JP2008095662A - 空燃比制御装置 - Google Patents

空燃比制御装置 Download PDF

Info

Publication number
JP2008095662A
JP2008095662A JP2006281647A JP2006281647A JP2008095662A JP 2008095662 A JP2008095662 A JP 2008095662A JP 2006281647 A JP2006281647 A JP 2006281647A JP 2006281647 A JP2006281647 A JP 2006281647A JP 2008095662 A JP2008095662 A JP 2008095662A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281647A
Other languages
English (en)
Other versions
JP4609407B2 (ja
Inventor
Keiichiro Aoki
圭一郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006281647A priority Critical patent/JP4609407B2/ja
Publication of JP2008095662A publication Critical patent/JP2008095662A/ja
Application granted granted Critical
Publication of JP4609407B2 publication Critical patent/JP4609407B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】異なる燃料性状の燃料を使用できる内燃機関について、専用の燃料センサを設置することなく燃料性状を判定する。
【解決手段】この発明において空燃比制御装置は、ガソリン及びガソリン以外の燃料を燃料として使用できる内燃機関の空燃比を制御する。この空燃比制御装置は、空燃比センサのセンサ出力に応じて内燃機関に使用されている燃料の燃料性状を判定することができる。燃料性状の判定を行っている間、内燃機関の空燃比を目標空燃比に制御する性状判定時空燃比制御手段を備え、燃料性状判定の完了後、正電圧の印加中に検出される空燃比センサのセンサ出力に基づいて、判定された燃料性状に応じた空燃比制御が行われる。
【選択図】図6

