JP2008109815A - 高周波電源装置 - Google Patents

高周波電源装置 Download PDF

Info

Publication number
JP2008109815A
JP2008109815A JP2006291989A JP2006291989A JP2008109815A JP 2008109815 A JP2008109815 A JP 2008109815A JP 2006291989 A JP2006291989 A JP 2006291989A JP 2006291989 A JP2006291989 A JP 2006291989A JP 2008109815 A JP2008109815 A JP 2008109815A
Authority
JP
Japan
Prior art keywords
frequency
output
unit
phase difference
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006291989A
Other languages
English (en)
Other versions
JP4823851B2 (ja
Inventor
Daisuke Matsuno
大輔 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2006291989A priority Critical patent/JP4823851B2/ja
Publication of JP2008109815A publication Critical patent/JP2008109815A/ja
Application granted granted Critical
Publication of JP4823851B2 publication Critical patent/JP4823851B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】高周波電源装置の周波数制御を行うために必要な電圧と電流との位相差が、高調波成分の影響で、精度良く算出できなかった。
【解決手段】本発明の高周波電源装置は、指令周波数と同一の周波数を有する2つの基本波を生成する信号発生部15と、信号発生部15の出力信号の1つに基づいて、スイッチングを行うスイッチ部12と、放電負荷に供給される高周波電流を検出する電流検出部13と、信号発生部15の出力信号と電流検出部13の出力信号とに基づいて、上記電圧と電流との位相差に相当する位相差θ1を算出する位相差検出部14と、位相差検出部14の出力に基づいて指令周波数を算出する周波数制御部16とを備える。この構成によって、高調波成分の影響を排除して、精度良く位相差θ1を算出することができる。そのため、高周波電源装置の周波数制御を精度良く行うことができ、ひいては、スイッチング効率の低下を抑制することができる。
【選択図】図1

