17(UV照明用LED)を駆動するLEDドライバ26、カメラ15から出力される画像データを二値化する二値化回路27、表示器16(LCD)を駆動するLCDドライバ28等が搭載されている。   As shown in FIG. 2, the main control board 18 includes a CPU 22 (image processing means), a ROM 23, a RAM 24 (storage means), a control network IC 25, an LED driver 26 that drives an illumination light source 17 (UV illumination LED), A binarization circuit 27 for binarizing image data output from the camera 15, an LCD driver 28 for driving the display 16 (LCD), and the like are mounted.

表示器16(LCD)は、中継基板29とフレキシブルフラットケーブル(FFC)等のケーブル30を介してメインコントロール基板18に接続されている。中継基板29には、操作用の押し釦スイッチ31,32が設けられ、この押し釦スイッチ31,32を操作することで、表示器16の表示モードを切り替えるようになっている。その他、表示器16の表示モードは、電子部品実装機の制御コンピュータ(図示せず)から送信されてくる表示モード切替信号によっても切り換えられるようになっている。また、カメラ15と照明光源17(UV照明用LED)も、それぞれフレキシブルフラットケーブル(FFC)等のケーブル33,34を介してメインコントロール基板18に接続されている。   The display 16 (LCD) is connected to the main control board 18 via a relay board 29 and a cable 30 such as a flexible flat cable (FFC). The relay board 29 is provided with push button switches 31 and 32 for operation. By operating the push button switches 31 and 32, the display mode of the display 16 is switched. In addition, the display mode of the display 16 can be switched by a display mode switching signal transmitted from a control computer (not shown) of the electronic component mounting machine. The camera 15 and the illumination light source 17 (UV illumination LED) are also connected to the main control board 18 via cables 33 and 34 such as a flexible flat cable (FFC).

このメインコントロール基板18は、ハーネス35を介して電子部品実装機の制御コンピュータ(図示せず)に接続され、メインコントロール基板18と電子部品実装機の制御コンピュータとの間で信号を送受信すると共に、電子部品実装機の制御コンピュータから撮像装置11に直流電源が供給されるようになっている。   The main control board 18 is connected to a control computer (not shown) of the electronic component mounting machine via a harness 35, and transmits and receives signals between the main control board 18 and the control computer of the electronic component mounting machine. DC power is supplied to the imaging device 11 from a control computer of the electronic component mounting machine.

次に、上記構成の画像処理機能付き撮像装置11の動作を説明する。
画像処理機能付き撮像装置11のCPU22は、電子部品実装機の制御コンピュータから送信されてくる閾値データ、各種パラメータ、動作コマンド(撮像トリガ)等の情報を受信する。そして、動作コマンド(撮像トリガ)を受信した時点で、カメラ15の撮像動作を開始し、カメラ15から出力される被撮像物(吸着ノズル13や吸着部品20)の画像データを取り込んで画像処理を行い、その処理結果である差分データを電子部品実装機の制御コンピュータに送信する。
Next, the operation of the imaging apparatus 11 with an image processing function having the above configuration will be described.
The CPU 22 of the image pickup device 11 with an image processing function receives information such as threshold data, various parameters, and operation commands (image pickup triggers) transmitted from the control computer of the electronic component mounting machine. When the operation command (imaging trigger) is received, the imaging operation of the camera 15 is started, and image processing of the imaged object (suction nozzle 13 or suction component 20) output from the camera 15 is captured and image processing is performed. The difference data as the processing result is transmitted to the control computer of the electronic component mounting machine.

この際、撮像装置11のCPU22は、次のようにして画像処理を実行する。
電子部品実装機の稼働前に、吸着ノズル13を吸着保持する吸着ホルダ14に、当該吸着ノズル13に代えて基準治具41[図3(a)、図4(a)参照]を吸着した状態で、当該基準治具41を水平方向からカメラ15で撮像して取り込んだ画像を基準画像とし、その基準画像の計測基準位置のデータをRAM24に記憶する。
At this time, the CPU 22 of the imaging device 11 performs image processing as follows.
Prior to the operation of the electronic component mounting machine, a suction jig 14 that sucks and holds the suction nozzle 13 is sucked with a reference jig 41 [see FIG. 3A and FIG. 4A] instead of the suction nozzle 13 Then, the image obtained by capturing the reference jig 41 with the camera 15 from the horizontal direction is taken as a reference image, and the measurement reference position data of the reference image is stored in the RAM 24.

本実施例のように、装着ヘッド12に複数本の吸着ノズル13を吸着させる場合は、各吸着ホルダ14を吸着保持する各吸着ホルダ14にそれぞれ基準治具41を吸着させてカメラ15で撮像して、吸着ノズル13の本数と同じ数の基準画像の計測基準位置のデータをRAM24に記憶する。この基準画像に表される基準治具41の最下点の高さ位置(Z座標データ)が計測基準位置となる[図3(a)、図4(a)参照]。   When a plurality of suction nozzles 13 are sucked by the mounting head 12 as in the present embodiment, the reference jig 41 is sucked by each suction holder 14 that holds each suction holder 14 and picked up by the camera 15. Thus, the measurement reference position data of the same number of reference images as the number of suction nozzles 13 is stored in the RAM 24. The height position (Z coordinate data) of the lowest point of the reference jig 41 shown in the reference image is the measurement reference position [see FIGS. 3 (a) and 4 (a)].

尚、撮像装置11の電源オフ中でも基準画像の計測基準位置のデータを記憶保持するために、EEPROM等の書き換え可能な不揮発性メモリに基準画像の計測基準位置のデータを記憶するようにしても良い。或は、電子部品実装機の制御コンピュータからのコマンドによって、基準画像の計測基準位置のデータを記憶するメモリをRAM24と不揮発性メモリとの間で切り換えるようにしても良い。また、撮像装置11を製造するメーカー側で作成した標準的な基準画像の計測基準位置のデータをROM23等の不揮発性メモリに記憶しておくようにしても良い。   Note that the measurement reference position data of the reference image may be stored in a rewritable non-volatile memory such as an EEPROM in order to store and hold the reference image measurement reference position data even when the imaging apparatus 11 is powered off. . Alternatively, the memory for storing the measurement reference position data of the reference image may be switched between the RAM 24 and the nonvolatile memory by a command from the control computer of the electronic component mounting machine. In addition, measurement reference position data of a standard reference image created by the manufacturer that manufactures the imaging device 11 may be stored in a nonvolatile memory such as the ROM 23.

電子部品実装機の稼働中に、吸着ノズル13の良否を検査する場合、撮像装置11のCPU22は、装着ヘッド12の吸着ホルダ14に吸着ノズル13を吸着した状態(吸着部品無し)で当該吸着ノズル13を水平方向からカメラ15で撮像して吸着ノズル13の撮像画像[図3(b)参照]を取り込む。そして、この撮像画像に表される吸着ノズル13の最下点の高さ位置(Z座標データ)が計測対象位置となる。そして、この計測対象位置(吸着ノズル13の最下点の高さ位置)と基準画像の計測基準位置(基準治具41の最下点の高さ位置)との高低差(Z座標データ)を算出して、これを差分データとして電子部品実装機の制御コンピュータに送信する。   When inspecting the quality of the suction nozzle 13 during operation of the electronic component mounting machine, the CPU 22 of the imaging device 11 sucks the suction nozzle 13 into the suction holder 14 of the mounting head 12 (no suction component). 13 is imaged by the camera 15 from the horizontal direction, and an image captured by the suction nozzle 13 [see FIG. 3B] is captured. Then, the height position (Z coordinate data) of the lowest point of the suction nozzle 13 represented in this captured image is the measurement target position. The height difference (Z coordinate data) between the measurement target position (the height position of the lowest point of the suction nozzle 13) and the measurement reference position of the reference image (the height position of the lowest point of the reference jig 41) is calculated. This is calculated and transmitted as difference data to the control computer of the electronic component mounting machine.

電子部品実装機の制御コンピュータは、受信した差分データに基づいて吸着ノズル13の良否を検査する。例えば、差分データが予め製造公差を考慮して設定した許容誤差範囲内にあるか否かで吸着ノズル13の良否を検査すれば良い。   The control computer of the electronic component mounting machine inspects the quality of the suction nozzle 13 based on the received difference data. For example, the quality of the suction nozzle 13 may be inspected based on whether or not the difference data is within an allowable error range set in consideration of manufacturing tolerances in advance.

また、この差分データを用いて電子部品実装機の吸着ノズル13のストローク(昇降量)を決定する場合、電子部品実装機の稼働前に、電子部品実装機の制御コンピュータは、装着ヘッド12の吸着ホルダ14に基準治具41を吸着した状態で、該基準治具41を基板実装面との相対高さが予め規定されたタッチセンサ(図示せず)に当接させるまで下降させることで、基準治具41を基板実装面に当接させるまでの下降量を基準ストロークとして検出する。そして、検出した基準ストロークを上記差分データで補正して実装作業時の吸着ノズル13のストロークを決定する。例えば、計測対象位置(吸着ノズル13の最下点の高さ位置)が基準画像の計測基準位置(基準治具41の最下点の高さ位置)よりも下方に位置する場合は、基準ストロークを差分データ分だけ減算した値を実装作業時の吸着ノズル13のストロークと決定する。このようにすれば、撮像装置11から出力される差分データを利用して実装作業時の吸着ノズル13のストロークを算出することができ、実装作業開始前の吸着ノズル13のストロークの確認作業が容易となる。   In addition, when determining the stroke (lifting amount) of the suction nozzle 13 of the electronic component mounting machine using this difference data, the control computer of the electronic component mounting machine performs the suction of the mounting head 12 before the operation of the electronic component mounting machine. In a state where the reference jig 41 is attracted to the holder 14, the reference jig 41 is lowered until the height relative to the substrate mounting surface comes into contact with a predetermined touch sensor (not shown). A descending amount until the jig 41 is brought into contact with the board mounting surface is detected as a reference stroke. Then, the detected reference stroke is corrected with the difference data to determine the stroke of the suction nozzle 13 during the mounting operation. For example, when the measurement target position (the height position of the lowest point of the suction nozzle 13) is located below the measurement reference position of the reference image (the height position of the lowest point of the reference jig 41), the reference stroke The value obtained by subtracting the difference data by the difference data is determined as the stroke of the suction nozzle 13 during the mounting operation. In this way, the stroke of the suction nozzle 13 at the time of the mounting operation can be calculated using the difference data output from the imaging device 11, and the check operation of the suction nozzle 13 before starting the mounting operation is easy. It becomes.

一方、電子部品実装機の稼働中に、吸着部品20の吸着状態の良否や吸着部品20の有無を検査したり、吸着部品20の厚みを検出する場合、撮像装置11のCPU22は、吸着ノズル13に電子部品20を吸着した状態で、当該吸着ノズル13と吸着部品20を水平方向からカメラ15で撮像して吸着ノズル13と吸着部品20の撮像画像[図4(b),(c)参照]を取り込む。そして、この撮像画像に表される吸着部品20の最下点の高さ位置(Z座標データ)が計測対象位置となる。そして、この計測対象位置(吸着部品20の最下点の高さ位置)と基準画像の計測基準位置(基準治具41の最下点の高さ位置)との高低差を算出して、これを差分データ(Z座標データ)として電子部品実装機の制御コンピュータに送信する。   On the other hand, when the electronic component mounting machine is in operation, when the suction state of the suction component 20 is checked, the presence / absence of the suction component 20 is detected, or the thickness of the suction component 20 is detected, the CPU 22 of the imaging device 11 detects the suction nozzle 13. In the state where the electronic component 20 is sucked onto the suction nozzle 13, the suction nozzle 13 and the suction component 20 are imaged by the camera 15 from the horizontal direction, and the picked-up images of the suction nozzle 13 and the suction component 20 [see FIGS. 4B and 4C] Capture. The height position (Z coordinate data) of the lowest point of the suction component 20 shown in the captured image is the measurement target position. Then, the height difference between the measurement target position (the height position of the lowest point of the suction component 20) and the measurement reference position of the reference image (the height position of the lowest point of the reference jig 41) is calculated, As difference data (Z coordinate data) to the control computer of the electronic component mounting machine.

