JP2008118143A - 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法 - Google Patents

反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法 Download PDF

Info

Publication number
JP2008118143A
JP2008118143A JP2007287836A JP2007287836A JP2008118143A JP 2008118143 A JP2008118143 A JP 2008118143A JP 2007287836 A JP2007287836 A JP 2007287836A JP 2007287836 A JP2007287836 A JP 2007287836A JP 2008118143 A JP2008118143 A JP 2008118143A
Authority
JP
Japan
Prior art keywords
layer
absorber
pattern
light
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007287836A
Other languages
English (en)
Inventor
Shinichi Ishibashi
信一 石橋
Tsutomu Shiyouki
勉 笑喜
Morio Hosoya
守男 細谷
Yuuki Shioda
勇樹 塩田
Mitsuhiro Kureishi
光浩 暮石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2007287836A priority Critical patent/JP2008118143A/ja
Publication of JP2008118143A publication Critical patent/JP2008118143A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】正確かつ迅速なマスクパターン検査を可能とする反射型マスク及びマスクブランクスを提供する。
【解決手段】基板11上に、極端紫外光領域を含む短波長域の露光光を反射する反射層12、及び露光光を吸収する吸収体層16を有してなり、この吸収体層16は極端紫外光領域を含む短波長域の露光光の吸収体からなる吸収体層14を下層とし、マスクパターンの検査に使用する検査光の吸収体からなる低反射層15を上層とした二層構造からなり、上層の低反射層は、クロム、マンガン、コバルト、銅、亜鉛、ガリウム、モリブデン、パラジウム、銀、カドミウム、錫、アンチモン、テルル、沃素、ハフニウム、タングステン、チタン、金及びこれらの元素を含む合金から選ばれる少なくとも一種の物質の酸化物、あるいは、該酸化物に更に珪素を含む材料から選ばれる少なくとも一種の物質で構成するマスクブランクスである。反射型マスク2は、このマスクブランクスにおける吸収体層16をパターン状に形成してなる。
【選択図】図2