Description

本発明は、例えばエキシマランプ、プラズマ放電を利用するスパッタリング装置、エッチング装置、又はCDV装置等といった放電負荷に対して高周波電力を供給する高周波電源装置に関するものである。
従来、例えば半導体やフラットパネルディスプレイ等が製造されるときのプロセスの一つとしてプラズマプロセスがある。プラズマプロセスでは、製造後のウェハの表面に付着している塵やごみ等の有機物を除去する目的で例えばエキシマランプといった放電負荷が用いられることがある。
エキシマランプは、通常、それに対して設けられる高周波電源装置から供給される高周波電力によって放電されるものである。エキシマランプは、高周波電源装置から供給される高周波電力によって、所定の波長(例えば172nm)を中心とする紫外光を発する。
図4は、特許文献1に示された従来の高周波電源装置の構成を示す図である。この特許文献1では、放電負荷が誘電体バリアランプと呼称されているが、上記エキシマランプと同義である。
特開平8−31585号
この高周波電源装置は、直流電源部41と、直流電源部41からの直流電圧Vsをスイッチングして交流電圧に変換するためのスイッチングインバータ部42と、一次巻線43と二次巻線44とを有するトランス45とを有している。トランス45では、スイッチングインバータ部42から出力される交流電圧を、一次巻線43に対する二次巻線44の巻線比に基づいて増大させる。
トランス45の二次巻線44には、共振用コイル46と共振用コンデンサ47とが接続されている。共振用コイル46と共振用コンデンサ47はLC共振回路を構成し、共振用コンデンサ47の両端に交流高電圧を発生させる。この交流高電圧が放電負荷としての誘電体バリアランプ48の電極49,50に供給されると、誘電体バリアランプ48が放電される。その際、電圧位相検出器51と電流位相検出器52とでは、トランス45の一次巻線43の両端における電圧Vpの位相と、一次巻線43に流れる電流Ipの位相とがそれぞれ検出される。
電圧位相検出器51から出力される電圧位相信号は、遅延回路53を介して位相比較器54に入力される。電流位相検出器52から出力される電流位相信号は、直接的に位相比較器54に入力される。位相比較器54では、上記二つの信号が比較され、上記二つの信号の位相差を表す信号がローパスフィルタ55に出力される。位相比較器54の出力は、ローパスフィルタ55を介して周波数可変発振器56に入力される。周波数可変発振器56では、位相比較器54の出力信号の大小に対応して周波数の高低が変化された発振信号が生成される。そして、スイッチング素子駆動回路57では、周波数可変発振器56の出力信号にしたがってスイッチングインバータ部42がスイッチング駆動される。
すなわち、従来の高周波電源装置では、スイッチングインバータ部42のスイッチング周波数が、位相比較器54から出力される位相差に基づいてフィードバックされて決定される。例えば電圧位相に対して電流位相が遅れている場合には、スイッチング周波数が下がる方向に変化し、逆に電圧位相に対して電流位相が進んでいる場合には、スイッチング周波数が上がる方向に変化するように、スイッチング周波数が決定される。
ところが、上記従来の高周波電源装置では、誘電体バリアランプ48において放電が生じると、電流位相検出器52に流れる電流Ipには、高周波電力の数次高調波が含まれるようになる。電流位相検出器52に流れる電流Ipに数次高調波が含まれと、その波形は歪むことになり、周波数可変発振器56では、電流位相信号と電圧位相信号との位相差を正確に検出することが困難になる。その結果、スイッチングインバータ部42のスイッチング周波数を精度高く制御することができなくなり、スイッチング効率が低下するといった問題点があった。
本発明は、上記した事情のもとで考え出されたものであって、スイッチング周波数の制御を高精度に行うことのできる高周波電源装置を提供することを、その課題とする。
上記の課題を解決するため、本発明では、次の技術的手段を講じている。
本発明の第1の側面によって提供される高周波電源装置は、高周波電流を放電負荷に供給する高周波電源装置であって、指令値として入力される指令周波数と同一の周波数を有する基本波としての2つのディジタル信号を生成する基本波生成手段と、前記基本波生成手段によって生成されるディジタル信号の1つに基づいて、指令周波数と同一の周波数でスイッチングを行い、直流電圧を交流電圧に変換して出力することによって、前記放電負荷に供給される高周波電流の発生源となるスイッチ手段と、前記放電負荷に供給される高周波電流あるいは前記放電負荷に供給される高周波電流に相当する高周波電流を検出し、検出された高周波電流をディジタル信号に変換して出力する電流検出手段と、前記基本波生成手段によって生成されるディジタル信号又はこの信号に遅延時間補正を行ったディジタル信号と、前記電流検出手段から出力されるディジタル信号との位相差を算出し、算出された位相差と予め定める目標位相差設定値との差分を算出する差分算出手段と、前記差分算出手段によって算出された、前記位相差と前記目標位相差設定値との差分に基づいて指令周波数を算出し、算出した指令周波数を前記基本波生成手段の指令値として出力する周波数制御手段と、を備えることを特徴としている(請求項1)。
本発明によれば、基本波生成手段によって生成される2つのディジタル信号と電流検出手段によって検出された高周波電流とを用いて位相差を算出している。そして、この位相差に基づいて、高周波電源装置のスイッチ手段におけるスイッチング周波数を制御している。本発明では、この位相差を算出する過程において、高調波成分の影響を排除して、精度良く位相差を算出することができる。そのため、高周波電源装置の周波数制御を精度良く行うことができ、ひいては、スイッチング効率の低下を抑制することができる。また、算出された位相差は、スイッチ手段の出力電圧と高周波電流との位相差に相当するものである。すなわち、実際には、スイッチ手段の出力電圧を直接検出していないが、基本波生成手段の出力信号をスイッチ手段の出力電圧の代用とすることができるので、スイッチ手段の出力電圧を検出するための検出器を不要とすることができる。
好ましい実施の形態によれば、前記基本波生成手段は、前記指令周波数と同一の周波数を有する基本波としての正弦波ディジタル信号を生成する正弦波生成部と、前記指令周波数と同一の周波数を有する基本波としての余弦波ディジタル信号を生成する余弦波生成部と、によって構成され、前記差分算出手段は、前記正弦波生成部によって生成された正弦波ディジタル信号又はこの信号に遅延時間補正を行ったディジタル信号と、前記電流検出手段から出力されるディジタル信号とを乗算する第1乗算部と、前記余弦波生成部によって生成された余弦波ディジタル信号又はこの信号に遅延時間補正を行ったディジタル信号と、前記電流検出手段から出力されるディジタル信号とを乗算する第2乗算部と、前記第1乗算部の出力のうち所定の成分のみを通過させる第1フィルタ部と、前記第2乗算部の出力のうち所定の成分のみを通過させる第2フィルタ部と、前記第1フィルタ部の出力と前記第2フィルタ部の出力とに基づいて、前記基本波生成手段によって生成された正弦波ディジタル信号又はこの信号に遅延時間補正を行ったディジタル信号と、前記電流検出手段から出力されるディジタル信号との位相差を算出する位相差算出部と、前記位相算出部の出力と予め定める目標位相差設定値との差分を算出する差分算出部と、によって構成されているとよい(請求項2)。
好ましい実施の形態によれば、前記正弦波生成部と前記第1乗算部との間、及び前記余弦波生成部と前記第2乗算部との間には、前記電流検出手段における遅延時間を補正可能にするための遅延時間補正手段が介装されているとよい(請求項3)。
本発明のその他の特徴及び利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
以下、本発明の好ましい実施の形態を、添付図面を参照して具体的に説明する。
図1は、本発明に係る高周波電源装置の概略構成を示す図である。この高周波電源装置1は、例えばエキシマランプ2といった放電負荷に対して高周波電力を供給する装置である。エキシマランプ2は、例えば被照射体としての半導体ウェハ(図略)の表面の塵やごみ等の有機物を除去するために、被照射体に対して紫外光を照射するものである。高周波電源装置1及びエキシマランプ2は、半導体やフラットパネルディスプレイ等が製造されるプラズマプロセスに組み込まれて用いられる。
エキシマランプ2は、高周波電源装置1から供給される高周波電力に基づいて放電し、一定波長の紫外光を被照射体に対して照射するものである。エキシマランプ2から例えば波長172nmの紫外光が発せられると、空気中の酸素に吸収されてオゾンが発生されるとともに、励起酸素原子が生成される。また、波長172nmの紫外光は、有機物の分子結合を切断し、切断された分子に励起酸素原子が反応して、分子は二酸化炭素や水のような気体になって飛散する。この原理により、被照射体の表面に付着した有機物が除去され、被照射体は洗浄される。
高周波電源装置1は、直流電源部11、スイッチ部12、電流検出部13、トランスT、リアクトルL、位相差検出部14、信号発生部15、周波数制御部16、及びFET駆動部17によって構成されている。高周波電源装置1には、放電負荷としてのエキシマランプ2が接続されている。なお、図1は、高周波電源装置1についてエキシマランプ2に供給する高周波電力の生成に関する部分を示すものであり、図1に示す構成が高周波電源装置1の全ての構成を示すものではない。
直流電源部11は、図2に示すように、直流電圧Vdcを出力する直流電源18を有し、直流電圧Vdcをスイッチ部12に対し供給するものである。
スイッチ部12は、いわゆるフルブリッジ方式として構成され、図2に示すように、例えばFET(電界効果トランジスタ)といった半導体素子からなる第1ないし第4スイッチ素子S1〜S4を備えている。第1ないし第4スイッチ素子S1〜S4には、逆電流防止用のダイオードD1〜D4がそれぞれ並列接続されている。スイッチ部12は、FET駆動部17からの第1及び第2制御信号V1,V2に基づいて、第1ないし第4スイッチ素子S1〜S4をオン、オフ動作(スイッチング動作)させることにより、一定周期でオン、オフが繰り返される矩形波信号を出力する。なお、スイッチ部12の構成は、フルブリッジ方式に代えて、ハーフブリッジ方式が採用されてもよい。また、スイッチ部12は、本発明の「スイッチ手段」として機能する。
より具体的には、第1及び第4スイッチ素子S1,S4は、FET駆動部17からの第1制御信号V1によって同時にオン、オフ動作し、第2及び第3スイッチ素子S2,S3は、FET駆動部17からの第2制御信号V2によって同時にオン、オフ動作する。第1制御信号V1及び第2制御信号V2は、交互にオン、オフ動作する信号であるため、第1及び第4スイッチ素子S1,S4と第2及び第3スイッチ素子S2,S3とは、交互にオン、オフ動作される。第1及び第4スイッチ素子S1,S4並びに第2及び第3スイッチ素子S2,S3が交互にオン、オフ動作されることにより、直流電源部11からの直流電圧Vdcが、スイッチ部12の出力端子から矩形波状の交流電圧Vinvに変換されて出力される。
この矩形波状の交流電圧Vinvが、後述するように共振回路によって正弦波状に変換されて高周波電源装置1から出力される。そして、エキシマランプ2に高周波電流が供給される。したがって、スイッチ部12は、負荷に供給される高周波電流の発生源と言える。また、第1及び第2制御信号V1,V2によって定まるスイッチ部12におけるスイッチング周波数は、例えば、2MHzである。しかし、この周波数に限定されるものではなく、一般的に高周波とされる数百kHz以上の周波数に適用できる。したがって、スイッチ部12から出力される交流電圧Vinvは、高周波領域の電圧である。そのため、以降では、交流電圧Vinvを高周波電圧Vinvとして表す。
なお、スイッチ部12の第1ないし第4スイッチ素子S1〜S4が例えばMOSFETによって構成されている場合、第1ないし第4スイッチ素子S1〜S4に並列接続されたダイオードD1〜D4に代えて、MOSFETのボディダイオードを用いるようにしてもよい。
トランスTは、スイッチ部12とエキシマランプ2とを電気的に絶縁するとともに、スイッチ部12におけるインピーダンスとエキシマランプ2におけるインピーダンスとの変換を行うものである。トランスTは、その一次巻線側がスイッチ部12に接続され、二次巻線側がエキシマランプ2に接続されている。
リアクトルLは、トランスTの二次巻線側とエキシマランプ2との間に介装されている。リアクトルLは、エキシマランプ2に含まれる容量成分(コンデンサ成分)とともに共振回路を構成するためのものであり、この共振回路によって、スイッチ部12から出力される矩形波状の信号は正弦波状(又は余弦波状)の信号に変換される。なお、リアクトルLはインダクタンスとして構成されてもよい。
電流検出部13は、スイッチ部12から出力される高周波電圧Vinvに基づく、トランスTの一次巻線側を流れる高周波電流Iinvを検出するものである。電流検出部13は、例えばカレントトランスによって構成されるとともに、図示しないADコンバータを備えており、検出した高周波電流IinvをADコンバータによってアナログ−ディジタル変換する。なお、電流検出部13は、本発明の「電流検出手段」として機能するものである。また、トランスTの一次巻線側を流れる高周波電流Iinvは、エキシマランプ2に供給される高周波電流に相当する高周波電流であると見なす。
位相差検出部14は、電流検出部13で検出されディジタル信号に変換された高周波電流Iinvと、後述する信号発生部15から出力される正弦波状の基本波(正弦波ディジタル信号)及び余弦波状の基本波(余弦波ディジタル信号)とを入力し、これらの信号に基づいて、正弦波状の基本波又はこの信号に遅延時間補正を行った信号と、電流検出部13から出力される信号との位相差θ1を算出するものである。遅延時間補正については後述する。位相差検出部14には、予め定める目標位相差である目標位相差設定値が入力され、位相差検出部14は、後段の周波数制御部16に対して、算出した位相差θ1と目標位相差設定値との差分を出力する。なお、位相差検出部14は、本発明の「差分算出手段」として機能する。
周波数制御部16は、位相差検出部14からの出力である、目標位相差設定値と位相差θ1との差分に基づいて、信号発生部15で生成される基本波の周波数を定める指令周波数を算出し、算出した指令周波数を信号発生部15の指令値として出力するものである。この指令周波数によって、信号発生部15で生成される基本波の周波数が制御される。より具体的には、周波数制御部16から出力する指令周波数によって、信号発生部15から出力される正弦波状の基本波の周波数及び余弦波状の基本波の周波数がそれぞれ制御される。例えば、正弦波状の基本波の位相に対して高周波電流の位相が遅れている場合には、指令周波数が下がる方向に変化し、逆に正弦波状の基本波の位相に対して高周波電流の位相が進んでいる場合には、指令周波数が上がる方向に変化するように、指令周波数が決定される。なお、周波数制御部16には、初期周波数として所定の値が入力される。高周波電源装置1への電源投入時には、この初期周波数に基づく指令周波数の値が信号発生部15に出力される。周波数制御部16は、本発明の「周波数制御手段」として機能する。
信号発生部15は、一定の範囲内で変化可能な所定の周波数を有する信号(基本波)をディジタル信号で正確に出力できるものであり、高精度の正弦波状の基本波及び余弦波状の基本波をディジタル信号で出力する。信号発生部15から出力された正弦波状の基本波及び余弦波状の基本波は、位相差検出部14に出力される。それとともに、正弦波状の基本波が、FET駆動部17に入力される。また、正弦波状の基本波は、本発明の正弦波ディジタル信号に、余弦波状の基本波は、本発明の余弦波ディジタル信号にそれぞれ相当する。すなわち、本発明の基本波生成手段として機能する信号発生部15では、基本波としての2つのディジタル信号が生成され、このうちの1つに基づいて、スイッチ部12においてスイッチングが行われる。
より具体的には、信号発生部15は、周波数制御部16から出力される指令周波数の値に基づいて、その周波数を有する基本波を出力する。ここで、この基本波を数式で表すと、例えば「sin(2πft)(fは周波数を示す)」及び「cos(2πft)」であり、これら基本波はそれぞれ位相差検出部14に出力される。これらの基本波のうち、正弦波状信号「sin(2πft)」は、FET駆動部17に出力される。なお、信号発生部15は、本発明の「基本波生成手段」として機能するものである。
この高周波電源装置1では、エキシマランプ2に供給される高周波電力に含まれる高周波電流Iinvと、信号発生部15から出力されるディジタル信号としての正弦波状の基本波及び余弦波状の基本波とに基づいて、正弦波状の基本波又はこの信号に遅延時間補正を行った信号と、電流検出部13から出力される信号との位相差θ1を算出する。そして、その位相差θ1の目標位相差設定値との差分を算出し、その差分に応じて、信号発生部15から出力される基本波の周波数を制御するようにしている。この際、上述したように、信号発生部15からはディジタル信号の正確な基本波が出力される。
FET駆動部17は、信号発生部15から出力される正弦波状の基本波に基づいて、スイッチ部12の第1ないし第4スイッチ素子S1〜S4をスイッチング駆動させるための第1及び第2制御信号V1,V2を生成し、それら第1及び第2制御信号V1,V2を第1ないし第4スイッチ素子S1〜S4に対して出力するものである。具体的には、FET駆動部17は、基本波(正弦波状信号)を正方向の信号と負方向の信号とに分離し、それぞれを正方向の矩形波信号及び負方向の矩形波信号として生成し、正方向の矩形波信号を第1制御信号V1として、負方向の矩形波信号を第2制御信号V2としてそれぞれ取り扱う。もちろん、第2制御信号V2は、必要に応じて極性を反転させ、正方向の信号としてスイッチ部12に入力される。なお、FET駆動部17は、第1及び第2制御信号V1,V2を連続して出力するように構成してもよいし、第1及び第2制御信号V1,V2を、所定の間隔を空けて出力するように構成してもよい。
ここで、スイッチ部12から出力される高周波電圧Vinvの出力周波数は、FET駆動部17で生成される第1及び第2制御信号V1,V2によって、すなわち、信号発生部15からFET駆動部17に出力される基本波(正弦波状信号)が有する周波数によって、決定されることになる。したがって、周波数制御部16が、スイッチ部12から出力される高周波電圧Vinvの出力周波数を制御することになる。
また、上記高周波電源装置1においては、スイッチ部12における第1ないし第4スイッチ素子S1〜S4のスイッチング損失を低減させるために、スイッチ部12から出力される高周波電圧Vinvと、トランスTの一次巻線側に流れる高周波電流Iinvとの位相差は、可能な限り小さいことが望ましいとされる。なお、実際には、電圧位相に対する電流位相は、若干遅れ気味になることが望ましいとされる。
すなわち、高周波電圧Vinvと高周波電流Iinvとの位相差は、電圧位相に対する電流位相が若干遅れ気味になる所定値に制御されるのが望ましい。そのために、高周波電圧Vinvと高周波電流Iinvとを検出し、両者の位相差が所定値になるように高周波電源装置1の出力周波数を制御するのであるが、本実施形態では、高周波電圧Vinvの検出信号に代えて、信号発生部15の出力信号を用いている。その結果、位相差を得るために用いる電圧信号と電流信号のうち、電圧信号を高調波成分が含まれない基本波のみの信号とすることができ、後述するような演算を行うことによって位相差θ1を算出することが可能となる。また、高周波電圧Vinvを検出する検出器が不要となる。
ただし、電流検出部13の出力信号には、例えば、ADコンバータ等における信号処理によって遅延時間が生じるので、単純には、信号発生部15の出力信号と比較できない。そのため、電流検出部13の出力信号と信号発生部15の出力信号との時間差を調整するために、後述する遅延時間補正部20によって、信号発生部15の出力信号に所定の時間だけ遅延時間補正を行っている。もちろん、遅延時間が無視できるほど短い場合は、遅延時間補正部20による遅延時間補正を行わなくてもよい。
図3は、位相差検出部14の内部構成と位相差検出部14の周辺構成とを示す図である。位相差検出部14は、遅延時間補正部20と、第1及び第2乗算器21,22と、第1及び第2ローパスフィルタ23,24と、ベクトル/位相変換部25と、演算器26とによって構成されている。
遅延時間補正部20は、信号発生部15から出力される基本波を所定時間だけ遅延させるものである。この場合、所定時間は、例えば電流検出部13のADコンバータ等における信号処理の遅延時間に相当する時間とされる。遅延時間補正部20では、信号発生部15から出力された、正弦波状の基本波(例えば「sin(2πft)」)及び余弦波状の基本波(例えば「cos(2πft)」)がそれぞれ所定時間遅延され、第1乗算器21及び第2乗算器22にそれぞれ出力される。ここで、遅延時間補正部20で遅延され出力される基本波は、例えば下式に示す数式で表される。
Figure 2008109815
数式1において、tdは電流検出部13等における遅延時間を示す。なお、遅延時間が無視できるほど短い場合は、遅延時間補正部20による遅延時間補正を行わなくてもよい。その場合は、td=0にするか、遅延時間補正部20を設けなくてもよい。
第1乗算器21は、電流検出部13で検出された高周波電流Iinvと、遅延時間補正部20において遅延された正弦波状の基本波(sin[2πf(t−td)])とを乗算するものである。この乗算によって、電流検出部13で検出された高周波電流Iinvのうちの基本波成分が、直流と他の周波数(基本波の周波数を2倍にした周波数)とに変換される。ここで、電流検出部13で検出された高周波電流Iinvは、例えば数式2で表される。
Figure 2008109815
数式2において、|In|は高周波電力に含まれるn(nは奇数)次高調波の電流の振幅を示し、θnはn次高調波の電圧に対する電流の位相を示すものである。
なお、第1乗算器21の出力は、例えば数式3で表される信号となる。
Figure 2008109815
また、第2乗算器22は、電流検出部13で検出された高周波電流Iinvと、遅延時間補正部20において遅延された余弦波状の基本波(cos[2πf(t−td)])とを乗算するものである。この乗算によって、電流検出部13で検出された高周波電流Iinvのうちの基本波成分が、直流と他の周波数(基本波の周波数を2倍にした周波数)とに変換される。
なお、第2乗算器22の出力は、例えば数式4で表される信号となる。
Figure 2008109815
第1ローパスフィルタ23は、第1乗算器21からの出力信号のうち直流成分のみを通過させるものである。この第1ローパスフィルタ23の出力は、例えば数式5で表される信号となる。したがって、第1ローパスフィルタ23によって、第1乗算器21からの出力信号における直流成分以外の成分を除去することができる。
Figure 2008109815
第2ローパスフィルタ24は、第2乗算器22からの出力信号のうち直流成分のみを通過させるものである。この第2ローパスフィルタ24の出力は、例えば数式6で表される信号となる。したがって、第2ローパスフィルタ24によって、第2乗算器22からの出力信号における直流成分以外の成分を除去することができる。
Figure 2008109815
ベクトル/位相変換部25は、第1ローパスフィルタ23及び第2ローパスフィルタ24の出力に基づいて、位相差θ1を算出するものである。この場合、位相θ1は、次式に基づいて算出される。
Figure 2008109815
数式7によって算出された位相差θ1の値は、演算器26に出力される。
演算器26は、予め定める目標位相差設定値を入力し、この目標位相差設定値と、ベクトル/位相変換部25からの位相差θ1との差分を算出するものである。演算器26は、算出された位相差θ1と目標位相差設定値との差分を周波数制御部16に出力する。位相差θ1と目標位相差設定値との差分が入力された周波数制御部16は、その差分に基づいて信号発生部15で生成される基本波の周波数を制御する。
なお、上記実施形態では、電流検出部13を、スイッチ部12とトランスTとの間に設けた場合の説明をした。すなわち、電流検出部13によって、スイッチ部12の出力端近傍における高周波電流を検出する例を示した。しかし、これに限定されるものではなく、例えば、電流検出部13を、トランスTとエキシマランプ2との間に設けてもよい(図示略)。この場合、電流検出部13は、放電負荷であるエキシマランプ2に供給される高周波電流を検出することになる。しかし、この場合は、電流検出部13を、高電圧又は高電流に耐えられる構成にする必要がある。
次に、高周波電源装置1の動作を説明する。
この高周波電源装置1の電源が投入されると、周波数制御部16では、入力された初期周波数の信号が信号発生部15に出力される。信号発生部15では、周波数制御部16からの周波数信号に基づく基本波(「sin(2πft)」及び「cos(2πft)」)が生成される。信号発生部15で生成された基本波のうち正弦波状の基本波(sin(2πft))は、FET駆動部17に出力される。なお、FET駆動部17に出力される正弦波状の基本波は、遅延時間補正部20で遅延処理が行われる前のものである。