Description

この発明は、空燃比制御装置に関する。更に好適には、ガソリン以外の代替燃料を使用可能な内燃機関の空燃比制御装置に関する。
特開平4−362242号公報には、内燃機関の燃料として、ガソリンに加えてアルコール燃料を使用できる内燃機関の制御システムが開示されている。この従来技術のシステムは、燃料タンクとインジェクタとの間の燃料供給経路に、燃料中のアルコール濃度を検出するためのアルコール濃度センサを備えている。このシステムにおいて内燃機関を始動する際には、内燃機関の温度とアルコール濃度とを検出し、これに応じて内燃機関の始動が可能か否かの判定を行っている。
ところで、燃料としてガソリンにアルコールを含む場合、低温時やアルコールを補充したときなど、燃料タンク内や燃料供給経路内でガソリンとアルコールとが分離した状態となっている場合がある。この状態で内燃機関を始動した場合、内燃機関の始動後に燃料供給経路内のアルコール濃度が変化する。このため、内燃機関の始動時に検出されたアルコール濃度が、内燃機関始動後の実際の燃料中のアルコール濃度とは異なるものとなる場合がある。従って、内燃機関の始動時のアルコール濃度に基づく始動の判定には誤判定が生じることが考えられる。
このような誤判定を防止するため従来技術のシステムは、内燃機関の始動時におけるアルコール濃度検出の際、まず、スタータモータへの通電を禁止し燃料タンク中に配置されたポンプを作動させて燃料供給経路に燃料を循環させた状態で、アルコール濃度センサによりアルコール濃度の検出を繰り返し行う。そしてアルコール濃度を検出する度に、前回検出されたアルコール濃度と今回検出されたアルコール濃度との差を求め、この差が判定値よりも小さくなった場合に、アルコールとガソリンとが均一に混合されたものと判断する。この時点でのアルコール濃度が実際の燃料のアルコール濃度として検出され、スタータモータへの通電開始及び燃料噴射実行が許可される。また、アルコール濃度と内燃機関の温度により内燃機関の始動判定等の制御が行われる。
特開平4−362242号公報 特開平5−209549号公報 特開平7−197837号公報
上記従来技術のシステムによれば、内燃機関の始動時に、ガソリンとアルコールとが十分に混合された状態となった後、アルコール濃度を適切に検出することができる。しかし、アルコール濃度の検出のためには、燃料供給経路中に専用のアルコール濃度センサを設置する必要がある。また始動時アルコール濃度を検出している間スタータモータへの通電が禁止され、内燃機関の始動を開始させることができず、始動性が低下することが考えられる。
また、上記従来技術のシステムのようにアルコールを含有する燃料を用いる場合、その燃料の理論空燃比はガソリンの理論空燃比とは異なるものとなる。従って、ガソリンを燃料とした場合に用いる排気ガスセンサをそのまま用いるだけでは、その燃料に応じて正確な排気ガスの空燃比を検出し、燃料性状に応じた空燃比制御を行うことは困難である。この点、上記従来技術のシステムはアルコール濃度を検出するのみで、検出されたアルコール濃度に応じて空燃比を検出し空燃比制御を行うことについて寄与するものではない。
この発明は、上述のような課題を解決するためになされたもので、燃料性状を判定するための専用のセンサを別途設けることなく燃料性状を検出し、これに応じて空燃比制御を行うことができるように改良した空燃比制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、ガソリン及びガソリン以外の燃料を燃料として使用できる内燃機関の空燃比を制御する空燃比制御装置であって、
前記内燃機関の排気通路に配置された空燃比センサの、大気側電極と排気側電極との間に、排気ガスの空燃比を検出するための正電圧を印加する正電圧印加手段と、
前記空燃比センサのセンサ出力を検出するセンサ出力検出手段と、
前記空燃比センサのセンサ出力に応じて、前記内燃機関に使用されている燃料の燃料性状を判定する燃料性状判定手段と、
前記燃料性状の判定を行っている間、前記内燃機関の空燃比を目標空燃比に制御する性状判定時空燃比制御手段と、
前記燃料性状判定が完了したか否かを判定する完了判定手段と、
前記燃料性状判定の完了が認められた場合に、前記正電圧の印加中に検出されるセンサ出力に基づいて、判定された前記燃料性状に応じて、空燃比制御を行う空燃比制御手段と、
を備えることを特徴とする。
第2の発明は、第1の発明において、前記燃料は、ガソリン又はアルコール又はガソリンとアルコールとの混合燃料であって、
前記性状判定時空燃比制御手段は、前記目標空燃比を理論空燃比とし、
前記燃料性状判定手段は、
前記正電圧の印加中に検出されるセンサ出力の、理論空燃比に対するセンサ出力の演算値に対するバラツキを検出するバラツキ検出手段と、
前記バラツキに応じて、前記燃料中のアルコール含有率を検出するアルコール含有率検出手段と、
を備えることを特徴とする。
第3の発明は、第1の発明において、前記燃料性状判定の完了が認められない場合に、前記空燃比センサの両電極間に、前記正電圧よりも大きな大電圧を印加する大電圧印加手段を、更に備え、
前記燃料は、ガソリン又はアルコール又はガソリンとアルコールとの混合燃料であって、
前記性状判定時空燃比制御手段は、前記目標空燃比を理論空燃比とし、
前記燃料性状判定手段は、前記大電圧の印加中に検出されるセンサ出力に応じて、前記燃料中のアルコール含有率を検出するアルコール含有率検出手段を備えることを特徴とする。
第4の発明は、第1から第3のいずれかの発明において、
前記燃料性状が判定された場合に、判定された前記燃料性状に応じて、前記正電圧印加状態で検出されるセンサ出力と空燃比との関係を定めたマップを選択するマップ選択手段と、
前記正電圧印加中に検出されるセンサ出力に応じて、前記選択されたマップに従って、空燃比を検出する空燃比検出手段と、を更に備え、
前記空燃比制御手段は、前記燃料性状判定の完了が認められた場合に、前記空燃比に応じて空燃比制御を行うことを特徴とする。
第5の発明は、第1から第4のいずれかの発明において、前記空燃比センサの両電極間に電圧を印加しない状態で、前記空燃比センサの両電極間に発生する起電力を検出する起電力検出手段を備え、
前記性状判定時空燃比制御手段は、前記起電力に応じて空燃比制御を行うことを特徴とする。
第6の発明は、第5の発明において、
前記空燃比センサに、前記空燃比センサのセンサ素子の素子インピーダンスを検出するための、インピーダンス検出用電圧を印加するインピーダンス検出用電圧印加手段と、
前記インピーダンス検出用電圧の印加中に検出されるセンサ出力に応じて、前記素子インピーダンスを検出する素子インピーダンス検出手段と、
前記燃料性状判定の完了が認められない場合に、前記素子インピーダンスに基づいて、前記空燃比センサのセンサ素子の温度が第1活性温度に達したか否かを判定する第1素子温判定手段と、
前記燃料性状判定の完了が認められた場合に、前記素子インピーダンスに基づいて、前記センサ素子の温度が第2活性温度に達したか否かを判定する第2素子温判定手段と、
を、更に備え、
前記起電力検出手段は、前記センサ素子の温度が前記第1活性温度に達したと認められた場合に、前記起電力の検出を行い、
前記空燃比制御手段は、前記センサ素子の温度が前記第2活性温度に達したと認められた場合に、前記正電圧印加中のセンサ出力に応じた空燃比制御を行うことを特徴とする。
第1の発明によれば、ガソリン及びガソリン以外の燃料を燃料として使用できる内燃機関の空燃比を目標空燃比になるように制御しつつ、内燃機関の排気通路に配置された空燃比センサの出力に応じて、内燃機関に使用されている燃料の燃料性状を判定することができる。また、燃料性状判定の完了後は、空燃比センサの正電圧の印加中に検出されるセンサ出力に基づいて、判定された燃料性状に応じて空燃比制御が行われる。これにより、燃料性状のための専用のセンサを設置する必要がなく、より簡易なシステムで、始動性の低下を防ぎつつ燃料性状を判定することができる。また、燃料性状判定の間の空燃比制御が確保され、かつ、燃料性状判定完了後は、その燃料性状に応じて空燃比センサを用いた空燃比制御が行われる。これにより、ガソリン以外の燃料を用いる内燃機関においても、排気エミッション特性の改善を図ることができる。
第2の発明によれば、空燃比が理論空燃比に制御されている状態で、正電圧印加中に検出されるセンサ出力の、理論空燃比に対応するセンサ出力に対するバラツキを検出し、このバラツキの分析によりアルコール含有率を判定することができる。従って、専用のセンサを設置することなく、空燃比センサを利用して燃料性状を判定することができる。
第3の発明によれば、空燃比が理論空燃比に制御されている状態で、正電圧よりも大きな大電圧を印加してセンサ出力を検出する。このセンサ出力により、燃料中のアルコール含有率を検出することができる。従って、専用のセンサを設置することなく、空燃比センサを利用して、ガソリンとアルコールとの混合燃料中のアルコール濃度を確実に検出して燃料性状を判定することができる。
第4の発明によれば、判定された燃料性状に応じて、正電圧印加中のセンサ出力と空燃比との関係を定めたマップを選択し、このマップに従って空燃比を検出することができる。従って、燃料性状が変化しても、その燃料に応じた空燃比を検出することができ、より高い精度で空燃比制御を実現することができる。
第5の発明によれば、燃料性状判定の完了が認められない場合に、空燃比センサに電圧を印加しない状態で検出される起電力に応じて空燃比制御が行われる。ここで、空燃比センサの起電力は、燃料性状に関わらず、その空燃比が理論空燃比近傍で急激に変化し、理論空燃比に対して酸素過多な状態ではほぼ一定の低い値を示し、酸素不足の状態ではほぼ一定の高い値を示す。従って、起電力によれば、少なくとも現在の空燃比が酸素過多であるか酸素不足であるかを検知することができる。従って、燃料性状判定が完了するまでの燃料性状が明確にされていない状態においても、空燃比センサを利用して少なくとも理論空燃比近傍への空燃比制御を実現することができる。これにより、用いる燃料性状が変化する場合にも、燃料性状判定中の排気エミッション特性の改善を図ることができる。
第6の発明によれば、インピーダンス検出用電圧印加中に検出されるセンサ出力に応じて空燃比センサの素子インピーダンスを演算することができる。従って、空燃比センサに電圧を印加しない状態で起電力を検出しつつ、インピーダンス検出用電圧印加に切り替えることで、容易に素子インピーダンスを検出することができる。また、素子インピーダンスに応じてセンサ素子温が第1活性温度に達したと認められた場合に起電力の検出を行い、センサ素子の温度が第2活性温度に達したと認められた場合に正電圧の印加を行う。これにより、空燃比センサの素子温が、その使用状態に応じた活性温度により確実に制御され、より正確な空燃比センサの出力を得ることができる。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。
実施の形態1.
[実施の形態1の空燃比センサの構成]
図1は、この発明の実施の形態1における空燃比制御装置が搭載されるシステムの構造について説明するための模式図である。図1に示すシステムは、内燃機関10を備えている。内燃機関10の燃料としては、ガソリン、エタノール、あるいはガソリンとエタノールが混合された混合燃料が用いられる。内燃機関10は複数の気筒を備え、各気筒ごとに気筒に燃料を供給するインジェクタ(図示せず)が備えられている。各気筒のインジェクタには、燃料タンク12から上記のガソリン、エタノールあるいはこれらの混合燃料が供給される。
内燃機関10の排気系には排気通路16が備えられている。排気通路16には触媒18が設置されている。排気通路16の触媒18より上流側には、空燃比センサ20が取り付けられている。排気通路16の触媒18より下流側には、酸素センサ22が取り付けられている。
このシステムは、空燃比制御装置としてのECU(Electronic Control Unit)24を備えている。ECU24の入力側には、空燃比センサ20及び酸素センサ22等が接続され、これらのセンサからの出力がECU24に取り込まれて、燃料性状や空燃比等に関する情報が検出される。またECU24の出力側からは必要な制御信号が発せられ、これにより内燃機関10の運転に必要な制御が行われる。
[空燃比センサの駆動回路]
図2は、この発明の実施の形態1において、空燃比センサ20に接続され、空燃比センサ20を駆動する駆動回路を説明するための回路図である。図2に示す駆動回路30は、空燃比センサ20に適当な電圧を供給するための印加電圧操作部32を備えている。印加電圧操作部32には、スイッチング回路34、36のそれぞれが、供給された電圧を一定に制御するフィードバック回路を介して接続されている。スイッチング回路34には陽極端子38が接続されている。スイッチング回路36には負極端子40が接続されている。空燃比センサ20の大気側電極(図示せず)は陽極端子38に接続され、排気側電極(図示せず)は負極端子40に接続される。
スイッチング回路34、36は、ECU24の出力ポート(図示せず)に接続されている。ECU24は制御信号を発し、スイッチング回路34及び36のスイッチSW1、SW2の接続を切り替える。スイッチング回路34及び36のスイッチがSW1側に切り替えられ、SW1がONとされると、陽極端子38の電位と負極端子40の電位とは、それぞれ印加電圧操作部32から供給される電圧に維持される。
具体的に、印加電圧操作部32は、陽極端子38を陽極基準電位(例えば3.3V)とし、負極端子40を負極基準電位(例えば2.9V)とする電圧を供給することができる。陽極端子38及び負極端子40がこれらの基準電位に維持された状態では、陽極端子38と負極端子40との間に空燃比検出用の正電圧が印加される。つまり、各端子38、40に空燃比センサ20の各電極が接続されている状態では、空燃比センサ20に正電圧が印加される。このときの陽極端子38の電位がAD1に導かれる。ECU24は、AD1に導かれる電位を取り込むことで、正電圧を印加した場合に空燃比センサ20の両電極間に生じるセンサ出力電圧[V]及び、空燃比センサ20に正電圧を印加した場合に流れるセンサ電流を検出することができる。
また、印加電圧操作部32は、陽極端子38及び負極端子40間に、空燃比検出用の正電圧に交流電圧を重畳した電圧を供給することができる。これにより、空燃比センサ20の各電極間にはインピーダンス検出用電圧が印加される。ECU24は、AD1からの出力に基づいてセンサ電流を検出し、更にこのセンサ電流に基づいて素子インピーダンスを検出することができる。素子インピーダンスは空燃比センサ20のセンサ素子の温度(素子温)と相関を有する。従って、素子インピーダンスに基づいて素子温を検知し、あるいは素子インピーダンスに応じて素子温の制御等を行うことができる。
一方、スイッチング回路34、36のスイッチがSW2側に切り替えられ、SW2がONとされると、陽極端子38と負極端子40との間に印加される電圧、すなわち空燃比センサ20への印加電圧はゼロとなる。この電圧印加OFFの状態では、負極端子40はアースされ、陽極端子はECU24のAD2に接続される。その結果、AD2には空燃比センサ20に発生する起電力が導かれる。ECU24はAD2の出力を取り込むことで、空燃比センサ20の電圧印加OFF時の起電力を検出することができる。
[燃料性状に応じた空燃比検出について]
図3は、この発明の実施の形態1において、空燃比センサ20に正電圧が印加された場合の空燃比センサ20の出力と、排気ガスの空燃比との関係を表す図である。図3において、横軸は空燃比を表し、縦軸はセンサ電流を表している。また、図3の実線(a)は内燃機関10の燃料としてガソリンを用いた場合のセンサ電流を表し、点線(b)は内燃機関10の燃料としてエタノール100%の燃料を用いた場合のセンサ電流を表している。
空燃比センサ20の両電極間に正電圧を印加すると、両電極間には排気ガス中の酸素濃度に応じたセンサ電流が流れる。通常ECU24には、実線(a)に示すような、ガソリンを燃料とした場合のセンサ電流と空燃比との関係を定めたマップが記憶されている。燃料としてガソリンを用いている場合には、ECU24に取り込まれた空燃比センサ20の出力(センサ電流)に応じて、このマップに従って空燃比が検出され、空燃比に基づいて燃料噴射量の演算等が行われることとなる。
ここで、正電圧印加時に検出されるセンサ電流は、排気ガス中の酸素濃度に応じたものである。しかし、排気ガス中の酸素濃度に対する空燃比は、燃料性状ごとに異なるものとなる。従って、センサ電流と空燃比との関係も、燃料性状ごとにそれぞれ異なるものとなる。
具体的に、例えば、図3の点線(b)に示すように、エタノール100%の場合のセンサ電流と空燃比との関係は、ガソリンの場合(実線(a))とは異なっている。ここで、エタノール100%の場合、理論空燃比A/F=9である。図3において示されるエタノール100%におけるセンサ電流に対する空燃比(点線(b))は、ガソリンの場合の空燃比(実線(a))を、センサ電流が0[mA]の場合に算出される空燃比が9となる位置まで横軸に平行にシフトしたものに近似した値となる。ただし、特に理論空燃比よりリッチ側の領域では出力特性の傾きは、ガソリンの場合とエタノールの場合とで異なる傾向がみられ、エタノールの出力特性のグラフ(点線(b))は、ガソリンの出力特性のグラフ(実線(a))を平行にシフトしたものと完全に一致するものではない。
このようなセンサ電流に対する空燃比の特性は、燃料性状ごとに異なるものとなる。例えば、ガソリンとエタノールとを混合した燃料では、エタノールの混合率が大きくなるに連れて、センサ電流に対応する空燃比は小さくなる。
上記のように、このシステムでは燃料としてガソリン、エタノール、あるいはこれらの混合燃料を用いられ、また、燃料中のエタノールの含有率は0%〜100%の間で適宜選択され変更する。このため、ECU24には、センサ電流と空燃比との関係を定めたマップが、燃料性状(エタノールの含有率)ごとに記憶されている。内燃機関10の始動時等に、燃料が充填、補充等されて、燃料中の燃料性状が異なるものとなった場合、燃料性状が検出され、その燃料のエタノール含有率に応じたセンサ電流と空燃比との関係を定めたマップに切り替えられる。このように燃料性状に応じたマップに切り替えることで、空燃比センサ20のセンサ電流に基づいて、その燃料性状に合致した空燃比を算出することができる。
[マップ切り替えまでの空燃比制御について]
上記のように、ガソリン以外の燃料が用いられる場合であっても、その燃料性状が判定されれば、空燃比センサ10は燃料性状に応じてマップを切り替えることで、センサ電流に基づいて空燃比を検出することができる。しかし、このようにマップの切り替えを行うためには、燃料性状が変化するたびに内燃機関10の燃料性状を判定する処理が必要となる。
燃料性状は、後述する手法により空燃比センサ20の出力に基づいて検出することができる。しかし燃料性状の正確な検出を瞬時に行うことは困難であり、ある程度の時間が必要となる。この燃料性状判定までの間は空燃比センサ20のセンサ電流と空燃比との関係が特定できないため、空燃比センサ20の出力に基づく空燃比を検出することができない。しかし、排気エミッション特性向上等のためには、燃料性状判定の間であっても、空燃比制御を行えるようにすることが好ましい。
そこで、実施の形態1のシステムでは、燃料性状が変化した後、燃料性状が正しく判定されるまでの間、電圧印加OFFとして空燃比センサ20の起電圧を検出する。図4は、空燃比センサ20の起電力と空燃比との関係を表す図である。図4において横軸は空燃比を表し、縦軸はセンサ出力(起電力)[V]を表している。図4において、実線(a)は燃料がガソリン100%の場合の起電力を表し、点線(b)はエタノール100%の燃料の場合の起電力を表している。
図4に示すように、燃料がガソリン100%である場合(実線(a))でも、エタノール100%である場合(点線(b))でも、電圧印加OFFとされた状態で検出されるセンサ出力(起電力)の特性には大きな差は生じていない。即ち、起電力は、燃料性状に関わらず、排気ガスが理論空燃比よりリーン(酸素過多)である場合には1[V]程度のほぼ一定の出力を示し、リッチ(酸素不足)である場合には0[V]程度のほぼ一定の出力を示し、理論空燃比近傍において急変する。
従って、燃料性状が判明していない状態においても、検出された起電力により、少なくとも排気ガスが理論空燃比よりもリッチ側、リーン側となっているか否かを検知することができる。実施の形態1のシステムはこれを利用して、燃料性状が判定されるまでの間、検出される起電力に基づいて理論空燃比を目標空燃比とした空燃比制御を行う。その後、燃料性状が検出されれば、その燃料性状に応じたマップに切り替えて、空燃比センサ20への正電圧の印加を開始する。これにより、その燃料性状に応じて正しく空燃比を検出することができる。
[素子温の制御について]
なお、上記の使用において、電圧印加OFF状態で正しく起電力を検出する場合には、センサ素子を550℃程度の活性温度(第1活性温度)に達した状態で用いることが好ましい。一方、正電圧を印加してセンサ電流を検出する際には、650℃程度の通常の空燃比センサの活性温度(第2活性温度)に達した状態で用いることが好ましい。従って実施の形態1では、起電力を検出する場合と正電圧を印加してセンサ電流を検出する場合とで、それぞれ適切な活性温度になるように素子温を制御する。具体的に、素子温は素子インピーダンスと相関を有することから、定期的にインピーダンス検出用電圧を印加して素子インピーダンスを検出し、これに応じて、空燃比センサ20のセンサ素子近傍に設置されたヒータ(図示せず)への通電を制御することで、素子温を制御することができる。
[実施の形態1における空燃比センサを用いた燃料性状判定について]
図5は、この発明の実施の形態1における空燃比と空燃比センサの出力とのバラツキについて説明するための図である。図5において、横軸は空気過剰率λを表し、縦軸は正電圧印加時にAD1空検出される空燃比センサの出力電圧[V]を表している。また、図5において実線(a)はガソリン100%の場合、点線(b)はエタノール100%の場合を表している。
図5から、空気過剰率λが小さい領域、すなわち空燃比がリッチ側の領域で、エタノール100%の場合(点線(a))、空燃比センサ20の出力特性の傾きが、ガソリン100%の場合よりも大きくなっていることがわかる。つまり、空燃比がリッチ側の領域では、エタノール100%の場合の空気過剰率λに対するセンサ出力電圧が、ガソリン100%の場合よりも小さくなる傾向があることがわかる。
図6は、この発明の実施の形態1において、空燃比を理論空燃比に制御している状態で、正電圧を印加した場合に検出される空燃比センサの出力の分布を表す図であり、図6(a)は燃料がガソリン100%の場合、図6(b)はエタノール100%の場合を表している。図6(a)に示されるように、ガソリン100%の燃料が用いられていれば、空燃比が理論空燃比に制御されている間の空燃比センサ20の出力は、理論空燃比におけるセンサ出力にピークを有し、このピークを中心に分布することになる。
一方、エタノール100%の燃料の場合、上記のようにリッチ側の領域でセンサ出力が小さくなる傾向がある。従って、空燃比を理論空燃比に制御している間の空燃比センサ20の出力の分布は、図6(b)に示すように、理論空燃比におけるセンサ出力電圧よりもリッチ側にずれた位置にピークを有し、ガソリン100%の場合の出力分布と比較すると、リッチ側(出力が小さい側)にズレているものとなる。
上記のような、空燃比センサ20の出力分布のズレは、エタノール燃料の含有率が高い場合程大きくなる(リッチ側にズレる)傾向がある。この出力分布のズレは燃料中のエタノール含有率と相関を有する。従って、実施の形態1では、起電力を検出して空燃比を理論空燃比に制御しつつ、正電圧印加に切り替えてセンサ出力を繰り返し検出する。その後、この出力の理論空燃比に対応する出力(センサ電流=0)に対するバラツキを検出し、このバラツキに応じて、燃料性状を判定する。
より具体的には、センサ出力と理論空燃比に対応する出力との差、あるいは、センサ出力分布、センサ出力の平均値等を、バラツキを示すパラメータとして算出する。一方、ECU24に、このようなパラメータとするエタノール含有率のマップを、実験等により求めて予め記憶しておく。燃料性状の判定において、センサ出力からパラメータを演算し、これに応じて、予め記憶されたマップに従って燃料性状を判定することができる。
図7は、この発明の実施の形態1においてシステムが実行する制御のタイミングチャートである。図7に示すように、一定の間隔で、スイッチング回路34、36のSW2がONとされ、SW1がOFFとされる。SW2がONとなっている場合、空燃比センサ10への電圧印加OFF状態となり、空燃比センサ20の両電極間に発生している起電力がAD2に導かれる。ECU24は、この起電力に基づいて、排気ガスがリッチであるかリーンであるかを検出する。この結果に基づいて、ECU24は、空燃比が理論空燃比になるように燃料噴射量を補正するなどの空燃比制御を実行する。
スイッチをSW2としてから一定時間経過後、スイッチング回路36、38のスイッチが切り替えられ、SW1がONとされSW2がOFFとされる。その結果、空燃比センサ20の両電極間に正電圧が印加される。このとき空燃比センサ20のセンサ出力がAD1から検出される。センサ出力は、スイッチング回路34、36がSW1がOFFとされ、正電圧が印加される度に、センサ出力が検出される。このセンサ出力が必要な回数検出された後、センサ出力が分析され、そのバラツキを示す上記のパラメータ(例えば、平均値等)が演算される。これに基づいて、燃料性状が判定されることとなる。
正電圧印加中にセンサ出力を検出した後に、毎回、SW1がONとなっている状態のまま、印加電圧操作部32からインピーダンス検出用電圧が供給される。つまり、正電圧に重畳して交流電圧が印加される。このときのセンサ出力がAD1から検出されてセンサ電流が求められ、印加された電圧とセンサ電流の変動に基づいて素子インピーダンスが演算される。この素子インピーダンスに基づいて空燃比センサ20の素子温が制御される。
センサ素子の素子インピーダンスは、性状判定のため正電圧印加後、正電圧に交流電圧を加えて供給することで検出される。従って、空燃比センサ20を電圧印加OFF状態で起電力を検出する場合にも、インピーダンス検出用の電圧印加回路を設置する必要がなく、通常の回路で素子温制御を実行することができる。
燃料性状の判定が完了した後は、スイッチング回路34、36のSW1がONに維持されたままとなる。従って、空燃比センサ20には正電圧が印加された状態で維持される。また、一定のタイミングで、正電圧に交流電圧を重畳させる。これにより、素子インピーダンスを検出することができ、燃料性状判定後も通常の空燃比センサ20として空燃比を検出できるとともに、素子インピーダンス検出により適切な温度に素子温を制御することができる。
[本実施の形態1の具体的な制御のルーチン]
図8は、この発明の実施の形態1においてECU24が実行する制御のルーチンについて説明するためのフローチャートである。図8は、内燃機関10の始動時に毎回実行されるルーチンである。図8のルーチンでは、まず現在、内燃機関10の始動時であるか否かが判定される(S100)。燃料の追加は、通常内燃機関10が停止された状況で行われると考えられるため、燃料性状の変化が、内燃機関10の始動時以外に発生する可能性が小さい。従って、内燃機関10の始動時であることが認められない場合には今回の処理は終了する。
一方、ステップS100において内燃機関10の始動時であることが認められると、次に、空燃比センサ20にインピーダンス検出用電圧が印加される(S110)。具体的には、ECU24からの制御信号によりスイッチング回路34、36のSW1がON、SW2がOFFとなるように制御された状態で、印加電圧操作部32から正電圧に所定の交流電圧が重畳されたインピーダンス検出用電圧が供給され、両端子38、40間に接続された空燃比センサ20の両電極間に印加される。
次に、素子インピーダンスが検出される(S112)。具体的には、空燃比センサ20にインピーダンス検出用電圧が印加された状態で、AD1に導かれる出力がECU24に取り込まれ、これに基づいてセンサ電流が算出される。その後、インピーダンス検出用電圧とセンサ電流とから素子インピーダンスが演算される。
次に、現在の素子温が、起電力検出のための活性温度(ここでは550℃)以上であるか否かが判別される(S114)。素子温は、ステップS112で求められた素子インピーダンスが、550℃を示す素子インピーダンスよりも小さくなっているかに基づいて判別される。ステップS114において、素子温≧550℃であることが認められない場合には、素子温≧550℃の成立が認められるまで、センサ素子の暖機が行われている状態で、素子温の演算と素子温の判定とが繰り返し実行される。
一方、ステップS114において素子温≧550℃の成立が認められた場合、空燃比センサ20への電圧印加がOFFとされる(S120)。具体的には、スイッチング回路34、36のSW1がOFFとされ、SW2がONとされる。次に、空燃比センサ20の起電力が検出される(S122)。起電力は、AD2の出力がECU24に取り込まれることで、ECU24において求められる。この起電力の大きさに基づいて、現在の空燃比が理論空燃比からリッチ側、リーン側にずれているかが検出され、理論空燃比を目標空燃比とする空燃比制御が実行される(S124)。
次に、空燃比センサ20には空燃比検出用の正電圧が印加される(S130)。ここでは具体的には、スイッチング回路34、36のSW1がON、SW2がOFFに切り替えられる。この状態で印加電圧操作部32から、正電圧が供給される。これにより、両端子38,40に接続された空燃比センサ20の両電極間に正電圧が印加される。次にセンサ出力が検出される(S132)。センサ出力は、正電圧が印加された状態でのAD1の出力を取り込むことで検出される。
次に、センサ出力のモニターが完了したかが判別される(S134)。具体的には、燃料性状の判定のためのセンサ出力のバラツキを示すパラメータの検出に必要な所定の回数、センサ出力のデータが検出されたか否かが判断される。
ステップS134において、センサ出力のモニター完了が認められない場合には、再びS110に戻り、正電圧印加の状態、即ち、スイッチング回路34、36のSW1がON、SW2がOFFとされ、正電圧が供給されている状態で、更に所定の交流電圧が重畳され、インピーダンス検出が行われ、センサ素子温の550℃以上に制御される(S110〜S114)。その後は、起電力の検出による理論空燃比への制御(S120〜S124)が行われた状態で、スイッチング回路34、36を切り替えて正電圧印加中のセンサ出力を検出する(S130〜S132)。これらのステップS110〜S132の処理が、ステップS134において空燃比のモニターの完了が認められるまで、繰り返し実行される。
ステップS134において、空燃比のモニター完了が認められた場合、検出されたセンサ出力が分析され、必要なパラメータが求められ、このパラメータに応じて燃料性状が判定される(S140)。燃料性状が判定されると、燃料性状に応じて、センサ電流と空燃比との関係を定めたマップの切り替えが行われる(S142)。具体的には、S140で判定された燃料性状に応じたマップが読み出され、このマップが、現在使用されている燃料性状に応じたセンサ電流と空燃比との関係を定めるマップとして設定される。燃料性状ごとのマップは、予めECU24に記憶されている。
次に、空燃比センサ20にインピーダンス検出用電圧が印加され(S150)、素子インピーダンスが検出される(S152)。素子インピーダンス検出は、ステップS110と同様に、スイッチング回路のSW1がONとされ、インピーダンス検出用電圧が印加された状態で検出されるセンサ電流に基づいて演算される。
次に、空燃比センサ20の素子温が、空燃比検出モードにおける活性温度(ここでは650℃)に達したか否かが判定される(S154)。具体的には、検出された素子インピーダンスが650℃に対応するインピーダンスより小さくなっているか否かにより判別される。ステップS154において素子温≧650℃であることが認められない場合には、この条件の成立が認められるまで、センサ素子の暖機が行われている状態で、繰り返しステップS150〜S154の素子温判定が行われる。
一方、ステップS154において素子温≧650℃の成立が認められると、次に、空燃比センサ20に正電圧が印加される(S160)。具体的には、スイッチング回路34、36のSW1がONのまま、インピーダンス検出用の交流電圧の重畳がOFFとされ、正電圧のみが供給される状態とされる。これにより空燃比センサ20には、排気ガスの酸素濃度に応じたセンサ電流が流れる。センサ電流は、AD1からECU24に取り込まれる陽極の電位に基づいて演算される(S162)。その後、ステップS142において切り替えられたマップに従って空燃比が求められる(S164)。その後、空燃比に応じて、目標空燃比になるように空燃比制御が実行される(S166)。なお、ステップS142においてマップが切り替えられた後の制御は、通常の空燃比制御の手法である。ステップS166の後も、通常の空燃比制御の手法に従って、空燃比センサ20のセンサ電流に基づいて空燃比が演算され、空燃比制御と素子温の制御が実行される。
以上説明したように、実施の形態1によれば、始動時の燃料性状が不明の状態においては、スイッチング回路34、36を切り替えることで、空燃比センサ20の理論空燃比を目標空燃比とする空燃比制御を実行しつつ、正電圧を印加中のセンサ出力のバラツキを求めて燃料性状の判定を行うことができる。従って、燃料性状が不明な状態においても、空燃比制御のための専用のセンサや燃料性状判定のための専用のセンサを別途設けることなく、空燃比センサ20を利用して燃料性状の判定を行いつつ、始動時の燃料性状が不明な状態における空燃比の制御を実現することができる。また燃料性状の判定が完了した後では、マップの切り替えにより、空燃比センサ20により燃料性状に応じた空燃比を検出することができる。従って、より高い精度で空燃比制御を行うことができる。
なお、この実施の形態1では、内燃機関10の始動時に毎回、燃料性状の判定を行う場合について説明した。しかし、この発明はこれに限るものではなく、例えば、実際に燃料が補充されたことを検出し、燃料補充が行われた場合にのみ実施の形態1の制御を行うこととしてもよい。これについては、以下の実施の形態2においても同様である。
また、実施の形態1では、内燃機関10が、エタノールを0〜100%の異なる含有率で含むガソリンとエタノールとの混合燃料を使用できるものである場合について説明した。しかし、用いられる燃料は、ガソリン、エタノール及びこれらの混合燃料のみ限らず、他の燃料、あるいは他の燃料とガソリンとを混合して用いるものであってもよい。このような場合にも、図6に示すような、空燃比を理論空燃比近傍に制御した場合の空燃比センサの出力バラツキと燃料性状との関係を、予め実験等により求めてECU24に記憶しておくことで、燃料性状の判定を行うことができる。また、燃料性状ごとに、センサ電流と空燃比とのマップをECU24に予め記憶しておくことで、空燃比センサ20を用いた空燃比検出を行うことができる。なお、燃料性状がこのように異なる場合であっても、起電力の特性はほぼ同一のものとなる。従って、燃料性状判定が完了するまでの間は、燃料性状に関わらず、起電力に基づいて理論空燃比近傍への制御を行うことができる。
また、実施の形態1では、燃料性状判定においては、センサ出力電圧を検出して、このバラツキにより燃料性状を判定し、一方、空燃比検出や素子インピーダンス検出の際には、センサ電流を求めてこれを用いて演算する場合について説明したが、この発明はこれに限るものではない。例えば、燃料性状をセンサ電流のバラツキによって求めることもでき、空燃比をセンサ出力電圧に対応させて検出したり、素子インピーダンスをセンサ出力電圧から求めたりすることもできる。
また、実施の形態1では、ECU24に燃料性状に応じたマップを記憶しておく場合について説明した。しかしながら、例えば、ガソリンとエタノールを含有する燃料の場合、燃料性状に応じたセンサ電流対する空燃比の値は、ガソリンの場合の空燃比を、センサ電流がゼロの時の空燃比がその燃料の理論空燃比となるように、平行にシフトしたものに近似される。従って、燃料性状ごとのマップに代えて、例えば、上記のような関係に基づいて、エタノール等の燃料の含有率に応じた補正値をマップあるいは演算により求め、これにより、ガソリンの場合にセンサ電流から算出される空燃比に対する補正を行うことで、その燃料性状に応じた空燃比を求めるようにすることもできる。これについては、以下の実施の形態2においても同様である。
また、実施の形態1においては、燃料性状判定を行っている間、理論空燃比近傍への制御を空燃比センサ20の起電力に基づいて行う場合について説明した。これにより実施の形態1のシステムでは、1つの空燃比センサ20により、理論空燃比近傍への制御と燃料性状判定とを同時に実現することができる。しかし、この発明はこれに限るものではなく、例えば、空燃比センサ20とは別に、排気通路16に酸素センサあるいは空燃比センサを設けるようにしてもよい。但し、上記の燃料性状判定は、空燃比を理論空燃比近傍に制御した場合の空燃比センサ20の出力分布のバラツキに基づいて行うものである。従って、このような燃料性状判定を行うためには、目標空燃比が明らかとなる空燃比制御を行うことができる空燃比の検出手段が必要となる。
この発明は、燃料性状中の目標空燃比への空燃比制御が確保されていれば、目標空燃比を理論空燃比とは異なる値として制御するものであってもよい。この場合には、その目標空燃比に制御した場合の燃料性状ごとの空燃比センサの出力分布のバラツキの関係を実験等により予め検出し、このバラツキを示すパラメータと燃料性状との関係を記憶しておくことで、上記に説明したように、空燃比センサのセンサ出力から燃料性状を検出することができる。
また、実施の形態1においては、起電力検出時の素子温を約550℃以上とし、空燃比検出時の素子温を約650℃以上とする場合について説明した。しかし、この発明において素子温はこれに限るものではない。例えば、より早く空燃比制御の開始を必要とする場合には、素子温が550℃以下の温度でも、起電力の検出を開始するものであってもよい。但し、この場合にも、起電力に基づく空燃比制御の精度をある程度確保するため、素子温は約350℃以上とされることが好ましい。これについては、以下の実施の形態2においても同様である。
また、実施の形態1においては、素子温の制御を、素子インピーダンスを検出してこれに基づいて行う場合について説明した。しかし、素子温の制御はこのような手法に限るものではなく、他の手法によって行うものであってもよい。これについては、以下の実施の形態2においても同様である。
また、実施の形態1においては、駆動回路30により、正電圧やインピーダンス検出用電圧の印加、あるいは印加電圧OFF状態等を制御し、また、センサ出力や起電力の検出を行う場合について説明した。しかし、この発明において、空燃比センサ20に必要な電圧を印加し、あるいはその出力を検出する回路は、図2に示す駆動回路に限るものではなく、他の回路により行われるものであってもよい。これについては、以下の実施の形態2においても同様である。
以上の実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に限定されるものではない。また、実施の形態において説明する構造や、方法におけるステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。これについては、実施の形態2においても同様である。