電子部品実装機の制御コンピュータは、受信した差分データに基づいて吸着部品20の吸着状態の良否や吸着部品20の有無を検査したり、吸着部品20の厚みを検出する。例えば、差分データが予め製造公差を考慮して設定した許容誤差範囲内にあるか否かで吸着部品20の吸着状態の良否を判定すれば良い。この際、差分データが標準値(中央値)よりも最大許容誤差以上大きければ、斜め吸着[図4(c)参照]と判定するようにしても良い。   Based on the received difference data, the control computer of the electronic component mounting machine inspects the suction state of the suction component 20 and the presence / absence of the suction component 20, or detects the thickness of the suction component 20. For example, the quality of the suction state of the suction component 20 may be determined based on whether or not the difference data is within an allowable error range set in consideration of manufacturing tolerances in advance. At this time, if the difference data is larger than the standard value (median value) by the maximum permissible error, it may be determined that the diagonal suction [see FIG. 4 (c)].

また、受信した差分データが吸着部品無しの吸着ノズル13のみの差分データ[図3(b)参照]とほぼ同じであるか否かで、吸着部品無し/有りを判定するようにしても良い。   The presence / absence of the suction component may be determined based on whether or not the received difference data is substantially the same as the difference data of only the suction nozzle 13 having no suction component [see FIG. 3B].

或は、吸着部品有りの差分データ[図4(b)参照]と吸着部品無しの差分データ[図3(b)参照]との差分を算出して、この差分を吸着部品20の厚みとして検出するようにしても良い。   Alternatively, the difference between the difference data with the suction component [see FIG. 4B] and the difference data without the suction component [see FIG. 3B] is calculated, and this difference is detected as the thickness of the suction component 20. You may make it do.

本実施例では、カメラ15の画像サイズは、例えば640×480(VGA)であり、被撮像物(吸着ノズル13)が上下方向に長い形状で、且つ、計測対象位置が最下点の高さ位置であることを考慮して、カメラ15を90°反時計回りに回転させて走査方向が被撮像物の長手方向(上下方向)となるように設置している。更に、カメラ15には、パーシャル機能(撮像エリアの任意の一部分の画像データのみを出力する機能)が搭載され、図5に示すように、撮像エリアのうちの吸着ノズル13の下端部や吸着部品20が存在する部分のみをパーシャル機能で走査範囲として設定して、下方から上方に走査して画像データをメインコントロール基板18の二値化回路27に順次出力する。そして、二値化回路27は、入力された画像データをパイプライン処理で所定の閾値で二値化処理して、二値化処理後のデータをRAM24に記憶する。このように、パーシャル機能で走査範囲を限定することで、画像処理時間を短縮することができる。上記各差分データは、RAM24に記憶された二値化処理後のデータを用いて算出される。なお、カメラ15を90°回転させて搭載することで、画像データの読み出し方向と吸着ノズル13(吸着部品20)の最下点の走査方向(下から上方向)が一致させられているので、二値化処理時に同時に吸着ノズル13(吸着部品20)の最下点の探索処理も行うようにすれば、さらに画像処理時間を短縮することができる。   In the present embodiment, the image size of the camera 15 is, for example, 640 × 480 (VGA), the object to be imaged (the suction nozzle 13) is long in the vertical direction, and the measurement target position is the height of the lowest point. In consideration of the position, the camera 15 is rotated 90 ° counterclockwise so that the scanning direction is the longitudinal direction (vertical direction) of the object to be imaged. Further, the camera 15 is equipped with a partial function (a function for outputting only image data of an arbitrary part of the imaging area), and as shown in FIG. Only a portion where 20 is present is set as a scanning range by a partial function, and scanning is performed from below to above, and image data is sequentially output to the binarization circuit 27 of the main control board 18. The binarization circuit 27 binarizes the input image data with a predetermined threshold value by pipeline processing, and stores the binarized data in the RAM 24. Thus, by limiting the scanning range with the partial function, the image processing time can be shortened. Each difference data is calculated using the data after binarization processing stored in the RAM 24. Since the camera 15 is rotated by 90 ° and mounted, the image data readout direction and the scanning direction of the lowest point of the suction nozzle 13 (suction component 20) (from the bottom to the top) are matched. If the search process for the lowest point of the suction nozzle 13 (suction component 20) is also performed simultaneously with the binarization process, the image processing time can be further shortened.

また、本実施例では、撮像装置11のCPU22は、次のようにしてカメラ15の分解能を測定する分解能測定機能を実現する。電子部品実装機の吸着ホルダ14に、吸着ノズル13に代えて、所定寸法X[mm]×Z[mm]の分解能測定治具42(図6参照)を吸着した状態で、当該分解能測定治具42を水平方向からカメラ15で撮像して取り込む。そして、この撮像画像に表される分解能測定治具42のX座標方向の幅の画素数NxとZ座標方向の幅の画素数Nzをカウントして、X座標方向とZ座標方向の分解能をそれぞれ次式により算出する。   In this embodiment, the CPU 22 of the imaging device 11 realizes a resolution measurement function for measuring the resolution of the camera 15 as follows. In place of the suction nozzle 13 instead of the suction nozzle 13, a resolution measurement jig 42 (see FIG. 6) having a predetermined dimension X [mm] × Z [mm] is sucked to the suction holder 14 of the electronic component mounting machine. 42 is captured and captured by the camera 15 from the horizontal direction. Then, the number of pixels Nx having a width in the X coordinate direction and the number of pixels Nz having a width in the Z coordinate direction of the resolution measuring jig 42 represented in the captured image are counted, and the resolutions in the X coordinate direction and the Z coordinate direction are respectively determined. Calculated by the following formula.

X座標方向の分解能=X/Nx
Z座標方向の分解能=Z/Nz
この分解能のデータは、EEPROM等の書き換え可能な不揮発性メモリに記憶され、撮像装置11の電源オフ中でもその記憶データが保持される。
X coordinate direction resolution = X / Nx
Resolution in the Z coordinate direction = Z / Nz
The resolution data is stored in a rewritable nonvolatile memory such as an EEPROM, and the stored data is retained even when the imaging apparatus 11 is powered off.

また、本実施例では、撮像装置11のCPU22は、次のようにして、吸着ノズル13に付着したごみ等の異物の有無又は吸着ノズル13の変形等を検査する形状比較機能を実現する。電子部品実装機の稼働前に、装着ヘッド12の吸着ホルダ14に、通常使用する吸着ノズル13と同一の形状で且つ異物の付着していない基準ノズル43[図7(a)参照]を吸着した状態で、当該基準ノズル43を水平方向からカメラ15で撮像して取り込んだ画像を基準ノズル画像とし、この基準ノズル画像を二値化処理した後、基準ノズル画像のZ座標毎のX座標方向の画素数をカウントして、それを形状基準データ[図7(b)参照]としてRAM24(又は書き換え可能な不揮発性メモリ)に記憶する。   In the present embodiment, the CPU 22 of the imaging apparatus 11 realizes a shape comparison function for inspecting the presence or absence of foreign matters such as dust attached to the suction nozzle 13 or the deformation of the suction nozzle 13 as follows. Prior to the operation of the electronic component mounting machine, the suction nozzle 14 of the mounting head 12 sucks the reference nozzle 43 [see FIG. 7A] that has the same shape as the suction nozzle 13 that is normally used and has no foreign matter attached thereto. In this state, an image obtained by capturing the reference nozzle 43 with the camera 15 from the horizontal direction is taken as a reference nozzle image, and this reference nozzle image is binarized, and then the X coordinate direction for each Z coordinate of the reference nozzle image is set. The number of pixels is counted and stored in the RAM 24 (or rewritable nonvolatile memory) as shape reference data [see FIG. 7B].

そして、電子部品実装機の稼働中に、撮像装置11のCPU22は、装着ヘッド12の吸着ホルダ14に吸着ノズル13を吸着した状態(吸着部品無し)で当該吸着ノズル13を水平方向からカメラ15で撮像して吸着ノズル13の撮像画像[図8(a)参照]を取り込み、この吸着ノズル13の撮像画像を二値化処理した後、この吸着ノズル13の撮像画像のZ座標毎のX座標方向の画素数をカウントして、それを形状計測データ[図8(b)参照]としてRAM24に記憶する。そして、吸着ノズル13の形状計測データと形状基準データとをZ座標毎に比較して、Z座標毎に両者の画素数の差(又はその絶対値)を算出し、両者の画素数の差(又はその絶対値)が所定の閾値以上であるか否かで、吸着ノズル13に付着する異物の有無又は吸着ノズル13の変形の有無を検査する。この際、両者の画素数の差(又はその絶対値)が閾値以上となるZ座標の数が所定数以上であるか否かで、異物付着の有無又は吸着ノズル13の変形の有無を検査するようにしても良い。   Then, during operation of the electronic component mounting machine, the CPU 22 of the imaging device 11 moves the suction nozzle 13 from the horizontal direction with the camera 15 in a state where the suction nozzle 13 is sucked to the suction holder 14 of the mounting head 12 (no suction component). After capturing and capturing the captured image of the suction nozzle 13 [see FIG. 8A], the captured image of the suction nozzle 13 is binarized, and then the X coordinate direction for each Z coordinate of the captured image of the suction nozzle 13 Are counted and stored in the RAM 24 as shape measurement data [see FIG. 8B]. Then, the shape measurement data of the suction nozzle 13 and the shape reference data are compared for each Z coordinate, and the difference in the number of pixels (or the absolute value thereof) is calculated for each Z coordinate. (Or the absolute value thereof) is greater than or equal to a predetermined threshold value, the presence or absence of foreign matter adhering to the suction nozzle 13 or the presence or absence of deformation of the suction nozzle 13 is inspected. At this time, the presence or absence of foreign matter or the presence or absence of deformation of the suction nozzle 13 is inspected based on whether or not the number of Z coordinates at which the difference between the numbers of pixels (or the absolute value thereof) is equal to or greater than a threshold is greater than or equal to a predetermined number. You may do it.

ところで、基準ノズル画像の面積と吸着ノズル13の撮像画像の面積とを比較して異物付着の有無又は吸着ノズル13の変形の有無を検査する面積比較法を採用することが考えられるが、吸着ノズル13の画像の面積に対して異物付着や吸着ノズル13の変形による面積変化の割合が非常に小さいため、面積比較法では、小さな異物の付着や吸着ノズル13の小さな変形を検出することは困難である。   By the way, it is conceivable to adopt an area comparison method in which the area of the reference nozzle image and the area of the picked-up image of the suction nozzle 13 are compared to check for the presence of foreign matter or the deformation of the suction nozzle 13. Since the ratio of the area change due to the adhesion of foreign matter and the deformation of the suction nozzle 13 is very small with respect to the area of 13 images, it is difficult to detect the adhesion of small foreign matter and the small deformation of the suction nozzle 13 by the area comparison method. is there.

これに対して、本実施例のように、Z座標毎にX座標方向の画素数を比較する形状比較法では、小さな異物の付着や吸着ノズル13の小さな変形でも、X座標方向の画素数の差が大きくなるZ座標が存在するため、小さな異物の付着や吸着ノズル13の小さな変形を容易に検出することができ、異物付着の有無や吸着ノズル13の変形の有無を精度良く検査することができる。   On the other hand, in the shape comparison method in which the number of pixels in the X coordinate direction is compared for each Z coordinate as in the present embodiment, the number of pixels in the X coordinate direction can be reduced even if a small foreign object is attached or the suction nozzle 13 is slightly deformed. Since there is a Z coordinate where the difference becomes large, it is possible to easily detect the attachment of small foreign matter and the small deformation of the suction nozzle 13, and accurately inspect the presence or absence of foreign matter attachment and the deformation of the suction nozzle 13. it can.

以上説明した画像処理を行うために、撮像装置11のCPU22は、ROM23に記憶された図9、図10の各プログラム等を実行する。以下、図9、図10の各プログラムの処理内容を説明する。   In order to perform the image processing described above, the CPU 22 of the imaging device 11 executes the programs shown in FIGS. 9 and 10 stored in the ROM 23. Hereinafter, the processing contents of each program of FIGS. 9 and 10 will be described.

図9の分解能測定プログラムが起動されると、まずステップ101で、前述したように所定寸法X[mm]×Z[mm]の分解能測定治具42をカメラ15で撮像して、そのX座標方向の幅の画素数NxとZ座標方向の幅の画素数Nzをカウントして、X座標方向とZ座標方向の分解能をそれぞれ次式により算出する。
X座標方向の分解能=X/Nx
Z座標方向の分解能=Z/Nz
When the resolution measurement program of FIG. 9 is started, first, in step 101, the resolution measurement jig 42 having a predetermined dimension X [mm] × Z [mm] is imaged by the camera 15 as described above, and the X coordinate direction thereof is captured. The number of pixels Nx and the number of pixels Nz in the Z coordinate direction are counted, and the resolutions in the X coordinate direction and the Z coordinate direction are calculated by the following equations, respectively.
X coordinate direction resolution = X / Nx
Resolution in the Z coordinate direction = Z / Nz

この後、ステップ102に進み、X座標方向とZ座標方向の分解能が正常範囲内であるか否かを判定し、正常範囲内でなければ、上記ステップ101に戻り、再度、X座標方向とZ座標方向の分解能を算出して、分解能が正常範囲内であるか否かを判定する処理を繰り返す。   Thereafter, the process proceeds to step 102, where it is determined whether or not the resolution in the X coordinate direction and the Z coordinate direction is within the normal range. If the resolution is not within the normal range, the process returns to step 101, and again the X coordinate direction and the Z coordinate direction. The process of calculating the resolution in the coordinate direction and determining whether the resolution is within the normal range is repeated.

そして、このステップ102で、分解能が正常範囲内であると判定されれば、ステップ103に進み、分解能のデータをEEPROM等の書き換え可能な不揮発性メモリに書き込んで本プログラムを終了する。   If it is determined in step 102 that the resolution is within the normal range, the process proceeds to step 103, the resolution data is written in a rewritable nonvolatile memory such as an EEPROM, and the program is terminated.

一方、図10の差分計測プログラムが起動されると、まずステップ201で、電子部品実装機の制御コンピュータから送信されてくる基準画像撮像指示を受信したか否かを判定し、基準画像撮像指示を受信するまで待機する。その後、基準画像撮像指示を受信した時点で、ステップ202に進み、基準画像撮像回数カウンタiを初期値“1”にセットする。   On the other hand, when the difference measurement program of FIG. 10 is started, first, at step 201, it is determined whether or not the reference image capturing instruction transmitted from the control computer of the electronic component mounting machine is received, and the reference image capturing instruction is issued. Wait for reception. Thereafter, when the reference image capturing instruction is received, the process proceeds to step 202, where the reference image capturing number counter i is set to the initial value “1”.

この後、ステップ203に進み、装着ヘッド12のi番目のノズル位置に吸着された基準治具41(以下「i番目の基準治具41」という)をカメラ15で撮像した後、ステップ204に進み、i番目の基準治具41の最下点の高さ位置(計測基準位置)をRAM24又は書き換え可能な不揮発性メモリに記憶し、次のステップ205で、i番目の基準治具41の最下点の高さ位置(計測基準位置)のデータを電子部品実装機の制御コンピュータに送信する。   Thereafter, the process proceeds to step 203, and after the image of the reference jig 41 (hereinafter referred to as “i-th reference jig 41”) attracted to the i-th nozzle position of the mounting head 12 is captured by the camera 15, the process proceeds to step 204. The height position (measurement reference position) of the lowest point of the i-th reference jig 41 is stored in the RAM 24 or a rewritable nonvolatile memory, and in the next step 205, the lowest position of the i-th reference jig 41 is stored. Data of the height position (measurement reference position) of the point is transmitted to the control computer of the electronic component mounting machine.

この後、ステップ206に進み、基準画像撮像回数カウンタiを1つインクリメントして、次のステップ207で、基準画像撮像回数カウンタiのカウント値(基準画像の撮像回数)が装着ヘッド12のノズル吸着本数nを越えたか否かを判定し、基準画像撮像回数カウンタiのカウント値がノズル吸着本数n以下であれば、上述したステップ203〜206の処理を繰り返して、次のノズル位置に吸着された基準治具41の最下点の高さ位置を記憶し且つ送信する。   Thereafter, the process proceeds to step 206, where the reference image imaging number counter i is incremented by 1. In the next step 207, the count value of the reference image imaging number counter i (the number of reference image imaging) is the nozzle suction of the mounting head 12. It is determined whether or not the number n has been exceeded, and if the count value of the reference image capturing number counter i is equal to or less than the number n of nozzle suctions, the processing of steps 203 to 206 described above is repeated to be sucked to the next nozzle position. The height position of the lowest point of the reference jig 41 is stored and transmitted.

そして、全てのノズル位置の基準治具41について、最下点の高さ位置の記憶・送信を終了すると、ステップ207で「Yes」と判定されてステップ208に進み、電子部品実装機の制御コンピュータから送信されてくる差分計測指示を受信したか否かを判定し、差分計測指示を受信するまで待機する。その後、差分計測指示を受信した時点で、ステップ209に進み、被撮像物(吸着ノズル13や吸着部品20)をカメラ15で撮像して、被撮像物の最下点の高さ位置(計測対象位置)を検出する。   When the storage and transmission of the lowest height position is completed for the reference jigs 41 at all nozzle positions, “Yes” is determined in step 207 and the process proceeds to step 208 to control the electronic component mounting machine control computer. It is determined whether or not the difference measurement instruction transmitted from is received and waits until the difference measurement instruction is received. After that, when a difference measurement instruction is received, the process proceeds to step 209, where the object to be imaged (suction nozzle 13 or suction component 20) is imaged by the camera 15, and the height position of the lowest point of the object to be imaged (measurement target) Position).

そして、次のステップ210で、当該被撮像物と同じノズル位置の基準治具41の最下点の高さ位置(計測基準位置)と当該被撮像物の最下点の高さ位置(計測対象位置)との差分データ(高低差)を算出した後、ステップ211に進み、差分データを電子部品実装機の制御コンピュータに送信する。   Then, in the next step 210, the height position (measurement reference position) of the lowest point of the reference jig 41 at the same nozzle position as the imaged object and the height position (measurement object) of the imaged object. After calculating the difference data (level difference) with respect to the position), the process proceeds to step 211, where the difference data is transmitted to the control computer of the electronic component mounting machine.

以上説明した本実施例によれば、撮像装置11のCPU22は、電子部品実装機の稼働前に、基準治具41を水平方向からカメラ15で撮像して、基準治具41の計測基準位置(最下点の高さ位置)を検出してそのデータをRAM24等に記憶し、電子部品実装機の稼働中に、被撮像物(吸着ノズル13や吸着部品20)を水平方向からカメラ15で撮像して当該被撮像物の計測対象位置(最下点の高さ位置)を検出して、この計測対象位置と計測基準位置との差分データを算出して電子部品実装機の制御コンピュータに送信し、この電子部品実装機の制御コンピュータにて、受信した差分データに基づいて吸着部品20の吸着状態の良否や吸着部品20の有無を検査したり、吸着部品20の厚みを検出するようにしたので、画像処理機能付き撮像装置11から電子部品実装機の制御コンピュータに送信するデータは、大容量の画像データではなく、撮像装置11側で画像処理された少数の差分データとなる。このため、撮像装置11側と電子部品実装機の制御コンピュータ側との間のデータの通信処理に要する時間を大幅に短縮することができ、高速処理化の要求を満たすことができる。しかも、撮像装置11側や電子部品実装機の制御コンピュータ側に高価な高速通信機能を搭載する必要がなく、通信機能を低コスト化できるという利点もある。   According to the present embodiment described above, the CPU 22 of the imaging device 11 images the reference jig 41 with the camera 15 from the horizontal direction before the operation of the electronic component mounting machine, and the measurement reference position ( The height position of the lowest point is detected and the data is stored in the RAM 24 or the like, and the object to be imaged (the suction nozzle 13 or the suction component 20) is picked up by the camera 15 from the horizontal direction while the electronic component mounting machine is in operation. Then, the measurement target position (the height position of the lowest point) of the imaged object is detected, difference data between the measurement target position and the measurement reference position is calculated and transmitted to the control computer of the electronic component mounting machine. Since the control computer of this electronic component mounting machine checks the quality of the suction component 20 on the basis of the received difference data, the presence or absence of the suction component 20, or detects the thickness of the suction component 20. With image processing function Data to be transmitted from the imaging device 11 to the control computer of the electronic component mounting machine, rather than a large amount of image data, a small number of differential data subjected to image processing by the imaging device 11 side. For this reason, the time required for data communication processing between the imaging apparatus 11 side and the control computer side of the electronic component mounting machine can be greatly shortened, and the demand for high-speed processing can be satisfied. In addition, it is not necessary to mount an expensive high-speed communication function on the imaging device 11 side or the control computer side of the electronic component mounting machine, and there is an advantage that the communication function can be reduced in cost.

本発明の一実施例おける画像処理機能付き撮像装置と電子部品実装機の装着ヘッド部分の構成を概略的に説明する図である。1 is a diagram schematically illustrating a configuration of a mounting head portion of an imaging device with an image processing function and an electronic component mounting machine in an embodiment of the present invention. FIG. 画像処理機能付き撮像装置の電気的構成を示すブロック図である。It is a block diagram which shows the electrical constitution of the imaging device with an image processing function. (a)はカメラで撮像した基準治具の画像を示す図であり、(b)はカメラで撮像した吸着ノズルの画像を示す図である。(A) is a figure which shows the image of the reference | standard jig | tool imaged with the camera, (b) is a figure which shows the image of the suction nozzle imaged with the camera. (a)はカメラで撮像した基準治具の画像を示す図であり、(b)はカメラで撮像した吸着ノズルの正常吸着時の画像を示す図であり、(c)はカメラで撮像した吸着ノズルの斜め吸着時の画像を示す図である。(A) is a figure which shows the image of the reference | standard jig | tool imaged with the camera, (b) is a figure which shows the image at the time of normal adsorption | suction of the adsorption nozzle imaged with the camera, (c) is the adsorption | suction imaged with the camera It is a figure which shows the image at the time of the diagonal adsorption | suction of a nozzle. (a)は吸着ノズルの全画面撮像データを示す図であり、(b)はカメラの撮像エリアのうちの走査範囲を限定するパーシャル機能を説明する図であり、(c)は操作方向を説明する図であり、(d)は二値化処理後のイメージ図である。(A) is a figure which shows the full screen imaging data of a suction nozzle, (b) is a figure explaining the partial function which limits the scanning range of the imaging area of a camera, (c) is a figure explaining an operation direction. (D) is the image figure after a binarization process. カメラで撮像した分解能測定治具の画像を示す図である。It is a figure which shows the image of the resolution measuring jig imaged with the camera. (a)は二値化処理後の基準ノズルの画像を示す図であり、(b)は形状基準データを説明する図である。(A) is a figure which shows the image of the reference | standard nozzle after a binarization process, (b) is a figure explaining shape reference | standard data. (a)は二値化処理後の吸着ノズルの画像を示す図であり、(b)は形状計測データを説明する図である。(A) is a figure which shows the image of the suction nozzle after a binarization process, (b) is a figure explaining shape measurement data. 分解能測定プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a resolution measurement program. 差分計測プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a difference measurement program.

符号の説明Explanation of symbols

11…画像処理機能付き撮像装置、12…装着ヘッド、13…吸着ノズル、14…吸着ホルダ、15…カメラ、16…表示器、17…照明光源、18…メインコントロール基板、19…プリズム、20…吸着部品、21…蛍光反射板、22…CPU(画像処理手段)、23…ROM、24…RAM24(記憶手段)、25…制御用ネットワークIC、41…基準治具、42…分解能測定治具、43…基準ノズル   DESCRIPTION OF SYMBOLS 11 ... Imaging device with image processing function, 12 ... Mounting head, 13 ... Suction nozzle, 14 ... Suction holder, 15 ... Camera, 16 ... Display, 17 ... Illumination light source, 18 ... Main control board, 19 ... Prism, 20 ... Adsorption parts, 21 ... fluorescent reflector, 22 ... CPU (image processing means), 23 ... ROM, 24 ... RAM 24 (storage means), 25 ... control network IC, 41 ... reference jig, 42 ... resolution measuring jig, 43 ... Reference nozzle

Claims (8)

生産装置に取り付けて使用する画像処理機能付き撮像装置であって、
被撮像物を撮像するカメラと、
基準画像の計測基準位置のデータを記憶する記憶手段と、
前記カメラの撮像動作を制御すると共に前記カメラから出力される前記被撮像物の画像データを取り込んで前記被撮像物の計測対象位置と前記基準画像の計測基準位置との差分データを出力する画像処理手段と
を備えていることを特徴とする画像処理機能付き撮像装置。
An imaging device with an image processing function used by being attached to a production device,
A camera for imaging an object to be imaged;
Storage means for storing data of the measurement reference position of the reference image;
Image processing for controlling the imaging operation of the camera and capturing image data of the imaged object output from the camera and outputting difference data between the measurement target position of the imaged object and the measurement reference position of the reference image And an image processing function-equipped imaging device.
前記被撮像物の計測対象位置は、当該被撮像物の最下点の高さ位置であることを特徴とする請求項1に記載の画像処理機能付き撮像装置。   The imaging apparatus with an image processing function according to claim 1, wherein the measurement target position of the imaging object is a height position of a lowest point of the imaging object. 前記カメラは、走査方向が前記被撮像物の長手方向となるように設置されることを特徴とする請求項1又は2に記載の画像処理機能付き撮像装置。   The imaging apparatus with an image processing function according to claim 1, wherein the camera is installed such that a scanning direction is a longitudinal direction of the object to be imaged. 前記基準画像は、基準治具を前記カメラで撮像して取り込んだ画像であることを特徴とする請求項1乃至3のいずれかに記載の画像処理機能付き撮像装置。   The imaging apparatus with an image processing function according to claim 1, wherein the reference image is an image captured by capturing a reference jig with the camera. 請求項1乃至4のいずれかに記載の画像処理機能付き撮像装置を電子部品実装機に取り付け、この電子部品実装機の吸着ノズルに吸着された電子部品(以下「吸着部品」という)を前記被撮像物とし、前記吸着部品を水平方向から前記カメラで撮像し、前記画像処理機能付き撮像装置から出力される前記差分データを前記電子部品実装機の制御コンピュータに取り込み、この制御コンピュータで前記差分データに基づいて吸着部品の吸着状態の良否又は吸着部品の有無を検査し若しくは吸着部品の厚みを検出することを特徴とする検査システム。   An imaging apparatus with an image processing function according to any one of claims 1 to 4 is attached to an electronic component mounting machine, and an electronic component sucked by a suction nozzle of the electronic component mounting machine (hereinafter referred to as "suction component") The picked-up image is picked up by the camera from the horizontal direction, and the difference data output from the image pickup device with an image processing function is taken into a control computer of the electronic component mounting machine, and the control computer uses the difference data. The inspection system is characterized by inspecting whether the suction state of the suction component is good or not, whether the suction component is present, or detecting the thickness of the suction component. 請求項1乃至4のいずれかに記載の画像処理機能付き撮像装置を電子部品実装機に取り付け、この電子部品実装機の吸着ノズルを前記被撮像物とし、前記吸着ノズルを水平方向から前記カメラで撮像し、前記撮像装置から出力される前記差分データを前記電子部品実装機の制御コンピュータに取り込み、この制御コンピュータで前記差分データに基づいて前記吸着ノズルの良否を検査することを特徴とする検査システム。   An imaging apparatus with an image processing function according to any one of claims 1 to 4 is attached to an electronic component mounting machine, the suction nozzle of the electronic component mounting machine is set as the imaging target, and the suction nozzle is moved from the horizontal direction by the camera. An inspection system that takes an image and takes in the difference data output from the imaging device into a control computer of the electronic component mounting machine, and inspects the quality of the suction nozzle by the control computer based on the difference data . 請求項5又は6に記載の検査システムにおいて、
前記撮像装置の画像処理手段は、前記吸着ノズルを吸着保持する吸着ホルダに、当該吸着ノズルに代えて前記基準治具を吸着した状態で、当該基準治具を水平方向から前記カメラで撮像して取り込んだ画像を前記基準画像として用いることを特徴とする検査システム。
The inspection system according to claim 5 or 6,
The image processing means of the imaging apparatus picks up the reference jig from the horizontal direction with the camera in a state where the reference jig is adsorbed to the adsorption holder that adsorbs and holds the adsorption nozzle instead of the adsorption nozzle. An inspection system using an acquired image as the reference image.
請求項7に記載の検査システムにおいて、
前記記憶手段は、前記基準治具の最下点の高さ位置を前記計測基準位置として記憶し、 前記撮像装置の画像処理手段は、前記カメラで撮像した前記吸着ノズルの最下点の高さ位置と前記基準治具の計測基準位置との高低差を差分データとして出力し、
前記電子部品実装機の制御コンピュータは、前記吸着ホルダに前記基準治具を吸着した状態で該基準治具を基板実装面に当接させるまでの下降量を基準ストロークとして検出し、この基準ストロークを前記差分データで補正して実装作業時の前記吸着ノズルのストロークを決定することを特徴とする検査システム。
The inspection system according to claim 7,
The storage means stores the height position of the lowest point of the reference jig as the measurement reference position, and the image processing means of the imaging device is the height of the lowest point of the suction nozzle imaged by the camera. The difference in height between the position and the measurement reference position of the reference jig is output as difference data,
The control computer of the electronic component mounting machine detects a lowering amount until the reference jig is brought into contact with the board mounting surface in a state where the reference jig is sucked into the suction holder, and this reference stroke is detected. An inspection system for correcting the difference data to determine a stroke of the suction nozzle during mounting work.
JP2006307507A 2006-11-14 2006-11-14 Imaging apparatus with image processing function and inspection system Active JP4845032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307507A JP4845032B2 (en) 2006-11-14 2006-11-14 Imaging apparatus with image processing function and inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307507A JP4845032B2 (en) 2006-11-14 2006-11-14 Imaging apparatus with image processing function and inspection system

Publications (2)

Publication Number Publication Date
JP2008124293A true JP2008124293A (en) 2008-05-29
JP4845032B2 JP4845032B2 (en) 2011-12-28

Family

ID=39508717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307507A Active JP4845032B2 (en) 2006-11-14 2006-11-14 Imaging apparatus with image processing function and inspection system

Country Status (1)

Country Link
JP (1) JP4845032B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177310A (en) * 2009-01-28 2010-08-12 Panasonic Corp Component mounting apparatus
JP2016115754A (en) * 2014-12-12 2016-06-23 ヤマハ発動機株式会社 Component mounting device, surface mounting machine and component thickness detection method
JP2016162900A (en) * 2015-03-02 2016-09-05 富士機械製造株式会社 Component mounting machine
JP2017143181A (en) * 2016-02-10 2017-08-17 富士機械製造株式会社 Work head unit, mounting device and method for controlling work head unit
JP2017157766A (en) * 2016-03-04 2017-09-07 パナソニックIpマネジメント株式会社 Component mounting apparatus
JP2017188520A (en) * 2016-04-04 2017-10-12 ヤマハ発動機株式会社 Component mounting device and method of acquiring height of object to be measured of component mounting device
JP2018006417A (en) * 2016-06-28 2018-01-11 富士機械製造株式会社 Determination device
WO2018127977A1 (en) * 2017-01-06 2018-07-12 株式会社Fuji Component mounter
WO2018179365A1 (en) 2017-03-31 2018-10-04 株式会社Fuji Component mounter
JP2019114818A (en) * 2019-04-18 2019-07-11 パナソニックIpマネジメント株式会社 Component mounting device and component existence determination method
US10448551B2 (en) 2015-05-25 2019-10-15 Fuji Corporation Component mounter
JP2020102653A (en) * 2020-04-01 2020-07-02 パナソニックIpマネジメント株式会社 Component mounting device and component presence/absence determination method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102799A (en) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd Method and apparatus for detecting electronic component
JP2001168600A (en) * 1999-12-07 2001-06-22 Yamaha Motor Co Ltd Method and apparatus for confirmation of mounting of component
JP2006310816A (en) * 2005-03-30 2006-11-09 Yamaha Motor Co Ltd Part transporting device, surface-mounting machine and part inspecting device
JP2007198889A (en) * 2006-01-26 2007-08-09 Juki Corp Dispenser and inspection system therefor
JP2007273519A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Method and device of recognizing center of object to be recognized

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102799A (en) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd Method and apparatus for detecting electronic component
JP2001168600A (en) * 1999-12-07 2001-06-22 Yamaha Motor Co Ltd Method and apparatus for confirmation of mounting of component
JP2006310816A (en) * 2005-03-30 2006-11-09 Yamaha Motor Co Ltd Part transporting device, surface-mounting machine and part inspecting device
JP2007198889A (en) * 2006-01-26 2007-08-09 Juki Corp Dispenser and inspection system therefor
JP2007273519A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Method and device of recognizing center of object to be recognized

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177310A (en) * 2009-01-28 2010-08-12 Panasonic Corp Component mounting apparatus
JP2016115754A (en) * 2014-12-12 2016-06-23 ヤマハ発動機株式会社 Component mounting device, surface mounting machine and component thickness detection method
JP2016162900A (en) * 2015-03-02 2016-09-05 富士機械製造株式会社 Component mounting machine
US10448551B2 (en) 2015-05-25 2019-10-15 Fuji Corporation Component mounter
JP2017143181A (en) * 2016-02-10 2017-08-17 富士機械製造株式会社 Work head unit, mounting device and method for controlling work head unit
JP2017157766A (en) * 2016-03-04 2017-09-07 パナソニックIpマネジメント株式会社 Component mounting apparatus
US10319089B2 (en) 2016-03-04 2019-06-11 Panasonic intellectual property Management co., Ltd Component mounter
CN107155289A (en) * 2016-03-04 2017-09-12 松下知识产权经营株式会社 Apparatus for mounting component
CN112105254A (en) * 2016-03-04 2020-12-18 松下知识产权经营株式会社 Component thickness calculation method, component mounting device, and component presence determination method
CN112105254B (en) * 2016-03-04 2021-11-16 松下知识产权经营株式会社 Component thickness calculation method, component mounting device, and component presence determination method
JP2017188520A (en) * 2016-04-04 2017-10-12 ヤマハ発動機株式会社 Component mounting device and method of acquiring height of object to be measured of component mounting device
JP2018006417A (en) * 2016-06-28 2018-01-11 富士機械製造株式会社 Determination device
WO2018127977A1 (en) * 2017-01-06 2018-07-12 株式会社Fuji Component mounter
WO2018179365A1 (en) 2017-03-31 2018-10-04 株式会社Fuji Component mounter
US11172601B2 (en) 2017-03-31 2021-11-09 Fuji Corporation Component mounter
JP2019114818A (en) * 2019-04-18 2019-07-11 パナソニックIpマネジメント株式会社 Component mounting device and component existence determination method
JP2020102653A (en) * 2020-04-01 2020-07-02 パナソニックIpマネジメント株式会社 Component mounting device and component presence/absence determination method

Also Published As

Publication number Publication date
JP4845032B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4845032B2 (en) Imaging apparatus with image processing function and inspection system
KR102114718B1 (en) Electronic part mounting apparatus and mounted part inspection method
JP7002831B2 (en) Parts mounting machine
KR102207774B1 (en) Device and method for detecting position, and method of manufacturing substrate
CN108142000B (en) Substrate working system and component mounting apparatus
CN109524320B (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP2005308636A (en) Optical visual examination method and optical visual examination device
JP5158686B2 (en) Adsorption part front / back determination device and adsorption part front / back determination method
US10869421B2 (en) Mounting device and imaging processing method
JP2005072046A (en) Apparatus for packaging electronic component
JP2011082506A (en) Device for inspecting or mounting component
JP2015166722A (en) Defect image imaging device and defect image imaging method
JP4999502B2 (en) Component transfer device and surface mounter
JP2012199321A (en) Chip sorter and chip transfer method
JP6348832B2 (en) Component mounting apparatus, surface mounter, and component thickness detection method
JP2006210705A (en) Electronic component mounting device
KR101146323B1 (en) Apparatus for recognizing parts of chip mounter and method for mounting parts using the same
KR101754598B1 (en) System for testing panel using focus mapping scheme and method thereof
CN111725086B (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP2005140597A (en) Article recognition method and its system, surface mounting machine equipped with the system, component-testing arrangement, dispenser, mounted substrate inspection device and printed board inspection device
JP2012160525A (en) Electronic component mounting device and electronic component mounting method
JP4618203B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP5003610B2 (en) Board inspection method
JP2005322802A (en) Component mounting device
JP2008139260A (en) Image display unit and method, appearance inspection device, cream solder printer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250