FET駆動部17では、信号発生部15から出力される正弦波状の基本波に基づいて、スイッチ部12に出力する第1及び第2制御信号V1,V2が生成され、生成された第1及び第2制御信号V1,V2は、スイッチ部12に出力される。
スイッチ部12では、FET駆動部17から出力される第1及び第2制御信号V1,V2に基づいて、第1及び第4スイッチ素子S1,S4並びに第2及び第3スイッチ素子S2,S3が交互にオン、オフ動作(スイッチング動作)される。
これにより、直流電源部11から供給される直流電源Vdcがスイッチングされ、高周波電圧VinvとしてトランスTの一次巻線側に供給される。高周波電圧Vinvは、トランスTにおいて電圧変換され、高周波電力としてエキシマランプ2に供給される。このとき、高周波電圧Vinvは、リアクトルLとエキシマランプ2の容量成分とによって矩形波状の信号から正弦波状の信号に変換される。
また、スイッチ部12から高周波電圧VinvがトランスTに供給されると、電流検出部13では、高周波電流Iinv(数式2参照)が検出される。電流検出部13で検出された高周波電流Iinvは、アナログ−ディジタル変換された後、ディジタル信号として位相差検出部14に出力される。
一方、信号発生部15において生成された正弦波状の基本波「sin(2πft)」及び余弦波状の基本波「cos(2πft)」は、ともに位相差検出部14の遅延時間補正部20に出力され、遅延時間補正部20において所定時間遅延される。
遅延時間補正部20において所定時間遅延された正弦波状の基本波「sin[2πf(t−td)]」と余弦波状の基本波「cos[2πf(t−td)]」は、それぞれ第1乗算部21及び第2乗算部22に出力される。第1乗算部21及び第2乗算部22では、上記基本波が電流検出部13においてアナログ−ディジタル変換された高周波電流Iinvと乗算される。
すなわち、第1乗算部21において、遅延された正弦波状の基本波と高周波電流Iinvとが乗算される。第2乗算部22において、遅延された余弦波状の基本波と高周波電流Iinvとが乗算される。
第1乗算部21の出力(数式3参照)は、第1ローパスフィルタ23において直流成分のみが通過する。第2乗算部22の出力(数式4参照)は、第2ローパスフィルタ24において直流成分のみが通過する。
第1ローパスフィルタ23の出力(数式5参照)及び第2ローパスフィルタ24の出力(数式6参照)は、ベクトル/位相変換部25に入力され、ベクトル/位相変換部25において位相差θ1が算出される。
ベクトル/位相変換部25の出力(位相差θ1)は、演算器26に入力され、演算器26では、位相差θ1の値から目標位相差設定値が差し引かれるといった演算が行われる。位相差θ1と目標位相差設定値との差分は、周波数制御部16に出力され、周波数制御部16では、この差分に応じて信号発生部15に出力される周波数の値を変化させる。信号発生部15では、周波数制御部16から出力された周波数の値に基づいて、その周波数を有する基本波を出力する。
FET駆動部17は、信号発生部15から出力される基本波に基づいてスイッチ部12に出力する第1及び第2制御信号V1,V2を制御する。スイッチ部12では、第1及び第2制御信号V1,V2に基づいて第1及び第4スイッチ素子S1,S4並びに第2及び第3スイッチ素子S2,S3が交互にオン、オフ動作(スイッチング動作)される。これにより、スイッチ部12から出力される高周波電圧Vinvの周波数が決定され、すなわち、エキシマランプ2に供給される高周波電力の周波数が決定される。
以上のように、本実施形態では、高周波電圧Vinvと高周波電流Iinvとの位相差に相当する位相差として、信号発生部15から出力される正弦波信号又はこの信号に遅延時間補正を行った信号と高周波電流Iinvをディジタル信号に変換した信号との位相差θ1を算出している。そして、算出した位相差θ1に基づいて高周波電源装置の周波数制御を行うようにしている。
この位相差θ1を算出する過程において、高周波電圧Vinvを用いるのではなく、信号発生部15から出力される2つの信号(正弦波信号及び余弦波信号)又はこれらの信号に遅延時間補正を行った信号を用いているところに本実施形態の特徴がある。すなわち、高周波電圧Vinvと高周波電流Iinvとの位相差を、単に算出するのでは、高周波電圧Vinv及び高周波電流Iinvの両方に、基本波以外の高調波成分が含まれているので、精度のよい位相差を算出することができない。
そこで、高周波電圧Vinvに代えて、信号発生部15から出力される高調波成分を含まない2つの基本波(正弦波信号及び余弦波信号)を用い、上記のような演算処理を行うことによって、位相差θ1を算出している。この演算処理を行うと、たとえ、高周波電流Iinvに高調波成分が含まれていても、高調波成分の影響を排除できるので、精度良く位相差θ1を算出することができる。そのため、高周波電源装置の周波数制御を精度良く行うことができ、ひいては、スイッチング効率の低下を抑制することができる。
また、算出された位相差θ1は、高周波電圧Vinvと高周波電流Iinvとの位相差に相当するものである。すなわち、実際には、高周波電圧Vinvを直接検出していないが、信号発生部15の出力信号を高周波電圧Vinvの代用とすることができるので、高周波電圧Vinvを検出するための検出器を不要とすることができる。
もちろん、この発明の範囲は上述した実施の形態に限定されるものではない。例えば、上記実施形態で説明したブロック構成及び回路は一例であり、同一機能を有するものであれば、他のブロック構成及び回路が適用されてもよい。
また、上記実施形態では、エキシマランプに高周波電力を供給する高周波電源装置を例にして説明したが、高周波電力を供給する対象はこれに限らず、例えば、プラズマ放電を利用するスパッタリング装置、エッチング装置、又はCDV装置等に適用するようにしてもよい。
本発明に係る高周波電源装置の概略構成を示す図である。 直流電源部及びスイッチ部の構成を示す図である。 位相差検出部の内部構成と位相差検出部の周辺構成とを示す図である。 従来の高周波電源装置の構成を示す図である。
符号の説明
1 高周波電源装置
2 エキシマランプ
11 直流電源部
12 スイッチ部
13 電流検出部
14 位相差検出部
15 信号発生部
16 周波数制御部
17 FET駆動部
20 遅延時間補正部
21 第1乗算器
22 第2乗算器
23 第1ローパスフィルタ
24 第2ローパスフィルタ
25 ベクトル/位相変換部
26 演算器

Claims (3)

  1. 高周波電流を放電負荷に供給する高周波電源装置であって、
    指令値として入力される指令周波数と同一の周波数を有する基本波としての2つのディジタル信号を生成する基本波生成手段と、
    前記基本波生成手段によって生成されるディジタル信号の1つに基づいて、指令周波数と同一の周波数でスイッチングを行い、直流電圧を交流電圧に変換して出力することによって、前記放電負荷に供給される高周波電流の発生源となるスイッチ手段と、
    前記放電負荷に供給される高周波電流あるいは前記放電負荷に供給される高周波電流に相当する高周波電流を検出し、検出された高周波電流をディジタル信号に変換して出力する電流検出手段と、
    前記基本波生成手段によって生成されるディジタル信号又はこの信号に遅延時間補正を行ったディジタル信号と、前記電流検出手段から出力されるディジタル信号との位相差を算出し、算出された位相差と予め定める目標位相差設定値との差分を算出する差分算出手段と、
    前記差分算出手段によって算出された、前記位相差と前記目標位相差設定値との差分に基づいて指令周波数を算出し、算出した指令周波数を前記基本波生成手段の指令値として出力する周波数制御手段と、
    を備えることを特徴とする、高周波電源装置。
  2. 前記基本波生成手段は、
    前記指令周波数と同一の周波数を有する基本波としての正弦波ディジタル信号を生成する正弦波生成部と、
    前記指令周波数と同一の周波数を有する基本波としての余弦波ディジタル信号を生成する余弦波生成部と、によって構成され、
    前記差分算出手段は、
    前記正弦波生成部によって生成された正弦波ディジタル信号又はこの信号に遅延時間補正を行ったディジタル信号と、前記電流検出手段から出力されるディジタル信号とを乗算する第1乗算部と、
    前記余弦波生成部によって生成された余弦波ディジタル信号又はこの信号に遅延時間補正を行ったディジタル信号と、前記電流検出手段から出力されるディジタル信号とを乗算する第2乗算部と、
    前記第1乗算部の出力のうち所定の成分のみを通過させる第1フィルタ部と、
    前記第2乗算部の出力のうち所定の成分のみを通過させる第2フィルタ部と、
    前記第1フィルタ部の出力と前記第2フィルタ部の出力とに基づいて、前記基本波生成手段によって生成された正弦波ディジタル信号又はこの信号に遅延時間補正を行ったディジタル信号と、前記電流検出手段から出力されるディジタル信号との位相差を算出する位相差算出部と、
    前記位相算出部の出力と予め定める目標位相差設定値との差分を算出する差分算出部と、によって構成されている、請求項1に記載の高周波電源装置。
  3. 前記正弦波生成部と前記第1乗算部との間、及び前記余弦波生成部と前記第2乗算部との間には、前記電流検出手段における遅延時間を補正可能にするための遅延時間補正手段が介装されている、請求項2に記載の高周波電源装置。
JP2006291989A 2006-10-27 2006-10-27 高周波電源装置 Active JP4823851B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291989A JP4823851B2 (ja) 2006-10-27 2006-10-27 高周波電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291989A JP4823851B2 (ja) 2006-10-27 2006-10-27 高周波電源装置

Publications (2)

Publication Number Publication Date
JP2008109815A true JP2008109815A (ja) 2008-05-08
JP4823851B2 JP4823851B2 (ja) 2011-11-24

Family

ID=39442723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291989A Active JP4823851B2 (ja) 2006-10-27 2006-10-27 高周波電源装置

Country Status (1)

Country Link
JP (1) JP4823851B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295556A (ja) * 2008-06-09 2009-12-17 Ushio Inc 放電ランプ装置
JP2012508890A (ja) * 2008-11-13 2012-04-12 ペトローリアム アナライザー カンパニー,エルピー サンプルまたはサンプル成分の分析システム、およびこのシステムの製造方法および使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284736A (ja) * 1993-03-31 1994-10-07 Kubota Corp 誘導融着用電源装置
JPH07151681A (ja) * 1993-11-30 1995-06-16 Anritsu Corp ガス濃度測定装置
JPH0831585A (ja) * 1994-07-15 1996-02-02 Ushio Inc 誘電体バリア放電装置
JPH08266064A (ja) * 1995-03-23 1996-10-11 Okuma Mach Works Ltd インバータの制御装置
JPH10201099A (ja) * 1997-01-16 1998-07-31 Shinko Electric Co Ltd アクティブフィルタ
JP2004031058A (ja) * 2002-06-25 2004-01-29 Ushio Inc エキシマランプを使った発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284736A (ja) * 1993-03-31 1994-10-07 Kubota Corp 誘導融着用電源装置
JPH07151681A (ja) * 1993-11-30 1995-06-16 Anritsu Corp ガス濃度測定装置
JPH0831585A (ja) * 1994-07-15 1996-02-02 Ushio Inc 誘電体バリア放電装置
JPH08266064A (ja) * 1995-03-23 1996-10-11 Okuma Mach Works Ltd インバータの制御装置
JPH10201099A (ja) * 1997-01-16 1998-07-31 Shinko Electric Co Ltd アクティブフィルタ
JP2004031058A (ja) * 2002-06-25 2004-01-29 Ushio Inc エキシマランプを使った発光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295556A (ja) * 2008-06-09 2009-12-17 Ushio Inc 放電ランプ装置
JP2012508890A (ja) * 2008-11-13 2012-04-12 ペトローリアム アナライザー カンパニー,エルピー サンプルまたはサンプル成分の分析システム、およびこのシステムの製造方法および使用方法

Also Published As

Publication number Publication date
JP4823851B2 (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
US8094473B2 (en) Bridgeless power factor correction circuit
US20070103092A1 (en) Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator
JP5193086B2 (ja) 放電セル放電回路及び放電セル放電回路制御システム
KR101028050B1 (ko) 스퍼터링 방법 및 스퍼터링 장치
JP2008135329A (ja) 除電装置
US8674619B2 (en) High frequency power supply device
JP2014075928A (ja) 直流電源装置およびその制御方法
JP2010114001A (ja) プラズマ発生用電源装置
JP4823851B2 (ja) 高周波電源装置
WO2011065370A1 (ja) パルス電圧を利用する高電圧印加装置および当該高電圧印加方法
KR101128768B1 (ko) 고주파전원장치
JP4881080B2 (ja) 正弦波状に振幅変調された駆動電圧を形成する装置、照明装置、および正弦波状に振幅変調された駆動電圧を形成する方法
JP2008171640A (ja) 放電灯点灯回路
JP4757631B2 (ja) 可変周波数増幅器
US20170064802A1 (en) Direct three phase parallel resonant inverter for reactive gas generator applications
JP4985626B2 (ja) 正弦波発生装置
WO2021161674A1 (ja) 高周波電源装置及びその出力制御方法
JP2006079983A (ja) 放電灯点灯装置
JP4970884B2 (ja) 放電検出装置およびそれを備えた高周波電源装置
JP2015097433A (ja) 高周波電源
JP6400276B2 (ja) 高周波電源装置
JP2001086758A (ja) 圧電トランスの駆動方法及びその装置
JP4231713B2 (ja) 排ガス浄化装置
JP2018088819A (ja) 高周波電源
JP6474985B2 (ja) 高周波電源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4823851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250