なお、例えば、図8のステップS130又は160が実行されることにより、この発明の「正電圧印加手段」が実現し、ステップS132又はS162が実行されることにより「センサ出力検出手段」が実現し、ステップS140が実行されることにより「燃料性状判定手段」が実現し、ステップS124が実行されることにより「性状判定時空燃比制御手段」が実現し、ステップS134が実行されることにより「完了判定手段」が実現し、ステップS166が実行されることにより「空燃比制御手段」が実現する。
また、例えば、ステップS140が実行されることにより、この発明の「バラツキ検出手段」及び「アルコール含有率検出手段」が実現する。また、例えば、ステップS142が実行されることにより「マップ選択手段」が実現し、ステップS164が実行されることにより「空燃比検出手段」が実現する。また、例えば、ステップS122が実行されることにより「起電力検出手段」が実現し、ステップS110又はS150が実行されることで「インピーダンス検出用電圧印加手段」が実現し、ステップS112又はS152が実行されることにより「素子インピーダンス演算手段」が実現し、ステップS114が実行されることにより「第1素子温判定手段」が実現し、ステップS154が実行されることにより「第2素子温判定手段」が実現する。
実施の形態2.
実施の形態2のシステムは、図1、図2に示した実施の形態1のシステムと同様の構成を有している。但し、実施の形態2のシステムにおいて駆動回路30の印加電圧操作部32は、上記の正電圧、インピーダンス検出用の交流電圧、及び正電圧より大きな1.0[V]程度の大電圧を供給することができる。
図9は、この発明の実施の形態2における空燃比センサ20の両電極間への印加電圧を変化させた場合に空燃比センサ20に流れるセンサ電流の変化を説明するための図である。図9において、横軸は印加電圧[V]を表し、縦軸はセンサ電流[mA]を表している。図9に示すように、空燃比センサ20に正電圧(実施の形態では、0.4V程度)を印加した状態においては、空燃比センサ20には排気ガスの酸素濃度に応じた限界電流が流れる。この限界電流をセンサ電流として検出することで、空燃比を求めることができる。
空燃比センサ20に印加される電圧が正電圧付近の大きさであれば、センサ電流は限界電流に安定している。しかし、印加電圧を1.0[V]程度にまで大きくすると、センサ電流は限界電流を越えて大きくなる。これは、印加電圧が大きくなると、排気側電極付近にある水の電気分解が開始するためであると考えられる。つまり、大電圧印加を印加した場合に空燃比センサ20に流れるセンサ電流の限界電流に対する増加分は、水分解による分解電流に応じたものであると考えられる。
ところで燃料がガソリンとエタノールとの混合燃料である場合、排気ガス中に存在する水分子の量は燃料に含まれるエタノール含有率と相関を有し、エタノールの含有率が多いほど発生する水分子量が多くなる。従って、エタノール含有率が多いほど、大電圧を印加した場合の水分解による分解電流も大きくなり、図9に示すように、限界電流に対するセンサ電流の増加量も大きくなる。
エタノール含有率と水分子の発生量、また、水分子の量に対するセンサ電流の増加量は、一定の相関関係を有している。従って、この相関関係に基づいて燃料中のエタノールの含有率を算出することができる。ここで、エタノール含有率を算出するためには、限界電流に対する水分解によるセンサ電流の増加量が明確となる必要がある。従って、正電圧印加時のセンサ電流(限界電流)が明確であり、安定している状態であることが必要となる。
上記したように、燃料性状が判定されていない状態においても、空燃比センサ20の起電力を検出することで、空燃比を理論空燃比に制御することができる。従って、実施の形態2のシステムはこれを利用して、燃料性状判定中は空燃比を理論空燃比に制御する。これにより、正電圧印加時のセンサ電流(限界電流)を安定してセンサ電流=0の状態とすることができる。従って、この限界電流(=0)に対する水分解による電流増加分を正確に把握するおとができ、正確に燃料性状を判定することができる。
具体的には、SW2をONとして起電力を検出しこれに基づいて理論空燃比に制御する処理と、この状態でSW1をONに切り替えて大電圧を印加してセンサ電流を検出する処理とを複数回繰り返し行う。これにより限界電流=0の状態が維持されていると推定されるため、検出されたセンサ電流の平均値が、水分解によるセンサ電流の増加量となり、これに基づいて燃料中のエタノールの含有率を演算することができる。なお、センサ電流の増加量とエタノール含有率との関係は、予め実験等により求めて、ECU24にマップとして記憶する。
実施の形態2のシステムが実行する具体的な制御のルーチンは、図8に示すルーチンと同じものである。但し、図8のステップS130においてSW1をONとして、SW2をOFFとした状態では、空燃比センサ20には正電圧の印加に代えて1.0V程度の大電圧が印加される。この状態で続くステップS132においてはセンサ電流が求められる。S110〜S134が繰り返し実行され、センサ電流が所定回数検出されると、ステップS134においてモニターの完了が認められる。その後、ステップS140において、大電圧印加時のセンサ電流の平均値が求められ、燃料中のエタノールの含有率が演算される。
なお、実施の形態2のステップS110において印加されるインピーダンス検出用電圧は、大電圧に交流電圧を重畳したものとなる。即ち、実施の形態2ではステップS110〜S134の繰り返し実行されるルーチンのなかで、センサ電流検出のために印加される電圧は1.0Vの大電圧となる。従って、ステップS130〜S134の後、ステップS110の処理が行われる際には、大電圧を正電圧に切り替えることなく、そのままの状態で、印加電圧操作部32により交流電圧を重畳すればよい。素子インピーダンスは、インピーダンス検出用電圧に対するセンサ電流の変化により算出することができるため、インピーダンス検出用電圧の大きさが大きくなっても、素子インピーダンスを検出することができる。
以上説明したように、実施の形態2においては、空燃比センサ20に大電圧を印加したときのセンサ電流の増加量に応じて、燃料中のエタノール含有率を検出して性状判定を行うことができる。また、ここで、燃料性状検出中の空燃比制御は、空燃比センサ20の起電力に基づいて行うことができ、性状判定中の空燃比を理論空燃比近傍に維持することができ、空燃比制御を実現しつつ、同時に燃料性状の判定を行うことができる。
なお、実施の形態2においては、目標空燃比を理論空燃比として、空燃比センサの起電力に基づいて理論空燃比近傍に空燃比を制御した状態で燃料の性状判定を行う場合について説明した。しかし、この発明はこれに限るものではなく、例えば、燃料性状判定中に空燃比を検出するセンサを専用に設けて、これに基づいて所定の目標空燃比に制御するものであってもよい。このような場合にもセンサ電流を検出し、センサ電流の、目標空燃比に応じた正電圧印加時のセンサ電流(限界電流)に対する増加分を求めることで、性状判定を行うことができる。
また、実施の形態2では、内燃機関10が、エタノールを0〜100%の異なる含有率で含むガソリンとエタノールとの混合燃料を使用できるものである場合について説明した。しかし用いられる燃料は、ガソリン、エタノール及びこれらの混合燃料のみ限らず、他のアルコール燃料、あるいは他のアルコール燃料とガソリンとを混合して用いるものであってもよい。エタノールに限らず、他のアルコール燃料を含む場合にも、排気ガス中にはアルコールの含有率に応じた水が発生する。従って、アルコール含有率と水の発生量との関係を演算し、これに基づいて、印加する大電圧の大きさとセンサ電流の増加量と、アルコール含有率との関係を特定することができる。これをECU24に予め記憶しておくことで、上記の方法を、他のアルコールを含有する燃料にも適用することができる。
また、実施の形態2において、燃料性状判定においては、センサ電流の増加量に基づいて燃料性状を判定し、また空燃比検出や素子インピーダンス検出もセンサ電流に基づいて行う場合について説明した。しかし、この発明はこれに限るものではない。所定の電圧を印加した場合のセンサ出力である、センサ出力電圧とセンサ電流とは相関を有するものであるから、例えば、燃料性状をセンサ出力電圧の増加量によって求めることもでき、空燃比をセンサ出力電圧に対応させて検出したり、素子インピーダンスをセンサ出力電圧から求めたりすることもできる。
なお、実施の形態2において、ステップS130が実行されることで、この発明の「大電圧印加手段」が実現し、ステップS140が実行されることで「アルコール含有率検出手段」が実現する。
この発明の実施の形態1におけるシステムの構成を説明するための模式図である。 この発明の実施の形態1における空燃比センサの駆動回路を説明するための模式図である。 この発明の実施の形態1における空燃比センサの、センサ電流と空燃比との関係を説明するための図である。 この発明の実施の形態1における空燃比センサの、起電力と空燃比との関係を説明するための図である。 この発明の実施の形態1における空燃比センサの、センサ出力電圧と燃料性状との関係を説明するための図である。 この発明の実施の形態1における空燃比センサの、燃料性状ごとのセンサ出力の分布を表す図である。 この発明の実施の形態1における制御のタイミングチャートである。 この発明の実施の形態1においてECUが実行する制御のルーチンについて説明するためのフローチャートである。 この発明の実施の形態2における空燃比センサのセンサ電流と、燃料性状との関係を説明するための図である。
符号の説明
10 内燃機関
12 燃料タンク
16 排気通路
18 触媒
20 空燃比センサ
22 酸素センサ
24 ECU
30 駆動回路
32 印加電圧操作部
34、36 スイッチング回路
38 陽極端子
40 負極端子

Claims (6)

  1. ガソリン及びガソリン以外の燃料を燃料として使用できる内燃機関の空燃比を制御する空燃比制御装置であって、
    前記内燃機関の排気通路に配置された空燃比センサの、大気側電極と排気側電極との間に、排気ガスの空燃比を検出するための正電圧を印加する正電圧印加手段と、
    前記空燃比センサのセンサ出力を検出するセンサ出力検出手段と、
    前記空燃比センサのセンサ出力に応じて、前記内燃機関に使用されている燃料の燃料性状を判定する燃料性状判定手段と、
    前記燃料性状の判定を行っている間、前記内燃機関の空燃比を目標空燃比に制御する性状判定時空燃比制御手段と、
    前記燃料性状判定が完了したか否かを判定する完了判定手段と、
    前記燃料性状判定の完了が認められた場合に、前記正電圧の印加中に検出されるセンサ出力に基づいて、判定された前記燃料性状に応じて、空燃比制御を行う空燃比制御手段と、
    を備えることを特徴とする空燃比制御装置。
  2. 前記燃料は、ガソリン又はアルコール又はガソリンとアルコールとの混合燃料であって、
    前記性状判定時空燃比制御手段は、前記目標空燃比を理論空燃比とし、
    前記燃料性状判定手段は、
    前記正電圧の印加中に検出されるセンサ出力の、理論空燃比に対するセンサ出力の演算値に対するバラツキを検出するバラツキ検出手段と、
    前記バラツキに応じて、前記燃料中のアルコール含有率を検出するアルコール含有率検出手段と、
    を備えることを特徴とする請求項1に記載の空燃比制御装置。
  3. 前記燃料性状判定の完了が認められない場合に、前記空燃比センサの両電極間に、前記正電圧よりも大きな大電圧を印加する大電圧印加手段を、更に備え、
    前記燃料は、ガソリン又はアルコール又はガソリンとアルコールとの混合燃料であって、
    前記性状判定時空燃比制御手段は、前記目標空燃比を理論空燃比とし、
    前記燃料性状判定手段は、前記大電圧の印加中に検出されるセンサ出力に応じて、前記燃料中のアルコール含有率を検出するアルコール含有率検出手段を備えることを特徴とする請求項1に記載の空燃比制御装置。
  4. 前記燃料性状が判定された場合に、判定された前記燃料性状に応じて、前記正電圧印加状態で検出されるセンサ出力と空燃比との関係を定めたマップを選択するマップ選択手段と、
    前記正電圧印加中に検出されるセンサ出力に応じて、前記選択されたマップに従って、空燃比を検出する空燃比検出手段と、を更に備え、
    前記空燃比制御手段は、前記燃料性状判定の完了が認められた場合に、前記空燃比に応じて空燃比制御を行うことを特徴とする請求項1から3のいずれかに記載の空燃比制御装置。
  5. 前記空燃比センサの両電極間に電圧を印加しない状態で、前記空燃比センサの両電極間に発生する起電力を検出する起電力検出手段を備え、
    前記性状判定時空燃比制御手段は、前記起電力に応じて空燃比制御を行うことを特徴とする請求項1から4に記載の空燃比制御装置。
  6. 前記空燃比センサに、前記空燃比センサのセンサ素子の素子インピーダンスを検出するための、インピーダンス検出用電圧を印加するインピーダンス検出用電圧印加手段と、
    前記インピーダンス検出用電圧の印加中に検出されるセンサ出力に応じて、前記素子インピーダンスを検出する素子インピーダンス検出手段と、
    前記燃料性状判定の完了が認められない場合に、前記素子インピーダンスに基づいて、前記空燃比センサのセンサ素子の温度が第1活性温度に達したか否かを判定する第1素子温判定手段と、
    前記燃料性状判定の完了が認められた場合に、前記素子インピーダンスに基づいて、前記センサ素子の温度が第2活性温度に達したか否かを判定する第2素子温判定手段と、
    を、更に備え、
    前記起電力検出手段は、前記センサ素子の温度が前記第1活性温度に達したと認められた場合に、前記起電力の検出を行い、
    前記空燃比制御手段は、前記センサ素子の温度が前記第2活性温度に達したと認められた場合に、前記正電圧印加中のセンサ出力に応じた空燃比制御を行うことを特徴とする請求項5に記載の空燃比制御装置。
JP2006281647A 2006-10-16 2006-10-16 空燃比制御装置 Expired - Fee Related JP4609407B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281647A JP4609407B2 (ja) 2006-10-16 2006-10-16 空燃比制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281647A JP4609407B2 (ja) 2006-10-16 2006-10-16 空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2008095662A true JP2008095662A (ja) 2008-04-24
JP4609407B2 JP4609407B2 (ja) 2011-01-12

Family

ID=39378755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281647A Expired - Fee Related JP4609407B2 (ja) 2006-10-16 2006-10-16 空燃比制御装置

Country Status (1)

Country Link
JP (1) JP4609407B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120510A (ja) * 2008-11-19 2010-06-03 Toyota Motor Corp 内燃機関装置およびこれを備えるハイブリッド車並びに燃料性状判定方法
JP2010242644A (ja) * 2009-04-07 2010-10-28 Toyota Motor Corp アルコール系燃料エンジン用潤滑油の性能維持方法および装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441644A (en) * 1987-08-06 1989-02-13 Nissan Motor Control device for internal combustion engine
JPH03124938A (ja) * 1989-10-09 1991-05-28 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JPH03217644A (ja) * 1990-01-19 1991-09-25 Mitsubishi Motors Corp 燃料ブレンド率検出方法
JPH04101042A (ja) * 1990-08-20 1992-04-02 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JPH04362242A (ja) * 1991-06-10 1992-12-15 Fuji Heavy Ind Ltd Ffv用エンジンの始動制御方法
JPH0510163A (ja) * 1991-07-05 1993-01-19 Nissan Motor Co Ltd 内燃機関の制御装置
JPH05163992A (ja) * 1991-12-16 1993-06-29 Japan Electron Control Syst Co Ltd 混合燃料供給装置のフェイルセイフ装置
JPH05209549A (ja) * 1992-01-31 1993-08-20 Mazda Motor Corp アルコールエンジンの空燃比制御機構
JPH07197837A (ja) * 1993-12-29 1995-08-01 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2002309995A (ja) * 2001-04-16 2002-10-23 Denso Corp 内燃機関の燃料性状判定装置
JP2003120363A (ja) * 2001-10-15 2003-04-23 Nissan Motor Co Ltd 内燃機関の燃料噴射制御装置
JP2003138967A (ja) * 2001-11-05 2003-05-14 Denso Corp 内燃機関の触媒早期暖機制御システムの異常診断装置
JP2006077683A (ja) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd エンジンのアルコール濃度推定装置
JP2008095663A (ja) * 2006-10-16 2008-04-24 Toyota Motor Corp 空燃比制御装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441644A (en) * 1987-08-06 1989-02-13 Nissan Motor Control device for internal combustion engine
JPH03124938A (ja) * 1989-10-09 1991-05-28 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JPH03217644A (ja) * 1990-01-19 1991-09-25 Mitsubishi Motors Corp 燃料ブレンド率検出方法
JPH04101042A (ja) * 1990-08-20 1992-04-02 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JPH04362242A (ja) * 1991-06-10 1992-12-15 Fuji Heavy Ind Ltd Ffv用エンジンの始動制御方法
JPH0510163A (ja) * 1991-07-05 1993-01-19 Nissan Motor Co Ltd 内燃機関の制御装置
JPH05163992A (ja) * 1991-12-16 1993-06-29 Japan Electron Control Syst Co Ltd 混合燃料供給装置のフェイルセイフ装置
JPH05209549A (ja) * 1992-01-31 1993-08-20 Mazda Motor Corp アルコールエンジンの空燃比制御機構
JPH07197837A (ja) * 1993-12-29 1995-08-01 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2002309995A (ja) * 2001-04-16 2002-10-23 Denso Corp 内燃機関の燃料性状判定装置
JP2003120363A (ja) * 2001-10-15 2003-04-23 Nissan Motor Co Ltd 内燃機関の燃料噴射制御装置
JP2003138967A (ja) * 2001-11-05 2003-05-14 Denso Corp 内燃機関の触媒早期暖機制御システムの異常診断装置
JP2006077683A (ja) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd エンジンのアルコール濃度推定装置
JP2008095663A (ja) * 2006-10-16 2008-04-24 Toyota Motor Corp 空燃比制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120510A (ja) * 2008-11-19 2010-06-03 Toyota Motor Corp 内燃機関装置およびこれを備えるハイブリッド車並びに燃料性状判定方法
JP2010242644A (ja) * 2009-04-07 2010-10-28 Toyota Motor Corp アルコール系燃料エンジン用潤滑油の性能維持方法および装置

Also Published As

Publication number Publication date
JP4609407B2 (ja) 2011-01-12

Similar Documents

Publication Publication Date Title
JP5021697B2 (ja) ガス濃度湿度検出装置
JP3711582B2 (ja) 酸素濃度検出装置
JP5155377B2 (ja) ガスセンサの制御装置
US8961761B2 (en) Oxygen sensor control apparatus
JP5519571B2 (ja) ガスセンサ装置およびその制御方法
US7293557B2 (en) Abnormality detecting apparatus and abnormality detecting method for an air/fuel ratio sensor
JP2009085637A (ja) ガスセンサ制御装置
JP5981296B2 (ja) 内燃機関の制御システム
US20050061684A1 (en) Method for operating a measuring probe for measuring a gas concentration
JP7128090B2 (ja) センサ制御装置およびセンサ制御方法
JP5696789B2 (ja) 内燃機関の制御装置
JP5767607B2 (ja) ガスセンサ制御装置
JP4609407B2 (ja) 空燃比制御装置
JP4725481B2 (ja) 空燃比制御装置
US20200141892A1 (en) Failure detection apparatus for gas sensor and failure detection method for gas sensor
JP4069887B2 (ja) 酸素濃度検出装置
JP2006200930A (ja) 排気ガスセンサの制御装置
JP4033228B2 (ja) 酸素濃度検出装置
JP5788834B2 (ja) ガスセンサ制御装置
CN113847152B (zh) 空燃比传感器的控制系统
JP2007240188A (ja) 空燃比センサの制御装置
JP2015161570A (ja) ガスセンサ
JP2010204108A (ja) 車両のバッテリ電流検出装置
JP2010285931A (ja) 内燃機関の制御装置
JP2006208126A (ja) 車両のバッテリ電流検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4609407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees