JPWO2012114980A1 - Euvリソグラフィ用反射型マスクブランク - Google Patents

Euvリソグラフィ用反射型マスクブランク Download PDF

Info

Publication number
JPWO2012114980A1
JPWO2012114980A1 JP2013500989A JP2013500989A JPWO2012114980A1 JP WO2012114980 A1 JPWO2012114980 A1 JP WO2012114980A1 JP 2013500989 A JP2013500989 A JP 2013500989A JP 2013500989 A JP2013500989 A JP 2013500989A JP WO2012114980 A1 JPWO2012114980 A1 JP WO2012114980A1
Authority
JP
Japan
Prior art keywords
layer
film thickness
mask blank
euv
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013500989A
Other languages
English (en)
Inventor
和幸 林
和幸 林
和伸 前重
和伸 前重
俊之 宇野
俊之 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2012114980A1 publication Critical patent/JPWO2012114980A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

吸収層の膜厚を最適化することにより、パターン特性に影響がない範囲で、吸収層の膜厚を、従来の膜厚と比較して薄膜化可能としたEUVマスクブランクの提供。EUV光を反射する反射層と、EUV光を吸収する吸収層とが、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、前記吸収層の膜厚が、13.3〜13.7nmの波長域における平均光線反射率が4.0%以下、かつ、極小値となる膜厚に対して、±2.0%の範囲内となるように設定されていることを特徴とするEUVリソグラフィ用反射型マスクブランク。

Description

本発明は、半導体製造等に使用されるEUV(Extreme Ultra Violet:極端紫外)リソグラフィ用反射型マスクブランク(以下、本明細書において、「EUVマスクブランク」ともいう。)に関する。
従来、半導体産業において、Si基板等に微細なパターンからなる集積回路を形成する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソグラフィ法が用いられてきた。しかし、半導体デバイスの微細化が加速している一方で、従来のフォトリソグラフィ法の限界に近づいてきた。フォトリソグラフィ法の場合、パターンの解像限界は露光波長の1/2程度であり、液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(波長:193nm)の液浸法を用いても、その波長は45nm程度が限界と予想される。そこで45nmよりも短い波長を用いる次世代の露光技術として、ArFレーザよりさらに短波長のEUV光を用いた露光技術であるEUVリソグラフィが有望視されている。本明細書において、EUV光とは、軟X線領域または真空紫外線領域の波長の光線をさし、具体的には波長10〜20nm程度、特に13.5nm±0.3nm程度の光線を指す。
EUV光は、あらゆる物質に対して吸収されやすく、かつこの波長で物質の屈折率が1に近いため、従来の可視光または紫外光を用いたフォトリソグラフィのような屈折光学系を使用できない。このため、EUV光リソグラフィでは、反射光学系、すなわち反射型フォトマスクとミラーとが用いられる。
マスクブランクは、フォトマスク製造用に用いられるパターニング前の積層体である。EUVマスクブランクの場合、ガラス製等の基板上にEUV光を反射する反射層と、EUV光を吸収する吸収層と、がこの順で形成された構造を有している。反射層としては、高屈折率層と低屈折率層とを交互に積層することで、EUV光を層表面に照射した際の光線反射率が高められた多層反射膜が通常使用される。吸収層には、EUV光に対する吸収係数の高い材料、具体的にはたとえば、Taを主成分とする材料が用いられる。
また、EUVマスクブランクの吸収層上には、パターン検査波長(190〜260nm)に対する低反射層が形成される場合もある。この場合、低反射層には、パターン検査波長に対して低反射特性を有する材料、具体的にはTaおよびOを主成分とする材料が用いられる。
EUVマスクブランクの吸収層や低反射層に要求される基本特性は、EUV光をいかに吸収するかである。一般的に、特定のEUV波長(13.5nm)に対して、吸収層表面や低反射層表面の光線反射率が0.5%以下であれば、十分なパターン転写特性が得られることがわかっている。上記の基本特性を満たすためには、吸収層は80nmより厚い膜厚が必要であった。吸収層の上に低反射層が形成されている場合も吸収層および低反射層は80nmより厚い合計膜厚が必要であった。
一方、EUVマスクでは、以下に示す「斜影効果」を低減するために、吸収層の膜厚(吸収層の上に低反射層が形成されている場合は吸収層および低反射層の合計膜厚)をより薄くすることが望まれている。ここで、「斜影効果」とは、EUV露光では、入射光はマスクパターンに対して、6°の角度で入射するため、パターンの影が反射強度分布に影響を与え、転写ウエハ上の線幅精度が悪化するという問題である。斜影効果による問題を解決する方法として、露光光の低反射部となる吸収膜のEUV反射率が極小値付近となるように吸収膜の膜厚を設定する方法がある(特許文献1参照)。
日本特開2005−268255号公報
特許文献1では、吸収膜の膜厚、特に、2層以上の薄膜からなる吸収膜の最上層の膜厚を最適化することにより、EUV反射率の極小値を得ているが、これは膜厚変化に対する、EUV反射率の変化を小さくするための技術であり、実質的に吸収膜の膜厚、すなわち、EUVマスクブランクの吸収層の膜厚(吸収層の上に低反射層が形成されている場合は吸収層および低反射層の合計膜厚)をより薄くできているわけではない。
一方、近年、パターン転写特性に関して、特定の波長(13.5nm)における光線反射率ではなく、特定範囲の波長域(13.3〜13.7nm)における平均光線反射率の方が、パターン特性に影響を与えることがわかってきている。上記の波長域における平均光線反射率が4.0%以下であれば、パターン特性には問題ないことが予測されている。
本発明は、上記した従来技術の問題点を解決するため、吸収層の膜厚を最適化することにより、パターン特性に影響がない範囲で、吸収層の膜厚を、従来の膜厚と比較して薄膜化可能としたEUVマスクブランクの提供を目的とする。
また、本発明は、吸収層および低反射層の合計膜厚を最適化することにより、パターン特性に影響がない範囲で、吸収層および低反射層の合計膜厚を、従来の膜厚と比較して薄膜化可能としたEUVマスクブランクの提供を目的とする。
本発明者らは、上記課題を解決するために鋭意検討した結果、EUVマスクブランクの吸収層の膜厚を、特定のEUV波長範囲における平均光線反射率が極小値となる膜厚に対して±2.0%の範囲内となるように設定することにより、パターン特性に影響がない範囲で、従来の吸収層の膜厚よりも薄膜化できることを見出した。
また、EUVマスクブランクの吸収層および低反射層の合計膜厚を、特定のEUV波長範囲における平均光線反射率が極小値となる合計膜厚に対して±2.0%の範囲内となるように設定することにより、パターン特性に影響がない範囲で、従来の吸収層および低反射層の合計膜厚よりも薄膜化できることを見出した。
本発明は、上記の知見に基づいてなされたものであり、本発明は、EUV光を反射する反射層と、EUV光を吸収する吸収層とが、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
前記吸収層の膜厚が、13.3〜13.7nmの波長域における平均光線反射率が4.0%以下、かつ、極小値となる膜厚に対して、±2.0%の範囲内となるように設定されていることを特徴とするEUVリソグラフィ用反射型マスクブランク(第1の形態のEUVリソグラフィ用反射型マスクブランク)を提供する。
また、本発明は、EUV光を反射する反射層と、EUV光を吸収する吸収層と、マスクパターンの検査光(波長190〜260nm)に対する低反射層とが、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
前記吸収層および前記低反射層の合計膜厚が、13.3〜13.7nmの波長域における平均光線反射率が4.0%以下、かつ、極小値となる合計膜厚に対して、±2.0%の範囲内となるように設定されていることを特徴とするEUVリソグラフィ用反射型マスクブランク(第2の形態のEUVリソグラフィ用反射型マスクブランク)を提供する。
上記した数値範囲を示す「〜」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「〜」は、同様の意味をもって使用される。
前記した第1および第2の形態のEUVリソグラフィ用反射型マスクブランクのことを、以下本明細書において、「本発明のEUVマスクブランク」という。
本発明のEUVマスクブランクにおいて、前記吸収層が、タンタル(Ta)および窒素(N)を主成分とすることが好ましい。また、本発明のEUVマスクブランクにおいて、前記吸収層の膜厚が46nm以上、80nm以下とすることが好ましい。
低反射層が形成された本発明のEUVマスクブランクにおいて、前記低反射層が、タンタル(Ta)および酸素(O)を主成分とすることが好ましい。また、低反射層が形成された本発明のEUVマスクブランクにおいて、前記吸収層及び前記低反射層の合計膜厚が46nm以上、80nm以下とすることが好ましい。
本発明のEUVマスクブランクにおいて、前記反射層と前記吸収層との間に、前記吸収層へのパターン形成時に前記反射層を保護するための保護層が形成されていてもよい。この場合、前記保護層が、Ru、Ru化合物、SiO2およびCr化合物のいずれか1種で形成されることが好ましい。
本発明のEUVマスクブランクでは、パターン特性に影響を及ぼすことなしに、吸収層および低反射層を薄膜化できる。吸収層および低反射層の薄膜化により、斜影効果の抑制、および、それによるパターン精度の向上が期待される。さらに、吸収層および低反射層の薄膜化により、パターン形成時のレジストの厚さを薄膜化することが可能であり、パターン解像度の向上が期待される。
図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。 図2は、図1に示すEUVマスクブランク1の吸収層14(および低反射層15)にパターン形成した状態を示している。 図3は、実施例のEUVマスクブランクにおける吸収層および低反射層の合計膜厚と、13.3〜13.7nmの波長域における平均光線反射率との関係を示したグラフである。 図4は、図3中、合計膜厚43〜51nmの範囲の部分拡大図である。 図5は、図3中、合計膜厚50〜58nmの範囲の部分拡大図である。 図6は、図3中、合計膜厚57〜65nmの範囲の部分拡大図である。 図7は、図3中、合計膜厚65〜73nmの範囲の部分拡大図である。 図8は、図3中、合計膜厚72〜80nmの範囲の部分拡大図である。 図9は、図3中、合計膜厚80〜88nmの範囲の部分拡大図である。
以下、図面を参照して本発明を説明する。図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。図1に示すマスクブランク1は、基板11上にEUV光を反射する反射層12と、EUV光を吸収する吸収層14とがこの順に形成されている。反射層12と吸収層14との間には、吸収層14へのパターン形成時に反射層12を保護するための保護層13が形成されている。吸収層14上には、マスクパターンの検査光に対する低反射層15が形成されている。但し、本発明のEUVマスクブランク1において、図1に示す構成中、基板11、反射層12および吸収層14のみが必須であり、保護層13および低反射層15は任意の構成要素である。
以下、マスクブランク1の個々の構成要素について説明する。
基板11は、EUVマスクブランク用の基板としての特性を満たすことが要求される。
そのため、基板11は、低熱膨張係数であることが要求され、具体的には、20℃における熱膨張係数が0±0.05×10-7/℃が好ましく、0±0.03×10-7/℃がより好ましい。また、基板は、平滑性、平坦度、およびマスクブランクまたはパターン形成後のフォトマスクの洗浄等に用いる洗浄液への耐性に優れたものが好ましい。
基板11としては、具体的には低熱膨張係数を有するガラス、例えばSiO2−TiO2系ガラス等を用いるが、これに限定されず、β石英固溶体を析出した結晶化ガラスや石英ガラスやシリコンや金属などの基板を使用できる。
基板11は、表面粗さ(rms)が0.15nm以下の平滑な表面と、100nm以下の平坦度を有していることがパターン形成後のフォトマスクにおいて高反射率および転写精度が得られるために好ましい。
基板11の大きさや厚さなどはマスクの設計値等により適宜決定されるものである。後で示す実施例では外形6インチ(152mm)角で、厚さ0.25インチ(6.3mm)のSiO2−TiO2系ガラスを用いた。
基板11の反射層12が形成される側の表面には欠点が存在しないことが好ましい。しかし、存在している場合であっても、凹状欠点および/または凸状欠点によって位相欠点が生じないように、凹状欠点の深さおよび凸状欠点の高さが2nm以下であり、かつこれら凹状欠点および凸状欠点の大きさの半値幅が60nm以下であることが好ましい。
反射層12は、EUVマスクブランクの反射層として所望の特性を有するものである限り特に限定されない。ここで、反射層12に特に要求される特性は、高EUV光線反射率である。具体的には、EUV光の波長領域の光線を入射角6度で反射層12表面に照射した際に、13.3〜13.7nmの波長域における光線反射率の最大値は、60%以上が好ましく、65%以上がより好ましい。また、反射層12の上に保護層13を設けた場合であっても、13.3〜13.7nmの波長域における光線反射率の最大値は、60%以上が好ましく、65%以上がより好ましい。
反射層12は、高EUV光線反射率を達成できることから、通常は高屈折率層と低屈折率層を交互に複数回積層させた多層反射膜が反射層12として用いられる。反射層12をなす多層反射膜において、高屈折率層には、Siが広く使用され、低屈折率層にはMoが広く使用される。すなわち、Mo/Si多層反射膜が最も一般的である。但し、多層反射膜はこれに限定されず、Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜なども使用できる。
反射層12をなす多層反射膜を構成する各層の膜厚および層の繰り返し単位の数は、使用する膜材料および反射層に要求されるEUV光線反射率に応じて適宜選択できる。Mo/Si反射膜を例にとると、13.3〜13.7nmの波長域における光線反射率の最大値が60%以上の反射層12とするには、多層反射膜は膜厚2.3±0.1nmのMo層と、膜厚4.5±0.1nmのSi層とを繰り返し単位数が30〜60になるように積層させればよい。
なお、反射層12をなす多層反射膜を構成する各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法など、周知の成膜方法を用いて所望の厚さになるように成膜すればよい。例えば、イオンビームスパッタリング法を用いてMo/Si多層反射膜を形成する場合、ターゲットとしてSiターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa〜2.7×10-2Pa)を使用して、イオン加速電圧300〜1500V、成膜速度0.03〜0.30nm/secで厚さ4.5nmとなるようにSi膜を成膜し、次に、ターゲットとしてMoターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa〜2.7×10-2Pa)を使用して、イオン加速電圧300〜1500V、成膜速度0.03〜0.30nm/secで厚さ2.3nmとなるようにMo膜を成膜するのが好ましい。これを1周期として、Si膜およびMo膜を30〜60周期積層させることによりMo/Si多層反射膜が成膜される。
反射層12表面が酸化されるのを防止するため、反射層12をなす多層反射膜の最上層は酸化されにくい材料の層が好ましい。酸化されにくい材料の層は反射層12のキャップ層として機能する。キャップ層として機能する酸化されにくい材料の層の具体例としては、Si層を例示できる。反射層12をなす多層反射膜がMo/Si多層反射膜である場合、最上層をSi層とすることによって、該最上層がキャップ層として機能する。その場合キャップ層の膜厚は、11±2nmが好ましい。
反射層12と、吸収層14との間には保護層13を形成してもよい。保護層13は、エッチングプロセス、通常はドライエッチングプロセスにより吸収層14にパターン形成する際に、反射層12がエッチングプロセスによるダメージを受けないよう、反射層12を保護する目的で設けられる。したがって保護層13の材質としては、吸収層14のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収層14よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質が選択される。この条件を満たす物質としては、たとえばCr、Al、Ta及びこれらの窒化物、Ru及びRu化合物(RuB、RuSi等)、ならびにSiO2、Si34、Al23やこれらの混合物が例示される。保護層13として好ましくは、Ru、Ru化合物、SiO2およびCr化合物の群から選ばれる少なくとも1種が挙げられる。これらの中でも、Ru及びRu化合物(RuB、RuSi等)、CrNおよびSiO2が好ましく、Ru及びRu化合物(RuB、RuSi等)が特に好ましい。
保護層13の厚さは1〜60nmが好ましい。
保護層13は、マグネトロンスパッタリング法、イオンビームスパッタリング法など周知の成膜方法を用いて成膜する。マグネトロンスパッタリング法によりRu膜を成膜する場合、ターゲットとしてRuターゲットを用い、スパッタガスとしてArガス(ガス圧1.0×10-2Pa〜10×10-1Pa)を使用して投入電圧30V〜1500V、成膜速度0.02〜1.0nm/secで厚さ2〜5nmとなるように成膜するのが好ましい。
吸収層14に特に要求される特性は、EUV光線反射率が極めて低いことである。具体的には、EUV光の波長領域の光線を吸収層14表面に照射した際に、13.3〜13.7nmの波長域における平均光線反射率が4.0%以下であり、3.8%以下が好ましく、3.5%以下がより好ましい。
本発明のEUVマスクブランク1のように、吸収層14上にマスクパターンの検査光に対する低反射層15が形成されている場合においては、EUV光の波長領域の光線を低反射層15表面に照射した際にも、13.3〜13.7nmの波長域における平均光線反射率が4.0%以下であり、3.8%以下が好ましく、3.5%以下がより好ましい。
上記の特性を達成するため、吸収層14は、EUV光の吸収係数が高い材料で構成される。EUV光の吸収係数が高い材料としては、タンタル(Ta)および窒素(N)を主成分とする材料が13.3〜13.7nmの波長域における平均光線反射率が4.0%以下の吸収層を形成しやすいことに加えて、吸収層の結晶状態がアモルファスになりやすく、表面粗さが小さく平滑性に優れた表面となるので好ましい。本明細書において、TaおよびNを主成分とする材料と言った場合、当該材料中TaおよびNを合計含有率で40原子%(以下、原子%をat%と記す。)以上、好ましくは50at%以上、より好ましくは55at%以上含有する材料を意味し、TaNが例示される。
吸収層14に用いるTaおよびNを主成分とする材料は、TaおよびN以外にハフニウム(Hf)、珪素(Si)、ジルコニウム(Zr)、ゲルマニウム(Ge)、硼素(B)および水素(H)から選ばれる少なくとも一種の元素を含んでも良い。TaおよびN以外に上記の元素を含有する材料の具体例としては、例えば、TaNH、TaHfN、TaBSiN、TaBSiNH、TaBN、TaBNH、TaSiN、TaGeN、TaZrNなどが挙げられる。
上記した構成の吸収層14、すなわち、TaおよびNを主成分とする材料で構成される吸収層は、公知の成膜方法、例えば、マグネトロンスパッタリング法またはイオンビームスパッタリング法により形成できる。
例えば、吸収層14として、マグネトロンスパッタリング法を用いてTaNH膜を形成する場合、ターゲットとしてTaターゲットを用い、スパッタガスとして、ArとN2とH2の混合ガス(H2ガス濃度1〜50vol%、N2ガス濃度1〜80vol%、Arガス濃度5〜95vol%、ガス圧1.0×10-1Pa〜50×10-1Pa)を使用して、投入電力30〜3000W、成膜速度0.5〜60nm/minで、後述する膜厚となるようにTaNH膜を成膜することが好ましい。
なお、Ar以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にするのが好ましい。また、複数種類の不活性ガスを使用する場合、不活性ガスの合計濃度を上記したArガス濃度と同じ濃度範囲にするのが好ましい。
低反射層15はマスクパターンの検査に使用する検査光において、低反射となるような膜で構成される。EUVマスクを作製する際、吸収層にパターンを形成した後、このパターンが設計通りに形成されているかどうか検査する。このマスクパターンの検査では、検査光として通常190〜260nm程度の光を使用した検査機が使用される。つまり、この190〜260nm程度の光の反射率の差、具体的には、吸収層14がパターン形成により除去されて露出した面と、パターン形成により除去されずに残った吸収層14表面と、の反射率の差によって検査される。ここで、前者は反射層12表面または保護層13表面であり、通常は保護層13表面である。したがって、検査光の波長に対する反射層12表面または保護層13表面と、吸収層14表面と、の反射率の差が小さいと検査時のコントラストが悪くなり、正確な検査が出来ないことになる。
上記した構成の吸収層14、すなわち、TaおよびNを主成分とする材料で構成される吸収層は、EUV光線反射率が極めて低く、EUVマスクブランク1の吸収層として優れた特性を有しているが、検査光の波長について見た場合、光線反射率が必ずしも十分低いとは言えない。この結果、検査光の波長での吸収層14表面の反射率と、反射層12表面または保護層13表面の反射率と、の差が小さくなり、検査時のコントラストが十分得られない可能性がある。検査時のコントラストが十分得られないと、マスク検査においてパターンの欠陥を十分判別できず、正確な欠陥検査を行えないことになる。
本発明のEUVマスクブランク1では、吸収層14上に検査光における低反射層15を形成することにより、検査光の波長での光線反射率が極めて低くなり、検査時のコントラストが良好となる。
本明細書において、検査時のコントラストは下記式を用いて求めることができる。
検査時のコントラスト(%)=((R2−R1)/(R2+R1))×100
ここで、検査光の波長におけるR2は反射層12表面または保護層13表面での反射率であり、R1は低反射層15表面での反射率である。なお、上記R1およびR2は、図1に示すEUVマスクブランク1のように、吸収層14上にマスクパターンの検査光に対する低反射層15が形成されている場合、図2に示すように、EUVマスクブランク1の吸収層14および低反射層15にパターンを形成した状態で測定する。上記R2は、図2中、パターン形成によって吸収層14および低反射層15が除去され、外部に露出した反射層12表面または保護層13表面で測定した値であり、R1はパターン形成によって除去されずに残った低反射層15表面で測定した値である。なお、吸収層の上に低反射層が形成されていない場合には、吸収層にパターンを形成した状態で測定する。
本発明のEUVマスクブランクが低反射層を有する場合、上記式で表される検査時のコントラストが、30%以上が好ましく、45%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。
なお、検査時のコントラストが上記を満たすためには、検査光の波長の光線を低反射層15表面に照射した際の該検査光の波長の最大光線反射率は、15%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましい。
低反射層15は、上記の特性を達成するため、検査光の波長の屈折率が吸収層14よりも低い材料で構成される。検査光の波長の屈折率が吸収層14よりも低い材料としては、タンタル(Ta)および酸素(O)を主成分とする材料を用いることが、検査光の波長の最大光線反射率が15%以下の低反射層を形成しやすいことに加えて、低反射層の結晶状態がアモルファスになりやすく、表面粗さが小さく平滑性に優れた表面となるので好ましい。本明細書において、TaおよびOを主成分とする材料と言った場合、当該材料中TaおよびOを合計含有率で40at%以上、好ましくは50at%以上、より好ましくは55at%以上含有する材料を意味し、TaOが例示される。
低反射層15に用いるTaおよびOを主成分とする材料は、TaおよびO以外にHf、Si、Zr、Ge、B、NおよびHから選ばれる少なくとも一種の元素を含んでも良い。TaおよびO以外に上記の元素を含有する材料の具体例としては、例えば、TaON、TaONH、TaHfO、TaHfON、TaBSiO、TaBSiON等が挙げられる。
上記した構成の低反射層15は、すなわち、TaおよびOを主成分とする材料で構成される低反射層は、公知の成膜方法、例えば、マグネトロンスパッタリング法またはイオンビームスパッタリング法により形成できる。
例えば、低反射層15として、マグネトロンスパッタリング法を用いてTaONH膜を形成する場合、ターゲットとして、Taターゲットを用い、スパッタガスとして、ArとO2とN2とH2の混合ガス(H2ガス濃度1〜50vol%、O2ガス濃度1〜80vol%、N2ガス濃度1〜80vol%、Arガス濃度5〜95vol%、ガス圧1.0×10-1Pa〜50×10-1Pa)を使用して、投入電力30〜3000W、成膜速度0.01〜60nm/minで、後述する膜厚となるようにTaONH膜を成膜することが好ましい。
なお、Ar以外の不活性ガスを使用する場合、その不活性ガスの濃度が上記したArガス濃度と同じ濃度範囲にすることが好ましい。
上述したように、本発明のEUVマスクブランクは、吸収層での13.3〜13.7nmの波長域における平均光線反射率が4.0%以下となる。また、吸収層上に低反射層が形成されている場合、該低反射層での13.3〜13.7nmの波長域における平均光線反射率が4.0%以下となる。
後述する実施例の図3に示すように、吸収層上に低反射層が形成されている場合、低反射層での13.3〜13.7nmの波長域における平均光線反射率は、吸収層および低反射層の合計膜厚に対し依存性があり、周期的に増減を繰り返しながら(すなわち、極大値と極小値との間で増減を繰り返しながら)、合計膜厚が増加するにつれて減少していく。
したがって、吸収層上に低反射層が形成されたEUVマスクブランクの場合、低反射層での13.3〜13.7nmの波長域における平均光線反射率が4.0%以下となるように、吸収層および低反射層の合計膜厚を設定する必要がある。
吸収層上に低反射層を形成していない吸収層での13.3〜13.7nmの波長域における平均光線反射率も同様であり、吸収層の膜厚に対し依存性があり、周期的に増減を繰り返しながら(すなわち、極大値と極小値との間で増減を繰り返しながら)、合計膜厚が増加するにつれて減少していく。
したがって、吸収層上に低反射層が形成されていないEUVマスクブランクの場合、吸収層での13.3〜13.7nmの波長域における平均光線反射率が4.0%以下となるように、吸収層の膜厚を設定する必要がある。
本発明のEUVマスクブランクでは、さらに、13.3〜13.7nmの波長域における平均光線反射率が極小値となる膜厚に対して、±2.0%の範囲内となるように、吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚を設定する。
吸収層上に低反射層が形成されていないEUVマスクブランクの場合、吸収層での13.3〜13.7nmの波長域における平均光線反射率が極小値となる膜厚に対して、±2.0%の範囲内となるように、吸収層の膜厚を設定する。
ここで、「平均光線反射率が極小値となる膜厚に対して、±2.0%の範囲内」とは、別の言い方をすると、平均光線反射率が極小値となる膜厚を100.0%としたときに、98.0%〜102.0%の膜厚の範囲に相当する。
吸収層上に低反射層が形成されたEUVマスクブランクの場合、低反射層での13.3〜13.7nmの波長域における平均光線反射率が極小値となる合計膜厚に対して、±2.0%の範囲内となるように、吸収層および低反射層の合計膜厚を設定する。
上述したように、十分なパターン転写特性を得るためには、吸収層表面(吸収層上に低反射層が形成されている場合は低反射層表面)での特定のEUV波長の光線反射率、具体的には、波長13.5nmの光線反射率を0.5%以下とする必要があると従来は考えられていた。これを満たすためには、吸収層の膜厚(吸収層上に低反射層が形成されている場合は吸収層および低反射層の合計膜厚)を80nmより厚くする必要があり、斜影効果の問題があった。
これに対し、波長13.5nmの光線反射率が極小値付近となるように、吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚を設定すれば、十分なパターン転写特性が得られるというのが、特許文献1における考え方である。
特許文献1は、このような考え方に基づき、吸収層、あるいは、吸収層および低反射層の薄膜化を期待したものであるが、特許文献1の段落番号[0022]に記載されているように、OD(Optical density)値の極大値付近の幅は狭く、膜厚の変化によりOD値は変化しやすく、膜厚の制御には厳しい精度が求められる。ここで、OD値と光線反射率は直接関連するので、波長13.5nmの光線反射率の極小値付近の幅は狭いうえ、膜厚の変化により該光線反射率が変化することが示されていると言える。したがって、特許文献1では、膜厚の制御に厳しい精度が求められるため、吸収層、あるいは、吸収層および低反射層の薄膜化は困難であるとされている。
これに対し、本発明のEUVマスクブランクでは、13.3〜13.7nmの波長域における平均光線反射率が極小値となる膜厚に対して、±2.0%の範囲内となるように、吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚を設定する。
後述する実施例の図3〜9、特に、図4〜9に示すように、13.3〜13.7nmの波長域における平均光線反射率の場合、吸収層および低反射層の合計膜厚の変化に対する該平均光線反射率の変化、特に極小値付近での平均光線反射率の変化がゆるやかである。この点に関して、後述する実施例の図4〜9では、平均光線反射率が極小値となる合計膜厚に対して、±2.0%となる合計膜厚の範囲をグレートーンで示している。後述する実施例の表に示すように、当該範囲における平均光線反射率の変化は最大でも0.3%ときわめて小さい。このような平均光線反射率のきわめて小さい変化であれば、パターン特性に影響を及ぼすことはないと考えられる。
吸収層上に低反射層が形成されていないEUVマスクブランクの場合も同様であり、吸収層の膜厚に対する13.3〜13.7nmの波長域における平均光線反射率、特に極小値付近での平均光線反射率の変化がゆるやかであり、平均光線反射率が極小値となる膜厚に対して、±2.0%となる吸収層の膜厚の範囲であれば、当該範囲における平均光線反射率の変化はきわめて小さく、パターン特性に影響を及ぼすことはないと考えられる。
後述する実施例の図3に示すように、13.3〜13.7nmの波長域における平均光線反射率は、吸収層および低反射層の合計膜厚によって、複数の異なる極小値を取るが、該極小値における平均光線反射率が4.0%以下である限り、どの極小値に対して吸収層および低反射層の合計膜厚を設定してもよい。この点については、吸収層上に低反射層が形成されていないEUVマスクブランクの場合も同様である。
但し、吸収層および低反射層を薄膜化するためには、吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚が80nm以下、より好ましくは、75nm以下、さらに好ましくは70nm以下となるように、13.3〜13.7nmの波長域における平均光線反射率が極小値となる吸収層の膜厚、あるいは、吸収層および低反射層の合計膜厚を選択することが好ましい。なお、吸収層の膜厚の下限は、吸収層としての機能面および4.0%以下の平均光線反射率を得られるようにするという面から46nm以上が好ましく、また吸収層および低反射層の合計膜厚の下限は、吸収層としての機能面および4.0%以下の平均光線反射率を得られるようにするという面から46nm以上が好ましい。
吸収層上に低反射層が形成されたEUVマスクブランクの場合、低反射層の膜厚が吸収層の膜厚よりも厚いと、吸収層でのEUV光吸収特性が低下するおそれがあるので、低反射層の膜厚は吸収層の膜厚よりも薄いことが好ましい。このため、低反射層の膜厚は1〜20nmであることが好ましく、1〜15nmであることがより好ましく、1〜10nmであることがさらに好ましい。
本発明のEUVマスクブランクは、反射層、吸収層、ならびに必要に応じて形成される保護層および低反射層以外に、EUVマスクブランクの分野において公知の機能膜を有していてもよい。このような機能膜の具体例としては、例えば、特表2003−501823号公報に記載されているもののように、基板の静電チャッキングを促すために、基板の裏面側に施される高誘電性コーティングが挙げられる。ここで、基板の裏面とは、図1の基板11において、反射層12が形成されている側とは反対側の面を指す。このような目的で基板の裏面に施す高誘電性コーティングは、シート抵抗が100Ω/□以下となるように、構成材料の電気伝導率と厚さを選択する。高誘電性コーティングの構成材料としては、公知の文献に記載されているものから広く選択できる。例えば、特表2003−501823号公報に記載の高誘電率のコーティング、具体的には、シリコン、TiN、モリブデン、クロム、TaSiからなるコーティングを適用できる。高誘電性コーティングの厚さは、例えば10〜1000nmとできる。
高誘電性コーティングは、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、電解メッキ法を用いて形成できる。
以下、実施例により本発明を詳述するが、本発明はこれらの実施例に限定されるものではない。
本実施例では、図1に示すEUVマスクブランク1の吸収層14としてTaNH膜、低反射層15としてTaONH膜を形成した場合について、EUV光線反射率の膜厚依存性、より具体的には、13.3〜13.7nmの波長域における平均光線反射率の吸収層14および低反射層15の合計膜厚に対する依存性を計算で求めた。ここで、低反射層15は、パターン検査光の波長(190〜260nm)の最大光線反射率を10%以下とするため、膜厚を7nmと固定し、吸収層14の膜厚のみを変化させた。なお、吸収層の組成比(原子比)は、Ta:N:H=55:39:6であり、低反射層の組成比(原子比)は、Ta:O:N:H=22:65:5:8とした。
13.3〜13.7nmの波長域における平均光線反射率は、13.3〜13.7nmの波長域における光線反射率の積分値を算出し、積分値を算出する際に用いたデータ数で除した値とした。
図3に、横軸を吸収層(TaNH膜)および低反射層(TaONH膜)の合計膜厚(nm)、縦軸を13.3〜13.7nmの波長域における平均光線反射率(%)とした、平均光線反射率の膜厚依存性を示す。図3に示すように、13.3〜13.7nmの波長域における平均光線反射率は、吸収層および低反射層の合計膜厚に対し依存性があり、周期的に増減を繰り返しながら(すなわち、極大値と極小値との間で増減を繰り返しながら)、合計膜厚が増加するにつれて減少していく。
図4〜9は、図3における平均光線反射率の極小値付近を示した部分拡大図である。図4〜9は、それぞれ、吸収層および低反射層の合計膜厚が、43〜51nm、50〜58nm、57〜65nm、65〜73nm、72〜80nm、80〜88nmの範囲の部分拡大図であり、極小値は、それぞれ、47nm付近、54nm付近、62nm付近、69nm付近、76nm付近、および83nm付近に存在している。また、それぞれの合計膜厚範囲における極小値付近の平均光線反射率は、いずれも4.0%以下であり、EUVマスクブランクの要求特性を満たす。これらの極小値のうち、合計膜厚83nm付近のものは、従来のEUVマスクブランクでの吸収層および低反射層の合計膜厚と同等程度であるため、吸収層および低反射層の薄膜化とはならない。実質的に薄膜化が可能な膜厚としては、76nm付近、69nm付近、62nm付近、54nm付近および47nm付近が好適である。
図4〜9には、平均光線反射率が極小値となる合計膜厚に対して、±2.0%となる合計膜厚の範囲をグレートーンで示している。図4〜9において、平均光線反射率が極小値となる膜厚と、平均光線反射率が極小値となる膜厚に対して±2.0%となる膜厚、および、それらの膜厚における平均光線反射率を見積もった。その結果を下記表に示す。
なお、表1は、吸収層および低反射層の合計膜厚が43〜51nmの場合、表2は、同合計膜厚が50〜58nmの場合、表3は、同合計膜厚が57〜65nmの場合、表4は、同合計膜厚が65〜73nmの場合、表5は、同合計膜厚が72〜80nmの場合、表6は、同合計膜厚が80〜88nmの場合について、それぞれの値を示した。
Figure 2012114980
Figure 2012114980
Figure 2012114980
Figure 2012114980
Figure 2012114980
Figure 2012114980
上記表から明らかなように、平均光線反射率が極小値となるいずれの合計膜厚においても、該合計膜厚に対して±2.0の膜厚範囲であれば、平均光線反射率が4.0%以下であり、かつ、極小値となる平均光線反射率との差が最大でも0.3%ときわめて小さいため、パターン特性が悪化することはない。特に、吸収層および低反射層の合計膜厚が80nm以下の範囲で、平均光線反射率が極小値となるように設定すれば、パターン特性が悪化することなく、吸収層の薄膜化が可能になる。
本発明によれば、EUVマスクブランクの吸収層および低反射層の薄膜化により、斜影効果の抑制、および、それによるパターン精度の向上が期待され、EUV光リソグラフィ用の反射型フォトマスクとして有用である。
なお、2011年2月24日に出願された日本特許出願2011−038428号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
1:EUVマスクブランク
11:基板
12:反射層(多層反射膜)
13:保護層
14:吸収層
15:低反射層

Claims (7)

  1. EUV光を反射する反射層と、EUV光を吸収する吸収層とが、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
    前記吸収層の膜厚が、13.3〜13.7nmの波長域における平均光線反射率が4.0%以下、かつ、極小値となる膜厚に対して、±2.0%の範囲内となるように設定されていることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  2. EUV光を反射する反射層と、EUV光を吸収する吸収層と、マスクパターンの検査光(波長190〜260nm)に対する低反射層とが、この順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
    前記吸収層および前記低反射層の合計膜厚が、13.3〜13.7nmの波長域における平均光線反射率が4.0%以下、かつ、極小値となる合計膜厚に対して、±2.0%の範囲内となるように設定されていることを特徴とするEUVリソグラフィ用反射型マスクブランク。
  3. 前記吸収層が、タンタル(Ta)および窒素(N)を主成分とする請求項1または2に記載のEUVリソグラフィ用反射型マスクブランク。
  4. 前記低反射層が、タンタル(Ta)および酸素(O)を主成分とする請求項2または3に記載のEUVリソグラフィ用反射型マスクブランク。
  5. 前記吸収層の膜厚が、46nm以上、80nm以下である請求項1乃至3のいずれか1項に記載のEUVリソグラフィ用反射型マスクブランク。
  6. 前記吸収層および前記低反射層の合計膜厚が、46nm以上、80nm以下である請求項2乃至4のいずれか1項に記載のEUVリソグラフィ用反射型マスクブランク。
  7. 前記反射層と前記吸収層との間に、前記吸収層へのパターン形成時に前記反射層を保護するための保護層が形成されており、
    前記保護層が、Ru、Ru化合物、SiO2およびCr化合物の群から選ばれる少なくとも1種で形成される請求項1乃至6のいずれか1項に記載のEUVリソグラフィ用反射型マスクブランク。
JP2013500989A 2011-02-24 2012-02-16 Euvリソグラフィ用反射型マスクブランク Pending JPWO2012114980A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011038428 2011-02-24
JP2011038428 2011-02-24
PCT/JP2012/053712 WO2012114980A1 (ja) 2011-02-24 2012-02-16 Euvリソグラフィ用反射型マスクブランク

Publications (1)

Publication Number Publication Date
JPWO2012114980A1 true JPWO2012114980A1 (ja) 2014-07-07

Family

ID=46720761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013500989A Pending JPWO2012114980A1 (ja) 2011-02-24 2012-02-16 Euvリソグラフィ用反射型マスクブランク

Country Status (3)

Country Link
JP (1) JPWO2012114980A1 (ja)
TW (1) TWI582530B (ja)
WO (1) WO2012114980A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045779A (ja) * 2001-07-30 2003-02-14 Hoya Corp Euv光露光用反射型マスクおよびeuv光露光用反射型マスクブランク
JP3674591B2 (ja) * 2002-02-25 2005-07-20 ソニー株式会社 露光用マスクの製造方法および露光用マスク
JP2005268255A (ja) * 2004-03-16 2005-09-29 Toppan Printing Co Ltd 極限紫外線露光用マスクブランク及びマスク並びに転写方法
JP2008118143A (ja) * 2002-04-11 2008-05-22 Hoya Corp 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法
JP2009212220A (ja) * 2008-03-03 2009-09-17 Toshiba Corp 反射型マスク及びその作製方法
JP2010062244A (ja) * 2008-09-02 2010-03-18 Renesas Technology Corp 半導体装置の製造方法
WO2010050520A1 (ja) * 2008-10-30 2010-05-06 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028172B3 (de) * 2007-06-20 2008-12-11 Advanced Mask Technology Center Gmbh & Co. Kg EUV-Maske und Verfahren zur Reparatur einer EUV-Maske
CN102132209B (zh) * 2008-08-21 2014-07-16 Asml控股股份有限公司 具有高热传导率的euv掩模版基底

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045779A (ja) * 2001-07-30 2003-02-14 Hoya Corp Euv光露光用反射型マスクおよびeuv光露光用反射型マスクブランク
JP3674591B2 (ja) * 2002-02-25 2005-07-20 ソニー株式会社 露光用マスクの製造方法および露光用マスク
JP2008118143A (ja) * 2002-04-11 2008-05-22 Hoya Corp 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法
JP2005268255A (ja) * 2004-03-16 2005-09-29 Toppan Printing Co Ltd 極限紫外線露光用マスクブランク及びマスク並びに転写方法
JP2009212220A (ja) * 2008-03-03 2009-09-17 Toshiba Corp 反射型マスク及びその作製方法
JP2010062244A (ja) * 2008-09-02 2010-03-18 Renesas Technology Corp 半導体装置の製造方法
WO2010050520A1 (ja) * 2008-10-30 2010-05-06 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク

Also Published As

Publication number Publication date
TW201243492A (en) 2012-11-01
WO2012114980A1 (ja) 2012-08-30
TWI582530B (zh) 2017-05-11

Similar Documents

Publication Publication Date Title
US9423684B2 (en) Reflective mask blank for EUV lithography and process for its production
US9097976B2 (en) Reflective mask blank for EUV lithography
US8828627B2 (en) Reflective mask blank for EUV lithography and reflective mask for EUV lithography
JP5018789B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5067483B2 (ja) Euvリソグラフィ用反射型マスクブランク
US8927181B2 (en) Reflective mask blank for EUV lithography
JP6287099B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5040996B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP2017003977A (ja) Euvリソグラフィ用反射型マスクブランク
JP6069919B2 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびに該マスクブランク用の反射層付基板およびその製造方法
JP2015073013A (ja) Euvリソグラフィ用反射型マスクブランクの製造方法
JPWO2011108470A1 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法
KR102476861B1 (ko) Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법, 그리고 그 마스크 블랭크용의 반사층이 부착된 기판 및 그 제조 방법
JP7327438B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP2014160752A (ja) Euvリソグラフィ用反射型マスクブランクおよび該マスクブランク用反射層付基板
JP2019035929A (ja) 反射型マスクブランク、および反射型マスク
JP6186996B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2009210802A (ja) Euvリソグラフィ用反射型マスクブランク
JP5333016B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP6044213B2 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびに該マスクブランク用の反射層付基板およびその製造方法
JP6288327B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
WO2012114980A1 (ja) Euvリソグラフィ用反射型マスクブランク
JP2009252788A (ja) Euvリソグラフィ用反射型マスクブランク

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151208

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160115