Description

本発明は、極端紫外光などの短波長域の露光光を使用するリソグラフィー法において好ましく用いられる反射型マスク及びマスクブランクス並びにそれらの製造方法に関するもので、詳しくはマスクパターンの検査を正確かつ迅速に行うことを可能とする反射型マスク等に関するものである。
近年、半導体メモリーや超LSI(大規模集積回路)等において見られるように、半導体製品の高集積化に伴い、フォトリソグラフィー法の転写限界を上回る微細パターンが必要とされている。そこで、このような微細パターンの転写を可能とするため、より波長の短い極端紫外光(Extreme Ultra Violet、以下、EUV光と称す)などを用いたリソグラフィー法が提案されている。
ところで、EUV光やX線などの短波長域での露光用マスクとして使用される反射型マスクが従来提案されている。この反射型マスクの基本構造は、たとえばSiや石英などの基板上に、EUV光やX線などを反射する反射層、その上にEUV光やX線などを吸収する吸収体パターンを有している。反射層としては少なくとも2種類の物質の薄膜が交互に積層された多層膜が一般的である。そして、マスクの垂直方向より数度(通常は2〜5度)傾斜した方向からマスクに露光光が入射され、吸収体パターンのある部分では露光光は吸収され、それ以外の部分では露光光は反射層で反射されるため、吸収体パターンを反映した反射像が形成される。この反射像を適当な光学系を介してシリコンウエハ上に縮小投影することにより転写が行われる。
また、このような反射型マスクの基本構造に加え、上記反射層と吸収体との間に中間層を設ける構成が、特開平7−333829号や同8−213303号等の公報に開示されている。つまり、吸収体をパターン形成する際、特にエッチング時に下層の反射層がエッチング損傷を受けないように反射層を保護することを目的として中間層が設けられる。
ここで、EUV光(例えば波長13.4nm程度の軟X線領域にあるEUV光)を露光光とするリソグラフィーに用いる反射型マスクの製造方法について図13を参照しながら説明する。図13は従来の反射型マスクの製造工程を順に示す概略断面図である。
石英などの基板11上に、順次、EUV光の反射層(以下、EUV反射層と称す)である積層膜12、その上に吸収体パターン形成工程におけるEUV反射層の保護を目的としたバッファー層(上述の中間層に対応)13、さらにその上にEUV光を吸収する吸収体層(以下、EUV吸収体層と称す)14を成膜したマスクブランクス101を作製する(図13(a)参照)。
次に、EUV光の吸収体であるEUV吸収体層14を加工して所定のパターンを有するEUV吸収体パターンを形成する(同図(b)参照)。
次いで、このEUV吸収体パターンが設計通りに形成されているかどうかの検査を実施する。このパターン検査の結果、例えばここでは同図(b)に示すように、パターン形成時におけるレジスト層への異物付着などに起因するピンホール欠陥(白欠陥ともいう)21と、エッチング不足欠陥(黒欠陥ともいう)22が発生した場合、ピンホール欠陥21については集束イオンビーム(Focused Ion Beam, FIB)アシストデポジション法により炭素膜23をピンホールに堆積させて修復する。またエッチング不足欠陥22についてはFIB励起のガスアシストエッチングにより残留部分22aを除去して修復することにより吸収体層14の除去部分25を得るが、このときの照射によるエネルギーによってバッファー層13表面にはダメージ部分24(FIBにより除去された部分24a及びFIBイオンが入り込んだ部分24b)が存在する(同図(c)参照)。
その後、このEUV吸収体層14が除去された部分25に対応するバッファー層13を除去したパターン26を形成することによりEUV光用の反射型マスクとなる(同図(d)参照)。
この反射型マスクにEUV光31で露光すると吸収体パターンのある部分では吸収され、それ以外の吸収体14およびバッファー層13を除去した部分では露出した反射層12でEUV光31が反射されることにより(同図(e)参照)、EUV光によるリソグラフィー用のマスクとして使用することが出来る。
特開平7−333829号公報 特開平8−213303号公報
上述のマスク作製工程において、EUV吸収体層14にパターンを形成した後、このEUV吸収体パターンが設計通りに形成されているかどうかの検査を実施することは上述したとおりであるが、このマスクパターンの検査では通常257nm程度の光を使用した検査機が使用される。つまり、この257nm程度の光をマスクに当てて、その反射像のパターンを検査している。そして、このマスクパターンの検査は、前述したように表面のEUV吸収体層14のパターン形成工程終了後(図13(b)の工程)に実施し、その検査結果に基づいて必要なパターンの修復を行っている。したがって、具体的には、上記検査に使用する光(以下、検査光と称す)をマスクに当てたとき、表面の吸収体がパターニングにより除去されて露出したバッファー層13表面と、パターンが残っている吸収体表面との反射率の差によって検査が行われるので、検査光の波長に対するバッファー層表面と吸収体表面との反射率の差が小さいと検査時のコントラストが悪くなり、正確な検査が出来ないことになる。
ところで、従来の反射型マスクの場合、例えば表面のEUV吸収体としてタンタルや窒化タンタル膜、バッファー層としてSiO膜などで構成するのが代表的であるが、波長257nmなどの検査光に対して吸収体表面の反射率とバッファー層表面の反射率との差が小さく、検査時のコントラストが十分得られないため、その結果マスク検査においてパターンの欠陥を十分判別できず、正確な欠陥検査を行えないという問題があった。
また、電子線を使用した電子顕微鏡による検査では、照射電子線によるEUV吸収膜の損傷が発生し実用化は困難である。
また、マスクパターンの検査にEUV光波長である例えば前述の13.4nm程度の光を使用する方法が提案されているが、検査機にEUV光源を設置することは、非常に大きな設備費用が必要となり、しかも従来の紫外光波長を使用する検査機に比べて大気中での吸収を回避するために光学系全てを真空に保持する構造が必要となり、パターン検査工程が大規模かつ複雑になる。さらに真空排気時間によるスループットが低下するという問題がある。
本発明はこのような従来の問題を解決するためになされたもので、その目的とするところは、正確かつ迅速なマスクパターン検査を可能とする反射型マスク及びマスクブランクス及びそれらの製造方法、並びにこの反射型マスクを用いた半導体の製造方法を提供することにある。
上記課題を解決するために鋭意研究の結果、従来のマスク表面の吸収体層を露光光を吸収する層とマスクパターン検査波長に対する反射率の小さい層とにそれぞれ機能を分離して積層構成することによりパターン検査時のコントラストが十分得られるようになることを見出し、本発明を完成するに至った。
すなわち、第1の発明は、基板上に、順に極端紫外線領域を含む短波長域の露光光を反射する反射層、吸収体層へのパターン形成時に前記反射層を保護するためのバッファー層及び露光光を吸収する吸収体層を有してなるマスクブランクスであって、前記吸収体層が、極端紫外線領域を含む短波長域の露光光の吸収体で構成する吸収体層を下層とし、マスクパターンの検査に使用する検査光の吸収体で構成する低反射層を上層とした少なくとも二層構造であり、前記上層が、タンタル(Ta)とホウ素(B)と酸素(O)とを含む材料からなり、前記バッファー層がCr又はCrを主成分とする物質で形成されていることを特徴とする反射型マスクブランクスである。
第2の発明は、基板上に、順に極端紫外線領域を含む短波長域の露光光を反射する反射層及び露光光を吸収する吸収体層を有してなるマスクブランクスであって、前記吸収体層が、極端紫外線領域を含む短波長域の露光光の吸収体で構成する吸収体層を下層とし、マスクパターンの検査に使用する検査光の吸収体で構成する低反射層を上層とした少なくとも二層構造であり、前記上層が、タンタル(Ta)とホウ素(B)と酸素(O)とを含む材料からなり、酸素(O)を30at%〜70at%の範囲で含むことを特徴とする反射型マスクブランクスである。
第3の発明は、基板上に、順に極端紫外線領域を含む短波長域の露光光を反射する反射層及び露光光を吸収する吸収体層を有してなるマスクブランクスであって、前記吸収体層が、極端紫外線領域を含む短波長域の露光光の吸収体で構成する吸収体層を下層とし、マスクパターンの検査に使用する検査光の吸収体で構成する低反射層を上層とした少なくとも二層構造であり、前記上層の低反射層は、クロム、マンガン、コバルト、銅、亜鉛、ガリウム、モリブデン、パラジウム、銀、カドミウム、錫、アンチモン、テルル、沃素、ハフニウム、タングステン、チタン、金及びこれらの元素を含む合金から選ばれる少なくとも一種の物質の酸化物、あるいは、該酸化物に更に珪素を含む材料から選ばれる少なくとも一種の物質で構成することを特徴とする反射型マスクブランクスである。
第4の発明は、前記反射層と吸収体層との間に、前記吸収体層へのパターン形成時に前記反射層を保護するためのバッファー層を備え、該バッファー層が、Cr又はCrを主成分とする物質で形成されていることを特徴とする第2又は3の発明に記載の反射型マスクブランクスである。
第5の発明は、前記吸収体層における下層の露光光の吸収体は、前記上層に含まれる金属元素又は該金属元素を含む合金、或いは、該金属元素又は該金属元素を含む合金と窒素及び/又は酸素を含む物質から選ばれる少なくとも一種の物質で構成することを特徴とする第3の発明に記載の反射型マスクブランクスである。
第6の発明は、基板上に、順に極端紫外線領域を含む短波長域の露光光を反射する反射層、吸収体層へのパターン形成時に前記反射層を保護するためのバッファー層及び露光光を吸収する吸収体層を有してなるマスクブランクスであって、前記吸収体層が、極端紫外線領域を含む短波長域の露光光の吸収体で構成する吸収体層を下層とし、マスクパターンの検査に使用する検査光の吸収体で構成する低反射層を上層とした少なくとも二層構造であり、前記上層が、Ta及び、Si又はGeの少なくとも一方、及び、酸素を含む材料からなり、前記バッファー層が、Cr又はCrを主成分とする物質で形成されていることを特徴とする反射型マスクブランクスである。
第7の発明は、前記吸収体層の下層が、Taを含む材料である事を特徴とする第1乃至6の発明の何れかに記載の反射型マスクブランクスである。
第8の発明は、前記吸収体層の下層が、Taと少なくともBを含む材料であることを特徴とする第7の発明に記載の反射型マスクブランクスである。
第9の発明は、前記吸収体層の下層と上層との間に、下層の組成から上層の組成へと連続的に組成が変化する中間領域を有することを特徴とする第1乃至8の発明の何れかに記載の反射型マスクブランクスである。
第10の発明は、前記吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記反射層表面での反射光と、前記吸収体層表面での反射光のコントラストが、40%以上であることを特徴とする第1乃至9の発明の何れかに記載の反射型マスクブランクスである。
第11の発明は、前記反射層と吸収体層との間に、前記吸収体層へのパターン形成時に前記反射層を保護するためのバッファー層を備えており、吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記バッファー層表面での反射光と、前記吸収体層表面での反射光のコントラストが、40%以上であることを特徴とする第1乃至10の発明の何れかに記載の反射型マスクブランクスである。
第12の発明は、前記吸収体層に形成されるパターンの検査に用いられる光の波長に対する、前記吸収体層表面の反射率が20%以下であることを特徴とする第1乃至11の発明の何れかに記載の反射型マスクブランクスである。
第13の発明は、前記吸収体層表面の表面粗さが、0.5nmRms以下であることを特徴とする第1乃至12の発明の何れかに記載の反射型マスクブランクスである。
第14の発明は、前記吸収体層の上層を形成する物質の、検査光の波長における屈折率nと消衰係数kが、nが1.5〜3.5で且つkが0.7以下の条件を満たすことを特徴とする第1乃至13の発明の何れかに記載の反射型マスクブランクスである。
第15の発明は、前記上層である低反射層の膜厚が、検査光の波長に対する吸収体層表面の反射率と低反射層の膜厚との関係に基づいて、検査光波長に対する吸収体表面の反射率が極小になるように選択されていることを特徴とする第1乃至14の発明の何れかに記載の反射型マスクブランクスである。
第16の発明は、前記上層である低反射層の膜厚が5〜30nmであることを特徴とする第15の発明に記載の反射型マスクブランクスである。
第17の発明は、第1乃至16の発明の何れかに記載の反射型マスクブランクスの吸収体層がパターン状に形成されたことを特徴とする反射型マスクである。
第18の発明は、第1乃至16の発明の何れかに記載の反射型マスクブランクスにおける少なくとも低反射層及び露光光吸収体層をパターン状に形成する工程を有することを特徴とする反射型マスクの製造方法である。
第19の発明は、基板上に、順に極端紫外線領域を含む短波長域の露光光を反射する反射層及び露光光を吸収する吸収体層を有してなる反射型マスクブランクスの製造方法であって、前記吸収体層の下層は窒素(N)を含む材料からなり、上層は酸素(O)を含む材料からなる二層構造であり、前記吸収体層の上層は、酸素(O)を含む雰囲気中で反応性スパッタにより形成するものとし、前記吸収体層の下層の形成と、上層の形成を同一成膜室内で連続的に行うことを特徴とする反射型マスクブランクスの製造方法である。
第20の発明は、前記上層と下層にはそれぞれ金属元素が含まれており、これらの金属元素が同一であることを特徴とする第19の発明に記載の反射型マスクブランクスの製造方法である。
第21の発明は、前記吸収体層の上層と下層の形成において前記金属元素を含む同一のターゲットを用い、成膜に使用するガスを変えることを特徴とする第20の発明に記載の反射型マスクブランクスの製造方法である。
第22の発明は、第1乃至16の発明の何れかに記載の反射型マスクブランクスの製造方法であって、基板上に、極端紫外線領域を含む短波長領域の露光光を反射する反射層を形成する工程と、該反射層上に、前記露光光を吸収する吸収体層を形成する工程と、該吸収体層の表面を処理することにより、吸収体層の表面近傍に、マスクパターンの検査に使用する検査光に対する低反射層を形成することを特徴とする反射型マスクブランクスの製造方法である。
第23の発明は、第17の発明に記載の反射型マスクを用いて、半導体基板上にパターンを転写することを特徴とする半導体の製造方法である。
本発明の反射型マスクは、EUV光用のマスクとして適用される。露光光の波長はEUV光領域であり、具体的には数nm〜100nm程度の波長領域である。
そして、この最上層の低反射層は、具体的にはマスクパターン検査光の波長に対する反射率の小さい材料で形成することが出来る。
本発明は、このように吸収体層を露光光の吸収層と検査光の低反射層とに機能を分離した積層構成とすることにより、本来の露光光吸収機能を何ら損なうことなく、かつ最表面に形成された低反射層によりパターン検査波長に対する反射率を著しく低下させる。
これにより、この低反射層表面とパターン形成により吸収体層が除去されて露出した露光光の反射層表面とのパターン検査波長における反射率の差が大きくなり、検査時のコントラストが十分得られるようになるため、高コントラストの反射像パターンが形成される。
また、吸収体層と反射層との間にバッファー層を備える場合においては、この低反射層表面とパターン形成により吸収体層が除去されて露出したバッファー層表面とのパターン検査波長における反射率の差が大きくなり、検査時のコントラストが十分得られるようになるため、高コントラストの反射像パターンが形成される。
したがって、従来使用しているマスク検査機によりマスクパターンの正確かつ迅速な検査を可能とする。
またこのように吸収体層を露光光の吸収層と検査光の低反射層とに機能を分離することにより、露光光と検査光それぞれの波長の光の吸収、反射特性を最適化でき、より膜厚の値を小さくすることが可能であり、吸収体層を積層構成としても従来の単層構成と同等の膜厚に抑えることができる。このため、露光時のパターンのエッジ部分のぼやけを抑制することが可能であり、またパターン形成のための処理時間の短縮によりパターンダメージを最小化して品質の向上も実現できる。
本発明は、たとえば、以下のような構成とすることができる。
基板上に、順に、極端紫外線領域を含む短波長域の露光光を反射する反射層、マスクパターン形成時に該反射層を保護するバッファー層、及び露光光を吸収する吸収体層を有してなるマスクブランクスであって、前記吸収体層が、極端紫外線領域を含む短波長域の露光光の吸収体で構成する吸収体層を下層とし、マスクパターンの検査に使用する検査光の吸収体で構成する低反射層を上層とした少なくとも二層構造であるマスクブランクスである。
前記吸収体層における下層の露光光の吸収体は、クロム、マンガン、コバルト、銅、亜鉛、ガリウム、ゲルマニウム、モリブデン、パラジウム、銀、カドミウム、錫、アンチモン、テルル、沃素、ハフニウム、タンタル、タングステン、チタン、金及びこれらの元素を含む合金、並びに、これらの元素又はこれらの元素を含む合金と窒素及び/又は酸素を含む物質から選ばれる少なくとも1種の物質で構成することができる。
前記吸収体層における上層の検査光の吸収体は、前記下層の露光光吸収体を構成する物質の酸化物、あるいは、該酸化物に更に珪素を含む材料から選ばれる少なくとも1種の物質で構成することができる。
前記マスクブランクスにおける少なくとも低反射層及び露光光吸収体層がパターン状に形成されている反射型マスクである。
基板上に、極端紫外線領域を含む短波長域の露光光を反射する反射層を形成する工程と、マスクパターン形成時に該反射層を保護するバッファー層を該反射層上に形成する工程と、前記バッファー層上に極端紫外線領域を含む短波長域の露光光の吸収体層を形成し、その上にマスクパターンの検査に使用する検査光に対する低反射層を形成する工程とを有するマスクブランクスの製造方法である。
前記バッファー層上に極端紫外線領域を含む短波長域の露光光の吸収体層を形成した後、その吸収体層の表面を処理することによりマスクパターンの検査に使用する検査光に対する低反射層を形成するマスクブランクスの製造方法である。
前記露光光の吸収体層上に形成される低反射層の膜厚と、検査光の波長に対する低反射層上における反射率との関係を求め、検査光波長に対する低反射層上における反射率が極小となるように低反射層の膜厚を選定するマスクブランクスの製造方法である。
前記マスクブランクスにおける少なくとも低反射層及び露光光吸収体層をパターン状に形成する工程を有する反射型マスクの製造方法である。
前記低反射層及び露光光吸収体層をパターン状に形成した後、この低反射層及び露光光吸収体層が除去された部分のバッファー層を除去する反射型マスクの製造方法である。
以下、本発明の実施の形態を図面を参照しながら詳述する。
図1は本発明のマスクブランクスの一実施形態を示す概略断面図、図2は本発明の反射型マスクの一実施形態を示す概略断面図である。
本発明に係るマスクブランクスの一実施形態は、図1に示すように構成されている。すなわち、基板11上に、順に、EUV領域を含む短波長域の露光光を反射する反射層12、マスクパターン形成時に該反射層12を保護するバッファー層13、及び露光光を吸収する吸収体層16を有してなり、この吸収体層16は、本実施形態では下層をEUV領域を含む短波長域の露光光の吸収体層14とし、上層をマスクパターンの検査に使用する検査光に対する低反射層15とした二層構造で構成されたマスクブランクス1である。
また、図2に示すように、本発明の反射型マスク2は、このようなマスクブランクス1における少なくとも前記吸収体層16、すなわち低反射層15及び露光光吸収体層14がパターン状に形成されたものである。
本発明の反射型マスクは、マスク表面の吸収体層を露光光を吸収する層とマスクパターン検査波長に対する反射率の小さい層とにそれぞれ機能を分離して積層構成することにより、マスクパターン検査時のコントラストが十分得られるようにしている。
本発明の反射型マスクは、従来のフォトリソグラフィー法による転写限界を上回るより微細なパターンの転写を可能とするため、EUV光の領域を含む短波長域の光を使用するリソグラフィーに用いられるもので、EUV光用の反射型マスクとして使用することができる。
次に、各層の構成について説明する。
基板11は、通常、石英ガラスやシリコンウエハなどを適宜光学研磨したものが用いられる。基板11の大きさや厚みなどはマスクの設計値等により適宜決定されるもので本発明においては任意である。
露光光反射層12は、EUV領域を含む短波長域の露光光を反射する材質で構成されるが、当然のことながら、EUV光などの短波長域の光に対する反射率が極めて高い材質で構成することが反射型マスクとして使用する際のコントラストを高められるので特に好ましい。たとえば、12〜14nm程度の軟X線領域であるEUV光の反射層としては、シリコン(Si)とモリブデン(Mo)の薄膜を交互に積層した周期積層膜が代表的である。通常は、これらの薄膜(数nm程度の厚さ)を40〜50周期(層数)繰り返して積層し多層膜とする。この多層膜の成膜は、たとえばイオンビームスパッタ法やマグネトロンスパッタ法などを用いて行う。
バッファー層13は、前述したように表面の露光光の吸収体層16にマスクパターンを形成する際に下層の反射層12がエッチング処理によるダメージを受けないようにこれを保護することを目的として設けられる。
したがってバッファー層13の材質としては、マスク表面の吸収体層16のエッチング処理による影響を受けにくい、つまりこのエッチング速度が吸収体層16よりも遅くエッチングダメージを受けにくく、なお且つ後でエッチングにより除去可能な物質が選択される。たとえばCr、Al、Ru、Ta及びこれらの窒化物、SiO、Si、Alなどの物質が好ましく、この中から吸収体層16の材質やエッチング方法などを考慮して適宜選択する。なお、このバッファー層13を後で除去可能としたのは、吸収体層16をパターン状に形成した後、さらにこの吸収体層16が除去された部分のバッファー層13を除去して前記反射層12表面を露出させることにより反射型マスクとして露光光の反射特性を高めることが出来、より望ましいからである。また、たとえば上記のCrなどの物質を選択すると、EUV光に対する吸収特性を有しているので、バッファー層13に露光光吸収層の機能をも持たせることが出来、その分上層の吸収体層16の膜厚をより減らすことが可能となるため、露光時のパターンのエッジ部分のぼやけを抑制でき、またパターン形成のための処理時間の短縮によりパターンダメージを減らすことができる。ただし、この場合はパターニングにより吸収体層16が除去された部分のバッファー層13を除去することは必須である。
なお、バッファー層13の膜厚の値は小さいことが望ましい。なぜなら、図2を参照すると明らかなように、バッファー層13の膜厚が大きいと、反射層12表面と吸収体層16表面との高さの差が大きくなり、約5度程度の入射角を有するEUV露光の光路の関係からマスクパターンのエッジ部分がぼやけるという不具合が発生するためである。さらに、バッファー層13を後でエッチングにより除去する場合においても膜厚は薄い方がその処理時間が短縮できるので望ましい。したがって、このバッファー層13の膜厚は、100nm以下、好ましくは80nm以下である。
このバッファー層13の成膜は、前述の反射層12の場合と同様にマグネトロンスパッタ法、イオンビームスパッタ法など周知の成膜方法を用いて行うことができる。
なお、バッファー層は必要に応じて設ければよく、吸収体層へのパターン形成方法、条件によっては、反射層上に直接吸収体層を設けてもよい。
吸収体層16は、すでに述べたように、下層をEUV領域を含む短波長域の露光光の吸収体層14とし、上層をマスクパターンの検査に使用する検査光の低反射層15とした二層構造で構成されている。本発明は、このように吸収体層16を露光光の吸収層と検査光の低反射層とに機能を分離した積層構成としている。
下層の露光光吸収体層14は、EUVなどの短波長域の光を吸収する材質で構成される。このような露光光吸収体としては、たとえばクロム、マンガン、コバルト、銅、亜鉛、ガリウム、ゲルマニウム、モリブデン、パラジウム、銀、カドミウム、錫、アンチモン、テルル、沃素、ハフニウム、タンタル、タングステン、チタン、金及びこれらの元素を含む合金、並びに、これらの元素又はこれらの元素を含む合金と窒素及び/又は酸素を含む物質から選ばれる少なくとも1種の物質で構成することが好ましい。
例えば、タンタルの場合、タンタル単体(Ta)、タンタル窒化物(TaN)、タンタル酸化物(TaO)、タンタルシリコン合金(TaSi)、タンタルシリコン合金の窒化物(TaSiN)、タンタルホウ素合金(TaB)、タンタルホウ素合金の窒化物(TaBN)、タンタルゲルマニウム合金(TaGe)、タンタルゲルマニウム合金の窒化物(TaGeN)等が挙げられる。
またこの上層の検査光の低反射層15に最低限必要とされる特性は、マスクパターン検査波長に対して低反射であること、パターン形成加工が可能であること、バッファー層をエッチング除去する際にエッチングされないこと(バッファー層とのエッチング選択比があること)である。さらに、EUV光の吸収機能を有していると、吸収体層16の合計膜厚を小さくできるためより好ましい。
マスクパターン検査には通常は190〜260nm程度の深紫外(Deep Ultra Violet)光、たとえば前記の257nmあるいは193nm程度の波長の光を使用するので、このような検査光波長に対する反射率の小さい材料としては、たとえば上記の露光光吸収体を構成する物質の酸化物、窒化物、窒化酸化物、あるいは、これらに更に珪素を含む材料が挙げられる。
低反射層の材料として、窒化物は検査波長での反射率を下げる効果があり、また多結晶膜の場合、結晶粒径を小さくし、平滑性を向上させる効果も有する。また、酸化物は検査波長での反射率を下げる効果が上記窒化物よりも大きい。また、珪素化物は検査波長での反射率を下げる効果は少ないが、反射率が低くなる波長領域を広げる効果を有する。すなわち、窒化物や酸化物の場合は特定の波長部分のみに反射率の極小値を有するカーブが得られるが、これらの物質に更に珪素を加えると、広い波長範囲で低反射率が得られるようになる(後述の実施例1における図9参照)。このように広い波長範囲で低反射率が得られると、検査波長の変更に柔軟に対応でき、また最上層の膜厚の変化により極小値がシフトしたときにも反射率の変化が小さいため、膜厚の設計値からのずれの許容値が大きくなり、製造上の制約がゆるくなるという利点がある。
したがって、低反射層の材料としては化合物内に酸素又は窒素が含まれることが必要であり、上記したように前記の露光光吸収体を構成する物質の酸化物、窒化物、窒化酸化物、あるいは、これらに更に珪素を含む材料から選ばれる少なくとも1種の物質で構成することが好ましい。
なお、ホウ化物は反射率にはあまり寄与しないが、膜の結晶性(アモルファス化)に関係し膜の平滑性に寄与するため、化合物にホウ素を含めることにより低反射層の膜の平滑性が改善される。
ここで、低反射層の材料の具体例を挙げると、下層の露光光吸収体層に使用される金属の酸化物、窒化物、酸窒化物、下層の吸収体層に使用される金属とホウ素との合金の酸化物、窒化物、酸窒化物、下層の吸収体層に使用される金属と珪素との合金の酸化物、窒化物、酸窒化物、下層の吸収体層に使用される金属と珪素とホウ素との合金の酸化物、窒化物、酸窒化物等である。例えば露光光吸収体金属としてタンタルを用いる場合、タンタル酸化物(TaO)、タンタル窒化物(TaN)、タンタル酸窒化物(TaNO)、タンタルホウ素合金の酸化物(TaBO)、タンタルホウ素合金の窒化物(TaBN)、タンタルホウ素合金の酸窒化物(TaBNO)、タンタルシリコン合金の酸化物(TaSiO)、タンタルシリコン合金の窒化物(TaSiN)、タンタルシリコン合金の酸窒化物(TaSiON)、タンタルシリコンホウ素合金の酸化物(TaSiBO)、タンタルシリコンホウ素合金の窒化物(TaSiBN)、タンタルシリコンホウ素合金の酸窒化物(TaSiBNO)、タンタルゲルマニウム合金の窒化物(TaGeN)、タンタルゲルマニウム合金の酸化物(TaGeO)、タンタルゲルマニウム合金の酸窒化物(TaGeNO)、タンタルゲルマニウムシリコン合金の窒化物(TaGeSiN)、タンタルゲルマニウムシリコン合金の酸化物(TaGeSiO)、タンタルゲルマニウムシリコン合金の酸窒化物(TaGeSiNO)等が挙げられる。
低反射層の膜厚を変化させると、反射率カーブの極小値の位置がシフトする。例えば、TaOやTaSiON等のタンタル系又はモリブデン系の場合、膜厚を厚くすると長波長側にシフトする傾向にある。したがって、低反射層の膜厚を変えると特定波長における反射率も変化するので、ある程度膜厚を調整して検査波長における反射率が極小となるようにコントロールすることが可能である。ただし、後で説明するように、低反射層の膜厚をあまり厚くすると好ましくないため5〜30nm位の間で調整することになる。好ましくは10〜20nmである。また、低反射層材料の組成比、例えば金属と酸素、窒素等の組成比を変化させると反射率が変化する。一般に、酸素や窒素の組成比が増えると反射率は低下するが、EUV光の吸収率は低下する傾向にある。
上述したように、窒化物と酸化物とでは、反射率低下の効果は酸化物の方が大きい傾向にあるため、低反射層の材料としては、金属と酸素と珪素を含む材料(たとえば金属と酸素と珪素を主成分として含む材料、金属と珪素と酸素と窒素を主成分として含む材料など)が反射率低下及び反射率が低下する波長の広さの点からもっとも好ましい。また、ここで前記露光光吸収体として使用される金属元素を用いることにより、低反射層はEUV光の吸収機能も併せ持つことになり更に好ましい。
もちろん、反射率が低下する波長領域は少し狭いものの、珪素を含まない酸化物でも特定の波長領域において低反射率が得られる。また、材料にもよるが、窒素を含むだけでは十分な反射率低下が得られないことがあるが、金属単体よりもその窒化物の方が反射率は低下する。また、前述のように窒素を加えることで膜の平滑性向上の効果が得られる。膜の平滑性が悪いとパターンのエッジラフネスが大きくなりマスクの寸法精度が悪化するため、膜はなるべく平滑なほうが望ましい。
また、低反射層の材料として、金属を含まない例えば珪素と窒素と酸素からなる材料(シリコンの酸窒化物)などを用いることもできる。ただし、この場合は低反射層におけるEUV光の吸収効果は小さい。
低反射層が例えば金属とSiとNとOとを含む材料で構成される場合、検査波長である190〜260nm程度の深紫外光で低反射率を得るための組成比としては、たとえばタンタル、モリブデン、クロム等の金属は20〜25at%、Siは17〜23%、Nは15〜20%、残りがOであることが好ましい。また、SiとOとの比は1:1.5〜1:2程度であることが好ましい。
吸収体層表面を平滑とするためには、低反射層はアモルファス構造の膜であるのが好ましい。例えば、Taの場合、Bを適宜含むことで、アモルファス化が行える。又、TaにSiやGeなどを加えることでも、アモルファスの膜が得られるため好ましい。
また、低反射層が例えばタンタルホウ素合金の窒化物(TaBN)で構成される場合、上記検査波長で低反射率を得るための組成比としては、Nは30〜70at%であることが好ましく、更には40〜60at%であることが好ましい。Nの量が少ないと十分な低反射特性が得られず、逆に多過ぎると耐酸性が低下する。さらに、低反射層とその下の吸収体層がともに上記タンタルホウ素合金の窒化物の場合、低反射層のNは30〜70at%、更に好ましくは40〜60at%であり、吸収体層のNは0〜25at%、更に好ましくは5〜20at%である。吸収体層のNの量が少ないと表面粗さの点で好ましくなく、逆に多いとEUV光の吸収係数が低下する。また、TaBN膜の場合、Bが5〜30at%、好ましくは5〜25at%であり、TaとNの組成比が8:1〜2:7であるのが好ましい。
また、低反射層がタンタルホウ素合金の酸化物(TaBO)の場合は、Oは30〜70at%、更に好ましくは40〜60at%である。Oの量が少ないと低反射特性が得られず、逆に多いと絶縁性が高くなり、電子線照射によりチャージアップが生じる。またさらに低反射層がタンタルホウ素合金の酸窒化物(TaBNO)の場合は、Nは5〜70at%、Oは5〜70at%であることが好ましい。又、TaBO膜の場合には、Bが5〜25at%であり、TaとOの組成比が、7:2〜1:2の範囲であるのが好ましい。TaBNO膜の場合には、Bが5〜25at%であり、Taと、N+Oとの組成比がTa:(N+O)が7:2〜2:7の範囲であるのが好ましい。
なお、これらホウ素を含む物質はいずれの場合もBの割合が5〜30%程度、さらに好ましくは5〜25%であることがアモルファス構造を形成する点で好ましい。
ところで、下層の露光光吸収体層14と上層の低反射層15における材料の組み合わせについて説明すると、露光光吸収体層14に使用した金属を低反射層15に含むことが好ましい。たとえば、露光光吸収体層としてタンタルを含む材料を使用した場合は、低反射層もタンタルを含む材料で構成する。具体的には、露光光吸収体層にタンタルを含む材料、例えばTa単体、TaN、TaB、TaBN、TaBO、TaBNO等のうち1種の物質を用い、低反射層にはタンタルと窒素又は酸素を含む材料、例えばTaO、TaBO、TaBNO、TaNO、TaSiO、TaSiON等のうち1種の物質を用いることができる。このように、低反射層に露光光吸収体層と同一の金属を用いることにより、EUV光の吸収機能を有する金属を含んでいるので低反射層がEUV光の吸収機能をある程度有すること、バッファー層と露光光吸収体層はエッチング選択比が大きい材料が選定されるため、基本的にバッファー層と低反射層間でもエッチング選択比が大きく取れること、露光光吸収体層と低反射層の成膜を同じ成膜室で行えること、露光光吸収体層と低反射層のパターン形成が同じエッチング条件で行えること、等の種々の利点がある。
また、下層の材料をアモルファス構造又は微結晶構造を有する膜とすれば、平滑性に優れた膜が得られるため、一層好ましい。
なお、反射率に関しては、低反射層の材料の組成と吸収体表面での反射率との関係、膜厚と反射率との関係を求めることにより、使用する検査波長において低反射率が得られる組成及び膜厚を決定することが可能である。
又、本発明の反射型マスク及び反射型マスクブランクスにおいて、吸収体層表面の好ましい表面粗さは、0.5nmRms以下、更に好ましくは、0.4nmRms以下、0.3nmRms以下であれば更に好ましい。吸収体層表面の表面粗さが大きいと、吸収体パターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなる。パターンが微細になるに従いエッジラフネスの影響が顕著になるため、吸収体表面は平滑である事が要求される。
吸収体層表面における表面粗さを小さくするために、吸収体層上層(低反射層)をアモルファス構造の膜とすることが有効である。又、吸収体層下層もアモルファス構造或いは微結晶構造の平滑性に優れた膜であれば更に好ましい。又、バッファー層を有する場合には、バッファー層に平滑な膜を使用する事も必要である。
次に、露光光吸収体層14及び低反射層15と前記バッファー層13における材料の組み合わせについて説明する。本発明では、露光光吸収体層14及び低反射層15をタンタルを含む材料で形成し、バッファー層13としてはクロムを含む材料を用いることが好ましい。バッファー層にクロム系の材料を用いることにより、前にも述べたようにバッファー層にEUV光の吸収機能を持たせることができること、深紫外領域の検査光に対する反射率が40%程度であり、多層反射膜表面、バッファー層表面、吸収体層表面を順次検査波長に対する反射率が低下するように設計しやすいこと、タンタルを含む吸収体層とのエッチング選択比が大きく取れること、更には、バッファ層除去時に多層反射膜へのダメージをほとんど与えずに除去できること等の利点がある。
バッファー層として用いられるクロムを含む材料しては、Cr単体以外に、CrとN,O,Cから選択される少なくとも一つの元素を含む材料を好ましく用いることができる。例えば、窒化クロム(CrN)、酸化クロム(CrO)、炭化クロム(CrC)、酸化窒化クロム(CrNO)、炭化窒化酸化クロム(CrCNO)等が挙げられる。
例えば、窒化クロム(CrN)の場合、クロムと窒素の好ましい組成比は、Cr1−Xで表した場合、0.05≦X≦0.5であり、更に好ましくは0.05≦X≦0.2である。Xが0.05よりも小さいと、耐酸性、膜応力、表面粗さの点で好ましくなく、Xが0.5より大きいと、検査光に対する反射率が低下しすぎるため、吸収体層表面とのコントラストを大きく取れなくなる。また、窒化クロムに酸素、炭素等を5%程度の少量添加してもよい。
またCrN膜を微結晶構造を有する膜とすれば、平滑性に優れるため好ましい。
下層の露光光吸収体層14と上層の検査光の低反射層15で構成された吸収体層16の全体の膜厚も小さい方が好ましい。なぜなら、吸収体層16のパターニング時におけるエッチング処理時間が膜厚に比例するためである。このエッチング処理においてはレジストパターン表面が吸収体層16の膜厚に比例したエッチング処理時間だけダメージを受けることになる。これによりエッチングの面内分布不良が発生しやすく、白欠陥や黒欠陥の発生頻度増大によるマスクパターン欠陥の増大、さらにそれら欠陥の修復に多大な時間を要することによる量産性低減とそれに起因するコスト増大などという重大な問題が発生する。さらには吸収体層16全体の膜厚が大きいと、前述のバッファー層13の膜厚が大きい場合と同様に、反射層12表面と吸収体層16表面との高さの差が大きくなり、露光時にマスクパターンのエッジ部分がぼやけるという不具合が発生する。
したがって、吸収体層16の全体の膜厚は、100nm以下、好ましくは80nm以下、さらに好ましくは60nm以下である。ただし、吸収体層16の膜厚の値が小さすぎると露光光の吸収特性までが低下するので薄くても35nm以上であることが好ましい。
また、吸収体層16において、上層の低反射層15の膜厚が下層の露光光吸収体層14の膜厚よりも小さい方が望ましい。上層の低反射層15の膜厚があまり厚いと吸収体層16全体でのEUV光吸収特性が低下するおそれがある。したがって、上層の低反射層15の膜厚は、5〜30nm程度であることが好ましく、下層の露光光吸収体層14の膜厚は、30〜60nm程度であることが好ましい。なお、前述したように、吸収体層16は積層構成であるが従来の単層構成と同じくらいの厚さに抑えることも可能であり、さらにはバッファー層13に露光光吸収層としての機能をも持たせることにより、その分、上層の露光光吸収体層14の吸収特性が低下してもその膜厚を減らすことが可能である。
また、バッファー層13と吸収体層16の合計膜厚の好ましい範囲は、60nm〜130nmである。材料にもよるが、合計膜厚が60nm未満であると十分なEUV光の吸収特性が得られないおそれがあり、130nmよりも厚くなるとパターン自身の影の問題が大きくなる。
この露光光吸収体層14及び検査光吸収体層15についても、前述の反射層12やバッファー層13と同様にマグネトロンスパッタ法、イオンビームスパッタ法、その他CVD法、蒸着法などの周知の成膜方法を用いて成膜を行うことができる。
ところで、パターン検査光波長に対する反射率は、露光光反射層表面、バッファー層表面、低反射層表面の順に低くなるように設計するのが好ましい。なぜなら、パターン形成後のバッファー層表面と低反射層表面の間での検査、バッファー層除去後の露光光反射層表面と低反射層表面の間での検査のいずれにおいても、パターンのある部分が暗くなり、パターンコントラストが反転することがないので、検査機の設定を変更する必要がなく、結果が判りやすい。また、露光光反射層として用いられるMo/Si多層膜の場合、反射率が約60%と高いため、各層とのコントラストを十分とるためには、その他の層の反射率を下げるほうが有利である。
次に、低反射層15の材料の屈折率nと消衰係数kの値と、検査波長に対する反射率との関係について説明する。
図3〜図6は、窒化クロムをバッファー層(50nm)とし、露光光吸収体層をタンタルホウ素合金の窒化物(TaBN)(Nは約18%)50nmに形成し、その上に低反射層として様々な屈折率n及び消衰係数kを有する材料を10nm又は20nmの膜厚に形成した場合の190nm及び260nmの検査波長での反射率Rをnとkを軸としてプロットしたものである。この結果より特定の範囲のn及びkを満たす材料を用いると低反射率が得られることが分かる。
すなわち、検査波長や膜厚と好ましいn及びkの範囲の関係は次のようになっている。
(1)膜厚が10nmの場合と20nmの場合では、消衰係数kはどちらの膜厚でも大体0.7以下であれば反射率は10%以下となる。そして、反射率を20%以下まで許容するとkは1.2以下である。このとき、屈折率nの好ましい範囲は、膜厚10nmの場合と20nmの場合では少し異なり、膜厚20nmの場合、nが1.5〜2.5程度で反射率Rは10%以下となり、反射率を20%以下まで許容するとnは1〜3程度である。膜厚10nmの場合は、nが2.0〜3.5程度で反射率Rは10%以下となり、反射率が20%以下であればnは1.5〜4.0程度である。
(2)検査波長190nmの場合と260nmの場合では、それほど大きく変わらないが、260nmの場合の方が少し好ましいnの範囲が大きめにシフトする傾向にある。
(3)以上を総合して考えると、膜厚が10nm〜20nmの場合、深紫外光領域で反射率を10%以下とするには、消衰係数kが0.7以下、屈折率nが1.5〜3.5であるような材料を選択すればよい。
また、吸収体層16は本実施形態のような二層等のいわゆる積層構造になっていてもよいが、例えば酸素が吸収体層16のバッファー層13側から吸収体層表面に向かって所定の分布を有するようになっていてもよい。この場合、吸収体層表面に向かって酸素の量が増加するようにすることで吸収体層16表面での検査光に対する反射率を低下できる。吸収体層の厚み方向での酸素の組成分布は直線状や曲線状に連続的に変化していてもよく、また階段状に変化していてもよい。このような吸収体層の厚み方向の酸素の組成分布は、成膜中に添加する元素の量をコントロールすることで実現できる。例えば、TaBO膜の場合、TaとBを含むターゲットを用いたスパッタリング法の際に、添加する酸素ガスの量を変化させながら成膜を行うことにより、吸収体層16の厚み方向に酸素の連続的又は階段状の組成分布を形成できる。
更に、本発明の反射型マスクブランクス及び反射型マスクは、吸収体層の下層と上層の間に、下層の組成から上層の組成へと連続的に組成が変化する中間領域を有していても良い。この中間領域は、下層に含まれる元素と、上層に含まれる元素が混じった遷移領域となる。このような中間領域を有していることで、吸収体層にパターンを形成する際に、上層と下層との間に境界を生じず、滑らかな断面構造を有するパターンが得やすい。上層と下層に含まれる金属元素が同一である場合には、連続的に吸収体層へのパターン形成が行えるため、好ましい。又、上層と下層の密着性が向上するという利点もある。中間領域の膜厚は、2〜15nm程度あればよい。
次に、図7を参照して本発明の反射型マスクの製造方法を説明する。図7は本発明の反射型マスクの製造工程を示す概略断面図である。
同図(a)はマスクブランクス1の構成を示している。その構成についてはすでに上述したとおりである。このマスクブランクス1は、基板11上に、露光光反射層12、バッファー層13、露光光吸収体層14、および検査光の低反射層15をこの順に積層して形成される。
ここで、バッファー層13上に先ず露光光の吸収体層14を成膜し、次いでその上に検査光の低反射層15を成膜する方法を採用できるが、低反射層の材質によっては、たとえば下層の露光光吸収体層14と同じ金属の酸化物を上層の低反射層15とする場合においては、バッファー層13上に露光光の吸収体層14を形成した後、その吸収体層14の表面を酸素ガスを含むプロセスガスを用いた酸化処理、あるいは酸溶液による酸化処理を施すことにより最表面に検査光の低反射層15を形成することも可能である。後者の方法によれば、成膜条件の変更などに要する時間を短縮でき、材料種類の低減、成膜室数の低減ができ、作業の簡略化と作業時間の短縮を図れる。
又、上層の低反射層と、下層の露光光吸収体層の形成は、同一成膜室内で、連続的に行うのが好ましい。このようにすることで、下層と上層の間に、下層表面への不純物・異物の吸着や、表面の変質(酸化)等を防止して、下層と上層との間に良好な界面が得られる。上層と下層との間の界面に、不純物の吸着や変質などがあると、吸収体層の応力に変化が生じたり、又、光学的な性質、例えば検査光の反射率等に影響を及ぼすため、界面のパラメータを考慮しなければならなくなり、設計どおりの特性が得られず、再現性や制御性が悪くなる。
一方、同一成膜室内での下層と上層の連続的な形成を行えば、基板を成膜室外に取り出したり、放置したりしないため、界面への不純物の吸着や、変質が起こらず良好な界面が得られるため、再現性・制御性良く吸収体層が形成できる。又、成膜工程が複雑にならないという利点もある。
同一成膜室内での連続的な上層と下層の形成は、上層と下層にそれぞれ金属元素が含まれており、これらの金属元素が同一である場合には、特に有効である。金属元素の供給源を共通として、成膜中に供給するガスを変えることで、連続して成膜を行えるからである。例えば、反応性のスパッタリング法を用いる場合、上層と下層に共通の金属元素を含むターゲットを用い、供給するガス(酸素等)の含有量を変えることで、連続的な成膜を容易に行うことができる。
例えば、上層及び下層にTaを含む材料を用いる場合、Taを含むターゲットを共通に使用し、低反射化のために導入するガス(酸素等)の含有量、種類を下層の形成時と、上層の形成時で変えればよい。
又、同一成膜室内での連続成膜を行うことで、意図的に、上層と下層との間に、容易に上述した組成が連続的に変化する中間領域を導入することができる。具体的には、下層の成膜条件から上層の成膜条件へと連続的に成膜条件を変化させればよい。下層と上層に含まれる金属元素が共通の場合には、ターゲット等の金属元素源を共通とし、導入する酸素等ガス流量を変化させればよいが、この時、下層の形成と上層の形成との間において、下層の形成に用いるガスの流量を減少或いは停止させると共に、上層の形成に用いるガスの導入量を増大させ、或いは導入を開始して、連続的にガス流量を変化させることで、両層の形成に用いるガスが同時に存在する状態で成膜を行えば、中間領域を容易に形成することができる。
次に、EUV光の吸収体である露光光吸収体層14及び検査光の低反射層15からなる吸収体層16を加工して所定のパターンを有する吸収体パターンを形成する(パターニング工程、同図(b)参照)。通常は、吸収体層16の表面に電子線描画プロセスにより所定のパターンを有するレジストパターンを形成し、次いで吸収体層のエッチング処理を行う。エッチング処理はドライエッチングあるいはウェットエッチングでもよく、材質によって適当な方法とその条件を選択する。最後に残存するレジストパターンを除去する。
次いで、この段階で吸収体パターンが設計通りに形成されているかどうかの検査を実施する。このパターン検査の結果、例えば同図(b)に示すように、パターン形成時におけるレジスト層への異物付着などに起因するピンホール欠陥(白欠陥ともいう)21と、エッチング不足欠陥(黒欠陥ともいう)22が存在した場合、必要な修復を施す。上記ピンホール欠陥21については集束イオンビーム(Focused Ion Beam, FIB)アシストデポジション法により炭素膜23をピンホールに堆積させて修復し、またエッチング不足欠陥22についてはFIB励起のガスアシストエッチングにより残留部分22aを除去して修復することにより二層構成の吸収体層16の除去部分25を得る。このときのイオン照射によるエネルギーによってバッファー層13表面にはダメージ部分24(FIBにより除去された部分24a及びFIBイオンが入り込んだ部分24b)が存在する(同図(c)参照)。
次に、この吸収体層16が除去された部分25に対応するバッファー層13をたとえばドライエッチングにより除去する(バッファー層の除去工程)。この際、バッファー層13のみにエッチングが進行して、他の層には損傷を与えないようにエッチング条件を設定することが重要である。こうして、露光光反射層12のパターン26を形成することにより、反射型マスク2を作製する(同図(d)参照)。
このようにして作製した反射型マスク2にEUV光31で露光するとマスク表面の吸収体パターンのある部分では吸収され、それ以外の吸収体層16およびバッファー層13を除去した部分では露出した反射層12でEUV光31が反射されることにより(同図(e)参照)、EUV光を用いるリソグラフィー用のマスクとして使用することが出来る。
本発明の反射型マスクは、このように、従来は単層であった吸収体層を下層の露光光吸収体層14と上層の検査光の低反射層15とにそれぞれ機能を分離した積層構成としたことにより、十分な露光光吸収機能を有し、なおかつ最表面に形成された上層の検査光の低反射層15表面のパターン検査光波長における反射率が著しく低下する。これにより、この検査光の低反射層15表面とマスクパターン形成により吸収体層16が除去されて露出したバッファー層13表面(図7(b)参照)とのパターン検査光波長における反射率の差が大きくなり、検査時のコントラストが十分得られる。このため、高コントラストの反射像パターンが得られる。したがって、従来の257nmなど深紫外領域の波長の光を用いたマスク検査機を使用して、従来は困難であったマスクパターンの正確かつ迅速な検査が可能である。
なお、コントラストについて更に説明すると、たとえば上述の検査光の吸収体層15表面とバッファー層13表面のそれぞれの反射率の値の比をもって一般にコントラストの大きさの指標とすることが可能であるが、下記の定義式も知られており、これによる値をもってコントラストの大きさの指標とすることも可能である。
すなわちR及びRはそれぞれある波長における反射率で、RがRよりも大きい場合、
コントラスト(%)=((R−R)/(R+R))×100
パターン検査において十分なコントラストが得られればよいが、ひとつの目安として、上記の反射率の比であらわすと、好ましくは1:3以下、より好ましくは1:4以下、さらに好ましくは1:10以下である。また、上記定義式であらわされるコントラストの値は、40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは80%以上である。ここでのコントラスト値は、吸収体層と反射層との間のコントラスト、又は吸収体層とバッファー層との間のコントラストである。なお、低反射層15の好ましい反射率は20%以下、より好ましくは10%以下、さらに好ましくは5%以下である。
以下、実施例をもって本発明をさらに具体的に説明する。なお、説明の便宜上、前述の図1、図2及び図7に記載した符号を適宜使用している。
(実施例1)
基板11上に各層を成膜してマスクブランクスを作製した。ここでは、基板11として外形6インチ角、厚さが6.3mmの低膨張のSiO−TiO系のガラス基板を用いた。このガラス基板は、機械研磨により0.12nmRms(Rms:二乗平均平方根粗さ)の平滑な表面と100nm以下の平坦度とした。
先ず、この基板11の上に、EUV光の反射層12としてモリブデン(Mo)とシリコン(Si)の積層膜Mo/SiをDCマグネトロンスパッタ法により積層した。まずSiターゲットを用いて、Arガス圧0.1PaでSi膜を4.2nm成膜し、次いでMoターゲットを用いて、Arガス圧0.1PaでMo膜を2.8nm成膜し、これを1周期として40周期積層した後、最後にSi膜を7nm成膜した。合計膜厚は287nmである。この多層反射膜の波長257nmの光に対する反射率は60%である。
その上に、バッファー層13としてSiO薄膜を膜厚50nmに成膜した。これは、Siターゲットを用い、アルゴン(Ar)および酸素(O)の混合ガスによるDCマグネトロンスパッタ法により成膜した。SiOバッファー層上の表面粗さは0.4nmRmsであった。
さらにその上に、その上に、EUV光の吸収体層14として、タンタル(Ta)薄膜を膜厚50nmに形成した。これはTaターゲットを用い、アルゴンガスによるDCマグネトロン反応性スパッタ法により成膜した。
さらにその上に、波長257nmの検査光に対する低反射層15として、TaO薄膜を膜厚10nmに成膜した。これは、下層のTa形成と同一の成膜室内で同一のTaターゲットを用い、アルゴン及び酸素の混合ガスによるDCマグネトロン反応性スパッタ法により成膜した。この膜組成は、Ta3862であった。このTaO膜の波長260nmの光における屈折率は2.68、消衰係数は0.18であり、また波長190nmの光における屈折率は2.04、消衰係数は0.87である。又、TaO膜表面の表面粗さは0.7nmRmsであった。
なお、本実施例のようにEUV光吸収体層と同じ金属の酸化物を検査光の低反射層とする場合においては、EUV光吸収体層の表面を酸素ガスを含むプロセスガスを用いた酸化処理、または酸溶液による酸化処理により形成しても良い。
次に、以上の様にして作製したマスクブランクスを用い、これに所定のマスクパターンを形成した。ここではデザインルールが0.07μmの16Gbit−DRAM用のパターンを有するEUVマスクを作製した。マスクパターンの形成は次のようにして行った。まずマスクブランクスの表面に電子線レジスト材料をスピンナー等で一様に塗布し、プリベーク後、電子線描画及び現像を行って、レジストパターンを形成した。次いで、塩素ガスを用いたドライエッチングを行い、エッチング終了後にレジストパターンを取り除いた。こうして、バッファー層13より上の吸収体層14及び低反射層15にマスクパターンが形成された。
その形成されたマスクパターンを波長257nmの光を使用するマスク検査機によって検査した結果、ピンホール欠陥(白欠陥)とエッチング不足欠陥(黒欠陥)が確認された。
次に、この検査結果に基づいてパターン欠陥を修復した。すなわち、上記の白欠陥については集束イオンビーム(Focused Ion Beam, FIB)アシストデポジション法により炭素膜をピンホールに堆積させ、また黒欠陥についてはFIB励起のガスアシストエッチングにより残留部分を除去したが、このときの照射によるエネルギーによってバッファー層13の表面には膜構造の変化による光学特性の変化したダメージ部分が存在した(前述の図7の(b)、(c)参照)。
次に、吸収体層14及び低反射層15のパターンのない部分に露出したバッファー層13をエッチングにより除去した(前述の図7の(d)参照)。この際、吸収体のパターンには損傷を与えずに該パターンがエッチングマスクとなるように、フッ素系ガスでSiOバッファー層のみをドライエッチングした。こうして本実施例の反射型マスクを作製した。
このマスクにEUV光を照射すると、反射層12表面のパターン部分でのみEUV光が反射されることにより反射型マスクとしての機能を果たしている。
また比較のために、本実施例の最上層の低反射層15のないEUV光吸収層単層の試料を作製した。このときの単層のEUV光吸収層の膜厚は、本実施例によるEUV光吸収体層と低反射層の二層の合計膜厚と同じ値である60nmとして成膜した。
このときの190nmから690nmまでの波長の光に対するマスクの吸収体パターン表面での反射率の値を図9に示した。本実施例の場合、反射率の極小値を示す波長領域が極めて狭いことがわかる。
この結果より、パターン検査光波長257nmとした場合、この波長における本実施例マスクの低反射層表面の反射率は4.0%であり、同じくこの波長におけるバッファー層(SiO)の反射率が42.1%であったため、この波長における低反射層表面とバッファー層表面とのコントラストは、これらの反射率の比で示すと、1:10であり、コントラスト値は83%であった。又、低反射層と多層反射膜表面との反射率の比は、1:15であり、コントラスト値は88%であった。
これに対し、上記波長における従来マスクの吸収層表面の反射率は44%であり、この波長における吸収層表面とバッファー層表面とのコントラストは、これらの反射率の比で示すと、1:0.96であり、コントラスト値は2.2%であった。又、吸収層と多層反射膜表面との反射率の比は、1:1.4であり、コントラスト値は15%と低かった。
また、本実施例マスクでは、吸収体層16上層の低反射層表面及びEUV光の反射層表面における波長13.4nmのEUV光に対する反射率は、それぞれ0.5%及び62.4%であったため、EUV光に対する吸収体層16表面と反射層表面とのコントラストは反射率の比で表すと、1:125であり、コントラスト値は98%であった。同様にして従来マスクのEUV光に対する単層吸収層表面と反射層表面とのコントラストは1:105であり、コントラスト値は98%であった。
次に、本実施例の反射型マスクを用いてレジスト付き半導体基板(シリコンウエハ)にEUV光によってパターンを転写する方法を説明する。図8はパターン転写装置の概略構成を示すもので、パターン転写装置50は、レーザープラズマX線源32、反射型マスク2、縮小光学系33等から概略構成される。縮小光学系33はX線反射ミラーを用いており、反射型マスク2で反射されたパターンは通常1/4程度に縮小される。なお、露光波長として13〜14nmの波長帯を使用するので、光路が真空中になるように予め設定した。
このような状態で、レーザープラズマX線源32から得られたEUV光を反射型マスク2に入射し、ここで反射された光を縮小光学系33を通してシリコンウエハ34上に転写した。反射型マスク2に入射した光は、吸収体パターンのある部分では吸収体に吸収されて反射されず、このような吸収体パターンのない部分に入射した光はEUV光の反射層により反射される。このようにして、反射型マスク2から反射される光により形成される像が縮小光学系33に入射する。縮小光学系33を経由した露光光は、シリコンウエハ34上のレジスト層に転写パターンを露光する。そして、露光済レジスト層を現像することによってシリコンウエハ34上にレジストパターンを形成した。
以上のようにして半導体基板上へのパターン転写を行った結果、本実施例の反射型マスクの精度は70nmデザインルールの要求精度である16nm以下であることが確認できた。
以上の結果から、本実施例のマスクは、EUV光に対する高コントラストが得られ、なお且つパターン検査波長に対しても高コントラストが得られる。これに対し、従来のマスクは、EUV光に対しては高コントラストが得られるものの、パターン検査波長に対してはコントラストが非常に悪い。
(実施例2)
実施例1と同様の基板11上にEUV光の反射層12としてモリブデン(Mo)とシリコン(Si)の積層膜Mo/Siを成膜し、その上に、バッファー層13としてCr薄膜をDCマグネトロンスパッタ法により膜厚50nmに成膜した。Cr薄膜表面の表面粗さは0.5nmRmsであった。
その上に、前述の実施例1と同様に、EUV光の吸収体層14として、タンタル(Ta)薄膜を形成し、さらにその上に、波長257nmの検査光の低反射層15として、TaO薄膜を成膜した。ただし、本実施例では、上記タンタル膜は膜厚を40nmとした。TaO膜表面の表面粗さは0.7nmRmsであった。
以上のようにして作製したマスクブランクスを用いて実施例1と同様にデザインルールが0.07μmの16Gbit−DRAM用のパターンを有するEUV反射型マスクを作製した。
また比較のために、本実施例の最上層の検査光の低反射層15のないEUV光吸収層単層の試料を作製した。このときの単層のEUV光吸収層の膜厚は、本実施例によるEUV光吸収体層と検査光の低反射層の二層の合計膜厚と等しい50nmとして成膜した。
このときの190nmから690nmまでの波長の光に対するマスクの吸収体パターン表面での反射率の値を図10に示した。
この結果より、パターン検査光波長257nmとした場合、この波長における本実施例マスクの低反射層表面の反射率は4.0%であり、同じくこの波長におけるバッファー層(Cr)の反射率が57.0%であったため、この波長における低反射層表面とバッファー層表面とのコントラストは、これらの反射率の比で示すと、1:14であり、コントラスト値は87%であった。又、低反射層と多層反射膜表面の反射率の比は、1:15であり、コントラスト値は88%であった。
これに対し、上記波長における従来マスクの吸収層表面の反射率は44%であり、この波長における吸収層表面とバッファー層表面とのコントラストは、これらの反射率の比で示すと、1:1.3であり、コントラスト値は13%であった。又、吸収層と多層反射膜との反射率の比は、1:1.4であり、コントラスト値は15%と低かった。
また、本実施例マスクでは、吸収体層16上層の低反射層表面及びEUV光反射層表面における波長13.4nmのEUV光に対する反射率は、それぞれ0.5%及び62.4%であったため、EUV光に対する吸収体層16表面とEUV光反射層表面とのコントラストは反射率の比で表すと、1:125であり、コントラスト値は98%であった。同様にして従来マスクのEUV光に対する単層吸収層表面と反射層表面とのコントラストは1:105であり、コントラスト値は98%であった。
さらに、本実施例の反射型マスクを用い、実施例1と同様の方法で図8に示す半導体基板への露光転写を行った結果、十分な露光特性を有していることを確認した。すなわち、本実施例のEUV反射型マスクの精度は70nmデザインルールの要求精度である16nm以下であることが確認できた。
以上の結果から、本実施例のマスクは、EUV光に対する高コントラストが得られ、なお且つパターン検査波長に対しても高コントラストが得られる。また、本実施例のマスクは、バッファー層としてCr膜を使用することによりバッファー層にEUV光の吸収層としての機能をも持たせているため、コントラストを劣化させずに上層のEUV光吸収層の厚さをより薄くすることが可能である。これに対し、従来のマスクは、EUV光に対しては高コントラストが得られるものの、パターン検査波長に対してはコントラストが非常に悪い。
(実施例3)
実施例1と同様にして、基板11上にEUV光の反射層12を成膜した。
この反射層12上にバッファー層13として窒化クロム膜を50nmの厚さに成膜した。この窒化クロム膜はDCマグネトロンスパッタ法によって形成し、成膜にはCrターゲットを用い、スパッタガスとしてArに窒素を10%添加したガスを用いた。
成膜された窒化クロム膜は、Cr1−XにおいてXは0.1とした。また、この窒化クロム膜の膜応力は100nm換算で+40MPaであった。また、この窒化クロム膜の波長257nmの光に対する反射率は52%である。この窒化クロム膜表面の表面粗さは0.27nmRmsであった。
次に、窒化クロム膜により構成されるバッファー層13の上に、EUV光の吸収体層14としてタンタルホウ素合金の窒化物(TaBN)膜を50nmの厚さに形成した。このTaBN膜は、Ta及びBを含むターゲットを用いて、Arに窒素を10%添加して、DCマグネトロンスパッタ法によって形成した。このTaBN膜の組成比は、Taは0.8、Bは0.1、Nは0.1とした。TaBN膜の結晶状態はアモルファスであった。
このTaBN吸収体層の上にさらに低反射層15として、タンタルホウ素合金の酸化物(TaBO)膜を12nmの厚さに形成した。このTaBO膜は、DCマグネトロンスパッタ法によって、Ta及びBを含むターゲットを用いて、Arに酸素を30%添加して成膜した。EUV光吸収体層の形成と低反射層の形成の間はDCパワーを一旦停止させ、成膜に使用するガスを切り変えた。ここで成膜された低反射層のTaBO膜の組成比は、Taは0.4、Bは0.1、Oは0.5とした。TaBO膜の結晶状態はアモルファスであった。なお、吸収体層の下層と上層の成膜は同一成膜室内で同一ターゲットを用い、ガスの種類を変えて連続的に行った。
このTaBO膜の波長257nmの光における屈折率は2.5、消衰係数は0.3である。また、波長13.4nmのEUV光に対する吸収係数は0.035である。このTaBO膜の表面粗さは0.25nmRmsであり、非常に平滑であった。
このようにして得られた低反射層上での波長257nmの光に対する反射率は5%であった。また、EUV光吸収体層と低反射層の全応力は100nm換算で−50MPaであった。
以上のようにして本実施例の反射型マスクブランクスを得た。
次に、この作製したマスクブランクスを用いて実施例1と同様にデザインルールが0.07μmの16Gbit−DRAM用のパターンを有するEUV反射型マスクを作製した。
まず実施例1と同様の方法で低反射層及び吸収体層に吸収体パターンを形成した。ここで、波長257nmの光を検査光として吸収体パターンの検査を行った。検査光に対するバッファー層の反射率と低反射層上の反射率との比は1:0.10であり、コントラスト値は82%であり、検査において十分なコントラストが得られた。
次いで、窒化クロムからなるバッファー層を吸収体パターンに従ってドライエッチングにより除去した。ドライエッチングには塩素と酸素の混合ガスを用いた。
以上のようにして本実施例の反射型マスクを得た。得られた反射型マスクに対し、波長257nmの検査光を用いて再度吸収体パターンの確認検査を行ったところ、検査光に対するEUV反射層の反射率と低反射層上の反射率との比は1:0.08であり、コントラスト値は85%であり、確認検査においても十分なコントラストが得られた。また、得られた反射型マスクに対し、波長13.4nm、入射角5度のEUV光により反射率を測定したところ、65%と良好な反射特性を有していた。
さらに、本実施例の反射型マスクを用い、実施例1と同様の方法で図8に示す半導体基板への露光転写を行った結果、十分な露光特性を有していることを確認した。すなわち、本実施例のEUV反射型マスクの精度は70nmデザインルールの要求精度である16nm以下であることが確認できた。
(実施例4)
実施例3と同様に、ガラス基板上に、Mo/Si反射多層膜及び、CrNバッファー層50nm及び、TaBN膜50nmからなる吸収体下層を形成した。
次に、上層の低反射層として、酸化クロム膜(CrO)を20nmの厚さに形成した。成膜方法は、DCマグネトロンスパッタ法により、Crを含むターゲットを用い、アルゴンと酸素を含むガスを使用した。得られたCrO膜の組成は、Cr:O=46:54であった。又、波長260nmの光における屈折率は2.37、消衰係数は0.72、波長190nmの光における屈折率は1.91、消衰係数は1.13である。
又、CrO膜表面における表面粗さは、0.3nmRmsであった。波長257nmの検査光に対するCrO膜表面の反射率は14%であった。
このようにして、本実施例の反射型マスクブランクスを得た。
次に、このマスクブランクスを用いて、デザインルールが0.07μmの16Gbit−DRAM用のパターンを有する反射型マスクを作製した。
まず、実施例1と同様にして、低反射層上に、レジストパターンを形成した。続いて、塩素と酸素を用いたドライエッチングにより、CrO低反射層をレジストパターンに沿ってパターン状に形成し、吸収体下層のTaBN膜の一部を露出させた。
次に、露出したTaBN膜を塩素ガスを用いたドライエッチングで、CrO膜と同一のパターン状に形成し、CrNバッファー層の一部を露出させた。
ここで、実施例1と同様にして、波長257nmの検査光を用いて、吸収体パターンの検査を行った。吸収体層表面と、バッファー層表面での検査光に対する反射率の比は、1:3.7であり、コントラスト値は58%と、十分なコントラストが得られた。
実施例1と同様に、欠陥の修正をFIBを用いて行った後、露出したCrNバッファー層を塩素と酸素を用いたドライエッチングで吸収体と同一パターン状に除去した。
以上のようにして、本実施例の反射型マスクが得られた。
この反射型マスクに対し、波長257nmの検査光を用いて、パターンの最終検査を行った。吸収体層表面と、多層反射膜表面での検査光に対する反射率の比は、1:4.3であり、コントラスト値は62%と良好なコントラストが得られた。
又、実施例1と同様に、本実施例の反射型マスクを用いてレジスト付半導体基板(シリコンウエハ)にパターンの転写を行った所、本実施例の反射型マスクの精度は、70nmデザインルールの要求精度である16nm以下である事が確認できた。
(実施例5)
実施例3と同様にして、基板上にMo/Si周期積層膜からなるEUV光の反射層及び、窒化クロム膜からなるバッファー層を形成した。
次に、吸収体層の下層として、タンタルホウ素合金の窒化物(TaBN)膜を形成した。このTaBN膜は、Ta及びBを含むターゲットを用いて、Arに窒素を10%添加したガスを用い、DCマグネトロンスパッタ法で形成した。TaBN膜を約50nm形成したところで、DCを印加したまま、Arと窒素ガスの供給を10秒の間に徐々に減らして停止すると同時に、排気を行わずに、この10秒間でArに酸素を30%まで添加して、同一成膜室内で、同一ターゲットによる成膜を続行した。酸素を導入後、約15nm成膜を行った。形成された吸収体層表面の粗さは、0.25nmRmsであり、非常に平滑であった。吸収体層の結晶構造はアモルファスであった。
又、X線光電子分光法(XPS)で、吸収体層の膜厚方向の窒素及び酸素組成を分析したところ、図11に示すようであり、上層と下層の間に、下層の組成から上層の組成に連続的に組成が変化する中間領域が形成されていることが分かった。この中間領域の厚さは、5nm程度であった。中間領域においては、下層側から上層側に向かい、徐々に窒素が減少すると共に、酸素の含有量が増大し、連続的に組成が変化していた。又、バッファー層側の下層の組成は、Ta:B:N=0.5:0.1:0.4のTaBN膜であり、吸収体層の表面近傍の上層は、Ta:B:O=0.4:0.1:0.5のTaBO膜であった。
波長257nmの検査光に対するこの吸収体層表面の反射率は5%であった。又、上層のTaBO膜の波長257nmに対する屈折率は2.5、消衰係数は0.3である。
以上のようにして、本実施例の反射型マスクブランクスを得た。
次に、この反射型マスクブランクスを用いて、デザインルールが0.07μmの16Gbit−DRAM用のパターンを有する反射型マスクを作製した。
まず、実施例1と同様にして、低反射層上に、レジストパターンを形成した。続いて、塩素を含むガスを用いたドライエッチングにより、吸収体層をレジストパターンに沿ってパターン状に形成した。吸収体層の上層、中間領域、及び下層を連続的にドライエッチングでパターニングし、CrNバッファー層の一部を露出させた。上層と下層の間に連続的な組成変化を有する中間領域を有していたため、吸収体層は、断面形状に段差の無い連続的な良好な矩形形状にパターン形成できた。
ここで、実施例1と同様にして、波長257nmの検査光を用いて、吸収体パターンの検査を行った。吸収体層表面と、バッファー層表面での検査光に対する反射率の比は、1:10.4であり、コントラスト値は82%と良好なコントラストが得られた。
実施例1と同様に、欠陥の修正をFIBを用いて行った後、露出したCrNバッファー層を塩素と酸素を用いたドライエッチングで吸収体と同一パターン状に除去した。
以上のようにして、本実施例の反射型マスクが得られた。
この反射型マスクに対し、波長257nmの検査光を用いて、パターンの最終検査を行った。吸収体層表面と、多層反射膜表面での検査光に対する反射率の比は、1:12であり、コントラスト値は85%と良好なコントラストが得られた。
又、実施例1と同様に、本実施例の反射型マスクを用いてレジスト付半導体基板(シリコンウエハ)にパターンの転写を行った所、本実施例の反射型マスクの精度は、70nmデザインルールの要求精度である16nm以下である事が確認できた。
(参考例1)
基板11上に各層を成膜してマスクブランクスを作製した。ここでは、基板11として外形6インチ角、厚さが6.3mmの低膨張のSiO−TiO系のガラス基板を用いた。このガラス基板は、機械研磨により0.12nmRms(Rms:二乗平均平方根粗さ)の平滑な表面と100nm以下の平坦度とした。
先ず、この基板11の上に、EUV光の反射層12としてモリブデン(Mo)とシリコン(Si)の積層膜Mo/SiをDCマグネトロンスパッタ法により積層した。まずSiターゲットを用いて、Arガス圧0.1PaでSi膜を4.2nm成膜し、次いでMoターゲットを用いて、Arガス圧0.1PaでMo膜を2.8nm成膜し、これを1周期として40周期積層した後、最後にSi膜を7nm成膜した。合計膜厚は287nmである。この多層反射膜の波長257nmの光に対する反射率は60%である。
その上に、バッファー層13としてSiO薄膜を膜厚50nmに成膜した。これは、Siターゲットを用い、アルゴン(Ar)および酸素(O)の混合ガスによるDCマグネトロンスパッタ法により成膜した。SiOバッファー層上の表面粗さは0.4nmRmsであった。
さらにその上に、EUV光の吸収体層14として、窒化タンタル(TaN)薄膜を膜厚50nmに形成した。これはTaターゲットを用い、アルゴンおよび窒素(N)の混合ガスによるDCマグネトロンスパッタ法により成膜した。この膜組成は、Ta6139であった。
最後に、その上に、波長257nmの検査光の低反射層15として、TaSiON薄膜を膜厚20nmに成膜した。これは、TaSi合金ターゲットを用い、アルゴン、酸素及び窒素の混合ガスによるDCマグネトロン反応性スパッタ法により成膜した。この膜組成は、Ta21Si174715であった。このTaSiON膜の波長260nmの光における屈折率は2.09、消衰係数は0.24であり、また波長190nmの光における屈折率は2.00、消衰係数は0.59である。又、TaSiON膜はアモルファス構造であった。TaSiON膜表面の表面粗さは0.45nmRmsであった。
次に、以上の様にして作製したマスクブランクスを用い、これに所定のマスクパターンを形成した。ここではデザインルールが0.07μmの16Gbit−DRAM用のパターンを有するEUVマスクを作製した。マスクパターンの形成は次のようにして行った。まずマスクブランクスの表面に電子線レジスト材料をスピンナー等で一様に塗布し、プリベーク後、電子線描画及び現像を行って、レジストパターンを形成した。次いで、塩素ガスを用いたドライエッチングを行い、エッチング終了後にレジストパターンを取り除いた。こうして、バッファー層13より上の吸収体層14及び低反射層15にマスクパターンが形成された。
その形成されたマスクパターンを波長257nmの光を使用するマスク検査機によって検査した結果、ピンホール欠陥(白欠陥)とエッチング不足欠陥(黒欠陥)が確認された。
次に、この検査結果に基づいてパターン欠陥を修復した。すなわち、上記の白欠陥については集束イオンビーム(Focused Ion Beam, FIB)アシストデポジション法により炭素膜をピンホールに堆積させ、また黒欠陥についてはFIB励起のガスアシストエッチングにより残留部分を除去したが、このときの照射によるエネルギーによってバッファー層13の表面には膜構造の変化による光学特性の変化したダメージ部分が存在した(前述の図7の(b)、(c)参照)。
次に、吸収体層14及び低反射層15のパターンのない部分に露出したバッファー層13をエッチングにより除去した(前述の図7の(d)参照)。この際、吸収体のパターンには損傷を与えずに該パターンがエッチングマスクとなるように、フッ素系ガスでSiOバッファー層のみをドライエッチングした。こうして本実施例の反射型マスクを作製した。
このマスクにEUV光を照射すると、反射層12表面のパターン部分でのみEUV光が反射されることにより反射型マスクとしての機能を果たしている。
なお、これと比較のために、図13に示した従来プロセスにより、本参考例1の最上層の低反射層15を設けていないEUV光吸収層単層の試料を作製した。このときの単層のEUV光吸収層の膜厚は、本参考例によるEUV光吸収体層と検査光の低反射層の二層の合計膜厚と同じ値である70nmとして成膜した。
このときの190nmから690nmまでの波長の光に対するマスクの吸収体パターン表面での反射率の値を図12に示した。図中、二層は本参考例マスクの二層吸収層表面の反射率、単層は従来マスクの単層吸収層表面の反射率である。また図中のMLはEUV光の反射層である。本参考例マスクの場合、反射率の低い波長領域が比較的広いことがわかる。
この結果より、パターン検査光波長257nmとした場合、この波長における本参考例マスクの低反射層表面の反射率は5.2%であり、同じくこの波長におけるバッファー層(SiO)の反射率が42.1%であったため、この波長における低反射層表面とバッファー層表面とのコントラストは、これらの反射率の比で示すと、1:8.1であり、前記の定義式であらわすコントラスト値は78%であった。又、低反射層と多層反射膜との反射率の比は、1:11.5であり、コントラストは84%であった。
これに対し、上記波長における従来マスクの吸収層表面の反射率は43.4%であり、この波長における吸収層表面とバッファー層表面とのコントラストは、これらの反射率の比で示すと、1:0.97であり、コントラスト値は1.5%であった。又、吸収層と多層反射膜との反射率の比は、1:1.4であり、コントラストは16%と低かった。
また、本参考例マスクでは、吸収体層16上層の低反射層表面及びEUV光の反射層表面における波長13.4nmのEUV光に対する反射率は、それぞれ0.6%及び62.4%であったため、EUV光に対する吸収体層16表面と反射層表面とのコントラストは反射率の比で表すと、1:104であり、コントラスト値は98%であった。同様にして従来マスクのEUV光に対する単層吸収層表面と反射層表面とのコントラストは1:105であり、コントラスト値は98%であった。
次に、本参考例の反射型マスクを用いて図8の装置により半導体基板上へのパターン転写を行った結果、本参考例の反射型マスクの精度は70nmデザインルールの要求精度である16nm以下であることが確認できた。
以上の結果から、本参考例のマスクは、EUV光に対する高コントラストが得られ、なお且つパターン検査波長に対しても高コントラストが得られるので、パターン検査が正確且つ迅速に行える。これに対し、従来のマスクは、EUV光に対しては高コントラストが得られるものの、パターン検査波長に対してはコントラストが非常に悪く、正確なパターン検査が困難である。
なお、本参考例における検査光の低反射層15としてMoSiON薄膜を成膜した以外は本参考例とまったく同様にしてマスクを作製した場合にも、本参考例と同様に検査波長およびEUV光のいずれに対しても高いコントラストが得られた。
(参考例2)
参考例1と同様にして、基板11上にEUV光の反射層12を成膜した。
この反射層12上にバッファー層13として窒化クロム膜を50nmの厚さに成膜した。この窒化クロム膜はDCマグネトロンスパッタ法によって形成し、成膜にはCrターゲットを用い、スパッタガスとしてArに窒素を10%添加したガスを用いた。
成膜された窒化クロム膜は、Cr1−XにおいてXは0.1とした。また、この窒化クロム膜の膜応力は100nm換算で+40MPaであった。また、この窒化クロム膜の波長257nmの光に対する反射率は52%である。この窒化クロム膜表面の表面粗さは0.27nmRmsであった。
次に、窒化クロム膜により構成されるバッファー層13の上に、EUV光の吸収体層14としてタンタルホウ素合金の窒化物(TaBN)膜を50nmの厚さに形成した。このTaBN膜は、Ta及びBを含むターゲットを用いて、Arに窒素を10%添加して、DCマグネトロンスパッタ法によって形成した。このTaBN膜の組成比は、Taは0.8、Bは0.1、Nは0.1とした。TaBN膜の結晶状態はアモルファスであった。
このTaBN吸収体層の上にさらに低反射層15として、タンタルホウ素合金の窒化物(TaBN)膜を15nmの厚さに形成した。低反射層としてのTaBN膜は、DCマグネトロンスパッタ法によって、Ta及びBを含むターゲットを用いて、Arに窒素を40%添加して成膜した。この時、下層のTaBN膜と同一の成膜室内で同一のターゲットを用い、下層の形成と上層の形成を窒素ガスの量を変えて連続的に行った。ここで成膜された低反射層としてのTaBN膜の組成比は、上記EUV光吸収体層のTaBN膜と比較して窒素の割合を多くし、Taは0.5、Bは0.1、Nは0.4とした。この上層のTaBN膜もアモルファスであった。
このTaBN膜の波長257nmの光における屈折率は2.3、消衰係数は1.0である。また、波長13.4nmのEUV光に対する吸収係数は0.036である。又、表面粗さは0.25nmRmsであり、非常に平滑であった。
このようにして得られた低反射層上での波長257nmの光に対する反射率は18%であった。また、EUV光吸収体層と低反射層の全応力は100nm換算で−50MPaであった。
以上のようにして本参考例2の反射型マスクブランクスを得た。
次に、この作製したマスクブランクスを用いて参考例1と同様にデザインルールが0.07μmの16Gbit−DRAM用のパターンを有するEUV反射型マスクを作製した。
まず参考例1と同様の方法で低反射層及び吸収体層に吸収体パターンを形成した。ここで、波長257nmの光を検査光として吸収体パターンの検査を行った。検査光に対するバッファー層の反射率と低反射層上の反射率との比は1:0.35であり、コントラスト値は48%であり、検査において十分なコントラストが得られた。
次いで、窒化クロムからなるバッファー層を吸収体パターンに従ってドライエッチングにより除去した。ドライエッチングには塩素と酸素の混合ガスを用いた。
以上のようにして本参考例2の反射型マスクを得た。得られた反射型マスクに対し、波長257nmの検査光を用いて再度吸収体パターンの確認検査を行ったところ、検査光に対するEUV反射層の反射率と低反射層上の反射率との比は1:0.3であり、コントラスト値は50%であり、確認検査においても十分なコントラストが得られた。また、得られた反射型マスクに対し、波長13.4nm、入射角5度のEUV光により反射率を測定したところ、65%と良好な反射特性を有していた。
さらに、本参考例の反射型マスクを用い、図8に示す半導体基板への露光転写を行った結果、十分な露光特性を有していることを確認した。すなわち、本参考例のEUV反射型マスクの精度は70nmデザインルールの要求精度である16nm以下であることが確認できた。
(参考例3)
本参考例は、低反射層としてタンタルホウ素合金の酸窒化物(TaBNO)膜を使用した点が参考例2との相違点である。
参考例2と同様にして、基板11上にEUV光の反射層12、バッファー層13及びEUV光の吸収体層14を成膜した。
次に、EUV光吸収体層14の上に低反射層15として、タンタルホウ素合金の酸窒化物(TaBNO)膜を15nmの厚さに形成した。このTaBNO膜は、DCマグネトロンスパッタ法によって、Ta及びBを含むターゲットを用いて、Arに窒素を10%と酸素を20%添加して成膜した。ここで成膜された低反射層のTaBNO膜の組成比は、Taは0.4、Bは0.1、Nは0.1、Oは0.4とした。TaBNO低反射層の表面粗さは0.25nmRmsであり、非常に平滑であった。このTaBNO膜の結晶状態はアモルファスであった。なお、下層のTaBN膜と上層のTaBNO膜の形成は、同一成膜室内でガスの種類を変え、同一ターゲットを用いて連続的に行った。
このTaBNO膜の波長257nmの光における屈折率は2.4、消衰係数は0.5である。また、波長13.4nmのEUV光に対する吸収係数は0.036である。
このようにして得られた低反射層上での波長257nmの光に対する反射率は10%であった。また、EUV光吸収体層と低反射層の全応力は100nm換算で−50MPaであった。
以上のようにして本参考例3の反射型マスクブランクスを得た。
次に、この作製したマスクブランクスを用いて参考例1と同様にデザインルールが0.07μmの16Gbit−DRAM用のパターンを有するEUV反射型マスクを作製した。
まず参考例1と同様の方法で低反射層及び吸収体層に吸収体パターンを形成した。ここで、波長257nmの光を検査光として吸収体パターンの検査を行った。検査光に対するバッファー層の反射率と低反射層上の反射率との比は1:0.19であり、コントラスト値は68%であり、検査において十分なコントラストが得られた。
次いで、参考例2と同様に、窒化クロムからなるバッファー層を吸収体パターンに従ってドライエッチングにより除去した。
以上のようにして本参考例3の反射型マスクを得た。得られた反射型マスクに対し、波長257nmの検査光を用いて再度吸収体パターンの確認検査を行ったところ、検査光に対するEUV反射層の反射率と低反射層上の反射率との比は1:0.17であり、コントラスト値は71%であり、確認検査においても十分なコントラストが得られた。また、得られた反射型マスクに対し、波長13.4nm、入射角5度のEUV光により反射率を測定したところ、65%と良好な反射特性を有していた。
さらに、本参考例の反射型マスクを用い、図8に示す半導体基板への露光転写を行った結果、十分な露光特性を有していることを確認した。すなわち、本参考例のEUV反射型マスクの精度は70nmデザインルールの要求精度である16nm以下であることが確認できた。
(参考例4)
参考例2と同様に、ガラス基板上に、Mo/Si反射多層膜及び、CrNバッファー層50nm及び、TaBN膜50nmからなる吸収体下層を形成した。
次に、上層の低反射層として、MoとSiとNからなる膜(MoSiN)を10nmの厚さに形成した。成膜方法は、DCマグネトロンスパッタ法により、SiとMoを含むターゲットを用い、アルゴンと窒素を含むガスを使用した。得られたMoSiN膜の組成は、Mo:Si:N=23:27:50であり、結晶状態はアモルファスであった。
又、波長260nmの光における屈折率は2.56、消衰係数は0.97、波長190nmの光における屈折率は2.39、消衰係数は1.05である。又、MoSiN膜表面における表面粗さは、0.25nmRmsと非常に平滑であった。又、波長257nmの検査光に対するMoSiN膜表面の反射率は、17%であった。
このようにして、本参考例4の反射型マスクブランクスを得た。
次に、このマスクブランクスを用いて、デザインルールが0.07μmの16Gbit−DRAM用のパターンを有する反射型マスクを作製した。
まず、参考例1と同様にして、低反射層上に、レジストパターンを形成した。続いて、フッ素ガスを用いたドライエッチングにより、MoSiN低反射層をレジストパターンに沿ってパターン状に形成し、吸収体下層のTaBN膜の一部を露出させた。
次に、露出したTaBN膜を塩素ガスを用いたドライエッチングで、MoSiN膜と同一のパターン状に形成し、CrNバッファー層の一部を露出させた。
ここで、波長257nmの検査光を用いて、吸収体パターンの検査を行った。吸収体層表面と、バッファー層表面での検査光に対する反射率の比は、1:3であり、コントラスト値は50%と十分なコントラストが得られた。
参考例1と同様に、欠陥の修正をFIBを用いて行った後、露出したCrNバッファー層を塩素と酸素を用いたドライエッチングで吸収体と同一パターン状に除去した。
以上のようにして、本参考例4の反射型マスクが得られた。
この反射型マスクに対し、波長257nmの検査光を用いて、パターンの最終検査を行った。吸収体層表面と、多層反射膜表面での検査光に対する反射率の比は、1:3.5であり、コントラスト値は56%と十分なコントラストが得られた。
本参考例4の反射型マスクを用いてレジスト付半導体基板(シリコンウエハ)にパターンの転写を行った所、本実施例の反射型マスクの精度は、70nmデザインルールの要求精度である16nm以下である事が確認できた。
(参考例5)
参考例2と同様に、ガラス基板上に、Mo/Si反射多層膜及び、CrNバッファー層50nm及び、TaBN膜50nmからなる吸収体下層を形成した。
次に、上層の低反射層として、MoとSiとOとNからなる膜(MoSiON)を20nmの厚さに形成した。成膜方法は、DCマグネトロンスパッタ法により、SiとMoを含むターゲットを用い、アルゴンと窒素と酸素を含むガスを使用した。得られたMoSiON膜の組成は、Mo:Si:O:N=19:19:19:43であり、アモルファス構造であった。又、波長260nmの光における屈折率は2.01、消衰係数は0.46、波長190nmの光における屈折率は1.91、消衰係数は0.52である。
又、MoSiON膜表面における表面粗さは、0.25nmRmsと非常に平滑であった。波長257nmの検査光に対するMoSiON膜表面の反射率は4.4%であった。
このようにして、本参考例5の反射型マスクブランクスを得た。
次に、このマスクブランクスを用いて、デザインルールが0.07μmの16Gbit−DRAM用のパターンを有する反射型マスクを作製した。
まず、参考例1と同様にして、低反射層上に、レジストパターンを形成した。続いて、フッ素ガスを用いたドライエッチングにより、MoSiON低反射層をレジストパターンに沿ってパターン状に形成し、吸収体下層のTaBN膜の一部を露出させた。
次に、露出したTaBN膜を塩素ガスを用いたドライエッチングで、MoSiON膜と同一のパターン状に形成し、CrNバッファー層の一部を露出させた。
ここで、波長257nmの検査光を用いて、吸収体パターンの検査を行った。吸収体層表面と、バッファー層表面での検査光に対する反射率の比は、1:12であり、コントラスト値は84%と、良好なコントラストが得られた。
参考例1と同様に、欠陥の修正をFIBを用いて行った後、露出したCrNバッファー層を塩素と酸素を用いたドライエッチングで吸収体と同一パターン状に除去した。
以上のようにして、本参考例5の反射型マスクが得られた。
この反射型マスクに対し、波長257nmの検査光を用いて、パターンの最終検査を行った。吸収体層表面と、多層反射膜表面での検査光に対する反射率の比は、1:14であり、コントラスト値は86%と良好なコントラストが得られた。
又、本参考例の反射型マスクを用いてレジスト付半導体基板(シリコンウエハ)にパターンの転写を行った所、本参考例5の反射型マスクの精度は、70nmデザインルールの要求精度である16nm以下である事が確認できた。
(参考例6)
参考例2と同様に、ガラス基板上に、Mo/Si反射多層膜及び、CrNバッファー層50nm及び、TaBN膜50nmからなる吸収体下層を形成した。
次に、上層の低反射層として、SiとOとNからなる膜(SiON)を22nmの厚さに形成した。成膜方法は、DCマグネトロンスパッタ法により、Siターゲットを用い、アルゴンと酸素と窒素を含むガスを使用した。得られたSiON膜の組成は、Si:O:N=28:62:10であった。又、波長260nmの光における屈折率は1.74、消衰係数は0.0018、波長190nmの光における屈折率は1.86、消衰係数は0.0465である。
又、SiON膜表面における表面粗さは、0.3nmRmsであった。波長257nmの検査光に対するSiON膜表面の反射率は、5%であった。
このようにして、本参考例6の反射型マスクブランクスを得た。
次に、このマスクブランクスを用いて、デザインルールが0.07μmの16Gbit−DRAM用のパターンを有する反射型マスクを作製した。
まず、参考例1と同様にして、低反射層上に、レジストパターンを形成した。続いて、フッ化物を含むガスを用いたドライエッチングにより、SiON低反射層をレジストパターンに沿ってパターン状に形成し、吸収体下層のTaBN膜の一部を露出させた。
次に、露出したTaBN膜を塩素ガスを用いたドライエッチングで、SiON膜と同一のパターン状に形成し、CrNバッファー層の一部を露出させた。
ここで、波長257nmの検査光を用いて、吸収体パターンの検査を行った。吸収体層表面と、バッファー層表面での検査光に対する反射率の比は、1:10.4であり、コントラスト値は82%と、良好なコントラストが得られた。
参考例1と同様に、欠陥の修正をFIBを用いて行った後、露出したCrNバッファー層を塩素と酸素を用いたドライエッチングで吸収体と同一パターン状に除去した。
以上のようにして、本参考例6の反射型マスクが得られた。
この反射型マスクに対し、波長257nmの検査光を用いて、パターンの最終検査を行った。吸収体層表面と、多層反射膜表面での検査光に対する反射率の比は、1:12であり、コントラスト値は85%と良好なコントラストが得られた。
又、本参考例の反射型マスクを用いてレジスト付半導体基板(シリコンウエハ)にパターンの転写を行った所、本参考例6の反射型マスクの精度は、70nmデザインルールの要求精度である16nm以下である事が確認できた。
(発明の効果)
以上詳細に説明したように、本発明によれば、基板上に、EUV領域を含む短波長域の露光光を反射する反射層、及びこの露光光を吸収する吸収体層を有し、この吸収体層は、EUV領域を含む短波長域の露光光吸収体層を下層とし、マスクパターンの検査に使用する検査光の低反射層を上層とした少なくとも二層構造とし、且つ、上層の低反射層として特定の材料を選択することにより、形成される反射型マスク表面の吸収体層を、露光光を吸収する層とマスクパターン検査光波長に対する反射率の小さい層とにそれぞれ機能を分離することができ、これによって十分な露光光吸収機能を有し、かつ吸収体パターン表面での検査光波長に対する反射率を著しく低下させ、その結果、この最上層の吸収体パターン表面とこのパターンのない部分の反射層表面との検査光波長に対する反射率の差が大きくなり、パターン検査時のコントラストが十分得られるようになるため、従来の深紫外領域の光を検査光とするマスク検査機を使用してマスクパターンの正確かつ迅速な検査が可能になる。
また、上記吸収体層における下層の露光光吸収体層として、上層の低反射層の材料を考慮して特定の物質を選択することにより、本発明の効果がより一層発揮される。
また、吸収体層の下層と上層の間に、下層の組成から上層の組成へと連続的に組成が変化する中間領域を有することにより、吸収体層にパターンを形成する際に、上層と下層との間に境界を生じず、滑らかな断面構造を有するパターンが得られやすく、また上層と下層の密着性が向上する。
また、露光光の反射層と吸収体層との間にバッファー層を設けることにより、吸収体層へのパターン形成時に反射層を保護することが出来る。本発明では、このようなバッファー層を有する場合においても、吸収体パターン表面での検査光波長に対する反射率を著しく低下させるため、この最上層の吸収体パターン表面とこのパターンのない部分に露出したバッファー層表面との検査光波長に対する反射率の差を大きく取れ、パターン検査時に十分なコントラストが得られる。
また、本発明の反射型マスクブランクスは、基板上に、露光光を反射する反射層と、露光光吸収体層と、その上に検査光の低反射層を形成することにより製造されるので、周知の成膜方法を適用でき、製造が容易で、安価なマスクブランクスを提供できる。そして、上層の低反射層と下層の吸収体層の形成を同一成膜室内で連続的に行うことにより、基板を成膜室外に取り出したり、放置したりしないため、界面への不純物の吸着や、変質が起こらず良好な界面が得られ、再現性・制御性良く吸収体層が形成でき、又、成膜工程が複雑にならないという利点も得られる。
また、露光光吸収体層を形成した後、その吸収体層の表面を処理することにより検査光の低反射層を形成することで、成膜条件の変更等に要する時間を短縮でき、作業の簡略化と作業時間の短縮を図れる。
また、本発明の反射型マスクは、マスクブランクスにおける少なくとも吸収体層をパターン状に形成することにより製造されるが、周知のパターニング手段を適用して容易に製造でき、安価な反射型マスクを提供できる。
また、本発明の反射型マスクを用いて半導体基板上にパターンを転写することにより、高精度のパターンが形成された半導体が得られる。
本発明に係るマスクブランクスの一実施形態を示す概略断面図である。 本発明に係る反射型マスクの一実施形態を示す概略断面図である。 低反射層として様々な屈折率n及び消衰係数kを有する材料を10nmで形成した場合における190nmの検査波長での反射率Rをnとkを軸としてプロットした図である。 低反射層として様々な屈折率n及び消衰係数kを有する材料を10nmで形成した場合における260nmの検査波長での反射率Rをnとkを軸としてプロットした図である。 低反射層として様々な屈折率n及び消衰係数kを有する材料を20nmで形成した場合における190nmの検査波長での反射率Rをnとkを軸としてプロットした図である。 低反射層として様々な屈折率n及び消衰係数kを有する材料を20nmで形成した場合における260nmの検査波長での反射率Rをnとkを軸としてプロットした図である。 本発明の反射型マスクの製造工程を示す概略断面図である。 反射型マスクを用いたパターン転写装置の概略構成図である。 本発明の実施例1及び従来の反射型マスクにおける190nmから690nmまでの波長の光に対する反射率の値を示す図である。 本発明の実施例2及び従来の反射型マスクにおける190nmから690nmまでの波長の光に対する反射率の値を示す図である。 実施例5における吸収体層の膜厚方向の窒素及び酸素組成図である。 参考例1及び従来の反射型マスクにおける190nmから690nmまでの波長の光に対する反射率の値を示す図である。 従来の反射型マスクの製造工程を示す概略断面図である。
符号の説明
1 マスクブランクス
2 反射型マスク
11 基板
12 反射層
13 バッファー層
14 露光光吸収体層
15 低反射層
16 吸収体層
21 ピンホール欠陥
22 エッチング不足欠陥
26 反射層パターン
31 EUV光
50 パターン転写装置

Claims (17)

  1. 基板上に、順に極端紫外線領域を含む短波長域の露光光を反射する反射層及び露光光を吸収する吸収体層を有してなるマスクブランクスであって、前記吸収体層が、極端紫外線領域を含む短波長域の露光光の吸収体で構成する吸収体層を下層とし、マスクパターンの検査に使用する検査光の吸収体で構成する低反射層を上層とした少なくとも二層構造であり、前記上層の低反射層は、クロム、マンガン、コバルト、銅、亜鉛、ガリウム、モリブデン、パラジウム、銀、カドミウム、錫、アンチモン、テルル、沃素、ハフニウム、タングステン、チタン、金及びこれらの元素を含む合金から選ばれる少なくとも一種の物質の酸化物、あるいは、該酸化物に更に珪素を含む材料から選ばれる少なくとも一種の物質で構成することを特徴とする反射型マスクブランクス。
  2. 前記反射層と吸収体層との間に、前記吸収体層へのパターン形成時に前記反射層を保護するためのバッファー層を備え、該バッファー層が、Cr又はCrを主成分とする物質で形成されていることを特徴とする請求項1記載の反射型マスクブランクス。
  3. 前記吸収体層における下層の露光光の吸収体は、前記上層に含まれる金属元素又は該金属元素を含む合金、或いは、該金属元素又は該金属元素を含む合金と窒素及び/又は酸素を含む物質から選ばれる少なくとも一種の物質で構成することを特徴とする請求項1記載の反射型マスクブランクス。
  4. 前記吸収体層の下層が、Taを含む材料である事を特徴とする請求項1乃至3の何れかに記載の反射型マスクブランクス。
  5. 前記吸収体層の下層が、Taと少なくともBを含む材料であることを特徴とする請求項4記載の反射型マスクブランクス。
  6. 前記吸収体層の下層と上層との間に、下層の組成から上層の組成へと連続的に組成が変化する中間領域を有することを特徴とする請求項1乃至5の何れかに記載の反射型マスクブランクス。
  7. 前記吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記反射層表面での反射光と、前記吸収体層表面での反射光のコントラストが、40%以上であることを特徴とする請求項1乃至6の何れかに記載の反射型マスクブランクス。
  8. 前記反射層と吸収体層との間に、前記吸収体層へのパターン形成時に前記反射層を保護するためのバッファー層を備えており、吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記バッファー層表面での反射光と、前記吸収体層表面での反射光のコントラストが、40%以上であることを特徴とする請求項1乃至7の何れかに記載の反射型マスクブランクス。
  9. 前記吸収体層に形成されるパターンの検査に用いられる光の波長に対する、前記吸収体層表面の反射率が20%以下であることを特徴とする請求項1乃至8の何れかに記載の反射型マスクブランクス。
  10. 前記吸収体層表面の表面粗さが、0.5nmRms以下であることを特徴とする請求項1乃至9の何れかに記載の反射型マスクブランクス。
  11. 前記吸収体層の上層を形成する物質の、検査光の波長における屈折率nと消衰係数kが、nが1.5〜3.5で且つkが0.7以下の条件を満たすことを特徴とする請求項1乃至10の何れかに記載の反射型マスクブランクス。
  12. 前記上層である低反射層の膜厚が、検査光の波長に対する吸収体層表面の反射率と低反射層の膜厚との関係に基づいて、検査光波長に対する吸収体表面の反射率が極小になるように選択されていることを特徴とする請求項1乃至11の何れかに記載の反射型マスクブランクス。
  13. 前記上層である低反射層の膜厚が5〜30nmであることを特徴とする請求項12記載の反射型マスクブランクス。
  14. 請求項1乃至13の何れかに記載の反射型マスクブランクスの吸収体層がパターン状に形成されたことを特徴とする反射型マスク。
  15. 請求項1乃至13の何れかに記載の反射型マスクブランクスにおける少なくとも低反射層及び露光光吸収体層をパターン状に形成する工程を有することを特徴とする反射型マスクの製造方法。
  16. 請求項1乃至13の何れかに記載の反射型マスクブランクスの製造方法であって、基板上に、極端紫外線領域を含む短波長領域の露光光を反射する反射層を形成する工程と、該反射層上に、前記露光光を吸収する吸収体層を形成する工程と、該吸収体層の表面を処理することにより、吸収体層の表面近傍に、マスクパターンの検査に使用する検査光に対する低反射層を形成することを特徴とする反射型マスクブランクスの製造方法。
  17. 請求項14に記載の反射型マスクを用いて、半導体基板上にパターンを転写することを特徴とする半導体の製造方法。
JP2007287836A 2002-04-11 2007-11-05 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法 Pending JP2008118143A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287836A JP2008118143A (ja) 2002-04-11 2007-11-05 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002108808 2002-04-11
JP2007287836A JP2008118143A (ja) 2002-04-11 2007-11-05 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005254431A Division JP4061319B2 (ja) 2002-04-11 2005-09-02 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法

Publications (1)

Publication Number Publication Date
JP2008118143A true JP2008118143A (ja) 2008-05-22

Family

ID=39503790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287836A Pending JP2008118143A (ja) 2002-04-11 2007-11-05 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法

Country Status (1)

Country Link
JP (1) JP2008118143A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210802A (ja) * 2008-03-04 2009-09-17 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランク
JP2009290002A (ja) * 2008-05-29 2009-12-10 Renesas Technology Corp 半導体集積回路装置の製造方法
JP2010103463A (ja) * 2008-09-25 2010-05-06 Toppan Printing Co Ltd 反射型フォトマスクブランク、反射型フォトマスク、半導体装置製造方法
JP2010135732A (ja) * 2008-08-01 2010-06-17 Asahi Glass Co Ltd Euvマスクブランクス用基板
WO2010074125A1 (ja) * 2008-12-26 2010-07-01 Hoya株式会社 反射型マスクブランク及び反射型マスクの製造方法
JP2011018834A (ja) * 2009-07-10 2011-01-27 Toppan Printing Co Ltd 反射型フォトマスクブランクス及び反射型フォトマスク並びに反射型フォトマスクの製造方法
JP2011096838A (ja) * 2009-10-29 2011-05-12 Dainippon Printing Co Ltd 反射型マスクおよびその製造方法ならびにマスクパターン検査方法
WO2012114980A1 (ja) * 2011-02-24 2012-08-30 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
KR20130034634A (ko) * 2011-09-28 2013-04-05 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 및 반사형 마스크의 제조 방법
JP2013093588A (ja) * 2012-12-06 2013-05-16 Renesas Electronics Corp 反射型マスクの製造方法および半導体集積回路装置の製造方法
TWI402612B (zh) * 2008-11-27 2013-07-21 Hoya Corp A substrate having a multilayer reflective film, a reflective mask substrate, and a reflective mask manufacturing method
JP2015084358A (ja) * 2013-10-25 2015-04-30 凸版印刷株式会社 反射型マスクブランク及びその製造方法並びに反射型マスク
JP2015142083A (ja) * 2014-01-30 2015-08-03 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
JP2019138971A (ja) * 2018-02-07 2019-08-22 凸版印刷株式会社 反射型フォトマスクブランク及び反射型フォトマスク
JP2022505694A (ja) * 2018-10-26 2022-01-14 アプライド マテリアルズ インコーポレイテッド 極紫外線マスク吸収体用のta‐cu合金
JP2022519036A (ja) * 2019-01-31 2022-03-18 アプライド マテリアルズ インコーポレイテッド 極紫外線マスク吸収体材料
WO2022149530A1 (ja) * 2021-01-08 2022-07-14 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237174A (ja) * 2000-02-25 2001-08-31 Oki Electric Ind Co Ltd 反射型露光マスク

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237174A (ja) * 2000-02-25 2001-08-31 Oki Electric Ind Co Ltd 反射型露光マスク

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210802A (ja) * 2008-03-04 2009-09-17 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランク
JP2009290002A (ja) * 2008-05-29 2009-12-10 Renesas Technology Corp 半導体集積回路装置の製造方法
JP2010135732A (ja) * 2008-08-01 2010-06-17 Asahi Glass Co Ltd Euvマスクブランクス用基板
JP2014033221A (ja) * 2008-08-01 2014-02-20 Asahi Glass Co Ltd Euvマスクブランクス用基板
JP2010103463A (ja) * 2008-09-25 2010-05-06 Toppan Printing Co Ltd 反射型フォトマスクブランク、反射型フォトマスク、半導体装置製造方法
TWI402612B (zh) * 2008-11-27 2013-07-21 Hoya Corp A substrate having a multilayer reflective film, a reflective mask substrate, and a reflective mask manufacturing method
KR20110103386A (ko) * 2008-12-26 2011-09-20 호야 가부시키가이샤 반사형 마스크 블랭크 및 반사형 마스크의 제조 방법
KR101707591B1 (ko) * 2008-12-26 2017-02-16 호야 가부시키가이샤 반사형 마스크 블랭크 및 반사형 마스크의 제조 방법
US9229315B2 (en) 2008-12-26 2016-01-05 Hoya Corporation Reflective mask blank and method of manufacturing a reflective mask
JP2015084447A (ja) * 2008-12-26 2015-04-30 Hoya株式会社 反射型マスクブランク及び反射型マスクの製造方法
TWI453530B (zh) * 2008-12-26 2014-09-21 Hoya Corp A reflection mask substrate and a reflection type mask manufacturing method
US8546047B2 (en) 2008-12-26 2013-10-01 Hoya Corporation Reflective mask blank and method of manufacturing a reflective mask
WO2010074125A1 (ja) * 2008-12-26 2010-07-01 Hoya株式会社 反射型マスクブランク及び反射型マスクの製造方法
JP5677852B2 (ja) * 2008-12-26 2015-02-25 Hoya株式会社 反射型マスクブランク及び反射型マスクの製造方法
JP2011018834A (ja) * 2009-07-10 2011-01-27 Toppan Printing Co Ltd 反射型フォトマスクブランクス及び反射型フォトマスク並びに反射型フォトマスクの製造方法
JP2011096838A (ja) * 2009-10-29 2011-05-12 Dainippon Printing Co Ltd 反射型マスクおよびその製造方法ならびにマスクパターン検査方法
WO2012114980A1 (ja) * 2011-02-24 2012-08-30 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
JPWO2012114980A1 (ja) * 2011-02-24 2014-07-07 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
TWI582530B (zh) * 2011-02-24 2017-05-11 Asahi Glass Co Ltd Reflective mask base for EUV microfilm
JP2013084910A (ja) * 2011-09-28 2013-05-09 Hoya Corp 反射型マスクブランク、反射型マスクおよび反射型マスクの製造方法
KR101993929B1 (ko) * 2011-09-28 2019-06-27 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 및 반사형 마스크의 제조 방법
US9625805B2 (en) 2011-09-28 2017-04-18 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing reflective mask
KR20130034634A (ko) * 2011-09-28 2013-04-05 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 및 반사형 마스크의 제조 방법
JP2017062521A (ja) * 2011-09-28 2017-03-30 Hoya株式会社 反射型マスクブランク、反射型マスクおよび反射型マスクの製造方法
JP2013093588A (ja) * 2012-12-06 2013-05-16 Renesas Electronics Corp 反射型マスクの製造方法および半導体集積回路装置の製造方法
JP2015084358A (ja) * 2013-10-25 2015-04-30 凸版印刷株式会社 反射型マスクブランク及びその製造方法並びに反射型マスク
JP2015142083A (ja) * 2014-01-30 2015-08-03 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
JP2019138971A (ja) * 2018-02-07 2019-08-22 凸版印刷株式会社 反射型フォトマスクブランク及び反射型フォトマスク
JP2022505694A (ja) * 2018-10-26 2022-01-14 アプライド マテリアルズ インコーポレイテッド 極紫外線マスク吸収体用のta‐cu合金
JP7199531B2 (ja) 2018-10-26 2023-01-05 アプライド マテリアルズ インコーポレイテッド 極紫外線マスク吸収体用のta‐cu合金
JP2022519036A (ja) * 2019-01-31 2022-03-18 アプライド マテリアルズ インコーポレイテッド 極紫外線マスク吸収体材料
JP7198935B2 (ja) 2019-01-31 2023-01-04 アプライド マテリアルズ インコーポレイテッド 極紫外線マスク吸収体材料
WO2022149530A1 (ja) * 2021-01-08 2022-07-14 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク

Similar Documents

Publication Publication Date Title
JP4061319B2 (ja) 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法
JP3806702B2 (ja) 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法
KR100815671B1 (ko) 반사형 마스크 블랭크, 반사형 마스크 및 이들의 제조방법
JP2008118143A (ja) 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法
JP4212025B2 (ja) 反射型マスクブランクス及び反射型マスク並びに反射型マスクの製造方法
KR101707591B1 (ko) 반사형 마스크 블랭크 및 반사형 마스크의 제조 방법
JP4535270B2 (ja) 反射型マスクの製造方法
US9625805B2 (en) Reflective mask blank, reflective mask and method of manufacturing reflective mask
JP4163038B2 (ja) 反射型マスクブランク及び反射型マスク並びに半導体の製造方法
US9740091B2 (en) Substrate with multilayer reflective film, reflective mask blank for EUV lithography, reflective mask for EUV lithography, and method of manufacturing the same, and method of manufacturing a semiconductor device
KR101676052B1 (ko) 반사형 마스크 블랭크 및 반사형 마스크의 제조 방법
US20070091420A1 (en) Multilayer reflective film coated substrate, manufacturing method thereof, reflective mask blank, and reflective mask
US20210026235A1 (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device
JP2004342867A (ja) 反射型マスクブランクス及び反射型マスク
JP6542497B1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110624