JP2008122168A - 走査型プローブ顕微鏡 - Google Patents

走査型プローブ顕微鏡 Download PDF

Info

Publication number
JP2008122168A
JP2008122168A JP2006304643A JP2006304643A JP2008122168A JP 2008122168 A JP2008122168 A JP 2008122168A JP 2006304643 A JP2006304643 A JP 2006304643A JP 2006304643 A JP2006304643 A JP 2006304643A JP 2008122168 A JP2008122168 A JP 2008122168A
Authority
JP
Japan
Prior art keywords
cantilever
voltage
piezoelectric element
scanning probe
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006304643A
Other languages
English (en)
Other versions
JP4816414B2 (ja
Inventor
Takeshi Ito
武史 伊藤
Masahiro Ota
昌弘 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006304643A priority Critical patent/JP4816414B2/ja
Priority to US11/976,500 priority patent/US7730770B2/en
Publication of JP2008122168A publication Critical patent/JP2008122168A/ja
Application granted granted Critical
Publication of JP4816414B2 publication Critical patent/JP4816414B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】カンチレバーを共振点付近で振動させながら試料表面の走査を行う場合に、その振動振幅のダイナミックレンジを拡大することでより最適な条件での表面観察を可能とする。
【解決手段】圧電定数の相違する複数の圧電素子21、22を絶縁材23を挟んで振動方向に重ね、各圧電素子21、22に独立に交流電圧を印加する駆動部24、25を設ける。カンチレバー10を小さく振動させたい場合には圧電定数の小さな圧電素子を選んで、それにのみ駆動部から交流電圧を印加し、逆にカンチレバー10を大きく振動させたい場合には圧電定数の大きな圧電素子を選んで、それにのみ駆動部から交流電圧を印加する、又は複数の圧電素子を同時に駆動する。これにより、振動振幅のダイナミックレンジを広げることができる。
【選択図】図2

Description

本発明は走査型プローブ顕微鏡に関し、さらに詳しくは、探針が設けられたカンチレバーをその共振点付近で振動させながら試料表面を走査して測定を行う走査型プローブ顕微鏡に関する。
金属、半導体、セラミック、合成樹脂等の表面観察や表面粗さ等の測定を行うものとして、探針(プローブ)と試料表面間に作用する原子間力を測定する原子間力顕微鏡(AFM=Atomic Force Microscope)を代表とする走査型プローブ顕微鏡(SPM=Scanning Probe Microscope)が広く知られている。原子間力顕微鏡ではいくつかの測定モードが用いられるが、最近では、探針を設けたカンチレバーをその共振点付近で振動させ、その状態で探針に働く試料表面との間の相互作用をカンチレバーの振動の振幅、位相、或いは周波数の変化に変換して検出する、ノンコンタクトモードやダイナミックモードと呼ばれる方法が用いられることが多い(例えば特許文献1など参照)。
図5は従来から知られている原子間力顕微鏡の検出部の原理的構成図である。カンチレバー10の先端には尖鋭な探針11が取り付けられ、カンチレバー10の基部12はセラミクスの圧電素子13を装着した台座14に固着されている。圧電素子13や台座14などは図示しないカンチレバーホルダに保持され、カンチレバーホルダが装置(顕微鏡)に固定されている。圧電素子13は印加される電圧によりその厚み方向(図5中では上下方向)に形状が変化するものであるため、駆動部15から所定周波数fの交流電圧を印加すると、圧電素子13の振動によってカンチレバー10は上下動する。前述のノンコンタクトモードやダイナミックモードでは、交流電圧の周波数fはカンチレバー10の機械的な共振点付近に設定され、これによりカンチレバー10には圧電素子13自体の振動振幅よりも大きな振幅の振動が誘起される。なお、カンチレバー10の変位は図示しない光学的な検出機構により検出される。
このときの圧電素子13の変位量は、印加される交流電圧の振幅のほか、圧電素子13の材料や形状などに依存する。またカンチレバー10の振動振幅は、圧電素子13の変位量のほか、カンチレバー10の材質や形状などに依存するばね定数、カンチレバー10の基部12と台座14との接触状態、などによっても変化する。たとえ同一種類のカンチレバー10であってもばね定数などの個体差は無視できない程度に大きいため、同一振幅の交流電圧を印加したときにカンチレバー10の振動振幅には比較的大きな差が生じる場合がある。
原子間力顕微鏡においてカンチレバー10の振幅は重要な測定パラメータの1つであり、観察する試料Sの材質や形状などに応じて適当な振幅が得られるようにオペレータが印加電圧の振幅を調整する必要がある。しかしながら、圧電素子13に印加する電圧が同一であっても、前述のようにカンチレバー10の種類や形状などが異なると振動振幅が異なる。その結果、振動しにくいカンチレバー10を使用する場合、圧電素子13に最大電圧を印加しても最適な観察条件に適合する振幅に足りない場合がある。一方、振動し易いカンチレバー10を使用する場合、駆動部15で安定的に発生可能な最小電圧を圧電素子13に印加しても最適な観察条件に適合する振幅よりも大きくなってしまうことがある。即ち、従来の走査型プローブ顕微鏡ではカンチレバー10の振動振幅の調整のダイナミックレンジが狭いために必ずしも最適な条件で測定を行うことができない場合あり、これが例えば観察画像の精度の低下などの一因となることがある。
特開平11−2637号公報(段落0003−0004)
本発明は上記課題を解決するために成されたものであり、その主たる目的は、カンチレバーをその共振点付近の周波数で振動させる場合に、カンチレバーの振動振幅の調整のダイナミックレンジを大きくすることができる走査型プローブ顕微鏡を提供することである。
上記課題を解決するために成された第1発明は、探針が設けられたカンチレバーをその共振点付近で振動させながら試料表面を走査し、試料表面と探針との間の相互作用による振動の変化に基づいて試料表面に関する情報を収集する走査型プローブ顕微鏡において、
a)前記カンチレバーを振動させるための複数の振動子と、
b)前記複数の振動子に対しそれぞれ独立に励振用の交流電圧を印加する振動子駆動手段と、
を備え、前記複数の振動子の選択又は組み合わせにより前記カンチレバーの振動振幅を調整可能としたことを特徴としている。
また上記課題を解決するために成された第2発明は、探針が設けられたカンチレバーをその共振点付近で振動させながら試料表面を走査し、試料表面と探針との間の相互作用による振動の変化に基づいて試料表面に関する情報を収集する走査型プローブ顕微鏡において、
a)前記カンチレバーを振動させるために該カンチレバーからそれぞれ異なる距離に設けられた複数の振動子と、
b)前記複数の振動子に対し選択的に励振用の交流電圧を印加する振動子駆動手段と、
を備えることを特徴としている。
また上記課題を解決するために成された第3発明は、探針が設けられたカンチレバーをその共振点付近で振動させながら試料表面を走査し、試料表面と探針との間の相互作用による振動の変化に基づいて試料表面に関する情報を収集する走査型プローブ顕微鏡において、
a)前記カンチレバーを振動させるための振動子と、
b)前記振動子の一方の電極に所定周波数である励振用の交流電圧を印加し、前記振動子の他方の電極に前記交流電圧と周波数が同一で位相が調整可能である交流電圧を印加する振動子駆動手段と、
を備えることを特徴としている。
第1乃至第3発明に係る走査型プローブ顕微鏡において、振動子は典型的には圧電素子(ピエゾ素子)とすることができる。
第1発明に係る走査型プローブ顕微鏡では、同じ又は異なる振動特性(振動子が圧電素子である場合には圧電定数)の複数の振動子をその振動方向に重ねて、且つ独立に駆動可能に配設する。好ましくは、複数の振動子は少なくともその振動特性が相違するものを含むものとするとよい。例えば圧電定数の小さな圧電素子では圧電定数の大きな圧電素子に比べて同一振幅の交流電圧が印加されたときの振動振幅が小さい。したがって、試料によってカンチレバーの種類によって或いは測定目的によってカンチレバーの振動を非常に微小に抑えたいような場合に、圧電定数の小さな圧電素子を選択して振動子駆動手段により該圧電素子に励振用の交流電圧を印加することにより、或る程度大きな電圧を印加しながら圧電素子の振幅を小さくすることができる。一方、カンチレバーを大きく振動させたいような場合に、圧電定数の大きな圧電素子を選択して又は複数の圧電素子を同時に選択して振動子駆動手段により励振用の交流電圧を印加することにより、大きな振動振幅を得ることができる。
このように第1発明に係る走査型プローブ顕微鏡によれば、カンチレバーの振動振幅の制御のダイナミックレンジを広くすることができるので、様々な種類や形状のカンチレバーに対してそれぞれ最適な振幅で振動させることができるようになり、例えば試料表面の観察画像の精度(解像度)を改善することができる。また、1つの顕微鏡で多様な試料の測定に対応することが可能となる。また、同一のカンチレバーでその振動振幅を小振幅から大振幅まで条件を変えながら測定を行いたい場合に、従来はカンチレバーを別のカンチレバーホルダに付け替える必要があったが、第1発明に係る走査型プローブ顕微鏡によれば、1つのカンチレバーホルダで小振幅から大振幅までをカバーできるので付け替えの必要がない。そのため、付け替えの手間が省け効率的であるのはもちろんのこと、カンチレバーの付け替えに伴う試料の視野のズレもないので、良好な試料表面観察が行えるという利点がある。
また第2発明に係る走査型プローブ顕微鏡では、複数の振動子として例えば圧電素子がカンチレバーから異なる距離に配設されており、距離が遠い圧電素子による振動はカンチレバーに伝わるまでに減衰が大きい。つまり、カンチレバーから遠い位置に設けられた圧電素子は実効的に圧電定数が小さな圧電素子と同じように機能するから、上記第1発明と同様に選択的に圧電素子を駆動することで第1発明と同様の作用・効果を得ることができる。
また第3発明に係る走査型プローブ顕微鏡では、圧電素子の2つの電極に印加する交流電圧の位相差が調整可能となっている。圧電素子は2つの電極に印加された電圧の差で振動するため、一方の電極に印加する交流電圧の周波数、振幅、位相を固定したままで、他方の電極に印加する同一周波数、同一振幅の交流電圧の位相のみを変化させると、位相が逆極性となるときに圧電素子の振動振幅は最大となり、そこから位相がずれるに従い振動振幅は小さくなる。したがって、従来のように交流電圧の振幅を変化させることで圧電素子の振動振幅を調整するのに加えて上記のような位相制御により圧電素子の振動振幅を調整することで、カンチレバーの振動振幅の制御のダイナミックレンジを広げることができる。それによって、第1発明、第2発明と同様の作用・効果を得ることができる。さらにまた、第3発明に係る走査型プローブ顕微鏡では、従来のカンチレバーホルダをそのまま利用して、励振用の交流電圧を印加する駆動手段の回路のみを変更すればよいので、比較的低廉なコストで既存装置への導入が可能である。
[第1実施例]
まず第1発明の一実施例(第1実施例)である走査型プローブ顕微鏡について、図面を参照して具体的に説明する。図1は第1実施例による走査型プローブ顕微鏡の検出部全体の概略構成図である。
図1に示すように、観察対象である試料Sは略円筒形状であるスキャナ56の上に設けられた試料台57の上に保持される。スキャナ56は圧電素子を備え、外部から印加される電圧によって試料Sをx、yの2軸方向に走査し且つz軸方向に微動させる。試料Sの上方には先端に探針11を有するカンチレバー10が配置され、カンチレバー10は後述する圧電素子を含む励振部により振動される。
このカンチレバー10の変位を検出するために、レーザ光源51、レンズ52、ビームスプリッタ53、ミラー54、光検出器55が設けられている。即ち、レーザ光源51から出射したレーザ光をレンズ52で集光した後にビームスプリッタ53で反射させ、カンチレバー10の先端付近に照射する。そして、その反射光をミラー54を介して光検出器55で検出する。光検出器55はカンチレバー10の変位方向(z軸方向)に複数(通常2つ)に分割された受光面を有する。したがって、カンチレバー10が上下に変位すると複数の受光面に入射する光量の割合が変化するから、その複数の受光光量に応じた検出信号を演算処理することでカンチレバー10の変位量を算出することができる。
上記構成の走査型プローブ顕微鏡におけるノンコンタクトモードでの測定動作を簡単に説明する。後述する励振部によりカンチレバー10はその共振点付近の周波数fでz軸方向に振動され、このとき探針11と試料Sの表面との間に引力(又は斥力)が作用するとカンチレバー10の振動振幅が変化する。光検出器55による検出信号によりこの振動振幅の微小な変化量を検知し、この変化量をゼロにする、つまり振動振幅を一定に維持するようにスキャナ56のz軸方向の圧電素子をフィードバック制御する。その状態でスキャナ56のx軸−y軸方向の圧電素子を制御することで試料Sを走査すると、上記フィードバック制御量は試料S表面の微小な凹凸に対応したものとなるから、試料Sの表面画像を作成することができる。
次に本実施例の走査型プローブ顕微鏡において特徴的な励振部の構成について図2により説明する。図2はカンチレバーの励振部の詳細図であって、既に説明した図5の構成と同じ構成要素には同一符号を付して説明を省略する。
この実施例では、台座14を介してカンチレバー10を励振させる振動子は、平板状の絶縁材23を挟んで振動方向に重ねられた第1圧電素子21と第2圧電素子22との2つから成る。ここでは、第1圧電素子21と第2圧電素子22とは圧電定数が相違したものであり、第1圧電素子21の圧電定数は第2圧電素子22のそれよりも大きいものが選択されている。また、各圧電素子21、22にはそれぞれ独立に交流電圧を印加可能な第1駆動部24、第2駆動部25が設けられ、それら駆動部24、25は制御部26により制御される。
いま第1圧電素子21を用いてカンチレバー10を励振させた場合に、交流電圧の電圧信号10mVに対してカンチレバー10の振動振幅が100nmであったものとする。この振幅では試料Sに与える力が大きすぎるために試料Sを損傷するおそれが高いような場合、振動振幅を小さくして観察することが要求される。このときに要求されるカンチレバー10の振動振幅が例えば10nmであるとすると、第1圧電素子21を用いてこの振動振幅を達成するには電圧信号を1mVに設定する必要がある。ところが、電圧信号を10mV以下にすると一般的に駆動部のノイズレベルと信号強度が同程度となり、安定して圧電素子を駆動することができなくなる。そこで、このように微小な振動振幅が必要な場合には圧電定数の小さな第2圧電素子22を用いることとする。
第2圧電素子22が例えば電圧信号10mVに対しカンチレバー10の振動振幅が5nmになるものであるとすると、カンチレバー10の振動振幅を10nmとするために必要な電圧信号は20mVとなる。これであればノイズレベルよりも十分に信号強度が大きいため、圧電素子を安定的に駆動することが可能である。即ち、試料Sの種類やカンチレバー10自体の種類(ばね定数などの特性、形状、サイズなどの相違)、或いは測定目的などによって、カンチレバー10の振動振幅を小さくしたい場合には、圧電定数の小さな第2圧電素子22を励振に利用するように第2駆動部25により第2圧電素子22に所定周波数、振幅の交流電圧を印加するとよい。
一方、これとは逆にカンチレバー10の振動振幅を大きくしたい場合には、圧電定数の大きな第1圧電素子21を励振に利用するように第1駆動部24により第1圧電素子21に所定周波数、振幅の交流電圧を印加するとよい。さらに、第1、第2圧電素子21、22を同時に同一周波数、同一位相で振動させるように第1、第2駆動部24、25から共に交流電圧を印加することで、この走査型プローブ顕微鏡において最大の振動振幅を得ることができる。このようにして本実施例の走査型プローブ顕微鏡によれば、カンチレバー10の振動振幅のダイナミックレンジを従来よりも広げ、且つ安定的な励振を達成することができる。
なお、制御部26はオペレータが図示しない操作部で行う操作に応じて駆動部24、25の制御の変更を行うようにしてもよいが、それ以外に、例えば台座14に取り付けられたカンチレバー10の種類などを自動的に判別し、その判別結果に基づいて自動的に励振に利用する圧電素子21、22の選択を行って駆動部24、25を制御するような構成としてもよい。
[第2実施例]
次に第2発明の一実施例(第2実施例)である走査型プローブ顕微鏡について、特徴的な励振部の構成を図3により説明する。図3はカンチレバーの励振部の詳細図であって、既に説明した図2、図5の構成と同じ構成要素には同一符号を付して説明を省略する。
カンチレバー10の基部12が固定される台座14には、基部12から近い位置に第1圧電素子31、基部12から遠い位置に第2圧電素子32の2つが設けられ、これら圧電素子31、32や台座14などはカンチレバーホルダ16により保持されている。ここでは第1、第2圧電素子31、32はその圧電定数が同じものであるが、異なるものでもよい。また、各圧電素子31、32にはそれぞれ独立に交流電圧を印加可能な第1駆動部33、第2駆動部34が設けられ、それら駆動部33、34は制御部35により制御される。
第1、第2圧電素子31、32が振動するとき、その振動はいずれも台座14を伝播しカンチレバー10の基部12に達する。台座14を伝播する間に振動振幅は減衰するから、もともとの圧電素子31、32自体の振動振幅は同一であったとしても基部12からの距離が遠いほどカンチレバー10の振動振幅は小さくなる。したがって、第2圧電素子32は第1実施例における圧電定数の小さな第2圧電素子22に相当し、第1実施例と同様に、第1、第2圧電素子31、32を選択的に駆動することでカンチレバー10の振動振幅のダイナミックレンジを広げることができる。
[第3実施例]
次に第3発明の一実施例(第3実施例)である走査型プローブ顕微鏡について、特徴的な励振部の構成を図4により説明する。図4はカンチレバーの励振部の詳細図であって、既に説明した図2、図3、図5の構成と同じ構成要素には同一符号を付して説明を省略する。
この第3実施例による走査型プローブ顕微鏡では、圧電素子の構成自体は図5で説明した従来と同じであり、これを駆動する駆動部の構成に特徴を有している。即ち、圧電素子13の一方の電極13bには電圧源部41で生成された交流電圧A・sinωtが印加され、他方の電極13aには位相シフト部42により交流電圧A・sinωtの位相をδだけシフトさせた交流電圧A・sin(ωt+δ)が印加される。制御部43は電圧源部41に対し交流電圧の振幅Aと周波数ωtを制御するとともに、位相シフト部42に対し位相シフト量δを制御する。
圧電素子13は2つの電極13a、13bに与えられた交流電圧の差で振動する。従来は図5に示したように結線されているため、2つの電極13a、13b間にはちょうど逆相の電圧が印加され、そのときに振動振幅は最大となる。上記のように電圧が印加された場合、その差は、
A・sin(ωt+δ)−A・sin(ωt)=−2A・sin(δ/2)・cos(ωt+δ/2) …(1)
となる。(1)式は位相δを制御することで、振動振幅を制御できることを表している。
そこで、例えば制御部43の制御の下に、電圧源部41はノイズに埋もれない程度の適宜の大きさの振幅Aを有する交流電圧を出力し、位相シフト部42ではシフト量δをπから小さくする又は大きくするように制御することで、圧電素子13の実効的な振動振幅を交流電圧の振幅Aに対応したものからさらに小さくしてゆくことができる。これにより、第1、第2実施例と同様に、カンチレバー10の振動振幅のダイナミックレンジを広げることができる。
なお、上記第1乃至第3実施例で説明した励振部の構成は組み合わせて用いることもでき、それによってさらなる振動振幅のダイナミックレンジの拡大が可能となる。また、上記実施例はいずれも本発明の一例であるから、上記に記載した以外の点においても、本発明の趣旨の範囲で適宜に修正、変更、追加などを行っても本願特許請求の範囲に包含されることは明らかである。例えば、第1、第2実施例では圧電素子を2つだけ設けていたが、3つ以上の複数であってもよい。また、複数の圧電素子の中で1つの圧電素子のみを選択的に利用する(複数を同時に駆動しない)場合には、駆動部は1つのみでスイッチ等により交流電圧を印加する圧電素子を切り替える構成としてもよい。
第1実施例による走査型プローブ顕微鏡の検出部全体の概略構成図。 第1実施例の走査型プローブ顕微鏡におけるカンチレバーの励振部の詳細図。 第2実施例の走査型プローブ顕微鏡におけるカンチレバーの励振部の詳細図。 第3実施例の走査型プローブ顕微鏡におけるカンチレバーの励振部の詳細図。 従来の走査型プローブ顕微鏡におけるカンチレバーの励振部の詳細図。
符号の説明
10…カンチレバー
11…探針
12…基部
13、21、22、31、32…圧電素子
13a、13b…電極
14…台座
24、25、33、34…駆動部
16…カンチレバーホルダ
23…絶縁材
26、35、43…制御部
41…電圧源部
42…位相シフト部
S…試料

Claims (4)

  1. 探針が設けられたカンチレバーをその共振点付近で振動させながら試料表面を走査し、試料表面と探針との間の相互作用による振動の変化に基づいて試料表面に関する情報を収集する走査型プローブ顕微鏡において、
    a)前記カンチレバーを振動させるための複数の振動子と、
    b)前記複数の振動子に対しそれぞれ独立に励振用の交流電圧を印加する振動子駆動手段と、
    を備え、前記複数の振動子の選択又は組み合わせにより前記カンチレバーの振動振幅を調整可能としたことを特徴とする走査型プローブ顕微鏡。
  2. 前記複数の振動子は少なくともその振動特性が相違するものを含むことを特徴とする請求項1に記載の走査型プローブ顕微鏡。
  3. 探針が設けられたカンチレバーをその共振点付近で振動させながら試料表面を走査し、試料表面と探針との間の相互作用による振動の変化に基づいて試料表面に関する情報を収集する走査型プローブ顕微鏡において、
    a)前記カンチレバーを振動させるために該カンチレバーからそれぞれ異なる距離に設けられた複数の振動子と、
    b)前記複数の振動子に対し選択的に励振用の交流電圧を印加する振動子駆動手段と、
    を備えることを特徴とする走査型プローブ顕微鏡。
  4. 探針が設けられたカンチレバーをその共振点付近で振動させながら試料表面を走査し、試料表面と探針との間の相互作用による振動の変化に基づいて試料表面に関する情報を収集する走査型プローブ顕微鏡において、
    a)前記カンチレバーを振動させるための振動子と、
    b)前記振動子の一方の電極に所定周波数である励振用の交流電圧を印加し、前記振動子の他方の電極に前記交流電圧と周波数が同一で位相が調整可能である交流電圧を印加する振動子駆動手段と、
    を備えることを特徴とする走査型プローブ顕微鏡。
JP2006304643A 2006-11-10 2006-11-10 走査型プローブ顕微鏡 Expired - Fee Related JP4816414B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006304643A JP4816414B2 (ja) 2006-11-10 2006-11-10 走査型プローブ顕微鏡
US11/976,500 US7730770B2 (en) 2006-11-10 2007-10-25 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304643A JP4816414B2 (ja) 2006-11-10 2006-11-10 走査型プローブ顕微鏡

Publications (2)

Publication Number Publication Date
JP2008122168A true JP2008122168A (ja) 2008-05-29
JP4816414B2 JP4816414B2 (ja) 2011-11-16

Family

ID=39367895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304643A Expired - Fee Related JP4816414B2 (ja) 2006-11-10 2006-11-10 走査型プローブ顕微鏡

Country Status (2)

Country Link
US (1) US7730770B2 (ja)
JP (1) JP4816414B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395387B1 (en) 2015-06-19 2016-07-19 Shimadzu Corporation Scanning probe microscope
JP2021004859A (ja) * 2019-06-27 2021-01-14 国立大学法人金沢大学 走査型プローブ顕微鏡およびz駆動装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688643B2 (ja) * 2005-11-10 2011-05-25 エスアイアイ・ナノテクノロジー株式会社 加振型カンチレバーホルダ及び走査型プローブ顕微鏡
EP2428804B1 (en) * 2010-09-14 2015-01-14 Consiglio Nazionale Delle Ricerche A method for driving a scanning probe microscope at elevated scan frequencies
CN103454454A (zh) * 2013-08-30 2013-12-18 哈尔滨工业大学 用于双探针原子力显微镜的激光测力系统
NL2029303B1 (en) * 2021-10-01 2023-04-12 Nearfield Instr B V Active dither balancing of motion stage for scanning probe microscopy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145723A (ja) * 1995-11-22 1997-06-06 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JPH1054835A (ja) * 1996-08-12 1998-02-24 Jeol Ltd カンチレバ加振装置
US6945099B1 (en) * 2002-07-02 2005-09-20 Veeco Instruments Inc. Torsional resonance mode probe-based instrument and method
JP2006091002A (ja) * 2004-08-24 2006-04-06 Sii Nanotechnology Inc 走査型プローブ顕微鏡用カンチレバーホルダおよびそれを用いた走査型プローブ顕微鏡

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267471A (en) * 1992-04-30 1993-12-07 Ibm Corporation Double cantilever sensor for atomic force microscope
JP3511361B2 (ja) * 1997-08-04 2004-03-29 セイコーインスツルメンツ株式会社 走査プローブ顕微鏡
JP3961258B2 (ja) * 2001-10-10 2007-08-22 株式会社ミツトヨ タッチセンサ、および微細形状測定装置用プローブ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145723A (ja) * 1995-11-22 1997-06-06 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JPH1054835A (ja) * 1996-08-12 1998-02-24 Jeol Ltd カンチレバ加振装置
US6945099B1 (en) * 2002-07-02 2005-09-20 Veeco Instruments Inc. Torsional resonance mode probe-based instrument and method
JP2006091002A (ja) * 2004-08-24 2006-04-06 Sii Nanotechnology Inc 走査型プローブ顕微鏡用カンチレバーホルダおよびそれを用いた走査型プローブ顕微鏡

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395387B1 (en) 2015-06-19 2016-07-19 Shimadzu Corporation Scanning probe microscope
JP2021004859A (ja) * 2019-06-27 2021-01-14 国立大学法人金沢大学 走査型プローブ顕微鏡およびz駆動装置
JP7273408B2 (ja) 2019-06-27 2023-05-15 国立大学法人金沢大学 走査型プローブ顕微鏡およびz駆動装置

Also Published As

Publication number Publication date
US20080110248A1 (en) 2008-05-15
JP4816414B2 (ja) 2011-11-16
US7730770B2 (en) 2010-06-08

Similar Documents

Publication Publication Date Title
US6809306B2 (en) Scanning unit and scanning microscope having the same
JP2002107285A (ja) 磁気力顕微鏡
JP4816414B2 (ja) 走査型プローブ顕微鏡
JP4688643B2 (ja) 加振型カンチレバーホルダ及び走査型プローブ顕微鏡
JP2002228572A (ja) 非接触型原子間力顕微鏡およびそれを用いた観察方法
JP4474556B2 (ja) 走査型プローブ顕微鏡
JP2008232984A (ja) 位相フィードバックafmの制御方法及び位相フィードバックafm
JPS62105440A (ja) 振動型ステ−ジ装置
RU2456622C1 (ru) Устройство атомно-силовой микроскопии с динамическим режимом
EP3314271B1 (en) Sample vessel retention for an inverted microscope with a scanning probe microscope
JP4391925B2 (ja) 原子間力顕微鏡
JP2012093325A (ja) 原子間力顕微鏡用のカンチレバー、原子間力顕微鏡、および、原子間力の測定方法
US6006595A (en) Device for vibrating cantilever
JP2006184079A (ja) 原子間力顕微鏡
JP2005147979A (ja) 走査形プローブ顕微鏡
JP4027809B2 (ja) 試料の表面形状観察装置
JP2018091695A (ja) 走査型プローブ顕微鏡
JP2007333432A (ja) 走査型プローブ顕微鏡及び検査方法
JPH10267950A (ja) 横励振摩擦力顕微鏡
JP4181491B2 (ja) 走査形プローブ顕微鏡
JP3809893B2 (ja) 走査プローブ顕微鏡
JPH05215544A (ja) 走査型顕微鏡用プローブ及び走査型顕微鏡用プローブの変位検出方法および走査型顕微鏡
JP2994877B2 (ja) 原子間力顕微鏡
JP4162508B2 (ja) 走査型プローブ顕微鏡用の走査機構及び走査型プローブ顕微鏡
JP2003199368A (ja) アクチュエーターおよびこれを用いたアクチュエーターならびに走査型プローブ顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4816414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees